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—— Abstract

Radio Networks (RN) is one of the fundamental models for network communication where nodes
can broadcast messages locally but their simultaneous transmissions can interfere with each other at
their shared neighbors. This work focuses on performing the very fundamental primitive of Local
Broadcast, in spite of the interferences.

We investigate to what extent local knowledge, called advice, relating to the 2-local domination
number 2 may speed up Local Broadcast. Specifically for each node and some dominating set,
knowledge about some neighboring dominating node and the local number among the neighbors
of that dominating node. We show that such advice is sufficient to build an efficient oblivious
transmission schedule. Along those lines, we present three algorithms trading the level of adaptiveness
(from oblivious to adaptive) for bits of advice per node (from O(log(A~v2)) to 1). All our algorithms
complete Local Broadcast in O(Ay2) rounds, where A is the maximum degree of the network.

On the side of lower bounds, we show that, for each quasi-adaptive deterministic Local Broadcast
algorithm, there is some RN that requires Q(min{(min{A,~2}/logn)?,n}) communication rounds,
where n is the number of network nodes. In quasi-adaptive protocols nodes may stop executing
once its computational task is completed. To the best of our knowledge, this is the first (nearly)
quadratic Local Broadcast (same message for all neighbors) lower bound in the RN model. Our
lower bound is stronger than previous works in multiple ways: %) it is nearly quadratically better
than the best known general lower bound for this class of algorithms, ) it applies to a wider class
of algorithms than previous work for fully oblivious, #) it achieves similar time lower bound than
previous work proved for a much more demanding Local Broadcast where each node sends a possibly
different message to each neighbor, and 7v) it takes into account the local domination parameter .
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1 Introduction

The Radio Networks (RN) model was introduced about 40 years ago by Chlamtac and
Kutten [9] as a multi-hop generalization of a multiple-access channel [1, 41]. The model
attracted a lot of attention over many years. A somewhat arbitrary list of examples includes
[2, 3, 39, 12, 43, 25, 15, 23] among many others. One major difference between RN and, e.g.,
the CONGEST model of point-to-point communication [42], is that if a node v transmits when
v’s two-hop neighborhood does not, then all of v’s neighbors receive copies of v’s message,
rather than just one of them. (The model is defined later.) Hence, the Local Broadcast
task of sending messages to all the neighbors arises as a natural building block for RN,
both local and global, see e.g., [40, 11]. For example, one can view some known algorithms
for network-wide broadcast as using multiple applications of this building block of Local
Broadcast. That is, in many works (e.g., [3, 13]) the broadcast proceeds by having nodes
that already have received the broadcast message forward it by performing Local Broadcast.

The main challenge in RN is that simultaneous transmissions in the two-hop neighborhood
of v may “collide” with v’s message and prevent it from being received by some or all of v’s
neighbors. In this paper, we study the scheduling of nodes’ transmissions that allows all the
nodes to perform their Local Broadcast task in any network, overcoming their collisions. The
nodes do not know the network topology, but may receive a few bits of advice, as discussed later.

Parameterizing RN graph topologies to measure time performance more accurately

Recently, Davies [15] suggested that the independence number of a graph (i.e., the size of a
maximum independent set) can accurately parameterize time complexity of global problems,
such as broadcast and leader election. More specifically, randomized algorithms in [15] have
low time complexity as a function of the independence number of the network graph.

In the current paper, we address local tasks. Specifically, we consider distributed de-
terministic algorithms for the natural task of Local Broadcast and parameterize their time
performance by a local version of the domination number of the graph, called 2-local domina-
tion number and denoted 2.1 For a given radio network with topology graph G = (V, E) and
a set B C V, the Local Broadcast problem is to deliver a message from v to all neighbors of
v, for each v € B. Parameter 72 spans from constant to O(A?), and in many popular classes,
e.g., Unit Disc or Bounded Growth graphs, it is constant.

Preliminary intuitions about time complexity of deterministic Local Broadcast

Before stating our contributions formally, the following intuition may be interesting. Consider
a node u that has A neighbors vy, vs,...va. In Local Broadcast, each such neighbor v; needs
to receive a message from each of its O(A) neighbors (other than u), and it has to be at some
rounds 7 when u does not transmit in order to avoid simultaneous conflicting transmissions.
Hence, only O(A?) rounds are “forbidden” for u to transmit during Local Broadcast. The
latter suggests that if « knew which rounds are “forbidden” for itself, it could perform Local
Broadcast in O(A2) time. On the other hand, Local Broadcast can be performed much faster

! Local domination is defined analogously to how local independence relates to independence, see [21].
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Table 1 Our deterministic distributed RN Local Broadcast results in comparison with closest
previous work. n is the number of network nodes, A is the maximum degree and -2 is the 2-local
dominating number.

Se:;fi:;ieor Communication rounds Protocol class Ij(iltvsi((:)ef
[8]:Thm 13 O(A? min{log n,log4 n}) oblivious, y2 > 1 none
[12):Thm 1.6 Q(min{A%log n,n}) oblivious, v2 > 1 none
3.2 O(A~2 log2) oblivious O(log(A%2))
3.3 O(A~3logn) quasi-adaptive O(log2)
4.2 Q (mln { (m"iigAHW} ) : , }) quasi-adaptive none
3.4 O(A~3 log®n) adaptive 1
[14]:Cor 11 Q(Alogn) any, y2 > 1 none

by a randomized algorithm [3, 14], with high probability. This suggests that for every network,
there exists a transmission schedule in which some of the rounds forbidden for u because of
neighbor v; are the same as those forbidden because of some other neighbor v; (for j # i). We
can further infer then that a better deterministic Local Broadcast algorithm can be obtained
if each node learns the whole topology (and is not computationally bounded). However, in
this paper, we show that such a saving is not possible (up to a polylogarithmic factor) for
oblivious and even quasi-adaptive algorithms (i.e., algorithms with predefined transmission
schedules, but allowing nodes to stop based on received messages and channel feedback).

What topology knowledge, or advice, is sufficient to beat the A% bound?

