
Parallel Joinable B-Trees in the Fork-Join I/O
Model
Michael T. Goodrich #

University of California, Irvine, CA, USA

Yan Gu #

University of California, Riverside, CA, USA

Ryuto Kitagawa #

University of California, Irvine, CA, USA

Yihan Sun #

University of California, Riverside, CA, USA

Abstract
Balanced search trees are widely used in computer science to efficiently maintain dynamic ordered
data. To support efficient set operations (e.g., union, intersection, difference) using trees, the
join-based framework is widely studied. This framework has received particular attention in the
parallel setting, and has been shown to be effective in enabling simple and theoretically efficient set
operations on trees. Despite the widespread adoption of parallel join-based trees, a major drawback of
previous work on such data structures is the inefficiency of their input/output (I/O) access patterns.
Some recent work (e.g., C-trees and PaC-trees) focused on more I/O-friendly implementations of
these algorithms. Surprisingly, however, there have been no results on bounding the I/O-costs for
these algorithms. It remains open whether these algorithms can provide tight, provable guarantees
in I/O-costs on trees.

This paper studies efficient parallel algorithms for set operations based on search tree algorithms
using a join-based framework, with a special focus on achieving I/O efficiency in these algorithms. To
better capture the I/O-efficiency in these algorithms in parallel, we introduce a new computational
model, the Fork-Join I/O Model, to measure the I/O costs in fork-join parallelism. This model
measures the total block transfers (I/O work) and their critical path (I/O span). Under this model, we
propose our new solution based on B-trees. Our parallel algorithm computes the union, intersection,
and difference of two B-trees with O(m logB(n/m)) I/O work and O(logB m · log2 logB n + logB n)
I/O span, where n and m ≤ n are the sizes of the two trees, and B is the block size.
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1 Introduction

Balanced search trees are among the most fundamental data structures in computer science.
The search tree structure effectively maintains the ordering for a set of elements with dynamic
updates, and a balance guarantee, usually meaning to bound the tree height to be logarithmic,
enables efficient cost bounds for both updates and queries. Balanced search trees have been
used to support basic data types such as ordered sets and maps in various programming
languages, either as built-in data types or in standard libraries.

In addition to individual updates such as insertions and deletions, set operations (e.g.,
set-union, corresponding to merging two trees) are often needed in the interface of ordered
sets and maps. To support efficient set operations on trees, many existing papers study the
join-based framework. The core of the framework is a function join. Join(TL, k, TR) takes
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two search trees TL and TR, and one key k in the middle, such that ∀k1 ∈ TL and k2 ∈ TR,
k1 < k < k2, and returns a valid balanced tree containing all elements in TL ∪ {k} ∪ TR.
Existing work has shown that abstracting the Join primitive allows for elegant and efficient
designs for set operations on various types of balanced trees, both sequentially [1, 2] and in
parallel [7, 9, 10,13,14,24].

The join-based framework was first studied in the sequential setting, on red-black trees [25]
and weight-balanced trees [1]. The idea then has received particular attention in the parallel
setting, since it conceptually allows for applying a batch of updates to the tree. Blelloch
and Reid-Miller [10] first used the join-based framework in parallel on treaps, and proved
that they are theoretically efficient. This idea was extended to various balancing schemes in
2014 on a data structure called P-tree [7, 23] and later implemented in a parallel library [24].
The theoretical results and implementations of these trees have been used both to support
strong theoretical bounds in other parallel algorithms [12, 15, 17, 21], as well as in various
applications such as databases [23], graph processing [14,16], and more [22,26].

Despite the widespread adoption of parallel join-based trees, a major drawback of previous
work on such data structures is the inefficiency of their input/output (I/O) access patterns;
e.g., see [4]. For example, in a tree node that only contains a few elements in the set, the
number of memory accesses is asymptotically the same as the operations applied, rather
than being a function of a block size or cache-line size. In fact, many follow-up works (e.g.,
C-tree [14] and CPAM [13]), aim to improve the memory-access efficiency (i.e., the I/O
efficiency) with blocked tree nodes or leaves. While these new data structures have provable
guarantees in work and span, and have shown good performance in experiments due to
better memory access patterns, we are unaware of any theoretical improvements in their
I/O efficiency. It is therefore worth asking, whether we can adapt the simple join-based
framework to also achieve I/O-efficiency with provable guarantees.

This paper studies efficient parallel algorithms for set operations based on search tree
algorithms using a join-based framework, with a special focus on achieving I/O efficiency in
these algorithms. Our new solution is based on B-trees, and includes novel ideas to overcome
challenges in both algorithm design and analysis for this problem. The challenge to achieving
I/O-efficiency in parallel is two-fold. The first reason, which lies in the algorithm design
aspect, is to apply the idea to an I/O-friendly data structure, such as B-trees, when binary
structures are the norm. As discussed above, there exist previous studies that attempt to
make join-based algorithms I/O-friendly by grouping multiple keys as a block in the same
tree node or in the leaves [13, 14]. However, they tend to still keep the binary structure
of the tree, which introduces needless complications. This design preserves compatibility
with the existing join-based algorithmic framework, which can be used out of the box with
minimal adaptation. However, since the tree height is O(log(n/B)) for block size B and
tree size n, this design does not lead to an ideal I/O bound for these set algorithms. To
achieve non-trivial bounds, allowing multi-way trees (e.g., B-trees) is critical. However, the
multi-way structure of these structures inevitably introduces complications into algorithm
design. In particular, a multi-way join is required, which basically concatenates a set of trees
with keys in between. Accordingly, a multi-split algorithm is needed to divide a tree using
multiple splitter keys. Both of them need careful algorithm re-design over the existing ideas.

