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Abstract
In the distributed localisation problem (DLP), n anonymous robots (agents) A0, . . . , An−1 are located
at arbitrary points p0, . . . , pn−1 ∈ S, where S is a Euclidean space. Initially, each agent Ai operates
within its own coordinate system in S, which may be inconsistent with those of other agents. The
primary goal in DLP is for agents to reach a consensus on a unified (jointly agreed) coordinate
system, in which all agents receive unique labels (coordinates) that accurately reflect the relative
distances between all points p0, . . . , pn−1 in S. Extensive research on DLP has primarily focus on
the feasibility and complexity of achieving consensus when agents have limited access to inter-agent
distances, often due to missing or imprecise data. In contrast, this paper proposes a minimalist,
computationally efficient distributed computing model where agents can query any pairwise relative
positions, if needed. Specifically, we introduce a novel variant of population protocols, referred to
as the spatial population protocols model. In this variant each agent can memorise one or a fixed
number of coordinates, and when agents Ai and Aj interact, they can not only exchange their
current knowledge but also either determine the distance dij between them in S (distance query
model) or obtain the vector −→vij spanning points pi and pj (vector query model).

We propose and analyse several distributed localisation protocols, including:
1. Leader-based localisation protocol with distance queries We propose and analyse two leader-based

localisation protocols that stabilise silently in o(n) time. These protocols leverage an efficient
solution to the novel concept of multi-contact epidemic, a natural generalisation of the core
communication tool in population protocols, known as the one-way epidemic.

2. Self-stabilising leader localisation protocol with distance queries We show how to effectively utilise
a leader election mechanism within the leader-based localisation protocol to get a DLP protocol
that self-stabilises silently in time O(n(log n/n)1/(k+1) log n) in k-dimensions.

3. Self-stabilising localisation protocol with vector queries We propose and analyse an optimally fast
DLP protocol which self-stabilises silently in O(log n) time.
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1 Introduction

Location services are crucial for modern computing paradigms, such as pervasive computing
and sensor networks. While manual configuration and GPS can determine node locations,
these methods are impractical in large-scale or obstructed environments. Recent approaches
use network localisation, where beacon nodes with known positions enable other nodes
to estimate their locations via distance measurements. Key challenges remain, including
determining conditions for unique localisability, computational complexity, and deployment
considerations. In the distributed localisation problem (DLP), n anonymous robots (agents)
A0, . . . , An−1 located at arbitrary points p0, . . . , pn−1 ∈ S, where S is a Euclidean space.
Initially, each agent Ai operates within its own coordinate system in S, which may be
inconsistent with those of other agents. The primary goal in DLP is for agents to position
themselves by adopting labels (coordinates) in a unified (jointly agreed) coordinate system
that accurately reflects the relative distances between all points locations p0, . . . , pn−1 in S.

A network’s unique localisability depends on its graph’s combinatorial properties and the
number of anchors (agents with known locations). Graph rigidity theory [22, 28, 31, 36] states
that a planar network is uniquely localisable with at least three anchors and a globally rigid
graph. Global rigidity is rare in non-dense networks, though parts may be rigid, leaving some
node positions indeterminate [22]. The graph embedding problem, determining if a weighted
graph can be embedded in the plane to match edge weights, is strongly NP-hard [39], even
for globally rigid graphs [22]. In sensor networks, modelled as unit disk graphs (adjacent
nodes within distance r), the unit disk graph reconstruction problem, ensuring adjacent
nodes are within r and non-adjacent nodes are farther apart, is also NP-hard [8]. No efficient
algorithm exists for localisation unless P = NP, even for unique reconstructions [8]. Despite
distributed computing models like population protocols [24], localisation remains unstudied
in these frameworks.

Distributed localisation is also vital for robotic systems, enabling autonomous spatial
positioning for navigation, mapping, and multi-robot coordination [46]. It encompasses
centralised systems, where a central server computes positions, offering accuracy but limited
scalability [34], and distributed systems, where robots independently or collaboratively localise,
enhancing resilience but increasing complexity [32, 33]. Leader-based methods use designated
robots as reference points [23], while leaderless approaches, leveraging probabilistic [43],
geometric [35], or graph-based models [32], excel in decentralised, fault-tolerant settings [41].
Tools like Kalman filters [37], particle filters [34], and graph rigidity theory [42] improve
accuracy and efficiency.

A strongly related variant of the localisation problem, known as the n-point location
problem, has been studied in more centralised setting [17, 18]. This problem was motivated
by and is closely related to the computation of relative positions of markers on a DNA
string [29, 30, 38]. In the n-point location problem, the objective is to design one or more
rounds of pairwise distance queries between points to determine the relative distances among
all points. In [17], a one-round deterministic strategy is presented that utilises 8n

5 distance
queries, along with a proof that any one-round strategy requires at least 4n

3 distance queries.
The same work also introduces a simple two-round deterministic strategy that uses 3n

2 queries.
An alternative two-round randomised approach, which requires only n + O

(
n

log n

)
queries

and solves the n-point location problem with high probability, is described in [18].
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1.1 Spatial population protocols

This paper presents a minimalist, efficient distributed computing model where randomly
paired agents can query their relative positions upon meeting. Our focus is on achieving
anonymity while maintaining high time efficiency and minimal use of network resources,
including limited local storage (agent state space) and communication. To meet these goals,
we introduce a new variant of population protocols, referred to as the spatial population
protocols model.