The general question of how much of topology knowledge may help nodes in completing a
distributed task faster, was heavily investigated in various forms, for example, in [17, 16, 18,
33, 23]. Inspired by [15], who parameterized time complexity of global broadcast by the size
of a Maximal Independent Set, and by our lower bound involving the minimum local size of
the Dominating Set (DS), we investigate to what extent some local knowledge about some
DS may speed up Local Broadcast. In particular, the extra knowledge (also called advice,
or, sometimes, a label) about some nearby node in the DS and the local number among the
neighbors of that node is sufficient to build an efficient oblivious transmission schedule. Note
that such advice consists of a logarithmic (in A,~2) number of bits per node, and could be
further decreased down to 1 when adding some adaptiveness to the protocol.

1.1 Qur Contributions

Our results are detailed and compared to previous work in Table 1.

Upper bounds. In Section 3 we present three Local Broadcast algorithms with advice, which
are efficient (that is, o(A2)) for graphs with small 2-local domination number v, (defined
later). More precisely, all our algorithms complete Local Broadcast in O(A~2) rounds (where
notation O hides polylogarithmic factors) trading the size of advice for adaptivity.

The first algorithm (Section 3.2) needs log(Av3) € O(log(Avz)) bits of advice, but it
does not need any adaptivity (i.e., the algorithm is fully oblivious). In view of the best
known lower bound Q(min{A?log, n,n}) for oblivious algorithms without advice in [12],
which works for any 7s, it demonstrates that a logarithmic (in terms of A and 72) advice

allows to beat this lower bound for networks with v, € O(VA).
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The second algorithm (Section 3.3) uses less advice of only O(log~s) bits, but needs
a bit of adaptiveness in deciding to stop (i.e., the algorithm is quasi-adaptive). It is only
one factor away from our new lower bound on quasi-adaptive algorithms without advice,
described later.

The third algorithm (Section 3.4) requires only 1 bit of advice, but is fully adaptive.
All our algorithms do not require collision detection or acknowledgments built-in the model.
They are also close to the obvious lower bound A (as a node can receive at most one message
in a round, because of avoiding collisions), as long as ~- is small.

Lower bound. In Section 4 we present a lower bound of {2 (min {(min{A, v}/ logn)? ,n})
for quasi-adaptive deterministic algorithms accomplishing Local Broadcast in any n-node radio
networks of node degree at most A and 2-local domination number 7, without any topology
knowledge or any other kind of advice. For settings where either A or ~» are not restric-
ted, our lower bound yields either 2 (min {(’}/2/ log n)2 ,n}) or ) (min {(A/ log n)2 ,n})
respectively. To the best of our knowledge, this is the first (nearly) quadratic Local Broadcast
(same message for all neighbors) lower bound in the RN model. To prove it, we design and
analyze a hitting game on graphs, in which one player tries to “hit” a matching hidden in
a graph designed by other player, by asking queries (each query is a subset of nodes of the
graph). See Section 4.1 and Theorem 17 for more details.

Our lower bound is stronger than previous results in three ways. It is nearly quadratically
(in A) better than the best known general lower bound for this class of algorithms, mainly,
Q(Alogn) [14].2 Second, comparing to the Q(min{A?loga n,n}) lower bound in [12] for
fully oblivious algorithms, ours works for much wider class of quasi-adaptive algorithms and
takes into account parameter 7, which as we described earlier, conveniently parametrizes
time complexity of algorithms from the upper bound perspective. Third, our lower bound
is also stronger than another similar lower bound of Q(AZ?logn) in [14], which was proved
for much more demanding communication task (under the name of Local Broadcast) — each
node could send a possibly different message to each neighbor.

Other related work is overviewed in Appendix 1.1. Interesting extensions and open
directions are discussed in Section 5.

A variety of global computational problems that are fundamental for distributed computing
in communication networks has been studied under the RN model. Local broadcast on the
other hand has been studied for randomized algorithms [3] and especially for particular
cases of RN where, for instance, some (known) links are assumed to be unreliable and/or
the solutions given are randomized (see [40, 26, 14] and references therein), or the topology
is restricted e.g., to a complete graph. However, to the best of our knowledge, there is no
previous work on deterministic Local Broadcast under the general multi-hop RN model. A
non-comprehensive overview of related works, as well as lower bounds for other models that
nevertheless applies to our context, are included below.

Historically, the problem of Local Broadcast was first considered in complete graphs,
also called multiple-access channels or shared channels, where only a subset of nodes was
active and ready to broadcast. Capetanakis [7], Hayes [31], and Tsybakov and Mikhailov [44]
independently proposed a deterministic adaptive tree-like algorithm in the model with collision
detection, working in O(Alog(n/A)) communication rounds, where A is the number of active

2 The lower bound Q(Alogn) in [14] works also for adaptive, and even randomized, protocols, however it
does not take into account parameter ~s.
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nodes. The same time complexity can be achieved even by quasi-adaptive algorithms [36, 38|
in a channel with acknowledgments but without collision detection. Clementi, Monti, and
Silvestri [12] showed a matching Q(Alog(n/A)) lower bound for such a setting, which also
holds for adaptive algorithms. As for the setting with collision detection, the best lower
bound Q(Alogn/log A) was given by Greenberg and Winograd [30], leaving the logarithmic
gap open for 40 years now.

In arbitrary RN, the best previously known deterministic Local Broadcast algorithm
required time O(A? min{logn,logi n}) by Cheraghchi and Nakos [8]. Tt (roughly) logar-
ithmically improved upon the algorithm by Clementi, Monti and Silvestri [12], based on
superimposed codes introduced by Kautz and Singleton [35]. Both these algorithms are
oblivious, and as such do not need collision detection or acknowledgments. The complexity of
randomized Local Broadcast in arbitrary networks of node degree A in the related Beeping
Networks models matches the general lower bound and is ©(Alogn), as shown in [14].

There is a rich literature about distributed algorithms and even non-distributed online
algorithms with advice and/or with informative labels, e.g., [22, 24, 34, 45, 37, 5].

2 Model, Notation, Problems, and Protocols

We use a standard description of the Radio Networks (RN) model, formulated 40 years
ago [9]. Consider a communication network formed by n devices with communication and
computation capabilities, called nodes. Each node has a unique ID from the range [1, n°], for
some constant ¢ > 1.3 Nodes communicate by sending messages among them. A message
may be lost in cases specific to the nature of radio networks, defined later. A message is
composed of a binary sequence containing the source node ID, the destination node ID (if
applicable), and the specific information to be sent.

