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Abstract
In this work, we study the problem of detecting periodic trends in strings. While detecting exact
periodicity has been studied extensively, real-world data is often noisy, where small deviations or
mismatches occur between repetitions. This work focuses on a generalized approach to period
detection that efficiently handles noise. Given a string S of length n, the task is to identify integers p

such that the prefix and the suffix of S, each of length n − p + 1, are similar under a given distance
measure. Ergün et al. [APPROX-RANDOM 2017] were the first to study this problem in the
streaming model under the Hamming distance. In this work, we combine, in a non-trivial way,
the Hamming distance sketch of Clifford et al. [SODA 2019] and the structural description of
the k-mismatch occurrences of a pattern in a text by Charalampopoulos et al. [FOCS 2020] to
present a more efficient streaming algorithm for period detection under the Hamming distance. As
a corollary, we derive a streaming algorithm for detecting periods of strings which may contain
wildcards, a special symbol that match any character of the alphabet. Our algorithm is not only
more efficient than that of Ergün et al. [TCS 2020], but it also operates without their assumption
that the string must be free of wildcards in its final characters. Additionally, we introduce the
first two-pass streaming algorithm for computing periods under the edit distance by leveraging and
extending the Bhattacharya–Koucký’s grammar decomposition technique [STOC 2023].
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1 Introduction

In this work, we consider the problem of computing periodic trends in strings. Informally,
a string has period p if its prefix of length n − p + 1 equals its suffix of length n − p + 1.
Alternatively, a string has period p if it equals its prefix of length p repeated a (possibly,
fractional) number of times. The problem of detecting periodic trends in strings has numerous
practical applications, including fields like astronomy, financial analytics, and meteorology
(see e.g. [11]). The nature and the volume of the data in the applications ask for algorithms
able to process the input in very little space and in (almost) real time, such as streaming
algorithms. In the streaming setting, we assume that the input string arrives one character
at a time and account for all space used, even for the space used to store information about
the input data, which results in ultra-efficient algorithms.

The first streaming algorithm for detecting exact periods of a stream of length n was given
by Ergün, Jowhari, and Sağlam [14], who presented an algorithm with O(log2 n) space.1

1 Hereafter, the space is measured in bits.
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36:2 Streaming Periodicity with Mismatches, Wildcards, and Edits

While the problem of detecting exact periodicity is fundamental to string processing, in
practice data is rarely exactly periodic. For example, a string abcabcabaabaaba is clearly
repetitive, but does not have a small exact period in the sense above. To account for these
variations in natural data, Ergün, Jowhari, and Sağlam [14] proposed another streaming
algorithm, which allows for approximately computing the Hamming distance (the number
of mismatches) between a stream and a string with period p, for a given integer p. Their
algorithm computes the distance with an approximation factor 2 + ε in space Õ(1/ε2).
A disadvantage of this algorithm is that p must be known in advance, and knowing p

approximately will not suffice.
Later, Ergün, Grigorescu, Azer, and Zhou [12] suggested a different version of this

problem: given a string of length n and an integer k, they asked for all integer p such that
the Hamming distance between the string and its copy shifted by p is at most k (see Section 2
for a definition). They called such p k-mismatch periods. They proved that for computing
all k-mismatch periods of a streaming string of length n one needs Ω(n) space and that
for computing all k-mismatch periods in [1. .n/2], one needs Ω(k log n) space. On the other
hand, prior work [12, 15] claimed a streaming algorithm that, given a string of length n,
computes all its k-mismatch periods in [1. .n/2] using only O(k4 log9 n) space. However, we
found significant gaps in the proof of correctness. Many key arguments are only briefly
outlined in both the conference version [12] and the longer arXiv manuscript [15], and as
confirmed in private communication with the authors, a full journal version of the paper has
not been published. In particular, [15, Theorem 28] is proved only for the case when the
string has two distinct k-mismatch periods, and is stated to generalize easily to the case
when the string has more than two distinct periods. We believe this generalization does not
hold; see Appendix A for a detailed explanation.

Finally, in a different work [13] Ergün, Grigorescu, Azer, and Zhou considered the problem
of computing periods of incomplete streaming data, where some characters are replaced with
wildcards, a special symbol that matches each character of the alphabet. We say that a
wildcard-containing string T has an integer period p if T shifted by p positions matches itself.
They showed that a streaming algorithm which computes all periods of an n-length string
with wildcards requires Ω(n) space. Conversely, they demonstrated a streaming algorithm
which given a string T with k wildcards computes all its periods p ≤ n/2 under condition
that there are no wildcards in the last p characters of T . The algorithm uses O(k3 polylog n)
space. They also showed that for k = o(

√
n), such an algorithm must use Ω(k log n) space.

Our results

In this work, we continue the study initiated by Ergün, Grigorescu, Azer, and Zhou [12].
We first give a streaming algorithm for computing the k-mismatch periods of a string
(Theorem 2.10), providing full details and improving over the claimed space bound of Ergün,
Grigorescu, Azer, and Zhou [12] by a factor of k2 log5 n.

As an almost immediate corollary, and our second contribution, we obtain a similar result
for computing periods of a string with few wildcards (Theorem 2.2). Specifically, we both
improve the complexity of the algorithm by Ergün, Grigorescu, Azer, and Zhou [13] by a
factor of k polylog n, narrowing the gap between the upper and lower bounds, and remove
the assumption that there are no wildcards in the last characters of the input string.

As our third and final contribution, we extend our results to the edit distance. Informally,
we say that a string has a k-edit period p ≤ n/2 if the edit distance (the number of deletions,
insertions, and substitutions required to transform one string into another) between the
input string and its copy shifted by p characters is at most k (see Section 2 for a formal
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definition). We apply the Bhattacharya–Koucký’s grammar decomposition [4] and then show
that we can compute the k-edit periods of the input by computing the k-mismatch periods
of the stream of suitably encoded grammars. As our algorithm for k-mismatch periods needs
to know the length of the stream (assumption already present in [12]), we make two passes:
first, we compute the decomposition and the length of the stream, and in the second pass
we compute the periods. As a result, we develop the first two-pass streaming algorithm for
computing k-edit periods of a string in Õ(k2n) time and Õ(k4) space (Theorem 2.3).2 We
emphasize that in this work, we deliberately chose to treat our algorithm for k-mismatch
periods as a black box, using it as a direct application in the context of k-edit periods. While
it is conceivable that opening this black box and combining its internal components with
the Bhattacharya–Koucký technique could lead to a one-pass streaming algorithm for k-edit
periods, pursuing this direction would require significant new insights. We leave this as a
promising open question for future research.

Related work

Other repetitive string structures that have been considered in the literature include palin-
dromes (strings that read the same forward and backwards) and squares (strings equal to
two copies of a string concatenated together). Berebrink et al. [3] followed by Gawrychowski
et al. [16] studied the question of computing the length of a maximal palindromic substring
of a stream that is a palindrome. Merkurev and Shur [21] considered a similar question for
squares. Bathie et al. [1] considered the problem of recognising prefixes of a streaming string
that are at Hamming (edit) distance at most k from palindromes and squares.

2 Results and technical overview

In this work, we assume the word-RAM model of computation and work in a particularly
restrictive streaming setting. In this setting, we assume that the input string arrives as a
stream, one character at a time. We must account for all the space used, including the space
used to store information about the input. Throughout, the space is measured in bits.

Notations and terminology

We assume to be given an alphabet Σ, the elements of which, called characters, can be stored
in a single machine word of the word-RAM model. For an integer n ≥ 0, we denote the set of
all length-n strings by Σn, and we set Σ≤n =

⋃n
m=0 Σm as well as Σ∗ =

⋃∞
n=0 Σn. The empty

string is denoted by ε. For two strings S, T ∈ Σ∗, we use ST or S · T indifferently to denote
their concatenation. For an integer m ≥ 0, the string obtained by concatenating S to itself
m times is denoted by Sm; note that S0 = ε. Furthermore, S∞ denotes an infinite string
obtained by concatenating infinitely many copies of S. For a string T ∈ Σn and i ∈ [1. .n],3
the ith character of T is denoted by T [i]. We use |T | = n to denote the length of T . For
1 ≤ i, j ≤ n, T [i. .j] denotes the substring T [i]T [i + 1] · · ·T [j] of T if i ≤ j and the empty
string otherwise. When i = 1 or j = n, we omit them, i.e., we write T [. .j] = T [1. .j] and
T [i. .] = T [i. .n]. We say that a string P is a prefix of T if there exists j ∈ [1. .n] such that
P = T [. .j], and a suffix of T if there exists i ∈ [1. .n] such that P = T [i. .]. A non-empty
string T ∈ Σn is primitive if T 2[i. .j] = T implies i = 1 or i = |T |+ 1.

2 Hereafter, Õ means that we hide factors polylogarithmic in n. “Two-pass” means that the algorithm
reads T as a stream twice.