The population protocol model originates from the seminal work by Angluin et al. [6]. This
model provides tools for the formal analysis of pairwise interactions between indistinguishable
entities known as agents, which have limited storage, communication, and computational
capabilities. In a nutshell, population protocols comprise three major components: (1) a
population of agents A0, . . . , An−1, which are simple computational entities with limited
states that interact in pairs; (2) interaction rules forming a transition function, which specify
how agents update their states based on pairwise encounters; and (3) a (possibly random)
scheduler of interactions, which determines the sequence of agent interactions, guiding
the system toward a desired output or consensus. In self-stabilising protocols, the initial
configuration of agents’ states is arbitrary. By contrast, non-self-stabilising protocols start
with a predefined configuration encoding the input of the considered problem. A protocol
concludes when it stabilises in a final configuration of states representing the solution of the
considered problem. In the probabilistic variant of population protocols, which is also used
here, the random scheduler selects an ordered pair of agents at each step, designated as the
initiator and the responder, uniformly at random from the entire population. The asymmetry
in this pair introduces a valuable source of random bits, which is utilised by population
protocols. In this probabilistic setting, besides efficient state utilisation, time complexity
is also a primary concern. It is often measured by the number of interactions, I, required
for the protocol to stabilise in a final configuration. More recently, the focus has shifted to
parallel stabilisation time (or simply time), defined as I/n, where n is the population size.
This measure captures the parallelism of independent, simultaneous interactions, which is
leveraged in efficient population protocols that stabilise in time O(poly log n). All protocols
introduced in this paper are stable (consistently correct), stabilise silently (agent states
cease to change post-stabilisation), and guarantee stabilisation time with high probability
(whp), defined as 1− n−η, for a constant η > 0. Furthermore, our primary contribution, the
localisation protocols detailed in Sections 3 and 4, exhibits self-stabilisation.

Among the primary tools in our localisation protocols, we emphasise the novel concept of
multi-contact epidemic, see Section 2, a natural extension of the fundamental communication
mechanism in population protocols, known as the one-way epidemic. Another key tool is
leader election, a cornerstone of distributed computing that tackles the essential challenges
of symmetry breaking, synchronisation, and coordination. In population protocols, the
presence of a leader facilitates a more efficient computational framework [7]. However,
achieving leader election within this model presents significant difficulties. Foundational
results [16, 19] demonstrate that it cannot be solved in sublinear time if agents are restricted
to a fixed number of states [20]. Further, Alistarh and Gelashvili [3] introduced a protocol
stabilising in O(log3 n) time with O(log3 n) states. Later, Alistarh et al. [1] identified trade-
offs between state use and stabilisation time, distinguishing slowly (o(log log n) states) and
rapidly stabilising (O(log n) states) protocols. Subsequent work achieved O(log2 n) time
whp and in expectation with O(log2 n) states [13], later reduced to O(log n) states using
synthetic coins [2, 12]. Recent research by Gąsieniec and Stachowiak reduced state usage to
O(log log n) while retaining O(log2 n) time whp [26]. The expected time of leader election
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was further optimised to O(log n log log n) by Gąsieniec et al. in [27] and to the optimal time
O(log n) by Berenbrink et al. in [11]. In contrast, self-stabilising leader election protocols
present unique computational challenges. Notably, it was shown by Cai et al. in [15] that
such protocols require at least n states, in addition to knowledge of the exact value of n.
Alternatively, if loose-stabilisation is allowed (where a leader remains in place for a long but
finite time before re-election) an upper bound on n may suffice, see work of Sudo et al. [40].
In [14, 21], it was established that any silently self-stabilising leader election protocol has an
expected time complexity of at least Ω(n). Furthermore, Burman et al. in [14] present silently
self-stabilising protocols with expected time O(n) and with high probability (whp) time
O(n log n), both using n+Ω(n) states. More recently, the space complexity of O(n log n)-time
leader election self-stabilising whp protocol has been improved to n + O(log2 n) in [10] and
to n + O(log n) in [25]. In this work, however, we employ a relatively straightforward leader
election mechanism where each agent collects log n random bits, and a leader is determined
by a complete set of log n 1s. This simple protocol ensures the election of a unique leader
with constant probability. When repeated O(log n) times, this procedure guarantees unique
leader election whp. For details see Section 3.

Spatial embedding with geometric queries

While population protocols offer an elegant and resilient framework for randomised distributed
computation, with the exception of work on graphical models [9, 44, 5, 4, 45], they typically
lack topological (in particular, geometric) embedding. To address this limitation, we propose a
spatial variant of probabilistic population protocols that extends the state space and transition
function to accommodate unspecified agent locations p0, . . . , pn−1 and two fundamental
geometric queries.

More specifically, in the spatial model each agent can memorise a fixed number of
hypothetical or agreed coordinates, and during an interaction of two agents Ai and Aj , in
addition to exchange of their current knowledge, the agents can determine:
(1) the distance dij separating them in S, in distance query model, and
(2) vector −→vij spanning points pi and pj , in vector query model.

As this is the initial work on spatial population protocols, we assume the random scheduler
remains unchanged, with pairs of agents selected uniformly at random for interactions. In
future work, it would be worth considering models where the probability of agent interactions
vary (e.g., in relation to pairwise relative distances) as well as other geometric queries.