Network topology and communication. If a message from the source node is not lost, and
it is received by the destination node, we say that the message was delivered. Each pair of
nodes that are able to communicate directly (i.e., without relaying communication through
other nodes) are said to be connected by a communication link and are called neighbors.
We assume that links are symmetric, i.e., messages can be sent in both directions. For each
node v € V, the set of neighbors of v is called its neighborhood, denoted as N(v). The
network topology defined by the communication links is modeled by an undirected graph
G = (V, E) where V is the set of nodes/vertices and E is the set of links/edges. The network
G = (V, E) is connected if E is such that for every pair of nodes u,v € V, there is a path of
links connecting v and v. The maximum node degree in G is denoted by A = max,cy |N(v)|;
we assume that nodes know a linear upper estimate of A.

We assume that time is slotted in rounds of communication such that if there is a link
between nodes v and v and a message is sent by u in some round, the message is either
delivered to v in the same round or it is lost (in the cases detailed later). In both cases, we say
that v transmits in that round. If v does not transmit in some round, we say that it listens
in that round, meaning that it waits for the reception of the transmission of a neighbor, an
event that may or may not happen. All the nodes start running protocols simultaneously,
i.e., the network is synchronous. We assume that computations take negligible time with
respect to communication. Thus, we measure algorithm performance in rounds.

3 The availability of identifiers is essential in order to break symmetry in deterministic RN protocols, as
pointed out in previous works, e.g., [28].
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Transmission result. In a round when a node v listens, it may either receive a message
- this is the case that exactly one of its neighbors transmits in that round. Or, it may
also hear silence - this is the case that either none of its neighbors transmits or some set
{u1, ug, ...ug }) of neighbors of v, for & > 1 does. In the second case, we say that the messages
of {uy,us,...u;} collided at v. In a round, a node v that transmits any message does not
receive any message sent by any of its neighbors u € N(v). We say that u’s message collided
with v’s message at v. If a node u transmits and its neighbor v does not receive the message
(in the cases defined above), we say that u’s message is lost on the way to v. This does not
mean that the other neighbors of u do not receive the message from the transmission of w.

Networks with collision detection (CD). We may or may not assume a third feedback
a listening node v may receive (instead of either receiving a message or hearing silence).
In a radio network equipped with CD, if more than one of v’s neighbors transmit in some
round, v hears noise rather than silence. Obviously, an algorithm that does not use CD can
function with the same complexities in networks with CD.

Advice. Some of the results presented in this paper are in the framework of algorithms with
advice or, alternatively, with informative labels. In this paradigm that has recently got
growing attention, an oracle knowing the network provides binary strings to nodes before the
beginning of a computation. A distributed algorithm uses this advice to solve the particular
problem. The required size of advice (the maximum length of the strings) can be considered
as a measure of the difficulty of the problem (in terms of “how much topology knowledge
is needed”). Two variations are studied in the literature: either the binary string given to
nodes is the same for all of them [27] or, as we do, different strings may be given to different
nodes (as in e.g. [19, 28, 6, 29]).

Preliminaries and Specification of Local Broadcast. The following notations are used for
the topology graph G = (V, E) of a radio network. A path between two nodes u,v € V' is a
sequence of adjacent links without cycles connecting u and v. If the shortest path from u to
v contains x links, we say that v is within x hops from u and vice versa, and we also say
that the distance between u and v is . Let k be a natural number. The k-neighborhood
of a node v is the set of all nodes within k& hops from v, including v itself.

A distance k coloring of S C V is a color assignment such that every node v € S
receives a color such that any two nodes u,w € S that received the same color cannot be
within £ distance of each other. E.g., the standard coloring is distance 1 coloring of V.

A (distance-1) dominating set of a graph G = (V, E) is a set S C V such that every
node of V'\ S is at distance 1 from some node in S. The (global) domination number, v(G),
of G is the minimum cardinality of any dominating set of G [32]. We will use the following
local version of the (distance-1) domination number. Our definition is consistent with the
local version of independence characterizations [21]. Let S be the set of dominating sets of
G. For any integer k > 1 and set S € S, the k-local domination number (G, v, S)
of node v € V is the number of nodes in S within distance k of v in G. We also define a
k-local domination number (G, V', S) = max,cv 7k (G, v, S) of a set of nodes
V'’ C V, and the k-local domination number ~;(G) = minges Y& (G, S) of the
graph G, where v;(G,S) = (G, V, S).

To help better understand the k-local domination number, we provide Observations 1, 2
and 3 below. Their proofs, including graph examples, will be provided in the full version of
this paper.
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» Observation 1. For every A, there exists a graph G with degree A such that the 2-local
domination number v2(G) € ©(A?).

» Observation 2. Consider any connected graph G = (V, E) where V. # (. The 2-local
domination number vo(G) = 1 if and only if there exists a dominating set DS on graph G
such that |DS| = 1.

Note that a dominating set of size |DS| = 1 can only exist in some graphs with diameter
D <2.

The above lower bound on the 2-local dominating number 2(G) may be unsatisfactory,
since it only applies for small graphs where the dominating set has only one node. However,
one can note that the dominating number can be as low as 2 in many large and complex graphs.

» Observation 3. The 2-local domination number v5(G) can be as low as 2 in some graphs
with arbitrarily large n, A, D and |DS|, where D is the diameter of the graph G and DS is
some dominating set.

The formal definition of the Local Broadcast problem is as follows.

» Definition 4 (Local Broadcast Problem). Given a radio network with topology graph
G = (V, E), where each node v € B, for some set B CV, holds a message m,,, the problem
is solved once m,, for every v € B is delivered to every node in N(v).

It is enough for us to consider only the case that B = V. A lower bound for this case is
an existential lower bound for a general B. Similarly, it is easy to show that an upper bound
for the case that B = V holds for a smaller B too. Hence, in this paper, B = V.

Protocol Classes. We give now a precise definition of the classes of algorithms considered
in this work. The following will be used. In the context of a communication protocol for
radio networks with set of nodes V, let a schedule of transmissions be a Boolean matrix
[bv’r]vGV,TG[l,)\] , where b, , indicates whether node v transmits in round 7 or not. We say
that A is the length of the schedule. We consider two classes of deterministic Local Broadcast
protocols: oblivious and quasi-adaptive.