3 For integers i, j ∈ Z, denote [i. .j] = {k ∈ Z : i ≤ k ≤ j}, [i. .j) = {k ∈ Z : i ≤ k < j}, and
(i. .j] = {k ∈ Z : i < k ≤ j}.
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36:4 Streaming Periodicity with Mismatches, Wildcards, and Edits

2.1 k-mismatch periods
The Hamming distance between two strings S, T (denoted hd(S, T )) is defined to be equal
to infinity if S and T have different lengths, and otherwise to the number of positions
where the two strings differ (mismatches). We define the mismatch information between
two length-n strings S and T , MI(S, T ) as the set {(i, S[i], T [i]) : i ∈ [1. .n] and S[i] ̸=
T [i]}. An integer p is called a k-mismatch period of a string T of length n if 1 ≤ p ≤ n

and hd(T [1. .n− p + 1], T [p. .n]) ≤ k.

▶ Theorem 2.1 (Informal statement of Theorem 2.10). Given a string T of length n and an
integer k, there is a streaming algorithm that computes all k-mismatch periods of T in [1. .n/2].
Furthermore, for each detected k-mismatch period p, it also returns MI(T [p. .], T [. .n− p + 1]).
The algorithm uses O(n · k log5 n) time and O(k2 log3 n) space, and is correct w.h.p.4

To develop our result, we start with a simple idea already present in [12]: If p is a
k-mismatch period of T , then for all 1 ≤ ℓ ≤ n− p, the position p is a starting position of a
k-mismatch occurrence of T [1. .ℓ + 1]. This already allows to filter out candidate periods. To
test whether an integer p is a k-mismatch period, we check if the Hamming distance between
T [1. .n−p+1] and T [p. .n] is at most k. For this, we aim to use the Hamming distance sketches
introduced by Clifford, Kociumaka, and Porat [9] for strings T [1. .n − p + 1] and T [p. .n].
There are two main challenges: First, we might discover a candidate k-mismatch period p

after passing position n− p + 1, which would make it impossible to compute the Hamming
distance sketch of T [1. .n− p + 1] due to streaming access limitations. To address this, as
in [12], we divide the interval [1. .n/2] into a logarithmic number of subintervals, filtering
positions in each subinterval using progressively shorter prefixes. The second challenge is
that the number of candidate periods can be large, and we cannot store all the sketches.
Here, we diverge significantly from [12]: To store the sketches in small space, we leverage
the concatenability of the Hamming distance sketches of [9] and the structural regularity
of k-mismatch occurrences as shown by Charalampopoulos, Kociumaka, and Wellnitz [8].
Combining the two ideas together is non-trivial and this is where the main novelty of our
result for the Hamming distance is. The proof of Theorem 2.10 is given in Section 3.

Assume to be given a string containing wildcards. By replacing wildcards in a string with
a new character, we immediately derive the following:

▶ Theorem 2.2. Given a string T of length n containing at most k wildcards. There is a
streaming algorithm that computes the set of periods of T in [1. .n/2] in O(n · k log5 n) time
and O(k2 log3 n) space. The algorithm is correct w.h.p.

Proof. If we replace the wildcards in T with a new character # /∈ Σ, then a period p of T

is a k-mismatch period of the resulting string in the alphabet Σ ∪ {#}, and we can find
it via Theorem 2.1. To check that the positions returned by the algorithm are periods of
the original string, for each detected k-mismatch period, we retrieve the relevant mismatch
information and verify that for all mismatching pairs of characters, at least one of those is
the special character #. ◀

2.2 k-edit periods
The edit distance between two strings S, T (denoted by ed(S, T )) is the minimum number of
character insertions, deletions, and substitutions required to transform S into T . We say
that an integer p is a k-edit period of a string T of length n if 1 ≤ p ≤ |T | and for some
1 ≤ i ≤ n, ed(T [1. .i], T [p. .n]) ≤ k.

4 Hereafter, w.h.p. stands for probability at least 1 − 1/nc, for a constant c > 1.
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▶ Theorem 2.3. Given a string T of length n and an integer k, there is a two-pass streaming
algorithm that computes all k-edit periods of T in Õ(k2n) time and Õ(k4) space. The
algorithm is correct w.h.p.

2.2.1 Preliminaries: Grammar decomposition
We assume familiarity with the notion of straight-line programs (SLP) [18], which represent
a subclass of context-free grammars. The size of an SLP G is the number of non-terminals
and is denoted by |G|. Furthermore, G represents a unique string, called the expansion of G,
exp(G). The length of |exp(G)| can be computed in O(|G|) time and space [20].

▶ Fact 2.4. Let GX and GY be SLPs representing strings X and Y respectively, and
m = |GX |+ |GY |. Both of the following hold:

We can compute d := ed(X, Y ) in O((m + d2) log |XY |) time and O(m log |XY |) space
(see [5, Proposition 2.1]).
Given an integer k, we can find all 1 ≤ i ≤ |Y | such that ed(X, Y [i. .]) ≤ k and the
corresponding edit distances in O((m + k2) log |XY |) time and O(m log |XY |) space.

Proof. By [19] (see also the remark at the end of [10, Section 5]), all such positions i can be
found in (k + 1)2 longest common extension (LCE) queries on a string Z equal to the reverse
of XY . Given two positions 1 ≤ i, j ≤ |Z|, an LCE query asks for the maximal ℓ such that
Z[i. .i + ℓ− 1] = Z[j. .j + ℓ− 1]. The string Z can be represented as the expansion of an SLP
of size O(|GX |+ |GY |). I [17] showed that after O(m log |Z|)-time and -space preprocessing
of the SLP5, LCE queries on Z can be answered in O(log |Z|) time. The claim follows. ◀

One of the central tools of our solution is Bhattacharya–Koucký’s grammar decomposition
(BK-decomposition) [4]. It is a randomised decomposition that uses as source of randomness
two families of hash functions C1, . . . , CL and H0, . . . , HL, where L = O(log n) is a suitably
chosen parameter. The decomposition of a string X is a sequence G(X) of SLPs.6 For a
sequence of SLPs G = G1 · · ·Gm, define exp(G) = exp(G1) · · · exp(Gm).

▶ Fact 2.5 ([4, Theorem 3.1]). Let X ∈ Σ≤n, k ∈ N be the input parameter of the grammar
decomposition algorithm, and let G(X) = GX

1 · · ·GX
s . For all n large enough, X = exp(G(X))

and |GX
i | = Õ(k) for i ∈ {1, . . . , s} with probability ≥ 1− 2/n.

The BK-decomposition can be maintained in a streaming fashion:

▶ Corollary 2.6 ([6, Lemma 4.2,Theorem 5.1]). Given a streaming string X ∈ Σ∗, there is
an algorithm that outputs a stream of SLPs Gdef = G1 · · ·Gs (referred to as definite) and
maintains a sequence Gactive = G′

1 · · ·G′
t of Õ(1) SLPs (referred to as active) such that after

having read X[1. .i], the concatenation of Gdef and Gactive equals G(X[1. .i]). The algorithm
uses Õ(k) time per character and Õ(k) space (here, we account for all the space used except
for the space required to store Gdef). The only operation the algorithm is allowed to perform
on Gdef is appending a grammar from the right.

We further make use of the following claim:

5 The result of I [17] gives tighter bounds, but this is sufficient for our purposes
6 Strictly speaking, the decomposition [4] outputs run-length SLPs. However, one can transform those

grammars into SLPs with a size blow-up polylogarithmic in n [20].
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XU. . .

X U

exp(G1) exp(G2) exp(G3) exp(Gt+1)

̸== ==

r

V Y

YV

exp(G′
t′ ) exp(G′

t′+1) exp(G′
t′+2) exp(G′

s′ ). . .
r′ − 1

Figure 1 Grammar decompositions for V Y and XU for the case ed(X, Y ) ≤ k.

▶ Corollary 2.7. Let k ≤ n be integers. Assume X, Y, U, V ∈ Σ∗, |XU |, |V Y | ≤ n, and
ed(X, Y ) ≤ k. Let G(XU) = G1 · · ·Gs and G(V Y ) = G′

1 · · ·G′
s′ . With probability at least

1−1/5, there exist integers r, r′, t, t′ such that each of the following is satisfied (see Figure 1):
1. t + 1 = s′ − t′ + 1.
2. X = exp(G1 · · ·Gt) · exp(Gt+1)[. .r] and Y = exp(G′

t′)[r′. .] · exp(G′
t′+1 · · ·G′

s′).
3. Gi = G′

t′+i−1 except for at most k + 2 indices 1 ≤ i ≤ t + 1.
4. ed(X, Y ) equals the sum of ed(exp(G1), exp(G′

t′)[r′. .]),
∑

2≤i≤t ed(exp(Gi), exp(G′
t′+i−1)),

and ed(exp(Gt+1)[. .r], exp(G′
s′)).