1.2 Importance and structure of presentation
As previously discussed, the localisation problem is fundamental, with its many variants
extensively studied over time. This work effectively integrates research in (distributed)
localisation with rigidity theory of random geometric graphs, leveraging the increasingly
popular population protocol model of computation. Surprisingly, little research has explored
population protocols incorporating spatial properties, particularly those supporting geometric
queries. The most relevant prior work focuses on efficient majority and leader election
protocols for general toroidal grids [4] and self-stabilising leader election in rings [44, 45].

In this study, we assume agents are distributed in a k-dimensional space, where each
interaction, viewed as a pairwise geometric query, results in an exchange of states (knowledge
held by agents) augmented by information about the relative positions of the interacting
agents. We present the following results.
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In Section 2, we propose and analyse two leader-based localisation protocols in the
model with distance queries. The first protocol (Algorithms 1) stabilises silently in time
O(n(log n/n)1/(k+1)) whp (Theorem 4), in k-dimensional space. For k = 1, we present
a faster protocol with the stabilisation time O((n log n)1/3) whp (Theorem 9). These
two protocols leverage an efficient solution to the novel concept of multi-contact epidemic
(Section 2.1), a natural generalisation of the core communication tool in population protocols,
known as the one-way epidemic. In Section 3, we show how to effectively utilise leader
election within the leader-based localisation protocol (Algorithm 1) in the model with
distance queries. We propose and analyse a DLP protocol that self-stabilises silently in time
O(n(log n/n)1/(k+1) log n) whp (Theorem 13), in k-dimensional space. Finally, in Section 4,
we present surprisingly simple and optimally fast DLP protocol which self-stabilises silently
in O(log n) time whp (Theorem 15), in the model with vector queries and fixed k.

For simplicity we assume that all geometric calculations are done via real arithmetic.
Alternatively, one may assume that the actual positions of the agents are on vertices of a
grid with integer coordinates, and, when determining the position of an agent, the agent can
round the position up to the closest grid point.

2 Leader-based localisation in distance query model

In this section, we discuss two localisation protocols with predefined input stabilising in
o(n) time, i.e., after this time labels of all agents become stable. These protocols are non-
self-stabilising. We assume that one of the agents starts as the leader of the population.
The agents’ point positions p0, . . . , pn−1 are distributed in a k-dimensional Euclidean space
S. It is assumed that any k + 1 agents’ positions span the entire space. For example, in
two-dimensional space, this assumption guarantees that no three positions are collinear.
Although our algorithms can be adapted to handle an arbitrary distribution of agents’
positions, the time guarantees of such adaptations would be weaker. The state of an agent
can accommodate a fixed (related to k) number of agent positions and distances.

We adopt a symmetric model of communication, which means that when agents Au and
Av interact, they both gain access to each other’s states as well as the distance duv. The early
transitions assigned to the leader are distinct from those of the other agents, as the leader
also serves as the initiator of the entire process. Initially, the state of each agent Au stores a
label xu (representing a hypothetical position in S) and its colour C[Au]. We assume that
at the beginning, only the leader is coloured green, and each non-leader’s colour is set to
blue. Finally, the leader’s label (position in S) is set at the origin of the coordinate system,
i.e., this label is used as the anchor in the localisation process. In due course, each agent
eventually becomes green, adopting a label (position) consistent with all other green agents
upon doing so. Before presenting the localisation protocol, we introduce a novel concept of
multi-contact epidemic, which is pivotal to our proposed solution.

2.1 Multi-contact epidemic
We introduce and analyse the process of κ-contact epidemic (a multi-contact epidemic with
a fixed parameter κ), a natural generalisation of epidemic dynamics in population protocols.
In this process, the population initially contains at least κ green agents, while the remaining
agents are blue. A blue agent turns green after interacting with κ distinct green agents.
We show that the time complexity of this process is O(n1−1/κ log n), for any fixed integer κ.

We start with two key lemmas that outline the progression of nominating green agents
in the multi-contact epidemic.

ISAAC 2025
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▶ Lemma 1. The time needed to transition from a configuration with m green agents to a
configuration with 2m green agents for m < n1/κ log n is bounded by

(c + κ)n1−1/κ(log n)1/κ

√
m− κ + 1

with high probability (whp), for some constant c > 0.

Proof. Assume that the number of green agents is exactly m. Consider κ − 1 success-
ive periods of length n1−1/κ(log n)1/κ/

√
m− κ + 1 and an additional period of length

cn1−1/κ(log n)1/κ/
√

m− κ + 1. We show that after all these periods, we obtain at least
m new green agents whp.

We prove by induction that after the first i periods there are at least ni agents that had
at least i contacts (interactions with distinct green agents) for i = 0, 1, 2, . . . , κ− 1, where
n0 = n−m and for i > 0,

ni = m(m− 1)(m− 2) · · · (m− i + 1) · n
(

log n

n

)i/κ

(m− κ + 1)−i/2.

Now we prove the inductive step. Assume that after initial i− 1 periods there are at least
ni−1 agents with at least i− 1 contacts. Let Xt be a random variable that equals 1 if, at
time t, an agent with i− 1 contacts experiences a new contact (with its i-th green agent),
and 0 otherwise. If in time t less than ni agents had i contacts

Pr(Xt = 1) > 2(m− i + 1)ni−1 − ni

n(n− 1) > 1.5(m− i + 1)ni−1

n2 .