The second, and perhaps most interesting, reason related to the analysis aspect is the
lack of an effective model to capture the I/O efficiency in these algorithms in parallel. While
both models for parallel computing (e.g., PRAM) and I/O models have a long history,
analyzing the I/O cost in parallel has some inherent difficulties such as shared/separate
cache, synchronization schemes, exclusive/concurrent writes, etc. In 2010, Arge, Goodrich,
and Sitchinava introduce the parallel external-memory (PEM) model [5], which focuses on
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the I/O bottleneck in PRAM algorithms. Built on top of the PRAM model, PEM assumes
synchronized threads. On the other hand, the join-based tree algorithms, as well as their
implementations in software libraries, are based on the classical fork-join model, which is
highly asynchronous.

Our Results
To accurately analyze I/O cost in asynchronous parallel algorithms, we introduce the Fork-
Join I/O Model in this paper, which more formally defines the I/O cost in fork-join parallelism.
Analogous to work and span for the standard fork-join model, the Fork-Join I/O Model
measures the I/O cost of parallel algorithms by both the total number of block transfers
(referred to as I/O work), and the maximum number of block transfers one depends on
the previous (referred to as I/O span). Based on this model, we provide and analyze new
parallel and I/O-efficient algorithms on set/map operations using B-trees.

Intuitively, the Fork-Join I/O Model provides a software-based asynchronous alternative
to the hardware-based synchronous parallel external-memory (PEM) model. We also present
parallel I/O-efficient algorithms for B-trees in this model, such as union, intersection, and
difference operations. To do this, we first design a B-way join algorithm, which may
concatenate at most B trees. Using this primitive, we design a general join algorithm that
takes any number of k trees and k − 1 keys in between, and an inverse function, that splits
a tree by k − 1 keys. Based on the two functions, we design an I/O-efficient parallel set
algorithms. We also show in the Appendix how to modify the union algorithm to also
perform the intersection and difference operations, while achieving the same I/O bounds
asymptotically.

We highlight that the design of the algorithm is highly non-trivial. Directly applying the
simple B-way join (and a corresponding B-way split) algorithm to a Union algorithm leads
to O(logB n logB m) I/O span. A specific interesting technical contribution in this paper
is to achieve a stronger I/O span bound of O(logB m · log2 logB n + logB n), for which we
introduce the more sophisticated algorithms of arbitrary-way join and split. We summarize
the main results below.

▶ Theorem 1.1 (Parallel Set Operations on B-trees). Given two B-trees with sizes m and
n ≥ m, there exists a parallel algorithm that returns a new B-tree containing the union of
the two input trees in and O

(
m logB

(
n
m

))
I/O work, O(logB m · log2 logB n + logB n) I/O

span, where B is the block size.

Due to space limit, we present the Union algorithm and analyze it in the main paper, and
show how to achieve the same bounds for Intersection and Difference in Appendix I.

2 Preliminaries

B-trees. A B-tree is a multi-way self-balancing tree data structure that maintains an
ordered set of keys. With clear context, for a B-tree T , we also use T to denote the set of
keys in T . We use the standard definitions of parent, child, sibling, ancestor, and descendants
in B-trees. More formally, a B-tree is either an empty node (external node), or a node with
a set of b keys k1, k2, . . . kb with b + 1 subtrees T1, T2, . . . Tb+1 with the following invariants:

⌈B/2⌉ ≤ b ≤ B for some parameter B, except for the root, where 2 ≤ b ≤ B.
Each subtree Ti is a B-tree.
∀x ∈ Ti−1 and y ∈ Ti, we have x < ki < y.
All external nodes have the same depth, where the depth of a node is the number of
ancestors (inclusive) of it.

ISAAC 2025
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Figure 1 Illustration for Join and Split algorithms on binary trees, and an example of the set
union algorithm. To extend the idea to B-trees, multi-way Join and Split algorithms are needed.

The height of a B-tree T , denoted as h(T ), is 0 if it is an external node, and h(T ′) + 1 if
T has a child T ′. If T has multiple children, all of them should have the same height.

When we discuss an algorithm on two B-trees, we always use n to denote the one with
the larger size and m ≤ n the smaller size.

The B-tree includes an operation for combining nodes when the number of keys in the
node is below ⌈B/2⌉, and for splitting a node into two when there are more than B keys
in the node. We will refer to these operations as fuse and divide operations, to avoid
conflicting terminology.

Sequence Notation. We use ai..j (i ≤ j) to denote a sequence of elements ⟨ai, ai+1, . . . , aj⟩.

Background of Join-based Algorithms. For completeness, we introduce some background
of join-based algorithms on binary trees in Appendix A. We present Figure 1 as an illustration
for the high-level idea, as well as an example of implementing a Union based on join. We
introduce more details about related work in Appendix B.