Bhattacharya and Koucký [4] proved a similar result in the case where V ′ and V are
appended to X and Y , respectively, from the left. By construction, the BK-decomposition is
(almost) symmetric, which allows to adapt their argument to show an analogous result for the
case where U and U ′ are appended to X and Y , respectively, from the right. Corollary 2.7
follows by first applying the result of Bhattacharya and Koucký [4] with V ′ = ε, and then
using our analogous argument with U ′ = ε.

Finally, we use the following encoding of SLPs that allows reusing algorithms on strings
for sequences of SLPs:

▶ Fact 2.8 ([4, Lemma 3.13]). Let µ = Õ(k) be a parameter. There is a mapping enc from
the set of SLPs output by the BK-decomposition algorithm to the set of strings of length µ

on an alphabet Γ of size polynomial in n (the maximum length of the input string of the
BK-decomposition algorithm) that guarantees that the following is satisfied:
1. A grammar can be encoded and decoded in O(µ) time and space;
2. Encodings of two equal grammars are equal;
3. Encodings of two distinct grammars output by the decomposition algorithm differ in all µ

characters with probability at least 1− 1/n.

2.2.2 Proof of Theorem 2.3
A high-level idea of our algorithm is to apply the grammar decomposition to the stream,
and then to reduce the problem to the problem of computing periods with mismatches
via Corollary 2.7 and Fact 2.8. To this end, we need a stronger version of a streaming
algorithm for computing periods with mismatches, and in particular, we introduce a weight
function w on strings. In the case of the Hamming distance, this function is identically
zero. In case of the edit distance, we define it as a partial function on Γ∗, namely, if
Γ∗ ∋ S = enc(G1 · · ·Gm), then w(S) = |exp(G1 · · ·Gm)|.
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▶ Proposition 2.9. The weight functions defined above satisfy each of the following:
For a string S of length n, w(S) can be computed in streaming deterministically using
tw(n) time per character and sw(n) space;
Consider strings X, Y . If at least two of w(X), w(Y ), w(XY ) are defined, then the third
one is defined as well and w(XY ) = w(X) + w(Y );
Consider strings X, Y that have equal length in [1. .n]. If w(X), w(Y ) are defined, then
w(Y ) can be computed deterministically in |MI(X, Y )| · tw(n) time and sw(n) space.

For the Hamming distance, tw(n) = O(1) and sw(n) = O(1) (trivially), and for the edit
distance tw(n) = Õ(1) and sw(n) = Õ(k).

Proof. The claim is trivial for w ≡ 0. In the following, we consider the weight function for
the edit distance. First, consider S = enc(G1G2 · · ·Gm). Its weight w(S) can be computed in
streaming using tw(n) time per character, where tw(n) = Õ(1) and sw(n) = Õ(k) space thanks
to Fact 2.8. The second property obviously holds. Finally, assume X = enc(G1G2 . . . Gm)
and Y = enc(G′

1G′
2 . . . G′

m). Let I = {i ≤ m, enc(Gi) ̸= enc(G′
i)}. Given MI(X, Y ), because

of Fact 2.8, we have access to all characters in enc(Gi) and enc(G′
i) for i ∈ I. As a result,

we can compute w(Y ) = w(X) +
∑

i∈I w(enc(G′
i)) − w(enc(Gi)) in MI(X, Y ) · tw(n) time

and sw(n) space. ◀

In Section 3, we show the following theorem:

▶ Theorem 2.10. Given a string T of length n and integers k, ∆, there is a streaming
algorithm that computes all k-mismatch periods of T in [1. .n/2 + ∆]. Furthermore, for each
detected k-mismatch period p, it also returns weight w(T [p. .]) and MI(T [p. .], T [. .n− p + 1]).
The algorithm runs in O(n·ktw(n) log5 n) time, uses O(k2 log3 n+sw(n)+∆·(k log n+sw(n)))
space, and is correct w.h.p., where tw(n) and sw(n) are as defined in Proposition 2.9.7

Let us now explain how it implies the algorithm for computing k-edit periods. Recall
that we receive a string T of length n as a stream. In the first streaming pass on T , we
apply Corollary 2.6. At every moment of the algorithm, we additionally store the number of
definite grammars. By Corollary 2.6, we can then compute m := |G(T )| in Õ(kn) time and
Õ(k) space.

In the second streaming pass, we again run the algorithm of Corollary 2.6. When a new
character arrives, we update the SLPs and if a SLP G becomes definite, i.e. if we append G to
the stream of definite grammars, we compute enc(G) in Õ(k) time and space (Fact 2.8), and
feed it character-by-character into the µ(k + 2)-mismatch period algorithm (Theorem 2.10),
where µ is the parameter from Fact 2.8. Consider the moment when we arrive at the end
of T and let G1, . . . , Gt be the active grammars. We compute enc(G1 · · ·Gt) and feed it by
character-by-character into the µ(k + 2)-mismatch period algorithm. Let T be the resulting
stream we fed into the algorithm, i.e. T = enc(G(T )), where G(T ) = GT

1 GT
2 · · ·GT

m.
The µ(k + 2)-mismatch period algorithm retrieves all µ(k + 2)-mismatch periods of T

one-by-one. When a µ(k + 2)-mismatch period p is retrieved, we do the following. If p− 1 is
not a multiple of µ, we discard it immediately. Otherwise, by Corollary 2.7, there are at most
k + 2 values 2 ≤ i ≤ m− (p− 1)/µ− 1 such that enc(GT

i ) ̸= enc(GT
i+(p−1)/µ). We retrieve

the set I containing all such i from MI(T [p. .], T [. .m · µ− p + 1]). We finally compute

d(p) =
∑
i∈I

ed(exp(GT
i ), exp(GT

i+(p−1)/µ)) + min
r

ed(exp(GT
m−(p−1)/µ)[. .r], exp(GT

m))

7 By taking w ≡ 0 and ∆ = 0, we immediately obtain Theorem 2.1.

ISAAC 2025
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If d(p) ≤ k, we compute all r′ such that ed(exp(GT
1 ), exp(GT

1+(p−1)/µ[r′. .])) ≤ k − d(p).
For all such r′, we return w(enc(GT

(p−1)/µ+2 . . . GT
m)) + r′ as a k-edit period of T .

Correctness. If p ≤ n/2 is a k-edit period of T , there exists i such that ed(T [. .i], T [p. .]) ≤
k. By Corollary 2.7, there exist integers r, r′, t, t′ such that T [. .i] = exp(GT

1 · · ·GT
t ) ·

exp(GT
t+1)[. .r], T [p. .] = exp(Gt′)[r′. .] · exp(GT

t′+1 · · ·GT
m), t + 1 = m− t′ + 1 and there are

at most k + 2 indices i such that GT
i and GT

t′+i mismatch. By Fact 2.8, t′ · µ + 1 is a
µ · (k + 2)-mismatch period of T . Further, t′ ≤ (m + k)/2 + 1:

▷ Claim 2.11. t′ ≤ (m + k)/2 + 1.

Proof. We have i ≥ (n − p + 1) − k and hence i + (n − p + 1) ≥ n − k. Consequently,
t+1+(m−t′+1) ≥ m−k. Indeed, assume towards a contradiction that t+(m−t′+1) ≤ m−k.
We then have

i + (n− p + 1) ≤
|exp(GT

1 · · ·GT
t ) · exp(GT

t+1)[. .r]|+ |exp(Gt′)[r′. .] · exp(Gt′+1 · · ·Gm)| ≤
|exp(GT

1 · · ·GT
t+1)|+ |exp(GT

t′ · · ·GT
m)| ≤ |exp(GT

1 · · ·GT
t+1)|+ |exp(GT

t+k+2 · · ·GT
m)| ≤

n− k

where the last inequality holds as each SLP GT
i , t + 1 < i < t + k + 2 is non-trivial and

hence its expansion has length at least one. Finally, since t + 1 = m − t′ + 1, we obtain
m− t′ + 1 ≥ (m− k)/2 and therefore t′ ≤ (m + k)/2 + 1. ◁

Consequently, t′ · µ + 1 is detected by the µ · (k + 2)-mismatch period algorithm with
∆ = µ(k/2 + 1) + 1. We then identify p as a k-edit period of T by computing the edit
distances between the expansions of the mismatching SLPs.

The algorithm fails if Corollary 2.7 fails, or if the µ · (k + 2)-mismatch period algorithm
fails, or if Fact 2.8 fails, which happens with probability ≤ 2

5 for n big enough. Also, notice
that when Corollary 2.7 fails, the algorithm computes edit distance that is bigger than the
actual distance. As a result, with a standard argument, we can run log n instances of the
algorithm and return the minimal computed distance, to have the algorithm succeed w.h.p.

Complexity. The first pass on T takes Õ(kn) time and Õ(k) space. For the second
pass, the µ · (k + 2)-mismatch period algorithm takes Õ(µktw(n)n) = Õ(k2n) time and
Õ((µk)2 + sw(n)) = Õ(k4) space by Theorem 2.10 and Proposition 2.9. For each µ · (k + 2)-
mismatch period returned by the algorithm, we can bound the time needed to compute
d(p) as follows: Let ki = ed(exp(Gi), exp(Gi+(p−1)/µ)). By Fact 2.4, we can compute ki in
time Õ(k2

i ), hence if d(p) ≤ k, we can compute d(p) in time Õ(
∑

i k2
i ) = Õ(k2). If the edit

distance computations take total time more than Õ(k2), we can terminate them as we know
that d(p) > k.8 Theorem 2.3 follows.