After the i-th period of length n1−1/κ(log n)1/κ/
√

m− κ + 1 the expected value of EX =∑
t EXt is at least

1.5(m− i + 1)ni−1

n2 · n ·
n1−1/κ(log n)1/κ

√
m− κ + 1

> 1.4ni.

By Lemma 5 this number is at least ni whp. Thus also the number of agents that had at
least i contacts is at least ni whp.

After κ− 1 periods of length n1−1/κ(log n)1/κ/
√

m− κ + 1 there are at least nκ−1 agents
that had at least κ − 1 contacts. We show that after an additional period of length
cn1−1/κ(log n)1/κ/

√
m− κ + 1 we will have at least m new green agents whp. Let Xt be a

random variable that equals 1 if, at time t, an agent with κ− 1 contacts experiences a new
contact (with its κ-th green agent), and 0 otherwise. Note that each time Xt = 1, a new
green agent is produced. As long as less than m agents became green,

Pr(Xt = 1) > 2(m− κ + 1)nκ−1 −m

n(n− 1) >
nκ−1

n2 .

After one extra period of length cn1−1/κ(log n)1/κ/
√

m− κ + 1 the expected value EX =∑
t EXt is at least cm(m − 1) · · · (m − κ + 1) ·m−κ/2 log n > cm log n. By Lemma 5 this

number is at least m whp. Thus, also the number of newly generated green agents is at
least m whp. ◀

▶ Lemma 2. Starting with at least n1/κ log n green agents guarantees recolouring all n

agents to green in time O(n1−1/κ) whp.
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Proof. If there are altogether n1/κ log n green agents, then for any blue agent one can
define a random variable Xt equal 1 if during interaction t this agent interacts with a new
green agent, and 0 otherwise. We have Pr(Xt = 1) > 1.5n1/κ log n/n. In time cκn1−1/κ

the value EX =
∑

EXt > 1.5cκ log n. By Lemma 5 for c big enough X ≥ κ whp, i.e., each
agent becomes green whp. ◀

▶ Theorem 3. The stabilisation time of κ-contact epidemic is O(n1−1/κ log1/κ n) whp.

Proof. The execution time of κ-contact epidemic is the sum of the times to increase the
number of green agents from m = κ to m = n, and can be calculated using Lemmas 1 and 2

T = O(n1−1/κ) +
∑

m=κ,2κ,4κ,8κ,...,n1/κ log n

(c + κ)n1−1/κ(log n)1/κ

√
m− κ + 1

= O(n1−1/κ log1/κ n),

since we assumed that κ is fixed. ◀

2.2 Localisation via multi-contact epidemic in k-dimensions
The localisation protocol consists of two parts (see Algorithm 1). In Part 1: nomination
process (lines 9-15), the leader nominates and labels k agents, s.t., their labels (coordinates)
span k-dimensional space in a common coordinate system. Their labels stabilise and agents
become green. In Part 2: multilateration process (lines 16-22), the labels of all remaining
(blue) agents become stable (green). And this happens when each remaining (blue) agent
manages to interact with k + 1 different green agents. This sequence of interactions enables
each agent to position itself within a mutually agreed-upon coordinate system. Part 2 is
based on a direct application of κ-contact epidemic, for κ = k + 1, as discussed in Section 2.1.

In Part 1, the positioning (labelling) of the first k green agents requires nomination and
approval from the leader, who maintains its private list of nominated green agents. More
precisely, after an aspiring to become green agent Av manages to interact with all i < k

currently existing green agents. To become green Av must meet the leader and verify its
list of green contacts to get nomination. Upon successful verification, the leader updates its
list of green agents, and the new green agent Av is ready to calculate its projection onto
the subspace spanned by its i green predecessors and the leader, as well as its Euclidean
distance from this subspace. Namely, the first i coordinates of Av’s label are determined by
this projection, and the (i + 1)-th coordinate (in the newly formed dimension) is equal to
its distance from the aforementioned subspace. In Part 2, when positioning the remaining
agents, we use the fact that interactions with k + 1 green agents allow for the unambiguous
determination of an agent’s position in the commonly agreed coordinate system.

▶ Theorem 4. Algorithm 1 stabilises silently in time O(n(log n/n)1/(k+1)) whp.

Proof. As mentioned earlier, Algorithm 1 operates in two parts. In Part 1, the protocol
stabilises the labels of the leader and k extra agents, creating an initial set of k + 1 green
agents in time O(n(log n/n)1/k) whp (Lemma 6). The second part stabilises labels of all
remaining agents via (k + 1)-contact epidemic in time O(n(log n/n)1/(k+1)) (Theorem 3). ◀

First we formulate the following lemma.

▶ Lemma 5. Consider X = X1 + X2 + · · ·+ Xn of n independent 0−1 random variables and
any δ > 0. If the expected value EX ≥ c log n, for c > 0 large enough, then |X−EX| < δEX

holds whp.

ISAAC 2025
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Algorithm 1 Positioning in k dimensions.