An oblivious protocol is a schedule of transmissions [b”’r]vev,re[ LA to be used by the
nodes of the network. The schedule is pre-defined before execution, and it does not change
until round A, when all the nodes stop.

A quasi-adaptive protocol is a schedule of transmissions [bv,r] to be used by

the nodes of the network. The schedule is predefined before executfoen‘f}%elg}cgny given node
may independently stop its execution in any round 1, ..., \ after its computational task has
been completed.

Quasi-adaptive protocols in multi-hop networks have been considered before, e.g. in [38]
(Section 5). In such protocol nodes use channel feedback to stop, hence, they are not strictly
oblivious (in the sense of lack of adaptive switch-off, as considered e.g., in [13]). However,
some of their components are oblivious (based on fixed selectors). Also, many randomized
algorithms are quasi-adaptive, in the sense that they transmit according to fixed distribution
of schedules but stop immediately after getting acknowledgment of successful transmission(s)

- the reader may find some examples of backoff-based quasi-adaptive algorithms e.g., in [38].

An adaptive protocol is a protocol in which each node v determines whether to transmit
or listen in a given round r based on the ID of v and on the feedback from the radio channel
for all rounds 7’ < r, where the feedback for a given round 7’ is either silence if v does not
receive any message in the rounds 7’ or the content of the received message otherwise.

34:7
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3 Algorithms with Advice to Beat the Lower Bound

In this section, we present three algorithms, trading the level of adaptiveness (from oblivious
to adaptive) for bits of advice per node (from O(log(A~v2)) to 1). All of them complete in

O(A~3) rounds. The assumptions that follow will be used.

Suppose there is a fixed dominating set (D.S), known to all the nodes. Each node not in
the DS is assigned to one of its neighbors in this DS. A node in the DS is assigned to itself.
Moreover, each node v € DS has a unique numbering of nodes assigned to itself, 1,...,1
where 4 is the number of nodes assigned to v. Note that i < A 4 1, because the assignment
is of nodes neighboring v plus the assignment of v to itself.

Initially, the above knowledge will come from an oracle (see Section 3.2). In Section 3.4,
we show how to find all the above assignments but assuming a given marking of the nodes in
the DS, which can be accomplished with a single bit of advice from an oracle.

Our algorithms will also use the combinatorial structures called selectors, avoiding
selectors and strong selectors, presented below in Section 3.1. In particular, specific
selectors from that section are integrated in our algorithms.

3.1 Preliminaries: Selectors

» Definition 5 (Selectors). A family F of subsets of [n] is called an (n,k)-selector of length
|F|, if for every non-empty subset S C [n] such that |S| < k, there exists a set F € F such
that |FN S| = 1.

» Theorem 6 ([13]). For anyn>k > 2, there exists an (n, k)-selector of length O (klog(n/k)).

» Definition 7 (Avoiding selectors). A family F of subsets of [n] is called an (n, k, £)-avoiding
selector of length |F|, where 1 < € < k <n, if for every non-empty subset S C [n] such that
|S| < k and for any subset R C S of size at most £, there is an element a € S\ R for which
there exists a set F' € F such that F NS = {a}.

The following fact follows directly from Definition 7, see also [4, 10].

» Fact 8. Suppose we are given an (n,k,{)-avoiding selector F and a set S of size at most
k. Then, the number of elements in S not “selected” by selector F (i.e., for which there is
no set in the selector that intersects S on such singleton element) is smaller than k — £.

» Theorem 9 ([4, 10]). There exists an (n, k,£)-avoiding selector of length O (kL—Qe log n)

» Definition 10 (Strong selectors). A family F of subsets of [n] is called a (n,k)-strong
selector of length |F|, if for every non-empty subset S C [n] such that |S| < k, for every
element a € S, there exists a set F € F such that FN .S = {a}.

» Theorem 11 ([20, 35]). For any n > 3 and for k > 2, there exists an (n, k)-strong selector
of length O(min{n, k?logn}).

Note that selectors do not depend on the network, so they can be computed in a non-
distributed way in advance and integrated into our algorithms.
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3.2 An Oblivious Algorithm LB_LAd with O(log(A~2)) Advice

At the beginning, the oracle determines a dominating set D.S which minimizes* the value
vo = v2(G, DS). Then, the oracle chooses a distance 4 coloring of DS in G such that the
number of colors is O(72). Note that such a coloring always exists since, by the definition of
2, the number of nodes u € DS in distance < 2 from a node v € V' is at most 2. L.e., one
can greedily color DS nodes using 72 + 1 colors. Next, the oracle assigns each u € V to its
neighbor from DS and, for each v € DS, provides unique labels to the nodes assigned to v
from the range [A].

Each node v receives from the oracle three numbers: the color of the DS node, say w, to
which v has been assigned by the oracle, the label of v among the nodes assigned to w, and
the value of 75. We assume here a DS node is always assigned to itself with the special label
0 indicating that it is a member of DS. It could be easily seen that the length of advice is
O(log(A~v2)) in each node.

Let F be a (73, 72)-strong selector. We could assume that the number of sets in F is
O(v3log72), see Theorem 11.

The algorithm is split into phases, each of A + 1 rounds. A node v is active in phase i
if the color of the DS node w to which v is assigned is in the ith set of F; otherwise, v is
passive. An active node v transmits its message, combined with its ID and the color of the
assigned DS node w, in round x of the phase and is silent in all other rounds, where x is
the label of v among nodes assigned to w (recall that this number is provided to v at the
beginning of the computation as part of the advice). See Algorithm 1 for a pseudo-code.

Algorithm 1 LB LAd- Local Broadcast algorithm with O(log(A~v2)) Advice for a node v.

1: Let F = {Si,...,S¢} be the fixed (shared between all nodes) (v3,~2)-strong selector,
where ¢ = |F|
2: Receive (from oracle) color ¢ of DS node w, in some distance 4 coloring, that v will be

assigned to

3: Receive from the oracle the number x assigned to v

4: for phase=1,...,¢ do

5 for round=1,...,A+1do

6: if w € Sphase and round =z then

7 Transmit the message, ID of v and the color of w
8 else

9 Remain silent

10: end if

11: end for

12: end for

» Theorem 12. Algorithm LB _LAd is a deterministic distributed oblivious protocol perform-
ing Local Broadcast in O(A~3log~ys) communication rounds. It uses O(log(A~2)) bits of
advice per node, and does not require collision detection or acknowledgments built-in the model.