3 Proof of Theorem 2.10

In this section, we prove Theorem 2.10. We first recall essential tools for the Hamming
distance, then outline our algorithm and solve each case, and finally analyse it.

8 To be more precise, we upper bound the number of longest common extension queries from Fact 2.4, it
should not exceed

∑
i
(ki + 1)2 ≤ (k + 1)2.
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3.1 Tools for the Hamming distance
For two strings P, T , a position i ∈ [|P |. .|T |] of T is a k-mismatch occurrence of P in T

if hd(T [i − |P | + 1. .i], P ) ≤ k. For an integer k, we define hd≤k(X, Y ) = hd(X, Y ) if
hd(X, Y ) ≤ k and∞ otherwise. We denote by OccH

k (P, T ) the set of k-mismatch occurrences
of P in T . For brevity, we define hd(P, T ∗) = hd(P, T ∞[1. .|P |]).

▶ Fact 3.1 ([9, Lemmas 6.2-6.4]). Consider positive integers k, n, σ such that k ≤ n and
σ = nO(1), and a family U ⊆ {0, . . . , σ − 1}≤n of strings. One can assign O(k log n)-bit
sketches skk(U) to all strings U ∈ U so that each of the following holds, assuming that all
processed strings belong to U :
1. Given sketches skk(U), skk(V ), there is an algorithm that uses O(k log3 n) time to decide

whether hd(U, V ) ≤ k. If so, MI(U, V ) is reported.
2. There is an algorithm that constructs one of skk(U), skk(V ) or skk(UV ) given the two

other sketches in O(k log n) time.
3. There is an algorithm that constructs skk(U) or skk(Um) given the other sketch and the

integer m in O(k log n) time.
4. If hd(U, V ) = O(k), there is an algorithm that constructs skk(V ) from skk(U) and MI(U, V )

in O(k log2 n) time.
All algorithms use O(k log n) space and succeed w.h.p.

Below, we refer to the sketch of Fact 3.1 as the k-mismatch sketch. Note that for a string U

and all integer k′ ≥ k, the sketch skk′(U) includes the sketch skk(U) (see [9] for a definition).
Beyond the properties above, the k-mismatch sketch has one additional property:

▶ Corollary 3.2 ([9, Fact 4.4]). There exists a streaming algorithm that processes a string U in
O(k log n) space using O(log2 n) time per character so that the sketch skk(U) can be retrieved
on demand in O(k log2 n) time.

By analysing the details of [9, Corollary 3.4], one can derive a streaming algorithm for
computing all occurrences of a pattern in a text when the pattern is a prefix of some string
and the text is a substring of the same string, which we refer to as the k-mismatch algorithm:

▶ Corollary 3.3. Given a string T of length n, there is a streaming algorithm for a pattern
P = T [1. .ℓ] and a text T [i. .j], where 1 ≤ i, j, ℓ ≤ n, which uses O(k log2 n) space and takes
O(k log4 n) time per arriving character. The algorithm reports all positions p such that
i + ℓ− 1 ≤ p ≤ j and hd(T [p− ℓ + 1. .p], P ) ≤ k at the moment of their arrival. For each
reported position p, MI(T [p− ℓ + 1. .p], P ) and skk(T [1. .p− ℓ]) can be reported on demand in
O(k log2 n) time at the moment when p arrives. The algorithm is correct w.h.p.

Proof. Clifford et al. [9, Corollary 3.4] presented an algorithm that reports the endpoints of
all k-mismatch occurrences of a pattern in a text assuming that it first receives the pattern
as a stream and then a text as a stream as well. The algorithm uses O(k log2 n) space and
takes O(k log4 n) time per arriving character and is correct w.h.p.

This is not the current best algorithm (presented in Clifford et al. [9] as well). The
reason why we selected the simpler algorithm is that it allows for the necessary preprocessing
of the pattern to be easily done before one needs it for the text processing. Namely, the
only information the algorithm stores about the pattern are the k-mismatch sketches of the
prefixes of the pattern of the lengths equal to powers of two, and the k-mismatch sketch of
the pattern itself, computed via Corollary 3.2, and the k-mismatch sketch of the pattern’s
prefix of length ℓ is never used before the position ℓ + 1 of the text. ◀

ISAAC 2025



36:10 Streaming Periodicity with Mismatches, Wildcards, and Edits

▶ Fact 3.4 (cf. [8, Theorems 3.1 and 3.2]). Given a pattern P of length m, a text T of length
n ≤ 3

2 m, and a threshold k ∈ {1, . . . , m}, at least one of the following holds:
1. The number of k-mismatch occurrences of P in T is bounded by 576 · n/m · k.
2. There is a primitive string Q of length |Q| ≤ m/128k that satisfies hd(P, Q∗) ≤ 2k.
In the second case, the difference between the starting positions of any two k-mismatch
occurrences of P in T is a multiple of |Q| and if T ′ is the minimal substring of the text
containing all k-mismatch occurrences of P in T , then hd(T ′, Q∗) ≤ 6k.

Let S be a string of length n. For our next lemma, we introduce the forward cyclic
rotation rot(S) = S[n]S[1] . . . S[n− 1]. In general, for s ∈ N, a cyclic rotation rots(S) with
shift s (resp. −s) is obtained by iterating rot (resp. rot−1) s times. Note that a string S is
primitive if and only if rots(S) = S implies s = 0 (mod |S|).

▶ Lemma 3.5. Given two strings X, Y such that X is a prefix of Y and |Y | ≤ 5
2 |X|. Assume

that there are primitive strings QX such that hd(Q∗
X , X) ≤ k and |QX | ≤ |X|

128k and QY such
that hd(Q∗

Y , Y ) ≤ k and |QY | ≤ |Y |
128k . We then have QX = QY .

Proof. Suppose towards a contradiction that QX ̸= QY . By the triangle inequality, we
have hd(Q∞

X [1. .|X|], Q∞
Y [1. .|X|]) ≤ 2k and max{|QX |, |QY |} ≤ |Y |

128k ≤
5|Y |
256 . Assume w.l.o.g.

|QX | ≤ |QY |.
If there is i ∈ N such that |QY | = i|QX |, then by primitivity of QY , we have hd(QY , Qi

X) ≥
1, and hd(Q∞

Y [1. .|X|], Q∞
X [1. .|X|]) ≥ |X|

|QY | ≥
128k|X|

|Y | ≥ 256
5 k > 2k. Otherwise, for all

1 ≤ j ≤ |QX | we have

hd(Q2
Y , rotj(QX)∗) =

= hd(QY , rotj(QX)∞[1. .|QY |]) + hd(QY , rotj(QX)∞[|QY |+ 1. .2|QY |]) =

= hd(QY , rotj(QX)∞[1. .|QY |)) + hd(QY , rotj+|QY |(QX)∞[1. .|QY |]) ≥ 1

The last inequality holds because j ̸= j + |QY | (mod |QX |) and QX is primitive. Hence,
hd(Q∞

Y [1. .|X|], Q∞
X [1. .|X|]) ≥ |X|

2|QY | ≥
128

5 k > 2k, and QY = QX . ◀

3.2 Structure of the algorithm
We can test a position in the following way to decide whether it is a k-mismatch period:

▶ Proposition 3.6. Given skk(T ), skk(T [1. .p− 1]) and skk(T [1. .n− p + 1]) for an integer
1 ≤ p ≤ n, there is an algorithm that can decide whether p is a k-mismatch period of T using
O(k log3 n) time and O(k log n) space. In this case, it also returns MI(T [p. .], T [. .n− p + 1]).
The algorithm is correct w.h.p.

Proof. First, the algorithm applies Fact 3.1 to compute skk(T [p. .]) from skk(T ) and
skk(T [1. .p− 1]) in O(k log n) time and space. By Observation 3.7, p is a k-mismatch period
of T iff h = hd(T [1. .n − p + 1], T [p. .n]) ≤ k. Given skk(T [p. .]) and skk(T [1. .n − p + 1]),
Fact 3.1 allows to decide whether h ≤ k in O(k log3 n) time and O(k log n) space. ◀

For p ∈ [n/2+1. .n/2+∆], our algorithm computes the sketches required by Proposition 3.6
via Fact 3.1 and the weights w(T [p. .]) via Proposition 2.9 using O(nk log n + ∆tw(n)) total
time and O(∆(k log n+sw(n))) space. After reaching the end of T , the algorithm tests each of
the candidates p ∈ [n/2+1. .n/2+∆] in O(∆k log3 n) = O(nk log3 n) total time and O(k log n)
space, and for each k-mismatch period, returns p, w(T [p. .]), and MI(T [p. .], T [. .n− p + 1]).