/* Code executed by Au exchanging data from Av during interaction */
local state : x – position, C – colour, L – list of green agents’ (position,distance)
received data : L(Av), C(Av), x(Av), duv

1 begin
/* Initial values */

2 L(Au)← empty list
3 if u is the leader then
4 C(Au)← green; x(Au)← (0, . . . , 0)
5 else
6 C(Au)← blue
7 end
8 while not all agents are positioned do
9 if Au is the leader ∧ C(Av) = blue ∧ |L(Au)| = |L(Av) \ (x(Au), duv)| < k

then
10 append (L(Au), (x(Av), duv))
11 end
12 if Av is the leader ∧ C(Au) = blue ∧ |L(Au) \ (x(Av), dvu)| = |L(Av)| < k

then
13 C(Au)← green
14 x(Au)← a position consistent with L(Au) and

(
x(Av), duv

)
15 end
16 if C(Au) is blue ∧ C(Av) = green ∧ (Av, duv) /∈ L(Au) then
17 append (L(Au), (x(Av), duv))
18 if |L(Au)| = k + 1 then
19 C(Au)← green

20 x(Au)← the exact position calculated using L(Au)
21 end
22 end
23 end
24 end

Proof. The following equality holds

Pr(|X − EX| < δEX) = Pr(X > (1 + δ)EX) + Pr(X < (1− δ)EX)

By Chernoff inequalities, for c large enough and any parameter η, we get

Pr(X > (1 + δ)EX) < e−EXδ2/(2+δ) < e−cδ log n < n−η/2

and

Pr(X < (1− δ)EX) < e−EXδ2/2 < e−cδ2 log n/2 < n−η/2.

Thus, Pr(|X − EX| < δEX) < n−η. ◀

Now we formulate another lemma determining the time needed to position i-th agent
during the process of positioning the first k green agents.
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▶ Lemma 6. Algorithm 1 (Part 1), the i-th green agent is positioned in parallel time
O(n1−1/i(log n)1/i) whp.

Proof. Consider i− 1 successive periods of length n1−1/i(log n)1/i and an additional period
of length cn1−1/i(log n)1/i. We show that after all these periods, whp a new green agent is
positioned.

We now prove by induction that after the first j periods there are at least nj agents that
had at least j interactions with green agents for j = 0, 1, 2, . . . , i− 1, where n0 = n− 1 and
for j > 0, nj = n

(
log n

n

)j/i

.

We start with the inductive step. Assume that after initial j− 1 periods there are at least
nj−1 agents with at least j − 1 contacts, i.e., interactions with at least j − 1 green agents.
Let Xt be a random variable that equals 1 if, at time t, an agent with j − 1 contacts has a
new contact with its j-th green agent, and 0 otherwise. If in time t less than nj agents had
j contacts then

Pr(Xt = 1) > 2nj−1 − nj

n(n− 1) > 1.5nj−1

n2 .

After the j-th period of length n1−1/i(log n)1/i the expected value of EX =
∑

t EXt is at
least

1.5nj−1

n2 · n · n
1−1/i(log n)1/i > 1.4nj .

By Lemma 5 this number is at least nj whp. Thus also the number of agents that had
interactions with at least j green agents is at least nj whp.

Furthermore, after i− 1 periods there are at least ni−1 = (n/ log n)1/i log n agents that
experienced i− 1 contacts. Consider an extra period of length cn1−1/i(log n)1/i. Let Xt be
a random variable that equals 1 if, at time t, an agent with i− 1 contacts has a contact with
the leader, and 0 otherwise. If in time t none of these agents had interaction with the leader
yet, we get

Pr(Xt = 1) > 2ni−1

n2 .

After an extra period of length n1−1/i(log n)1/i the expected value of EX =
∑

t EXt is at
least

2nj−1

n2 · n · cn1−1/i(log n)1/i = 2c log n.

And by Lemma 5 this number is at least 1 whp. ◀

2.3 Faster positioning algorithm on the line
In this section, we demonstrate how to enhance performance of Algorithm 1 on the line, i.e.,
within a linear space S. While we focus on one dimension, our observations can be utilised
also in higher dimensions. In what follows, we propose an alternative localisation protocol
which positions agents not only by using 2-contact epidemic but also utilising interactions
between agents with a single green contact on their list, coloured as greenish. In the
new algorithm we take advantage of the fact that there are only two types of interactions
between greenish agents not leading to positioning of both of them. The first type refers to
interactions between agents that became greenish via contacting the same green agent. In
the second, each of the two interacting greenish agents is at the same distance and on the
same side of their unique green contact, rendering positioning impossible. We show that
these types of interactions do not contribute significantly to the total time of the stabilisation.
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▶ Lemma 7. The time needed to increase the number of green agents from m to 2m, for
m ∈ [2, n0.9], is O((n log n/m)1/3) whp.

Proof. First we consider an initial period I1 of length (n log n/m)1/3. The average number
of greenish agents produced by m green agents in time (n log n/m)1/3 is (m2n log n)1/3.
By Lemma 5 this number is at least 0.9(m2n log n)1/3 whp. For any given green agent Au,
one can define a subset Su of greenish agents originating from contact with agents other
than Au. The cardinality of Su is on average at least 0.9(m− 1)(n log n/m)1/3. By Lemma 5
this number is greater than 0.8(m − 1)(n log n/m)1/3 whp. For a given agent Av, which
turned greenish after contacting Au, there are fewer than 2m greenish agents in Su with
whom no interaction leads to the positioning of Av, unless the number of green agents
exceeds 2m (they are the second kind of non-positioning agents). Let us consider any set
Z of at most 2m agents located at points that are translations of the positions of green
agents by a fixed vector. The expected number of greenish agents belonging to Z is at most
n · (n log n/m)1/3 · (2m)2/n2 = 4(m2n log n)1/3m/n. So by Chernoff bound this number is
at most 0.1(m2n log n)−1/3 whp.