Proof. Consider any two neighboring nodes v,u. We prove that v delivers its message
successfully to u by the algorithm. Let w be the DS node to which v is assigned and let

DS5(u) be the set of DS nodes of distance at most 2 from u. By definition, |DSa(u)| < 7.

4 The algorithm works with any DS, but the round complexity depends on v2(G, DS).
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Note that each neighbor of u is assigned to some node in DSs(u), and is using the assigned
node’s color to determine, based of the corresponding set in F, whether to be active or
passive in a phase. Since F is a (73, 72)-strong selector, there is a set in F containing w
but no other node in DSs(u). Let it be a set 4, which corresponds to being active or not in
phase 4. It means that only neighbors of u that are assigned to w are active in phase i. In
this phase, they perform a round-robin according to their numbering (each of them knows
its number, as it has been provided as part of the advice). Hence, there is no interference
between these nodes at node u while recalling that all other neighbors of u are passive in
phase i. It implies that node v, which is among neighbors of u assigned to w, performs
transmission in a unique round of phase i and is successfully received by wu.

The number of rounds is obviously upper bounded by the number of sets in the strong
selector F, multiplied by the length of each phase A + 1. <

3.3 A Quasi-adaptive Algorithm with O(log~,) Advice

At the beginning, the oracle determines a dominating set DS which minimizes® the value
v2 = 72(G, DS). Then, it chooses a distance 4 coloring of DS in G such that the number of
colors is O(73). As explained in Section 3.2, such a coloring exists. Next, the oracle assigns
each u € V to its neighbor from DS. Contrary to Section 3.2, labels are not provided.

Each node v receives two numbers from the oracle : the color of the DS node, say w, to
which v has been assigned by the oracle and the value of v5. We assume here a DS node is
always assigned to itself with the special label 0 indicating that it is a member of DS. It
could be easily seen that the length of advice is O(log~s) in each node.

Let F; be a (n, A/2i71 A /2%)-avoiding selector, F; = (SY), o Séf)). The number of sets
in F; is O(A/2" "1 logn), see Theorem 9.

The algorithm is split into log A phases. The ith phase consists of |F;| = ¢; stages.
Finally, each stage has 72 + 1 blocks, each block has 2 rounds. A node v € DS is active in
stage j of a phase 17 if it was not switched off earlier and its ID belongs to S J(Z) An active
node v transmits its message, combined with its ID in the Round 1 of the block k& such that
k is the color of the assigned DS node w. If a node v € DS receives a message in Round 1 of
the block k such that the color of v is equal to k then v sends the message back in Round 2
of that block. If v € DS sends a message in Round 1 of a block and receives its message
back in Round 2 of that block, it switches off for the remaining part of the algorithm. See
Algorithm 2 for a pseudo-code.

» Theorem 13. Algorithm LB_quasi (Algorithm 2) is a deterministic distributed quasi-
adaptive protocol performing Local Broadcast in O(A~3logn) communication rounds. It uses
O(logz) bits of advice per node, and does not require collision detection or acknowledgments
built-in the model.

Proof. Consider any two neighboring nodes v, u. Assume that v switches off after some
block determined by the current values of the variables phase, stage and block. We claim
that u receives the message from v in Round 1 of the given block which we will call the
current block. Let w be the DS node to which v is assigned. We denote such node by DS(v),
i.e., DS(v) = w according to the previous sentence. Thus col(v) = col(w) = block and the
colors of all nodes from DS in distance at most 4 from w are different from block. As a result,
the color of each node z in distance at most 3 from w such that DS(z) # w (i.e., x is not

® The algorithm works with any DS, but the round complexity depends on v2(G, DS).
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Algorithm 2 LB_ quasi — Local Broadcast algorithm with O(log~2) Advice for a node v.

1: Let F; = {Sy), ce S’Z)} be a fixed (shared between all nodes) (n, A/2171 A /2%)-avoiding
selector, where ¢; = |F;|, for i = 0,1,...,log A.

2: Receive from the oracle the color col(v) = ¢ of DS node w such that v is assigned to w
3: for phase =1,...,log A do

4: for stage =1,...,{phqse do

5: for block =1,...,v5 +1 do

6: Round 1:

7 if ve Séff::e) and col(v) = block and v € DS then

8: Transmit the message and the ID of v

9: else

10: Remain silent

11: end if

12: Round 2:

13: if col(v) = block and v € DS then

14: if v received a message in the previous round then
15: send the received message back

16: else

17: Send a dummy message

18: end if

19: end if
20: if v sent a message in Round 1 and received it back in Round 2 then
21: v switches off
22: end if
23: end for
24: end for
25: end for

assigned to w) is different from block. Since v is a neighbor of w, the color of each node in
distance at most 2 from v such that DS(x) # DS(v) = w is different from block as well. This
fact implies that the only reason for which the message from v is not received by its neighbor
u in Round 1 of block is that another neighbor of DS(v) = w transmits in that round. Then,
however, there is also a collision at w in Round 1 and w will not transmit any message in
Round 2 which prevents v from switching of after the current block. But this fact in turn
would contradict the assumption that v switches off after the block.