One technical challenge to extend this idea to B-trees is to support multi-way Join and
Split functions, which may join multiple trees with keys in the middle, or split a tree using
multiple splitters. Since the input tree heights may vary, these primitives must rebalance
the returned tree properly. We introduce our algorithms for these primitives in Section 4.2
and 4.3, and finally present our Union algorithm in Algorithm 4.

3 The Fork-Join I/O Model

In this paper, we propose the Fork-Join I/O Model, which is an extension of the classic
work-span model to analyze algorithms. The goal of this paper to use this model is to more
precisely capture the I/O costs in algorithms based on fork-join parallelism, which is crucial
for analyzing and implementing existing join-based algorithms on trees.

Recall that in the work-span model in the classic multithreaded model [6,9,11], we assume
a set of threads share their memory. Each thread acts like a sequential RAM plus a fork
instruction that forks two threads running in parallel. When both threads are finished with
thir task, the original thread continues. A parallel-for is simulated by forks in a logarithmic
number of steps. A computation can be viewed as a DAG. The work W of a parallel algorithm
is the total number of operations, and the span (depth) S is the longest path in the DAG.
In practice, we can execute the computation with work W and span S using a randomized
work-stealing scheduler [11,18] in time W/P + O(S) with P processors with high probability.

The extension we make to this model to adapt for practicality is that, instead of considering
executing one word on RAM, we consider unit cost for reading or writing a block of size B,
where B is a given parameter. Here B can be the cacheline size when referring to in-memory
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algorithms, or the block size when considering external-memory algorithms. In either case,
this is the basic unit for block transfers, which is indeed the motivation of the design of
B-trees that improves the performance as compared to a simpler binary search tree. Here
we assume each processor can hold O(log n) blocks (i.e., the stack memory) to execute the
program. Accessing the data in these blocks is free (it does not asymptotically change the
complexity, but only makes the analysis easier). We define this modified work as the I/O
work. Regarding the span, we also adapt similarly (i.e., count the access of an entire block
with unit cost), and refer to this as the I/O span. Here we assume a fork or join can
create or synchronize B threads for simplicity. All I/O span bounds remain the same when
translating the bound to PRAM, or are affected by a factor of log B (mostly a small constant)
to the binary fork-join model [9].

An important subroutine we will be using in this model is the Gather primitive. This
operation allows us to gather the O(B) elements which are stored in various blocks in external
memory into a single block in O(1) I/O span and O(B) I/O work. During the synchronization
of each thread, the thread may return a O(1) amount of data, thus the total amount of data
returned by all threads is O(B).

4 Parallel Joinable B-Tree

In this section, we present primitive algorithms for the joinable B-trees. We first introduce
the B-Way-Join operation, which takes a sequence of (b + 1) B-trees and b keys in between,
and combines them into a valid, balanced B-tree. We then show the B-Way-Join algorithm
with detailed cost analysis in Section 4.1. Then, the B-Way-Join algorithm is used as a
subroutine to develop the more general Multi-Split and Multi-Join algorithms in Section 4.2
and 4.3 in order to achieve better I/O bounds for the Union algorithm, described in Section 5.

These join and split algorithms are similar to the approach found in the other parallel
search trees [7, 10], but adapted for the Fork-Join I/O Model.

These algorithms will be used as the building blocks for the set operations in Section 5.
The key idea is to use the Multi-Split operation to split the two B-trees into

√
n + m subtrees

each, where the union of a pair of the subtrees is of size
√

n + m. We then make recursive
calls to the union of these pairs, leading to

√
n + m total subtrees, which we then use the

Multi-Join algorithm to combine into a single B-tree.
The Multi-Split operation uses B-Way-Join as a primitive, by first searching for one of the

keys they will be splitting on, which creates a series of subtrees which must then be joined
together, rebalancing the resulting tree. The Multi-Join operation on the other hand is a
more complex operation and differs significantly from the B-Way-Join operation.

4.1 B-way Join

4.1.1 Algorithm Description

The join operation merges b + 1 B-trees T1, T2, . . . , Tb+1, and b separator keys k1, k2, . . . , kb,
into a single valid B-tree, where b ≤ B. Each input tree Ti must be a valid B-tree and Ti

contains keys only in the range (ki−1, ki), where k0 = −∞ and kb+1 = ∞.
The primary challenge lies in ensuring the join operation is both computationally efficient

and maintains the balance of the tree, even when the height of the input trees may differ
significantly. We describe our algorithm below in three steps. An illustration of the three
steps on an example input is in Section 4.1. In Appendix C, we prove the correctness and
efficiency of this algorithm.

ISAAC 2025
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Algorithm 1 B-Way-Join(T1..(b+1), k1..b).

Input: A sequence of b + 1 B-trees T1..(b+1) and b keys k1..b. For any x ∈ Ti and y ∈ Ti+1, we
have x < ki < y.