Thus for a given greenish agent Av, the number of other greenish agents with whom
interactions position Av is whp at least

0.8(m− 1)
(

n log n

m

)1/3
− 0.1(m2n log n)1/3 > 0.6(m2n log n)1/3.

Let I2 be a time interval of length c(n log n/m)1/3 that follows immediately after I1. The
probability that an interaction t between two greenish agents is the one that positions them
and makes them green is at least 0.6(m2n−2 log n)2/3. An average number of interactions
that position pairs of greenish agents in period I2 is 0.6cm log n. By Lemma 5 this yields
at least m new green agents whp. ◀

▶ Lemma 8. The time in which the number of green agents increases from n0.9 to n is
O(n0.1 log n).

Proof. Consider all interaction of agent Au during period cn0.1 log n. The probability of
having at most one interaction with a green agent for Au is

(
1− 2n0.9

n2

)cn1.1 log n

+ cn1.1(log n)0.9n2
(

1− 2n0.9

n2

)cn1.1 log n−1

<

< c(log n)ec log n < e2c log n = n2c ln 2. (1)

So, there is c > 0, s.t., all agents have at least two interactions with green agents during the
considered period cn0.1 log n whp. ◀

▶ Theorem 9. The stabilisation time of the improved algorithm is O((n log n)1/3) whp.

Proof. The stabilisation time can be bounded by the sum of the chunks of time needed to
increase the number of green agents m from 2 to n utilising Lemmas 7 and 8

T = O(n0.1 log n) +
∑

m=2,4,8,...,n0.9

O((n log n/m)1/3) = O((n log n)1/3). ◀
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3 Self-stabilising localisation in k dimensions

We begin with a brief description of the solution. The proposed self-stabilising protocol
in k-dimensions is based on iterative rounds, with each round utilising three mechanisms:
leader election incorporated into leader-based localisation (the first stage of a round), and a
buffering mechanism (the second stage of a round) adopted from [25] (Section 5.2).

During leader election, each agent draws log n random bits, and if none of these bits
is 0, the agent proceeds to the actual localisation protocol as a leader. Note that after all
agents complete drawing random bits, which takes O(log n) time, a unique leader is elected
with constant probability, see Lemma 10. Regardless of whether a unique leader is elected,
the leader-based localisation protocol continues (possibly indefinitely) unless an anomaly
is detected. Two types of anomalies may arise. The first, label inconsistency, occurs only
between two green agents. This kind of anomaly occurs when either the initial configuration
has conflicting labels of green agents or multiple leaders were elected during the current
round. When all agents are green this type of anomaly is detected in time O(k log n), see
Lemma 11. The second anomaly occurs when any non-green agent’s counter reaches its
deadline O(n(log n/n)1/(k+1)), i.e., the expected stabilisation time of Algorithm 1, indicating
that the localisation process is not completed on time. Upon detecting any anomaly, a reset
signal is initiated and propagated via a simple epidemic in O(log n) time. This, together with
the (collection and) buffering mechanism adopted from [25] (Section 5.2), ensures sufficient
time, namely O(log n), to reset states of all agents, and prepare them for the next round.

Finally, the time of each round is dominated by the expected time of localisation sta-
bilisation O(n(log n/n)1/(k+1)). Also, the probability of stabilisation in a round is constant,
primarily driven by the constant probability associated with successful leader election. Thus,
after O(log n) rounds and a total time of O(n(log n/n)1/(k+1) log n), the localisation protocol
self-stabilises with high probability (whp), see Theorem 13.

Our result demonstrates that self-stabilisation is not only feasible but also efficient, i.e.,
comparable to Algorithm 1 presented in Section 2. Moreover, although our self-stabilising
localisation protocol relies on leader election, it only requires knowledge of log n, whereas self-
stabilising leader election requires precise knowledge of n, see [15]. This is not a contradiction
because we only need leader election to succeed with constant probability, which together
with efficient anomaly detection, discussed in Section 3.3, and lightly modified buffering
mechanism from [25], discussed in Section 3.4, allows us to restart leader election and in turn
the localisation protocol, when necessary.

3.1 Memory utilisation
We begin by analysing the memory utilisation of the protocol. The number of states required
for leader election and buffering is O(log n), as shown in Lemma 10 and Lemma 21 of [25],
respectively. However, agents occupying states used for leader election and buffering do
not participate in the actual localisation process. As a result, the overall state space of the
self-stabilising protocol is dominated by that of Algorithm 1, extended by a deadline counter
of size O

(
n(log n/n)1/(k+1)) used by the blue agents.

3.2 Leader election
We begin by presenting a suitable leader election protocol that operates in O(log n) time
and uses O(log n) space. This protocol is executed at the beginning of the first stage of
each round and is followed by the main localisation protocol, Algorithm 1, augmented with
anomaly detection and deadline counters.
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Leader election is done by independently assigning a leader role to each agent with
probability p = Θ(1/n). In this way, the probability of electing exactly one leader is constant
and is maximised when p = 1/n and is then approximately 1/e. In our protocol, each agent
independently tosses a symmetric coin log n times and becomes the leader if it gets heads on
all tosses. We are left to describe the protocol implementing this process.