The rest of the section is devoted to computing periods p ∈ [1. .n/2]. The following simple
observation is crucial for the correctness of our algorithm.
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▶ Observation 3.7. An integer 1 ≤ p ≤ n is a k-mismatch period of T iff hd(T [1. .n− p +
1], T [p. .n]) ≤ k. As a corollary, if p is a k-mismatch period of T , then for all 1 ≤ ℓ ≤ n− p,
the position p is the starting position of a k-mismatch occurrence of T [1. .ℓ + 1].

It follows that we can use k-mismatch occurrences of appropriately chosen prefixes
of T in T to filter out candidate k-mismatch periods. For j = 1, . . . , ⌈log3/2 n⌉, define
ℓj := ⌊n/(3/2)j⌋, Pj = T [1. .ℓj ], and Tj = T [max{⌊n/2⌋ − ℓj , 1}. .⌊n/2⌋ − ℓj+1 + ℓj − 2]. For
each j, we give two algorithms run in parallel, which together compute the set Pj

k of all
k-mismatch periods of T in the interval [⌊n/2⌋ − ℓj . .⌊n/2⌋ − ℓj+1 − 1]. The first algorithm
assumes that the number of k-mismatch occurrences of Pj in Tj is at most K = 576k (we
call such Pj “non-periodic”, slightly abusing the standard definition), while the second one is
correct when the number of occurrences is larger than K (we call such Pj “periodic”).

3.3 The algorithm for non-periodic Pj

We maintain the sketch and the weight of the current text T using Corollary 3.2 and Propos-
ition 2.9 in O(log2 n + tw(n)) time per character and O(k log n + sw(n)) space. After reading
Pj = T [1. .ℓj ], we memorise w(Pj). Additionally, we run the k-mismatch algorithm (Corol-
lary 3.3) for a pattern Pj and a text Tj , which in particular computes skk(Pj). Furthermore,
we maintain two hash tables, each of size at most K, Prefj and Sufj . Intuitively, we want
Prefj to contain every position p which is the starting position of a k-mismatch occurrence
of Pj in Tj , associated with skk(T [1. .p− 1]) and the weight of T [1. .p− 1]. As for the table
Sufj , we would like it to contain every position t such that n− t + 1 ∈ Prefj , again associated
with skk(T [1. .t]) and the weight of T [1. .t]. We implement Prefj and Sufj via the cuckoo
hashing scheme [22] and de-amortise as explained in [2, Theorem A.1] to yield the following:

▶ Fact 3.8 ([22, 2]). A set of K integers in {0, 1}w, where w = Θ(log n) is the size of the
machine word, can be stored in O(K log n) space while maintaining look-up queries in O(1)
worst-case time and insertions in O(1) worst-case time w.h.p.

When we receive a character T [p], the tables are updated as follows. Assume first that the
k-mismatch algorithm detects a new occurrence of Pj ending at the position p. We retrieve
skk(T [1. .p− ℓj ]) and MI(Pj , T [p− ℓj + 1. .p]) in O(k log2 n) time (Fact 3.1). Furthermore,
with w(Pj), we can deduce w(T [p − ℓj + 1. .p]), and finally, with w(T [. .p]), we compute
w(T [1. .p− ℓj ]), and add p− ℓj associated with skk(T [1. .p− ℓj ]) and w(T [1. .p− ℓj ]) to Prefj

in O(ktw(n)) time and O(sw(n)) space. Secondly, if for t = n − p we have t ∈ Prefj , we
add p associated with skk(T [1. .p]) to Sufj . If either of the two insertions takes more than
constant time or if the size of any of Prefj and Sufj becomes larger than K, the algorithm
terminates and returns ⊥. Assume that the algorithm has reached the end of T .

▶ Proposition 3.9. If t ∈ Pj
k, then t− 1 ∈ Prefj and n− t + 1 ∈ Sufj.

Proof. As t ∈ Pj
k, by Observation 3.7 t + ℓj − 1 is the ending position of a k-mismatch

occurrence of Pj in T . Furthermore, t ∈ [⌊n/2⌋−ℓj . .⌊n/2⌋−ℓj+1−1], and hence T [t, t+ℓj−1]
is a fragment of Tj . This proves that t− 1 ∈ Prefj . To show that n− t + 1 ∈ Sufj , note that

2t ≤ 2(⌊n/2⌋ − ℓj+1 − 1) ≤ n− 2ℓj+1 − 2 ≤ n− ℓj .

Therefore, t + ℓj − 1 < n− t + 1, and t− 1 will be added to Prefj before n− t + 1. The claim
follows. ◀
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Finally, the algorithm considers each position t ∈ Prefj , extracts skk(T [1. .t]) from Prefj

and skk(T [1. .n− t]) from Sufj and if t passes the test of Proposition 3.6, reports t + 1 as a
k-mismatch period of T , and returns w(T [t + 1. .]) = w(T )− w(T [1. .t]).

▶ Proposition 3.10. Assume that the number of occurrences of Pj in Tj is at most K = 576k.
The algorithm computes Pj

k and MI(T [p. .], T [. .n− p + 1]), p ∈ Pj
k in O(n(k log4 n + tw(n)))

time and O(k2 log2 n + sw(n)) space and is correct w.h.p.

Proof. The algorithm runs an instance of the k-mismatch algorithm (Corollary 3.3) that
takes O(nk log4 n) time and O(k log2 n) space. Computing weights takes O(ntw(n)) time
and sw(n) space. Adding elements to Prefj and Sufj , as well as look-ups, takes O(1) time
per element, and we add at most K = O(k) elements in total. The two hash tables occupy
O(k2 log2 n) space (Fact 3.8, Fact 3.1). Finally, testing all candidate positions requires
O(K · k log3 n) = O(nk log3 n) time and O(k log n) space (Proposition 3.6). The correctness
of the algorithm follows from Proposition 3.9 and Proposition 3.6. The algorithm can fail
if the k-mismatch algorithm errs, or if adding an element to the hash tables takes more
than constant time, or if the test fails. By the union bound, Corollary 3.3, Fact 3.1, and
Proposition 3.6, the failure probability is inverse-polynomial in n. ◀

3.4 The algorithm for periodic Pj

We first explain how we preprocess Pj . Recall the Boyer–Moore majority vote algorithm:

▶ Fact 3.11 ([7]). Given a sequence e1, . . . , em of elements, there is a streaming algorithm
that stores O(1) elements of the sequence and returns a majority element if there exists
one (otherwise, it can return an arbitrary element). Assuming constant-time access and
comparison on the elements, the algorithm takes O(m) time.

▶ Lemma 3.12. Given a prefix P = T [1. .ℓ] of T , there is a streaming algorithm that uses
O(k(sw(n) + log2 n)) space and runs in O(ℓk log4 n + ℓ · tw(n) + k2 log2 n) time. If there is a
primitive string Q of length |Q| ≤ ℓ

128k that satisfies hd(P, Q∗) < 2k, the algorithm computes,
correctly w.h.p., |Q|, sk3k(Q), and w(Q) before or upon the arrival of T [(⌊ℓ/|Q|⌋ − 2) · |Q|].
If there is no such string, the algorithm determines it before T [ℓ] arrives.

Proof. The main idea of the lemma is that |Q| must be the starting position of the first
Θ(k)-mismatch occurrence of P [1. .⌊ ℓ

2⌋] in T [2. .]. As soon as we know |Q|, we compute
the 3k-mismatch sketches and the weights of Θ(k) consecutive substrings of length |Q|. By
Fact 3.4, the majority of them equal Q, which allows computing sk3k(Q) and w(Q) via the
Boyer–Moore majority vote algorithm [7]. We now provide full details.