So already know that if v eventually switches off during an execution of the algorithm, it
performs its local broadcast task successfully. Thus, it remains to prove that actually each
node switches off during an execution of Algorithm 2. The above considerations imply that,
in order to guarantee that v switches off is some block, it is sufficient that it is the only
element of the intersection of Séff;:e) and the set of such nodes w that DS(v). As the set
of nodes assigned to a particular element w of DS is included in the set of neighbors of w,
its initial size is at most A. Let Xppqese be the set of nodes assigned to w which were not

switched before the given phase. Note that each node z selected by SFese

stage @S the unique

element among Xppqese (i-€., such that X pase N Sfthaags: = {x}) is switched off in the given
phase. With this observation one can easily prove inductively that the size of X,pqse is at
most A/2Phse=1 and Fppase selects A/2Ph5¢ of them. Thus eventually, after log A phases

all nodes are switched off.
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The number of rounds of the given phase € [1,log A] is O(bphase - ¥3) = O(A/207 1.
v2logn). And the time of the whole algorithm’s execution is O(ZioflA A2t 421ogn) =
O(A~3logn). <

3.4 Adaptivity Reduces the Need of Advice to One Bit

At the beginning, the oracle determines a dominating set DS which minimizes® the value
v2 = v2(G, DS). Then each node only gets one bit of advice: whether it is in the DS or not.
The procedures described next allow the computing of both the assignment and the local
numbering at DS nodes by deterministic distributed algorithms. Knowing the assigned DS
node and a unique local number in that node (in {1,...,A + 1}), the main algorithm uses a
(n,v2)-strong selector F of length |F| € O(72logn) as follows: a node transmits in round
t=(G—1)-(A+1)+j, where i € [|F|] and j € {1,..., A+ 1}, if its assigned DS node is in
the set F; of selector F and its local number is j. The pseudocode is in Algorithm 3.

Algorithm 3 Local broadcast after assignment of DS nodes and numbering — Algorithm for node

: Let F ={S1,...,S¢} be the fixed shared (n,72)-strong selector, where ¢ = |F]|
cfori=1,...,4do
forj=1,...,A+1do

DS, < the DS node assigned to v

if DS, € F; and the local number of v is equal to j then

v transmits

end if

end for

end for

We continue with describing the procedures of assigning DS node and local numbering.

DS-node Assignment Procedure

DS nodes use an (n,y2)-selector F = {51, S2,...,S¢}, where £ = |F|. In round 4, DS nodes
that are in the set S; transmit — intuitively, they try to deliver their IDs to neighboring nodes.
Each non-D.S node sets the sender of the first message received as its assigned DS node.
For completeness, each DS node sets itself as its own assigned DS node. This procedure is
clearly oblivious. For detailed pseudocode, see Algorithm 4.

5 The algorithm works with any DS, but the round complexity depends on v2(G, DS).
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Algorithm 4 Assignment of DS nodes — Algorithm for node v.
1: Let F = {S1,...,S¢} be the fixed shared (n,~3)-selector, where £ = |F| (n, A)-strong
selector, where k = | F/|
A+ > denotes the set of nodes assigned to v
if v € DS then
assignment <— v
end if
for round =1,...,¢ do > first part of the algorithm
if v € S;ounad and v € DS then
Transmit ID of v
end if
if received a transmission with ID of a node u and assignment = null then
assignment <— u
end if
: end for

e e
bl

» Lemma 14. The DS-node Assignment procedure terminates in O(y2 log(n/v2) + Alogn)
communication rounds. At the end, each node v knows the ID of the DS node it is assigned to.

Proof. From Theorem 6, the length of (n,~2)-selector, and thus also the number of commu-
nication rounds in the whole procedure, is O(vyz log(n/v2)).

From Definition 5, for any non-D.S node v there will be a round in the procedure such
that v hears exactly one transmission. The transmissions only come from the DS nodes.
Thus, any non-D.S node v will be assigned to some DS node. Recall that any D.S node is
assigned to itself, by default. <

Numbering Procedure

This procedure proceeds in 1+41log A stages. In each stage, every D.S node assigns numbers to
half of its remaining unnumbered assigned nodes, about which it learns in this stage. In the
i-th stage, all the nodes use a (n, A/2'=1 A/2%)-avoiding selector F;, for i = 1,...,1+log A.
Intuitively, the second parameter of the selector (equal to A/2¢~1) is the upper bound on
the number of neighbors assigned to a DS node by the preceding DS-node Assignment
Procedure, which are possible unknown to the DS node, and thus locally unnumbered, at
the start of the stage. The third parameter of the selector (equal to A/2%) is the upper
bound on the number of assigned neighbors that may remain unnumbered after the stage.

For each set S in F;, there are two phases: in the first phase, the unnumbered nodes
selected by S (i.e., contained in S) transmit their IDs with ID of their DS-assigned node
(known prior the procedure, because of the preceding D.S-node Assignment Procedure, see also
Lemma 14). If a DS node v receives an ID of a node w with the information that w is assigned
to v, then, in the second phase, v transmits a response (also called an acknowledgment),
composed of a unique number assignment and IDs of v and w. This (locally) unique number
starts with 2 (number 1 is reserved for the DS node itself), and is incremented by 1 after
each such activity of the D.S node v.

The first phase only uses a single communication round, though not all messages may be
successfully received. The second phase is accomplished by using the (n,72)-strong selector
G ={T,T5,...,T¢}, where £ = |G|. Hence, the second phase takes ¢ communication rounds —
each DS node v that is supposed to send an acknowledgment (with content described earlier)
does so in rounds i such that v € T;. For detail pseudocode, see Algorithm 5.
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Algorithm 5 Numbering nodes — Algorithm for node v.
Let F; ,fori=1,...,1+logA, be the fixed shared (n,A/2i~1 A/2")-avoiding selector
Let G = {T1,...,T¢} be the fixed shared (n, az)-strong selector, where ¢ = |G|
Let assignment denote the DS node that v is assigned to
Let A denote the set of nodes assigned to v > only used if v € DS
number < null > denotes the number assigned to v
if v € DS then
number < 1
end if
current < 2 > denotes the next number that will be given to a neighbor
for stage =1,...,1+1logA do
for S € Fotage do
received < null > ID of a node that v will respond to in the second phase
round < 1 > denotes the round number of processing S
if number = null and v ¢ DS and v € S then
Transmit ID of v
end if
if v € DS and received ID of a node u and u € A then
received < u
end if
for round =2,...,/+1 do > second phase
if v € DS and received # null and v € Ty.oynq—1 then
Transmit (current, ID of v, ID of received)
current < current + 1
end if
if received (a, b, c) and b = assignment and ¢ = v then
number < a
end if
end for
29: end for
30: end for

NN DN NN NNDNI LR &=~ 2 2 e e

» Lemma 15. The Numbering procedure finishes in O(A~3logn) communication rounds.
Consider any node v and a node u such that v is assigned to u. The Numbering procedure
guarantees that v knows a unique number 1,..., A+ 1 among all the nodes assigned to u.