States in this protocol are denoted as pairs (A, i), in which A ∈ {N, H, T} and i ∈
{1, . . . , log n, L, F}. The first component, A, represents the type of coin toss state: Neutral
(N), Head (H), or Tails (T ). The second component, i, either serves as a counter indicating
progress toward successful leader election, or denotes a status: L for leader and F for follower.
On leaving the buffering mechanism (the second stage of the previous round) all agents
receive state (N, 1), and the only meaningful interactions in the leader election protocol are:

The creation of H : T state pairs ensuring that there are consistently the same number of
agents with H and T states in the population: (N, ∗) + (N, ∗)→ (H, ∗) + (T, ∗).
A coin toss in which the initiator gets heads: (∗, i) + (H, ∗) → (∗, i + 1) + (H, ∗), if
i < log n, and (∗, log n) + (H, ∗)→ (∗, L) + (H, ∗), otherwise.
A coin toss in which the initiator gets tails: (∗, i) + (T, ∗) → (∗, F ) + (T, ∗), if i ∈
{1, . . . , log n}.

▶ Lemma 10. A unique leader is elected in O(log n) time with a constant probability.

Proof. Let us assume that at time 0 all agents have already left the buffer and joined the
leader election protocol. For as long as the number of agents in (N, ∗) states exceeds n/2 the
probability of forming a H : T pair in a given interaction exceeds 1/4. Thus, the expected
time in which the number of agents in (N, ∗) states falls below n/2 is less than 2, coinciding
with 2n interactions. And whp this time is less than 3. After this time, the probability that
an agent with a counter in an interaction makes a coin flip is 1/2n. Thus, in a time period of
2c · log n it performs at least c · log n coin tosses on average. From Chernoff’s inequality for a
sufficiently large constant c it makes at least c · log n coin tosses whp. From the union bound
in total time O(log n) all agents will perform log n coin tosses each, which will establish their
leader (L) or follower (F ) status. ◀

We still need to explain how to adopt this leader election protocol in the self-stabilising
leader-based localisation protocol. Later in Section 3.4, we show that at some point all
agents are located in the buffer, and ready to proceed to the next round. When the first
agent leaves the buffer, it assumes the state (N, 1), which triggers an epidemic process that
informs all other agents in the buffer to adopt the same state (N, 1). Note that all agents
participating in the leader election protocol contribute to this epidemic, ensuring that the
entire population engages in leader election within O(log n) time. Upon completing the
leader election, agents with confirmed leader or follower status start leader-based localisation
protocol adopting green and blue states, respectively. In addition, they never give up their
coin (H|T |N) attributes to guarantee fairness of the remaining coin tosses for agents still
executing leader election protocol. Thus, after integration, the overall running time of the
leader election protocol remains O(log n).

3.3 Augmented leader-based localisation
On the conclusion of the leader election process leader-based localisation (Algorithm 1)
is executed, however, with a few modifications. Namely, the interaction counter with the
deadline O

(
n(log n/n)1/(k+1)) is added to every new blue agent. This is to ensure that the

first stage does not exceed the expected stabilisation time of Algorithm 1. One also needs to
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manage anomaly detection. Recall, that two types of anomalies may arise. The first, label
inconsistency, occurs only between two green agents. In particular, when all agents become
green, this type of anomaly is detected in time O(k log n), see the lemma below.

▶ Lemma 11. When all agents are green, the anomaly based on labels inconsistency is
detected in time O(k log n) whp.

Proof. It is known that a random graph with nodes embedded in k-dimensional space and
O(k log n) edges chosen uniformly at random is globally rigid whp [36]. This implies that
there exists a unique embedding of the graph resulting from the interactions, up to isometries
such as rotations, translations, and reflections. Consequently, if the labels of any green
agents are inconsistent, such inconsistencies will be detected after O(k log n) interactions. ◀

The second anomaly occurs when any blue agent’s counter reaches the deadline. Upon
detecting either of the anomalies, a reset signal is triggered initiating the buffering mechanism
discussed in the next section.

3.4 Buffering mechanism
The buffering for reset of the self-stabilising localisation protocol is solved in the same way as
the buffering in the ranking protocol with O(log n) additional states from [25]. In this work,
the signal for reset is the detection of an anomaly. It causes the state of the agents that
performed the anomaly detection to be set to the first state of the buffer: X1. The buffer is
a line consisting of 2d log n states: X1, X2, . . . , X2d log n for d large enough. We assign red
colour to the states X1, . . . , Xd log n and white (green in [25]) to the remaining buffer states.

We define the following transitions for these states:
Progress on the line: Xi + Xj → Xi+1 + Xi+1 for i ≤ j.
Reset propagation by red agents: Xi + A→ X1 + X1, if i ≤ d log n and A not on the line.
Buffer departure by white agents: X2d log n + X2d log n → (N, 1) + (N, 1), where (N, 1) is
the initial state of the leader election phase. Also Xi + A→ (N, 1) + A, where i > d log n

and A is not on the line.

The analysis of the buffering process is summed up in the paper [25] by the following
Lemma, proved there

▶ Lemma 12 (Lemma 21 in paper [25]). There exists d′ > 0, s.t., for any d ≥ 0 there exists
c > 0, for which after at most c log n time since state X1 (reset signal) arrival, all agents are
in line states Xi with indices d log n < i ≤ (d + d′) log n whp.