For brevity, let ℓ′ = ⌊ ℓ
2⌋. We run the 8k-mismatch algorithm for a pattern P [1. .ℓ′] and

a text T [2. .]. If the 8k-mismatch algorithm does not detect an occurrence of P before or
when reading the position ℓ′ + ℓ

128k < ℓ, the algorithm concludes that Q does not exist and
terminates. Assume now that the algorithm does detect a 8k-mismatch occurrence of the
pattern ending at a position p, p ≤ ℓ′ + ℓ

128k , and let it be the first detected occurrence.
The instance of the 8k-mismatch algorithm is immediately terminated and we launch the
majority vote algorithm (Fact 3.11). Let q = p − ℓ′ + 1 and p′ the smallest multiple of q

greater than p. We then compute sk3k(T [p′ + 1. .p′ + q]), sk3k(T [p′ + q + 1. .p′ + 2q]), . . . ,
sk3k(T [p′ + (12k− 1)q + 1. .p′ + 12kq]) via Corollary 3.2 and feed them into the majority vote
algorithm. After all the 12k sketches have been computed, which happens when we read
the position p′ + 12kq ≤ (⌊ℓ/q⌋ − 2) · q, we return q and the output of the majority vote
algorithm as sk3k(Q). Using the same majority vote approach, we compute w(Q).
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We now show the correctness of the algorithm. We start by showing that if Q exists,
then q = |Q|. Let i be a multiple of |Q| smaller than ℓ/2. By Fact 3.4 and the triangle
inequality, we have hd(P [1. .ℓ′], T [i+1. .i+ℓ′]) ≤ hd(P [1. .ℓ′], Q∗)+hd(Q∗, T [i+1. .i+ℓ′]) ≤ 8k.
Reciprocally, if i is not a multiple of |Q|, then by primitivity of Q we have hd(Q∞[1. .ℓ′], Q∞[i+
1. .i + ℓ′]) ≥ ⌊ℓ′/|Q|⌋ ≥ 62k. Furthermore, by the triangle inequality, hd(Q∞[1. .ℓ′], Q∞[i +
1. .i + ℓ′]) ≤ 8k + hd(P [1. .ℓ′], T [i + 1. .i + ℓ′]), which implies hd(P [1. .ℓ′], T [i + 1. .i + ℓ′]) ≥ 54k.
Consequently, if Q exists, at least 6k of the strings T [p′ + 1. .p′ + q], T [p′ + q + 1. .p′ + 2q],
. . . , T [p′ + (12k− 1)q + 1. .p′ + 12kq] are equal to Q, and the majority vote algorithm indeed
outputs sk3k(Q) (assuming that neither the 8k-mismatch algorithm nor the algorithm of
Corollary 3.2 did not err, which is true w.h.p.).

We finally analyse the complexity of the preprocessing step. The 8k-mismatch pattern
matching algorithm (Corollary 3.3) takes O(k log4 n) time per character and O(k log2 n)
space. The algorithm of Corollary 3.2 uses O(log2 n) time per character O(k log n) space.
Furthermore, O(k) sketches are retrieved, which takes O(k2 log2 n) time (Corollary 3.2)
and maintaining weights requires tw(n) time and k · sw(n) space. Finally, the majority
vote algorithm takes O(k log n) space and O(k log n) time. In total, the algorithm takes
O(k(sw(n) + log2 n)) space and O(ℓk log4 n + ℓ · tw(n) + k2 log2 n) time. ◀

We now apply the lemma above to preprocess Pj as follows. We maintain the 3k-mismatch
sketch of T using Corollary 3.2. Fact 3.4 ensures that if there are at least K occurrences
of Pj in Tj , then there exists a primitive string Q of length q := |Q| ≤ ℓj

128k such that
hd(Q∗, Pj) < 2k. For brevity, let λj = (⌊ℓj/q⌋ − 2) · q. We apply Lemma 3.12 to Pj and
condition on the fact that it outputs q, sk3k(Q), and w(Q) before or upon the arrival of T [λj ].
By an application of Fact 3.1, we compute sk3k(Q⌊λj/q⌋+1) and then MI(Pj [. .λj+q], Q⌊ℓj/q⌋+1)
using sk3k(Pj [. .λj + q]). To finish the preprocessing, we compute one more sketch:

▶ Lemma 3.13. Assume there are ≥ K k-mismatch occurrences of Pj in Tj. There is a
streaming algorithm that uses O(k log2 n + sw(n)) space and O(k log4 n + tw(n)) time per
character, and computes skk(Q[. .r]) for r := n− 2p (mod q) and w(Q[. .r]) correctly w.h.p.
upon arrival of T [p], where p is the endpoint of the first k-mismatch occurrence of Pj in Tj.

Proof. By the condition of the lemma, Q is defined and we assume to have computed it
by arrival of T [λj ], where λj = (⌊ℓj/q⌋ − 2) · q and q = |Q|. We run two instances of the
k-mismatch algorithm: One for a pattern Pj [. .λj ] and Tj , and the other for Pj and Tj .
Assume that we detect a k-mismatch occurrence of Pj [. .λj ] ending at a position x. Let
r′ = n− 2(x + ℓj − λj) (mod q). We compute skk(T [x + 1. .x + r′]) via Corollary 3.2, and
w(T [x + 1. .x + r′]) via Proposition 2.9. If p = x + ℓj − λj is not the ending position of a
k-mismatch occurrence of Pj , we discard the computed information and continue. Otherwise,
we have r′ = r. At the position p the k-mismatch algorithm extracts MI(T [p− ℓj + 1. .p], Pj)
in O(k) time, and we use it to extract MI(T [x + 1. .x + r], Q[. .r]) from MI(Pj [. .λj + q], Q∗)
in O(k) time as well. Note that the size of the extracted mismatch information is at most
6k by Fact 3.4. Finally, we apply Fact 3.1 to compute skk(Q[. .r]) from skk(T [x + 1. .x + r])
and MI(T [x + 1. .x + r], Q[. .r]) in O(k log2 n) time and O(k log n) space. Similarly, with
w(T [x + 1. .x + r]) and the mismatch information, we compute w(Q[. .r]) in O(ktw(n)) time
and O(sw(n)) space. (See Figure 2 for an illustration.)

To show the complexity of the algorithm, we need to understand the structure of the
k-mismatch occurrences of Pj [. .λj ] in Tj . As each k-mismatch occurrence of Pj starts with
a k-mismatch occurrence of Pj [. .λj ], Tj contains at least K k-mismatch occurrences of the
latter. Since |Tj | ≤ 2ℓj − ℓj−1 ≤ 3

2 λj , by Fact 3.4 there is a primitive string Q′ such that
|Q′| ≤ λj

128k and hd(Pj [. .λj ], (Q′)∗) ≤ 2k. By Lemma 3.5, Q = Q′, and again by Fact 3.4,
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Q Q

Pj

T
1 ⌊n/2⌋−ℓj x p⌊n/2⌋−ℓj+1 −1 nx + r′

skk

1 λj λj + q ℓj

Figure 2 When we detect a k-mismatch occurrence of Pj [. .λj ], we use the next q characters
to compute the candidate for skk(Q[. .r]). If the k-mismatch occurrence of Pj [. .λj ] extends to a
k-mismatch occurrence of Pj , then we keep the candidate sketch.

the difference between the starting positions of any two k-mismatch occurrences of Pj [1. .λj ]
in Tj is a multiple of q. Therefore, we never process more than two k-mismatch occurrences
of Pj [. .λj ] at a time and the bounds follow. ◀

This information will allow us computing the sketches necessary for Proposition 3.6.

3.4.1 Main phase of the algorithm
The main phase distinguishes two cases: j = 1, 2 and j ≥ 3. For j = 1, 2, we show the
following result:

▶ Proposition 3.14. Assume that j = {1, 2} and that Pj has more than K = 576k k-mismatch
occurrences in Tj. The algorithm computes Pj

k, MI(T [p. .], T [. .n− p + 1]) and w(T [p. .]) for
p ∈ Pj

k in O(n · ktw(n) log4 n) time and O(k2 log2 n + sw(n)) space and is correct w.h.p.

Proposition 3.14 can be proven using the same ideas as in the case j ≥ 3, but needs some
additional care because the size of the pattern being large (n/4 or n/2) leads to edge cases
that are treated separately. Below, we focus on the case j ≥ 3. We start by extending Pj

into a prefix P ′
j (Algorithm 1).

Algorithm 1 Extension of Pj into P ′
j of length ℓ′

j : case j ≥ 3.

1 ℓ′
j ← λj , sk1 ← sk3k(T [1. .λj ]), w1 ← w(T [1. .λj ]);

2 while ℓ′
j < 2ℓj do

3 sk2 ← sk1, w2 ← w1;
4 ℓ′

j ← ℓ′
j + q, sk1 ← sk3k(T [1. .ℓ′

j ]), w1 ← w(T [1. .ℓ′
j ]);

5 if h = MI(T [1. .ℓ′
j ], Q∗) > 2k then

6 return (ℓ′
j , sk1, sk2, w1, w2); // Use sk3k(T ) and sk3k(Q)

7 return (ℓ′
j , sk1, sk2, w1, w2);

The following inequalities are essential for analysis of correctness of the algorithm:

▶ Proposition 3.15. For j ≥ 3, we have ℓ′
j < n and ⌊n/2⌋ − ℓj+1 − 1 + (ℓ′

j − 1) ≤ n.