Output: A B-tree T with all keys in {k1, k2, . . . , kb} ∪
⋃

Ti

1 h∗ ← maxi h(Ti) // h∗ is the largest tree height
2 A← the subsequence of ⟨1, . . . , b⟩, where i ∈ A iff. h(Ti) = h∗ // indexes of tall trees
3 if the first element in A is not 1 then add 0 at the beginning of A

4 ParallelForEach i ∈ A do
5 i′ ← the successor of i in A // Ti′ is the next tree with height h∗

6 if i = 0 then // Handling the special case when there exist keys to the left of the first tall tree
7 R← the leftmost subtree of Ti′

8 S ← ⟨T1, . . . Ti′−1, R⟩ // The sequence of trees for the leftmost recursive call
9 k′ ← ⟨k1, k1, . . . , ki′−1⟩ // The sequence of keys for the leftmost recursive call

10 X ← B-Way-Join(S, k′) // All keys to the left of the first tall tree
11 Replace the leftmost subtree of Ti′ with X // Ti′ may be unbalanced for now
12 else
13 L← the rightmost subtree of Ti

14 S ← ⟨L, Ti+1, Ti+2, . . . , Ti′−1⟩ // The sequence of trees for the recursive call
15 k′ ← ⟨ki+1, ki+2, . . . , ki′−1⟩ // The sequence of keys for the recursive call
16 X ← B-Way-Join(S, k′) // X will contain all keys between the i-th and the i′-th tree
17 Replace the rightmost subtree of Ti with X // Ti may be unbalanced for now
18 if the first element in A is 0 then remove 0 from A

19 T ← Concatenate all (new) trees Ti, with keys ki−1, for all i ∈ A

20 SimpleRebalance(T ) // Introduced in Lemma 5

Step 1: Grouping. The algorithm starts by identifying the height of the tallest tree in the
input set, which we denote as h∗. We say a tree Ti is a tall tree if it has height h∗, and a
short tree otherwise. Note that there may be multiple tall trees in the sequence T . Let
A ⊆ ⟨0, 1, . . . , b⟩ be the subsequence of indices of trees with height h∗. We then partition
the input trees into |A| + 1 groups. At a high level, each group contains all keys and trees
between two tall trees, and the leftmost subtree of the previous tall tree. If T1 is not a tall
tree, a special group, which we call a leading group, to the left of T1 will also be formed.

More formally, assume i ∈ A, and i′ = succ(i) is the successor of i in A.1 Then the
corresponding group includes i′ − i trees, which are the rightmost subtree in Ti, and all trees
from Ti+1 to Ti′−1, and i′ − i − 1 keys, which are from ki to ki′−2. Note that the trees are
separated by the corresponding keys in the same group. If T1 is not a tall tree, all elements
to the left of the first tall tree Ti′ form the leading group, which includes all trees up to Ti′−1,
the leftmost subtree of Ti′ , and all keys up to ki′−1.

Step 2: Recursing and Subtree Replacing. After the first step, each group contains a
sequence of trees, and the corresponding keys that separate them. The second step simply
calls B-Way-Join recursively to reorganize each group into a valid B-tree. After that, for the
group corresponding to trees between Ti and Tsucc(i), we use the resulting tree to replace the
rightmost subtree in Ti. If there exists a leading group, it replaces the leftmost subtree in
the first tall tree.

In Theorem 7 we will show that B-Way-Join on a sequence of trees with maximum height
h will lead to a tree with height at most h + 1. In this case, all trees involved in the recursive
call is either a short tree, which has height at most h∗ − 1, or a subtree of a tall tree, which

1 We define succ(max(A)), where max(A) the last element in A, to be b + 1.
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𝑘1 𝑘2 𝑘3 𝑘4 𝑘5 𝑇6𝑇2

B-Way-join on five keys and six B-trees. ℎ 𝑇2 = ℎ 𝑇5 = ℎ∗ = max
𝑖

ℎ(𝑇𝑖), 𝐵 = 6. 

Step 1
Group inputs by 
the tall trees

𝑇5𝑇1 𝑇4𝑇3Input

𝑍

𝑘4Step 2
Recursively call 
Multi-join. Replace 
the left/right-most 
child of the tall trees

𝑌𝑋

𝑇2
′ 𝑇5

′

Step 3
Directly concatenate all 
(new) tall trees to the 
resulting tree & rebalance, 
based on Lemma 1

𝑌′𝑋′ 𝑍′

The purple trees have height ℎ∗ − 1 or height ℎ∗ (with one key at root). Note that 𝑇2
′ and 𝑇5

′ may 
not be strictly balanced at this point (𝑋′, 𝑌′ and 𝑍′ may be 1 level taller than other subtrees). 

B-
W

ay
-jo

in

B-W
ay-join

B-W
ay-join

𝑌′𝑋′

𝑘4

𝑍′

Resulting in a valid B-tree 𝑇 with height ℎ∗ or ℎ∗ + 1; if 𝑇
has height ℎ∗ + 1, then the root has at most |𝐶| keys, 
where 𝐶 ⊆ {𝑋′, 𝑌′, 𝑍′} contains all trees with height ℎ∗. 

Figure 2 An illustration of the B-Way-Join algorithm (described in Section 4.1) with 6 trees and
5 keys. The blue trees are the tall trees with height h∗. All other trees has height less than h∗.

has height h∗ − 1. Therefore, the resulting trees from recursive calls have height at most
h∗. After replacing a subtree in a tall tree, it can be at most one level taller than the other
subtrees.

Step 3: Concatenating and Rebalancing. After the previous step, all short trees have
been combined into a tall tree. Note that for each tall tree, except for the first one, the
key immediately before it is not included in any groups. Therefore, our final step is to
concatenate all these remaining components together, which includes all tall trees Ti for all
i ∈ A, and ki−1 for all i ∈ A. This is performed by creating a B-tree node with keys at the
root at TA1 , then kA2−1, then all keys at the root of TA2 , then kA3−1, so on so forth. The
subtrees, from left to right, are all subtrees in TA1 , then all subtrees in TA2 , so on so forth.
Let the resulting tree be T .