Proof. For each set S in F; for any 4, phase one takes 1 round and phase two takes |G| rounds.
According to Theorem 11, there are 1+ |G| = O(y3 logn) communication rounds for each S
and ¢. There are |F;| such sets S in a stage i. According to Theorem 9, there exists a constant
¢ such that |F;| < cA/2%logn for each i. Therefore, EiozglA |Fi| < 2¢Alogn = O(Alogn).
Hence, there are O(Av3 log? n) communication rounds in total.

When we look at all the phases of a single stage i, then, from Fact 8, there are at most
A /2071 non-DS assigned neighbors that failed to transmit their IDs to their assigned D.S node.

In phase two, every acknowledgment is received: From Definition 10, there is a round
j such that the acknowledgment from node v to node u is the only message that node
u hears in round j. Thus, every acknowledgment is guaranteed to be received by its
recipient at least once.

Therefore, at the end of stage i, there are at most A/2°~! unnumbered assigned neighbors
for each DS node. In particular, at the end of stage 1 + log A, there are less than 1, i.e.,
exactly 0 unnumbered assigned neighbors for each DS node. Finally, the local numbering
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at each DS node is done using subsequent integers from 1 up to possibly A + 1, and each
node is numbered once (when it transmits successfully to the assigned DS node for the first
time). <

Below we conclude the analysis of the whole algorithm: the main algorithm, preceded by
the two procedures.

» Theorem 16. If nodes know n, A, ~s, or their linear upper bounds, then a single bit of
advice allows a deterministic distributed Local Broadcast protocol working in O(A~3 log® n)
communication rounds. The protocol may need a constant adaptivity (i.e., rounds in which it
uses some information to redefine its next schedule), but does not require collision detection
or acknowledgments built-in the model.

Proof. By Lemma 14, after the DS-node Assignment Procedure, each node is assigned to one
DS node (in the neighborhood, including itself). By Lemma 15, after the next Numbering
Procedure, each node in DS learns about all neighbors assigned to it and give them unique
numbers from 2 to A + 1, reserving number 1 for itself.

Now we analyze the Local Broadcast property of the main algorithm. Suppose, to the
contrary, that some node v has not successfully broadcasted to some of its neighbors, u. Let
v*,u* be the DS nodes assigned to v, u, respectively, by the DS-node Assignment Procedure.
Note that both v*,u* are in 2-hop neighborhood of u. Therefore, there is a set F; in the
strong selector F used by the main algorithm such that v* € F; and node of other DS nodes
in 2-hop neighborhood of u belongs to F;. It follows from the property of strong selector F
and the upper bound 72 on the number of DS nodes in any 2-hop neighborhood of any node
(in particular, node u. It follows than no neighbors of u transmits in rounds (i —1)-(A+1)+z,
for x € {1,..., A+ 1}, except of those assigned to the DS node v* (such as node v). Let z*
be the locally unique number of node v. Then, in round (¢ — 1) - (A + 1) + z*, also no other
node assigned to v* transmits, by the property of unique numbering of nodes assigned to v*.
Hence, v is the only transmitting node in the neighborhood of wu, including u, in that round,
and so u receives its message. This contradiction proves that the main algorithm, preceded
by the two procedures, guarantees Local Broadcast.

By Lemmas 14 and 15, and by the number of rounds |F| - (A + 1) € O(Av3logn) of the
main algorithm, we derive the upper bound O(A~2 log? n) on the total number of rounds. <

4 Lower Bound via Hitting Game

In this section, we prove a lower bound for Local Broadcast in the classic RN model with
collision detection as defined in Section 2. First, we present a technical tool, of potentially
independent interest, to be used later to prove our main lower bound.

4.1 Directed-matching Hitting Game

We prove in this section a lower bound on the number of rounds to finish a directed-matching
hitting game between a deterministic algorithm and a randomized adversary on an undirected
graph G = (V| E), where V is the set of nodes and E the set of edges. The parameters of
the game are the number of nodes n, the maximum degree A, and the 2-local domination
number v, = 72(G) (defined in Section 2). The following additional definitions will be used.

A directed matching on a graph G=(V, E) isaset M = {(u1,w1), (ug, wa), (uz,ws),...}
of ordered pairs of nodes such that the edges M’ = {{uy, w1}, {ua, wa}, {us, w3},...} form
a matching in G. We call a subset of nodes Q C V a query on V. Given a query @ C V
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and a pair of nodes u,w € V, we say that @ hits the ordered pair (u,w) if and only
if {u,w} € E, u € Q, and for all v € @ such that v # u, the following holds: {v,w} ¢ E.
Given a set of queries Q = {Q1,Qa, ...} and a directed matching M, we say that Q hits
the directed matching M if and only if, for every ordered pair (u,w) € M, there is a
query @ € Q that hits the ordered pair (u,w).

In the directed-matching hitting game, the adversary and the algorithm compete, with
the algorithm trying to hit all the edges of a directed matching chosen by the adversary and
the adversary trying to prevent edges of the directed matching from being hit by adding
edges under some restrictions. The definition of the game is given in Figure 1.

Directed-matching Hitting Game with parameters v», A and n:
Game initialization. Before the game starts, the adversary chooses a directed
matching M of size n/2 (without loss of generality, we assume n to be even). We label
the nodes of this directed matching by M = {(u1,w1), (u2, w2), ..., (U 2, Wy 2)} for
reference. We denote U = {u;|i € [n/2]} and W = {w;|i € [n/2]}. The corresponding
set of undirected edges Ey = {{u;,w;}|i € [n/2]} is the initial set of edges in the
graph. On the other hand, the algorithm chooses a sequence of queries (Q1,Q2, ... ),
hidden from the adversary, where Q, C U for any r =1,2,....
Rules of one round of the game. At the beginning of each round r, the algorithm
announces the query @, \ H,, where H, contains every node u; € U such that the
ordered pair (u;,w;) has been hit before round r. (Informally, the algorithm is
allowed to remove the members of H, from the query @, it prepared in advance.)
Then, the adversary may add some edges to the graph, restricted to the requirements:
the maximum degree of the resulting graph is at most A,
the 2-local domination number of the resulting graph is at most s,
if an edge {uj,w;}, i,5 € [n/2], is added in round r, then (u;, w;) has not been
hit before r.
Ending conditions. The game ends in a round 7 once (every edge of) the directed
matching M has been hit by the queries (@1, Q2, ..., Q-) announced by the algorithm.
Objective of each player. The objective of the algorithm is to minimize the
number of rounds 7, whereas the objective of the adversary is to maximize it.