Proof. We start by showing the first inequality:

ℓ′
j < 2ℓj + q ≤ ℓj · (2 + 1/128k) ≤ (8n/27) · (2 + 1/128k) ≤ n
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To show the second inequality, note that

⌊n/2⌋ − ℓj+1 − 1 + ℓ′
j − 1 ≤

⌊n/2⌋ − n/(3/2)j+1 + 2n/(3/2)j + q ≤ ⌊n/2⌋+ (4/3 + 1/128) · n/(3/2)j ≤ n ◀

We now discuss how to implement Algorithm 1. As we know sk3k(Q) before or upon the
arrival of T [λj ], Algorithm 1 can be implemented in streaming via Corollary 3.2, Fact 3.1
to use O(k log n + sw(n)) space and O(k log2 n + tw(n)) time per character. Furthermore,
it always terminates before the arrival of T [n] (Proposition 3.15) and outputs ℓ′

j := |P ′
j |,

sk3k(P ′
j) and w(P ′

j), and sk3k(P ′
j [1. .ℓ′

j−q]) and w(P ′
j [1. .ℓ′

j−q]). Define T ′
j = T [max{⌊n/2⌋−

ℓj , 1}. .⌊n/2⌋ − ℓj+1 + ℓ′
j − 2]. Note that T ′

j is well-defined by Proposition 3.15. Furthermore,
let P ′′

j = [1. .ℓ′
j − q], ℓ′′

j = |P ′′
j |, and T ′′

j = T [⌊n/2⌋ − ℓj . .⌊n/2⌋ − ℓj+1 + ℓ′′
j − 2]. From

Observation 3.7 and Proposition 3.15 we obtain:

▶ Corollary 3.16. The set Pj
k is a subset of the set of the starting positions of k-mismatch

occurrences of P ′
j in T ′

j, and consequently of the set of the starting positions of k-mismatch
occurrences of P ′′

j in T ′′
j .

Consider now two subcases depending on the line where Algorithm 1 executes the return.

3.4.1.1 Return is executed in Line 6

▶ Proposition 3.17. The prefixes P ′
j and P ′′

j have the following properties:
1. The number of k-mismatch occurrences of P ′

j in T ′
j is O(k).

2. The distance between any two k-mismatch occurrences of P ′′
j in T ′′

j is a multiple of q.

Proof. To show the first part of the claim, note that ℓj ≤ ℓ′
j ≤ 5

2 ℓj and |T ′
j | ≤ ℓj−ℓj+1 +ℓ′

j ≤
3
2 ℓ′

j . Assume, for sake of contradiction, that there are more than 576k occurrences of P ′
j in T ′

j .
By Fact 3.4, there is a primitive string Q′, |Q′| ≤ ℓ′

j/128k, such that hd(P ′
j , (Q′)∗) ≤ 2k. By

Lemma 3.5, Q′ = Q, a contradiction.
We now show the second part of the claim. Note that 2

3 ℓj ≤ ℓj − q ≤ ℓ′′
j ≤ 2ℓj and

hence |T ′′
j | ≤ ℓj − ℓj+1 + ℓ′′

j ≤ 3
2 ℓ′′

j . Next, we have two cases: ℓ′′
j ≤ ℓj and ℓ′′

j > ℓj . In the
first case, every position p which is a starting position of a k-mismatch occurrence of Pj in
Tj is also a starting position of a k-mismatch occurrence of P ′′

j in T ′′
j . Hence, there are at

least K = 576k k-mismatch occurrences of P ′′
j in T ′′

j , and by Fact 3.4, there is a primitive
string Q′′, |Q′′| ≤ ℓ′′

j /128k, such that hd(P ′′
j , (Q′′)∗) ≤ 2k. By Lemma 3.5, Q′′ = Q. If

ℓ′′
j > ℓj , then hd(P ′′

j , Q∗) ≤ 2k by construction. Consequently, by applying Fact 3.4 one more
time, we obtain that the difference between the starting positions of any two k-mismatch
occurrences of P ′′

j in T ′′
j is q. ◀

We apply the k-mismatch algorithm to detect k-mismatch occurrences of P ′′
j and P ′

j

in the text T ′
j . In parallel, we maintain two hash tables of size at most K = 576k each,

Prefj and Sufj , implemented via Fact 3.8. When we receive a character T [p], the tables are
updated as follows. Assume first that the k-mismatch algorithm detects a new occurrence
of P ′′

j ending at the position p. We retrieve sk3k(T [1. .p− ℓ′′
j ]) and MI(P ′′

j , T [p− ℓ′′
j + 1. .p]).

From the mismatch information, w(P ′′
j ) and w(T [. .p]) we compute w(T [1. .p− ℓ′′

j ]), and we
memorise t = p − ℓ′′

j associated with the sketch and the weight for the next q positions.
Importantly, at every moment the algorithm stores at most one position-sketch pair by
Proposition 3.17. By the definition of P ′′

j and T ′′
j , the k-mismatch occurrences detected by

the algorithm can only start before ⌊n/2⌋, and consequently 2(t + 1) ≤ n, which implies
t + 1 < n− t.
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Now, assume that t+1 < n− t ≤ p. In this case, we immediately compute skk(T [1. .n− t])
via the following claim and memorise it for the next q positions:

▶ Proposition 3.18. Assume to be given skk(T [1. .t]), skk(Q[r. .]), and skk(Q). There is an
algorithm that uses O(k log n) space and O(k log3 n) time and computes skk(T [1. .n− t]). The
algorithm succeeds w.h.p.

Proof. By Corollary 3.16 and Proposition 3.17, (n − t) − t = iq + r for some integer i.
Consequently, the sketch can be computed as follows. First, the algorithm computes
MI(P ′′

j , T [p − ℓ′′
j + 1. .p]) and MI(P ′′

j , Q∗). Secondly, it computes skk(QiQ[1. .r]) and then
deduces skk(T [t + 1. .n− t]) in O(k log n) space and O(k log3 n) time via Fact 3.1. Finally, it
computes skk(T [1. .n− t]) from skk(T [1. .t]) and skk(T [t + 1. .n− t]). ◀

Also, if the current position p equals n− t, where t is the position in the stored position-
sketch pair, we memorise skk(T [1. .n− t]). Again, by Proposition 3.17 the algorithm stores at
most one sketch at a time. If the current position p is the endpoint of a k-mismatch occurrence
of P ′

j in T ′
j , the position p− q is necessarily the endpoint of a k-mismatch occurrence of P ′′

j

in T ′′
j , and we store t = p − q − ℓ′′

j associated with skk(T [1. .t]) and w(T [1. .t]). We add
this triple to Prefj . In addition, if n − t ≤ p, we have already computed skk(T [1. .n − t]),
and we add it to Sufj . Finally, if p is the current position and for t = n − p we have
(t, skk(T [1. .t]), w(T [1. .t])) ∈ Prefj , we add p associated with skk(T [1. .p]) to Sufj .

If any of the insertions takes more than constant time or if the size of any of Prefj

and Sufj becomes larger than K, the algorithm terminates and returns ⊥.
When the entire string T has arrived, the algorithm considers each position t ∈ Prefj ,

extracts skk(T [1. .t]), w(T [1. .t]) from Prefj and skk(T [1. .n − t]) from Sufj and if t passes
the test of Proposition 3.6, reports t + 1 as a k-mismatch period of T , and also returns
w(T [t + 1. .]) = w(T )− w(T [1. .t]) (undefined if one of the values on the right is undefined),
and MI(T [t + 1. .], T [. .n− t]).

3.4.1.2 Return is executed in Line 7

▶ Proposition 3.19. If return is executed in Line 7, we have hd(P ′
j , Q∗) < 2k and for all

t ∈ [⌊n/2⌋ − ℓj . .⌊n/2⌋ − ℓj+1 − 1] there is ⌊n/2⌋ ≤ n− t ≤ ⌊n/2⌋ − ℓj + (ℓ′
j + 2).

Proof. The first part of the claim is immediate by construction. To show the second part,
recall that ℓ′

j ≥ 2ℓj . Hence,

⌊n/2⌋ ≤ n− t ≤ n− ⌊n/2⌋+ ℓj + 1 ≤ ⌊n/2⌋ − ℓj + (2ℓj + 2) ≤ ⌊n/2⌋ − ℓj + (ℓ′
j + 2) ◀

We run the k-mismatch algorithm (Corollary 3.3) for P ′
j and T ′

j . If a position p is the
endpoint of the first k-mismatch occurrence of P ′

j in T ′
j , we retrieve skk(T [1. .p− ℓ′

j ]) and
MI(T [p− ℓ′

j + 1. .p], P ′
j), and deduce w(T [1. .p− ℓ′

j ]) with the same method as in the previous
case. Also, we memorise p, the sketch, the mismatch information and the weight. We would
now like to process the last k-mismatch occurrence of P ′

j in T ′
j in a similar way. As it is not

possible to say in advance whether the current k-mismatch occurrence is the last one, we
instead do the following. Starting from the second endpoint p′ of a k-mismatch occurrence
of P ′

j in T ′
j , we retrieve MI(T [p′ − ℓ′

j + 1. .p′], P ′
j) by Corollary 3.3, and memorise p′ and

the mismatch information until the next k-mismatch occurrence is detected, when they are
discarded. Additionally, at the position p′ + 1 we launch a new instance of the algorithm
of Corollary 3.2, maintaining skk(T [p′ + 1. .]). Again, if we detect another k-mismatch
occurrence, we discard the currently stored sketch. In addition, when T [x] arrives, for
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x ∈ {⌊n/2⌋ − ℓj + (ℓ′
j + 1), ⌊n/2⌋ − ℓj + (ℓ′

j + 2)} we launch a new instance of the algorithm
in Corollary 3.2, maintaining skk(T [x + 1. .]). This way, when we reach the end of T , we have
the following information at hand:
1. For the endpoint p of the first k-mismatch occurrence of P ′

j in Tj , skk(T [1. .p−ℓ′
j ]), weight

w(T [1. .p− ℓ′
j ]), and the mismatch information MI(T [p− ℓ′

j + 1. .p], P ′
j);

2. For the endpoint p′ of the last k-mismatch occurrence of P ′
j in Tj , the mismatch information

MI(T [p′ − ℓ′
j + 1. .p′], P ′

j) and skk(T [p′ + 1. .]);
3. skk(T [x + 1. .]) for x ∈ {⌊n/2⌋ − ℓj + (2ℓj + 1), ⌊n/2⌋ − ℓj + (2ℓj + 2)}.