The tree T is a valid B-tree except for two aspects: 1) some of its subtrees may be taller
than other subtrees, but can be taller by at most 1, and 2) the number of keys at the root
may be more than B. For such minor imbalance, we will use the SimpleRebalance algorithm,
introduced in Lemma 5, to rebalance the tree. At a high level, the rebalancing algorithm
simply promotes all keys at the subtree root of the taller subtrees to the root of the entire
tree, and if an overflow occurs, we can promote every B keys at the root to a higher level,
increasing the tree height by 1.

See Figure 2 for an illustration of the algorithm.

▶ Theorem 4.1 (B-Way Join Analysis). Let T1, T2, . . . , Tb+1 be a set of B-trees, with the largest
tree height hmax and the shortest tree height hmin, and k1, k2, . . . , kb be a set of separator
keys, where b ≤ B. The B-Way-Join operation can be performed in O(hmax − hmin) I/O span
and O(b · (hmax − hmin)) I/O work.

We analyze the cost of the B-Way-Join operation in Appendix C.

4.2 Multi-Split
The Multi-Split algorithm takes a B-tree T and a sorted list of d keys k1..d, and returns d + 1
subtrees, such that the i-th subtree contains all keys in the range (ki−1, ki), where k0 = −∞
and kd+1 = ∞. This is achieved by spawning d + 1 threads, where each thread i invokes a
helper function Thread-Split, which outputs a single subtree containing all keys in the range
(ki−1, ki). See Algorithm 2.

ISAAC 2025
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Algorithm 2 Thread-Split(T, k1, k2).
Input: A B-trees T and two keys k1, k2 such that k1 < k2

Output: A B-tree T containing all keys in the range (k1, k2)
1 if T is empty or contains only keys between k1 and k2 then return T

2 if T is a leaf then return the B-tree containing all keys in the range (k1, k2)
3 r1..b ← the keys at the root of T

4 i← the smallest index such that k1 < ri, 0 if k1 < r1

5 j ← the largest index such that rj < k2, b + 1 if rb < k2

6 Ci..j ← all children of T from i to j, inclusive
7 if i = j then return Thread-Split(Ci, k1, k2)
8 C′

i ← Thread-Split(Ci, k1,∞)
9 C′

j ← Thread-Split(Cj ,−∞, k2)
10 r′

i..j ← copy of keys ri..j // Prevents adjacent threads from dividing the same node
11 return B-Way-Join(⟨C′

i, Ci+1..j−1, C′
j⟩, r′

i..j)

Figure 3 Above is a B-Tree, where each node rectangle is a node in the B-Tree, whereas the
triangles are subtrees shortened for space. There are two search paths to k1 and k2 from the root,
sharing the purple path at the start, then separating into the blue and orange paths respectively at
node v. All nodes colored blue are the result of following the blue path and copying the appropriate
keys, and similarly for the orange nodes. The node containing k2 excludes all keys greater than
or equal to k2, thus being half orange. The result of Thread-Split will be the union of the blue,
orange, and purple nodes. All white sections of the tree will be the search paths of other Thread-Split
operations.

The high-level idea of the algorithm is to search for the keys ki and ki+1 in T, copying
the nodes and keys along the search path that fit within the range (ki, ki+1). Any node that
lies on the shared prefix of both search paths, i.e. before the paths to ki and ki+1 diverge,
are not part of the output tree and can be skipped. Once the paths diverge, recursively split
down the search path of k1 and k2. If our entire node falls within the range (k1, k2), then
a copy of the pointer to the node is made. Otherwise, only the keys which fall within the
range (k1, k2) and the pointers to the children that fall within the range are copied.

We copy the keys of the node instead of dividing it, which is the natural operation to
perform, because dividing requires synchronization between adjacent threads. See Figure 3.

On the way back up the tree, the algorithm performs a B-Way-Join operation to combine
the subtrees and keys which contain the keys in the range (k1, k2). This serves the purpose of
both combining and rebalancing the subtrees. We prove the following theorem in Appendix D.

▶ Theorem 1 (Multiway Split Cost). We can split a B-tree T by k1, . . . , kd keys in parallel
with O(logB d + logB n) I/O span and O(d logB n) I/O work, where n is

∑d
i=1 |Ti|, in the

Fork-Join I/O Model.
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Algorithm 3 B-Way-Join-Fast(T1..b+1, k1..b).
Input: A sequence of b + 1 B-trees T1..b+1 and b keys k1..b. For any x ∈ Ti and y ∈ Ti+1, we have

x < ki < y. For all Ti, there is at most one node with B or more keys along their left and
right spines.