Figure 1 Game definition.

In the above context, we prove the following.

» Theorem 17. Consider a directed-matching hitting game with parameters v > 1, A > 1
and n > 3. For each algorithm player P4, there exists an adversary player Pp such that the

number of rounds T needed to finish the game is T € Q (min { (%Agﬂ)? ’ n}) .

The proof of Theorem 17 (deferred to the full version of this paper) is based on showing
a strategy for the adversary for each query of the sequence announced by the algorithm. The
strategy is to initially partition the directed matching in gadgets (subsets of ordered pairs)
at random. Then, add edges to each gadget to make it bipartite-complete. These added
edges will guarantee that hits in large queries are very unlikely. Some additional edges are
added to each gadget so that a chosen node dominates the gadget. Starting from this initial
graph, for each small query the adversary adds edges to prevent hits from nodes that do not
appear very frequently in small queries. Other hits are allowed because they are difficult or
impossible to prevent. In our analysis we prove that such a strategy fulfills the requirements
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of the game, and that within the claimed time lower bound only a fraction of the directed
matching can be hit, all with positive probability. Hence, by the probabilistic method, there
exists a deterministic strategy that proves the claim.

4.2 Local Broadcast in the RN Model

In this section, we prove a lower bound for Local Broadcast using the lower bound for
the directed-matching hitting game proved in Section 4.1. Our lower bound applies to
quasi-adaptive protocols, and hence to oblivious protocols as well.

» Theorem 18. Consider any deterministic quasi-adaptive protocol P that solves Local
Broadcast in the RN model. Let T be the number of rounds needed by P in the worst case. Then,
for each P, there exists an adversarial input network with set V of n nodes, 2-local domination

. 2
number at most vz, and mazimum degree A such that T € Q <min { (%) ,n}) .

Proof. For the sake of contradiction, assume there exists a deterministic quasi-adaptive
Local Broadcast protocol P = [b”vr]vev,ref such that 7 € o (min {n, (min{A,v2}/logn)?})
for all input radio networks with a set V' of n nodes, 2-local domination number at most
~2, and maximum degree A. We show in the rest of the proof that then we can use such
Local Broadcast protocol (with some modification) as the algorithm player in the game of
Section 4.1, and use the network built by the adversary player during the game as the input
of the Local Broadcast protocol to reach a contradiction with the lower bound in Theorem 17.
The details follow.

Consider a protocol P’ derived from P by removing half of the schedule. Specifically, for
any even partition V = {U, W}, it is, P’ = [bu’r]uEU,TET' (Without loss of generality, we
assume that n is even.) Let the restricted Local Broadcast problem for a subset of nodes
U C V be the same as the general Local Broadcast, except that it is restricted to messages
of nodes in U. That is, each node u € U holds a message m,,, and the problem is solved
once m,, is delivered to every node in N(u) (recall that N(u) is the set of neighbors of u in
V). Given the assumption above, protocol P’ solves the restricted Local Broadcast problem
for U in time 7 € o (min {n, (min{A,~2}/logn)?}). The proof of the latter is a relatively
straightforward argument, which we nevertheless include for completeness. Assume, for the
sake of contradiction, the opposite. That is, for some input network executing protocol
P, the message of some node u € U is delivered to all nodes in N(u), but if protocol P’
is executed in the same input network, there is a pair of nodes u € U and w € W, such
that w € N(u) but the message m,, was not received by w. Let r be the round when m,, is
delivered to w while running protocol P. If the message was delivered to w it means that no
other node in N(w) was transmitting in round r, i.e., b, , = false, for all z € N(w) such
that « # w. Then, it is also b, , = false, for all x € N(w) \ W such that & # u. Hence, m,
is also delivered to w in round r (or before) if nodes execute P’, which is a contradiction.

Then, we use P’ as the algorithm player P4 of the directed-matching hitting game
presented in Section 4.1. That is, we use the schedule of transmissions of P’ as the se-
quence of queries of P4. Then, following the strategy specified in the proof of Theorem 17,
by round 7, the adversary has built a graph G, = (V, E;). According to Theorem 17,
with positive probability, G, is one of the adversarial graphs that force the game to take
Q (min {n, (min{A,y2}/log n)2}) rounds before hitting the directed matching M embedded
in G, (in fact, with high probability, as the analysis shows). Notice that due to the restric-
tions of the adversary in the game (see Figure 1), G, has the maximum degree A, local
2-domination number at most s, and edges are added only to prevent the hit of matching
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ordered-pairs that have not been hit earlier. Thus, edges added during the game would
not have prevented hits that happened earlier, had those edges been in the graph from the
beginning. Therefore, if G, had been used from round 1 of the game, the lower bound on
the time to hit M claimed in Theorem 17 still holds.

Consider a radio network with topology graph G,. Given our initial assumption that
P solves Local Broadcast on any network in time o (min {n, (min{A, 72}/logn)?}), as we
showed above, P’ must solve restricted Local Broadcast on G also in the same time. However,
to solve restricted Local Broadcast on G, the directed matching M must be hit. Thus, the
running time of o (min {n, (min{A, y2}/logn)?}) is a contradiction with the lower bound in
Theorem 17. <

5 Conclusions and Open Directions

Most research on RN addressed global problems, often using probabilistic algorithms especially
when the network topology is not known. We foray into local problems, in particular Local
Broadcast, and the use of deterministic algorithms for them. We demonstrated that in case
of oblivious and quasi-adaptive solutions, not much can be improved beyond quite pessimistic
lower bounds. We showed on the other hand that a small amount of knowledge and/or a
small amount of adaptivity suffice for time complexity improvement.

This work leaves many questions open. What is the inherent complexity of other local
tasks? Which global tasks can be performed without using Local Broadcast as a primitive,
and thus, possibly have even a lower complexity? Even for Local Broadcast there remain
many questions. Our bounds are for the case that all the nodes wish to perform Local
Broadcast. Can one derive better algorithms for the case that only some x nodes wish to
locally broadcast? Must x be known to help? We provided three points in the tradeoff
between adaptivity and knowledge. What is the complete tradeoff?
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