If we substitute our d for d and d′ in this lemma we obtain that at time O(log n) after the
first agents appear in state X1, all agents are white. On the other hand, when we substitute
2d for d in the lemma and d for d′, we obtain that at time O(log n) the agents start to leave
the line of the buffer.

We conclude Section 3 with the following theorem.

▶ Theorem 13. The localisation protocol presented in this section self-stabilises silently in
time O(n(log n/n)1/(k+1) log n) whp.

4 Self-stabilising localisation in vector query model

In this section, we adopt the vector query model, assuming first that S is a linear space
where agents A0, . . . , An−1 are arbitrarily positioned at (unknown to the agents) points
p0, . . . , pn−1, respectively. We use notation −→vij to denote the vector connecting pi and pj , in
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this case −→vij = pj−pi. Additionally, each agent Ai possesses a hypothetical coordinate referred
to as its label xi. In this variant of population protocols, during an interaction of Ai with
Ar, the initiator Ai learns about vector −→vir and label xr. We show that this model is very
powerful as it allows design of an optimal O(log n) time self-stabilising labelling protocol.

Algorithm 2 Fast positioning in one dimension.

/* Code executed by initiator Ai interacting with Ar */
local state : xi

received data : xr,−→vir

1 begin
2 xi ← max{xi, xr −−→vir}
3 end

We start with a trivial fact concerning label updates.

▶ Fact 1. For each agent Ai its label xi never decreases during the execution of Algorithm 2.

Let M = max
0≤i≤n−1

(
xi − pi).

▶ Fact 2. The value of M does not change during the execution of Algorithm 2.

Proof. Consider an effective update of label xi, where xi
′ is the updated value of this label.

xi
′ = xr −−→vir = xr − (pr − pi). Thus, xi

′ − pi = xr − pr ≤M. ◀

After this update agent Ai adopts new label xi = xr − pr. Let SM = {Ai : xi − pi = M}.

▶ Fact 3. For any two agents Ai, Aj ∈ SM we have xj − xi = pj − pi.

Proof. Note that −→vij = pj − pi = xj −M − (xi −M) = xj − xi. ◀

Thus, the labels of agents in SM are stable, meaning they align with the coordinate
system that will ultimately be agreed upon by all agents.

▶ Fact 4. After Ai /∈ SM interaction with Ar ∈ SM , Ai becomes an element of SM .

Proof. As Ai /∈ SM , we get xi − pi < M . However, as r ∈ SM we also get xi − pi < xr − pr,

and in turn xi < xr − pr + pi < xr −−→vir. Thus, xi becomes xr −−→vir, which is equal to M as
r ∈ SM . ◀

▶ Theorem 14. The localisation Algorithm 2 self-stabilises silently in the optimal time
O(log n) whp.

Proof. The membership of agents in SM is spread via one-way epidemic in time O(log n) whp.
This protocol is silent as after all agents are included in SM , further label updates are not
possible. Ultimately, this protocol is self-stabilising, requiring no initial assumptions about
agents’ labels, and achieves time optimality of O(log n), corresponding to the communication
bound in population protocols. ◀

Algorithm 2 can be extended to higher fixed dimensions by applying multiple instances
of the one-dimensional protocol to each dimension’s coordinates, as shown in Algorithm 3.

▶ Theorem 15. The localisation Algorithm 3 self-stabilises silently in a fixed k dimensional
space in the optimal time O(log n) whp.

Proof. By directly applying the union bound. ◀
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Algorithm 3 Fast positioning in fixed k dimensions.

/* Code executed by initiator Ai interacting with Ar */
local state : xi = [xi[0], . . . , xi[k − 1]]
received data : xr, −→vir

1 begin
2 foreach j ∈ [0, k − 1] do
3 xi[j]← max{xi[j], xr[j]−−→vir[j]}
4 end
5 end

5 Concluding remarks

In this paper, we introduce a novel variant of spatial population protocols and explore
its applicability to the distributed localisation problem. Any meaningful advances in this
problem could pave the way for developing faster and more robust lightweight communication
protocols suitable for real-world applications. It could also provide insights into the limitations
of what can be achieved in such systems.

Several challenges remain unresolved in this work. Firstly, we do not account for inac-
curacies in distance measurements. As no measuring device is perfect, future studies should
model measurement errors, which can significantly affect system stability and performance.
Our preliminary studies on the fast positioning protocol from Section 4 reveal a phenomenon
called label drifting in the presence of errors, resembling phase clock behaviour. This drifting
can be controlled to achieve near-complete label stabilisation and may support mobility
coordination in large robotic agent populations.

Second, we leave the issue of limited communication range unaddressed. In real-world
scenarios, agents often cannot communicate with all other agents in the system, which
adds further complexity. As mentioned in the introduction, it is well known that limited
communication range and arbitrary network topologies can lead to intractable localisation
problems in the worst case. Therefore, a promising direction for future research would be to
focus on specific classes of network topologies for which lightweight localisation protocols are
more likely to be effective.

A third challenge is the development of efficient localisation algorithms for mobile agents.
In this case, assumptions about the relative speeds of communication and movement would
likely be necessary to ensure that data from previous positions can still be utilised effectively.

Finally, of independent interest are further studies on the computational power of spatial
population protocols, both in comparison to existing variants of population protocols and in
relation to various geometric problems, types of queries, distance-based biased communication,
and other related topics.
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