Output: A B-tree T with all keys in {k1, k2, . . . , kb} ∪
⋃

Ti

1 h∗ ← maxi h(Ti) // h∗ is the largest tree height
2 A← the subsequence of ⟨1, . . . , b⟩, where i ∈ A iff. h(Ti) = h∗ // indexes of tall trees
3 if the first key in A is not 1 then
4 i′ ← the first key in A

5 Ti′ ← Join-With-Tall(T1..i′ , k1..i′−1)
6 ParallelForEach i ∈ A do
7 i′ ← the successor of i in A // Ti′ is the next tree with height h∗

8 Ti′ ← Join-With-Tall(Ti..i′ , ki..i′−1)
9 if the first key in A is 0 then remove 0 from A;

10 T ← Concatenate all (new) trees Ti, with keys ki−1, for all i ∈ A

11 SimpleRebalance(T ) // See Lemma 5

4.3 Multi-Join

Suppose we have d + 1 B-trees T1,...,d+1, and a sorted list of d keys k1,...,d, such that for any
x ∈ Ti and y ∈ Ti+1, we have x < ki < y. The Multi-Join algorithm takes as input T1,...,d+1
and k1,...,d, and returns a single tree T , such that T contains

⋃d
i=1 Ti and {k1, k2, . . . , kd}.

We first describe here an overview of the Multi-Join algorithm. Section 4.1 shows how to
join B trees in O(logB n) I/O span and O(B logB n) I/O work. Therefore, a simple solution
is to join B trees together in parallel across logB d rounds of joining. However, this results
in an algorithm with O(logB d logB n) I/O span, which is not optimal for larger values of d.

We improve the upper bound on the I/O span by reducing the cost of joining B trees down
to an O(logB logB n) I/O span and O(logB n) I/O work, which we call the B-Way-Join-Fast
operation. Let us define nodes containing more than B keys as overloaded, and nodes
with exactly B keys as full. In order to achieve these bounds, we use a similar strategy to
Akhremtsev and Sanders [3], where the trees are preprocessed such that each tree Ti contains
a list of pointers to all nodes along their left and right spines. This allows us to efficiently find
the level at which each tree must traverse in order to perform the join operation. For each
B-Way-Join-Fast operation, the output tree must also maintain this list of pointers. Then we
show how to divide all nodes that will be overloaded during B-Way-Join-Fast in parallel.

4.3.1 Faster B-way Join

Let Li and Ri be the list of pointers to the left and right spines of some tree Ti respectively.
Li and Ri are sorted in reverse order by the height of the node, i.e. the leaf node is at index
0 and the root is at index h(Ti). Implementation details are discussed in Section 4.3.2.

Step 1: Grouping As in the B-Way-Join algorithm in Section 4.1, we first identify the
tallest trees of T1,...,b, and group the trees and keys together.

Step 2: Fusing Within Groups Then, we use the list of pointers to the left and right spines
in order to jump directly to the correct height of the tree for each group.
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Figure 4 Trees T1, T2, and T3 are all trees of the same height in the same group. T1 fuses with a
node in T, but at the same time, T2 is also fusing with the root node of T1, and T3 is fusing with the
root node of T2. Therefore, there is a dependency where X must fuse with T2 first, then T2 must
fuse with T1, then T1 with T. While S is also fusing with a node in T2, S is fusing with node other
than the root of T2, thus there is no conflict.

Each tree Tj is assigned some Ti to be fused with, where i is the largest index within
the same group such that i < j and h(Ti) ≥ h(Tj). Then a thread is spawned for each Tj ,
and its corresponding key are fused with Li[h(Tj)] or Ri[h(Tj)]. As in Section 4.1, we also
account for the special case where T1 is not the tallest tree.

Conflicts occur when multiple trees of the same height are in the same group, since
threads may try to fuse with roots of trees that are also fusing with other trees. However, in
constant I/O span and work, each thread is able to identify which portion of the tree they
will end up fusing with and directly write to that node. Consider the tree Ti, and let X be
the set of all trees with the same height as Ti. X can be constructed using Gather to get the
heights of all Ti in a single cache line and constructing each set in internal memory. Then all
B threads are spawned, and thread i can check if |X| > 1. If so, thread i can also identify
the tree in X with the smallest index and the tree T ′ they would be fusing with. If T ′ exists,
then thread i can fuse Ti with T ′ instead, while ensuring there are no write conflicts with
other threads which are fusing with the same node. For example, in Figure 4, T1 is writing
keys to some node in T, which we call v. T2 will also write to v, but starting from the index
|v| + |T1| away from the start of |v|.

Step 3: Dividing Large Nodes After each thread has finished fusing their trees, they check
if the node is overloaded. If so, then the thread will divide the node into ⌈ b

B ⌉ nodes, where b

is the number of keys in the node. However, before pushing ⌈ b
B ⌉ − 1 keys up to the parent

node, all threads are first synchronized in order to avoid write conflicts. Then all threads
are spawned again to push up their keys to the parent node. We show in Lemma 10, in
Appendix E, all overloaded nodes will push at most one key to their parent node.

Step 4: Dividing Smaller Nodes in Parallel Any remaining overloaded nodes will only
cause consecutive full nodes above it to be divided, since a single key is pushed up per
overloaded node. By computing the number of consecutive full nodes above each overloaded
node, we can divide these nodes in parallel.