Q Q Q Q Q Q Q Q Q Q

T [p − ℓ′
j + 1. .]

T [p − ℓ′
j + 1 + q. .]

T [p − ℓ′
j + 1 + 2q. .]

T [. .n − p + ℓ′
j ]

T [. .n − p + ℓ′
j − q]

T [. .n − p + ℓ′
j − 2q]

T
✘ ✘ ✘ ✘

⌊n/2⌋ − ℓj p − ℓ′
j

+ 1 ⌊n/2⌋ − ℓj+1 − 1 p′

skk(T [1. .p − ℓ′
j

]) skk(T [p′ + 1. .])

Figure 3 If Algorithm 1 executes return in Line 7, Pk
j ⊆ {p − ℓ′

j + 1, p + q − ℓ′
j + 1, . . . , p′ − ℓ′

j + 1}.
To test each position in the latter set, we exploit the structure of T [p − ℓ′

j + 1. .p′ − ℓ′
j + 1] (shown in

red, with crosses marking mismatches between it and Q∞).

By Proposition 3.19 and Fact 3.4, we have Pk
j ⊆ {p− ℓ′

j + 1, p + q− ℓ′
j + 1, . . . , p′− ℓ′

j + 1}.
We test each position t in the latter set as follows (see Figure 3):
1. Compute skk(T [t. .]). First, retrieve skk(T [1. .t − 1]) from sketches skk(T [1. .p − ℓ′

j ])
and skk(Q(t−p)/q), and the mismatch information MI(T [p− ℓ′

j + 1. .p], P ′
j), MI(T [p′ − ℓ′

j +
1. .p′], P ′

j), and MI(P ′
j , Q∗) in O(k log2 n) time and O(k log n) space via Fact 3.1. Second,

compute skk(T [t. .]) from skk(T ) and skk(T [1. .t− 1]) in O(k log2 n) time and O(k log n)
space via another application of Fact 3.1.

2. Compute w(T [t. .]). First, retrieve w(T [1. .t−1]) from w(T [1. .p−ℓ′
j ]) and w(Q(t−p)/q) =

[(t − p)/q] · w(Q), and the mismatch information MI(T [p − ℓ′
j + 1. .p], P ′

j), MI(T [p′ −
ℓ′

j + 1. .p′], P ′
j), and MI(P ′

j , Q∗) in O(ktw(n)) time and sw(n) space. Second, compute
w(T [t. .]) = w(T )−w(T [1. .t−1]) (undefined if one of the values on the right is undefined).

3. Compute skk(T [1. .n− t + 1]). If n− t + 1 ∈ {⌊n/2⌋− ℓj + (ℓj + 1), ⌊n/2⌋− ℓj + (ℓj + 2)},
we already know the sketch. Otherwise, by Proposition 3.19 ⌊n/2⌋ ≤ n−t+1 ≤ ⌊n/2⌋+ℓ′

j .
Additionally, (n − t + 1) − (p − ℓ′

j + 1) + 1 = q · i + r for an integer r defined as in
Lemma 3.13. Hence, skk(T [1. .n−t+1]) can be computed via Fact 3.1: start by computing
skk(T [p− ℓ′

j + 1. .n− t + 1]) from skk(Q), skk(Q[1. .r]), and the mismatch information for
p and p′, and then use skk(T [1. .p− ℓ′

j ]) to compute skk(T [1. .n− t]).
4. Compute hd≤k(T [t. .n], T [1. .n−t+1]) using the computed sketches via Fact 3.1. If it is at

most k, output t as a k-mismatch period, and return w(T [t. .]) and MI(T [t. .], T [. .n−t+1]).

▶ Proposition 3.20. Assume that j ≥ 3 and that Pj has more than K = 576k k-mismatch
occurrences in Tj. The algorithm computes Pj

k, MI(T [p. .], T [. .n− p + 1]) and w(T [p. .]) for
p ∈ Pj

k in O(n · ktw(n) log4 n) time and O(k2 log2 n + sw(n)) space and is correct w.h.p.

Proof. The preprocessing of Pj takes O(n · (k log4 n + tw(n))) time and O(k log2 n + sw(n))
space. The main phase of the algorithm starts with an extension procedure (Algorithm 1),
which takes O(n(k log2 n + tw(n))) total time and O(k log n + sw(n)) space. If the return is
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executed in Line 6 of Algorithm 1, the algorithm then runs two instances of the k-mismatch
algorithm (Corollary 3.3) that take O(nk log4 n) time and O(k log2 n) space. Adding elements
to Prefj and Sufj , as well as look-ups, takes O(1) time per element, and we add at most
K = O(k) elements in total. The two hash tables occupy O(k2 log2 n) space (Fact 3.8,
Fact 3.1). Finally, testing all candidate positions requires O(K · k log3 n) time and O(k log n)
space (Proposition 3.6). If the return is executed in Line 7 of Algorithm 1, the algorithm
runs an instance of the k-mismatch algorithm, which takes O(nk log4 n) time and O(k log2 n)
space, and maintains a constant number of sketches, taking O(n log2 n) time and O(k log n)
space. The process to test the candidate k-periods uses O(k log n + sw(n)) space and
O(k(log3 n + tw(n))) time, and it is iterated ≤ n times.

The algorithm can fail if the preprocessing fails, if the k-mismatch algorithm errs, or
if adding an element to the hash tables takes more than constant time, or if the test fails.
By the union bound, Corollary 3.3, Fact 3.1, and Proposition 3.6, the failure probability is
inverse-polynomial in n. ◀

Theorem 2.10 follows from Proposition 3.10, Proposition 3.20, and Proposition 3.14.
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A A gap in the previous streaming algorithm for computing
k-mismatch periods

In this section, we point to the specific claim in the correctness proof of the previous streaming
algorithm for computing k-mismatch periods [15] which is, in our opinion, not true.

Let S be a string length n, and 1 ≤ p < q ≤ n
2 two k-mismatch periods of S such that

k · (p + q) ≤ i ≤ n
2 − k · (p + q), where i is a position of S, and q ≥ (2k + 1) · gcd(p, q). The

construction of [15] introduces a grid defined over a set {−k, . . . , k}2. A node (a, b) of the
grid represents a position i + ap + bq of S. For a node representing a position j, we add
edges connecting it to nodes representing j + p, j + q, j − p, and j − q (if they exist in the
grid). Finally, we say that an edge (i, j) of the gird is bad if S[i] ̸= S[j].

The proof of [15, Theorem 28], one of the key elements of the streaming algorithm of
Ergün et al., relies on the fact that there are a few bad edges in the grid. One of the steps in
their proof of this fact is the following claim:

▶ Proposition A.1 ([15, Claim 20]). The nodes of the grid correspond to distinct positions
of S.

As an immediate corollary, and since p and q are both k-mismatch periods of S, they
immediately derive that there are at most 2k bad edges in the grid.

The authors then extend their approach to the case when S has m ∈ N k-mismatch periods
p1 < · · · < pm, where pm ≥ (2k + 1) · gcd(p1, pm). One can construct an m-dimensional grid
in a similar way to the case m = 2, and it is claimed that in this grid, “the total number of
bad edges is at most mk” (Page 21). However, consider the string S = a40ba60. All integers
smaller than 50 are 2-mismatch periods of S, and in this example we have m = 50, k = 2
and gcd(1, 50) = 1, verifying the assumption 50 ≥ (2k + 1) · gcd(1, 50). Let {−2, . . . , 2}50

be the grid centred around the index 41 (i.e the only character b). Similarly to the case
m = 2, a point (a1, . . . , a50) of the grid represents the position 41 +

∑
i · ai, and an edge
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between nodes representing positions i, j is bad if S[i] ̸= S[j]. Note for any i ≤ 25, the
node (a1, . . . , a50) with ai = 2, a2i = −1 and aj = 0 for j /∈ {i, 2i} represents the position
41 + 2i− 2i = 41. As a result, 41 is represented by at least distinct 25 different nodes in the
grid, which contradicts Proposition A.1 for m ̸= 2. Furthermore, these nodes are connected
with each of their neighbours with a bad edge. Since each node has at least 5 neighbours,
there are at least 125 distinct bad edges, contradicting the upper bound on the number of
bad edges which was mk = 100.
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