Using the prefix sum algorithm, described in Appendix F of the Appendix, we can
accomplish this. Create an array Cv of length logB n for each overloaded node v, where Cv[i]
is set to 1 if the node i levels above is full or overloaded, and 0 otherwise. If there is no node
i levels above v, then Cv[i] is set to 0. Then take the prefix sum of each Cv, and mark the
node i levels above v to be divided if Cv[i] = i. The number of threads which marks a node
to be divided is the number of keys pushed up into it. Finally, a thread is spawned for each
node which is marked to be divided, and is divided in parallel.
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Figure 5 The B-tree contains 3 nodes v1, v2, and v3 which are overloaded. We use the list of
pointers in order to construct our arrays C. A cell within the array is set to 1 if the node is full
or overloaded, i.e. it contains B or more keys. Otherwise, it is set to 0. Note that since v1 only
contains a single node above it, its array is also of length 1. Then we take the prefix sum of each
array, and mark a node to be divided if C[i] = i. The three colored cells are the nodes which are to
be divided. Two of the cells are orange, referring to the same node, meaning the node takes a key
from two of its children.

Step 5: Concatenating and Rebalancing Just as in the B-Way-Join algorithm, after the
previous steps, all short trees have been combined into a single tall tree, which is then
rebalanced.

4.3.2 Maintaining the Left and Right Pointers
In order to achieve the I/O span and work bounds we desire, maintaining the list of pointers
along the spines of the trees is crucial. We achieve this by implementing the lists as sequential
B-trees, where the keys are pointers to the nodes along the spine. By using order statistics
information, searching for the node at height i takes O(logB logB n) I/O span and work.

If a new node is created for the left or right spine after the dividing process, we add
the node to the front of Li or Ri respectively. This also takes O(logB logB n) I/O span and
work. Finally, after the fusing operations complete, we must also update the pointers to the
left/right spines of the trees. Recall in Figure 4 that part of the right spine of T1 is being
covered by the tree T3, specifically all nodes with a height lower than T3’s root are not on
the right spine of the output tree. More generally, suppose S is the set of all trees that were
grouped together and has at least one node from their right spine which is part of the right
spine of the output tree. Then T ∈ S will have all nodes along its right spine less than the
height of the next smaller tree in S covered. These are the nodes that should be removed
from their list of spines. To do this, we simply find the height, h, of the next smaller tree in
S and perform a sequential split on T. Then we use B-Way-Join to join all trees together.

5 Union

5.1 Algorithm Description
Let T1 and T2 be two B-trees with n and m keys respectively.

The union algorithm is a simple d-way divide and conquer algorithm, where d =
√

n + m.

If m <
√

n + m, then we have reached the base case, and we call a I/O work inefficient union
algorithm. Let |T1| ≥ |T2|, as we can swap the two trees if this is not the case. The I/O work
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Algorithm 4 Union(T1, T2).
Input: Two B-trees T1 and T2

Output: A B-tree T with all keys in T1 ∪ T2

1 if |T2| > |T1| then T1, T2 ← T2, T1 ;
2 if |T2| <

√
|T1|+ |T2| then return Work-Inefficient-Union(T1, T2) ;

3 d←
√
|T1|+ |T2|

4 ParallelForEach 1 ≤ i ≤ d do
5 ki ← Two-Way-Binary-Search( (|T1|+|T2|)i

d
, T1, T2)

6 ⟨T1,1, T1,2, . . . , T1,d+1⟩ ← Multi-Split(T1, k1..d)
7 ⟨T2,1, T2,2, . . . , T2,d+1⟩ ← Multi-Split(T2, k1..d)
8 ParallelForEach 1 ≤ i ≤ d + 1 do
9 Ti ← Union(T1,i, T2,i)

10 return Multi-Join(T1..d+1, k1..d)

inefficient union algorithm uses all the keys in T2 and uses them as keys to split on T1 using
the Multi-Split operation. Then we use the Multi-Join operation to combine the d subtrees
and the d − 1 keys we split on.

Otherwise, we search T1 and T2 for d − 1 keys, which we will use to split each tree into d

subtrees using the Multi-Split operation. We denote the subtrees of T1 as T1,{1,...,d} and T2
as T2,{1,...,d}. The i-th key which we split on is the global (n + m) · i/d)-th key. This ensures
that |T1,i| + |T2,i| is all approximately n+m

d . We then spawn O(d) threads, and recursively
call the union algorithm on each pair of subtrees T1,i and T2,i. Then we use the Multi-Join
operation to combine the d subtrees and the d − 1 keys we split on.

5.2 Cost Analysis
Due to space constraints, we have put the details of the analysis for the base case of the
union algorithm to Appendix G.

▶ Lemma 2 (Union Algorithm Base Case Cost). The Work-Inefficient-Union algorithm takes
O(logB m · log2 logB n + logB n) I/O span and O(m logB n) I/O work.

▶ Lemma 3. Algorithm 4 takes O(logB m · log2 logB n) I/O span.

Proof. The I/O span of finding d − 1, where d =
√

n + m, keys and splitting along them
costs O(logB(

√
n + m)), and the I/O span of joining all the recursive components costs

O(logB(
√

n + m) · log2 logB n). Recall that m >
√

n + m, since otherwise we would be in
the base case of the algorithm. Therefore, the total I/O span of the above operations is
O(logB m · log2 logB n).

Then for the next recursive call, the problem size shrinks to
√

n + m. The I/O span of
the base case is also O(logB m · log2 logB n). Therefore, the cost of the I/O span is upper
bounded by

S(n + m) = S(
√

n + m) + O(logB m · log2 logB(n + m)).

Solving for this recurrence relation gives us O(logB m · log2 logB n), when m < n. ◀

▶ Lemma 4. The total I/O work of the Union algorithm is O(m logB
n
m ).

Proof. The total cost of the base case for the Union algorithm is O(m logB
n
m ) from Lemma

2 in the Appendix. Thus, we focus on the cost of the recursive calls.
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We see that the I/O work cost is dominated by the cost of Multi-Split, Multi-Join, and
searching for the split keys. All of these operations take O(

√
n + m logB(n + m)) I/O work.

We perform a similar analysis to the one in Blelloch et al. [9]. Consider the recurrence
tree of this algorithm, which is a

√
n + m-way tree, and the cost of the current node is√

n + m logB(n + m). Since the recursion stops when m <
√

n + m, the recurrence tree is
not balanced and some branches will reach the base case earlier than others. However, the
cost of a node at the same level also costs the same, and decreases as the tree goes deeper.
Let t = n + m, then the total I/O work of Union is:

t1/2 logB t + t1/2 · t1/4 logB t1/2 + · · · =
∑

i

logB t

2i
t1−1/2i+1

.

We can see the above recurrence is leaf dominated. For all i, t1−1/2i+1 is the number of
split keys which are being searched. Naturally the total number of split keys can never be
more than m, else we would have already reached the base case, meaning that t1−1/2i+1 ≤ m.

Let x = t1/2i+1
, then the total leaf cost is

O(t1−1/2i+1
· logB t1/2i+1

) = O

(
t

x
logB x

)
.

Clearly the above function decreases as x approaches infinity, and since t1−1/2i+1 ≤ m,

we know that x ≥ t/m. Letting x = t/m gives us the maximum value of the function, which
is O(m logB( n

m )), giving us our desired I/O work bounds. ◀

Combining the results above we have the main theorem of this paper.

▶ Theorem 1.1 (Parallel Set Operations on B-trees). Given two B-trees with sizes m and
n ≥ m, there exists a parallel algorithm that returns a new B-tree containing the union of
the two input trees in and O

(
m logB

(
n
m

))
I/O work, O(logB m · log2 logB n + logB n) I/O

span, where B is the block size.

We show in Appendix I how to achieve the above bounds for the other set operations.

6 Conclusion

In this paper, we have introduced the parallel set operations on B-trees that achieve provable
I/O efficiency in the context of a novel cost model, the Fork-Join I/O Model, which offers
a way to analyze the I/O costs of algorithms in the fork-join setting. This captures the
I/O complexity of algorithms executed under asynchronous fork-join parallelism, unlike the
Parallel External Memory (PEM) model, which assumes synchronized threads at each step
of the algorithm. Our model provides a more realistic abstraction for analyzing parallel
algorithms that rely on asynchronous scheduling. We showed how to adapt the join-based
paradigm to B-trees by developing new algorithms for Multi-Join, and Multi-Split. These
primitives serve as building blocks for implementing more complex operations, such as the
union, intersection, and difference operations. This allows us to achieve a near-optimal I/O
work of O

(
m logB

(
n
m

))
, and I/O span of O(logB m · log2 logB n + logB n). Potential future

work would be to reduce the I/O work to the optimal O
(

m
B logB

(
n
m

))
I/O complexity, and

reduce the I/O span to O(logB(n + m)).
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A Background for join-based Algorithms on Binary Trees

For completeness, we briefly introduce the background of join-based algorithms on binary
trees. For binary trees, the Join(L, k, R) function takes two search trees TL and TR, and
one key k in the middle, such that ∀k1 ∈ TL and k2 ∈ TR, k1 < k < k2, and returns a valid
balanced tree containing all elements in L ∪ {k} ∪ R. As the inversion to Join, a Split(T, k) is
defined to return ⟨TL, k′, TR⟩, where TL (TR) contains all keys in T smaller (larger) than k,
and k′ is the node containing k if k ∈ T , and null otherwise. In this case, an example of the
Union algorithm can be implemented as illustrated in Figure 1. Note that the Union algorithm
is independent of the balancing schemes used, as long as the Join and Split functions are
properly supported.

B Related Work

The Join operation was first proposed by Tarjan [25] on red-black trees. In 1992, Adams used
Join as a primitive for weight-balanced trees to implement set functions for union, intersection,
and difference [1,2]. Adams’ algorithms were proposed in an international competition for
the Standard ML community, which is about implementations on “set of integers”. Adams
won the “elegance” award in the competition, meaning that the algorithm is elegant yet
reasonably efficient among all participants in the competition. However, Adams’ original
paper only informally argued a loose work bound, which is O(m + n) for operating on two
sets with sizes n and m ≤ n.

Blelloch and Reid-Miller [10] first considered using join-based algorithms on parallel
data structures. Their paper proposed parallel algorithms on treaps based on Join, and
first show that these algorithms have O(m log(n/m)) work and polylogarithmic span (with
high probability). The algorithms are work-efficient because the work matches the lower
bound of comparisons needed to combine two ordered sets. Later Blelloch et al. [7] studied
the join-based algorithms, and showed work-efficiency and O(log n log m) span for other
balancing schemes, including AVL trees, read-black trees, and weight-balanced trees. In
2020 [9], the span bound for weight-balanced trees was improved to O(log n).

In 2015, Akhremtsev and Sanders [4] proposed join-based algorithms on (a, b)-trees.
To make the algorithm more space-efficient and I/O-friendly in practice, Dhulipala et al.
proposed C-trees [14] and PaC-trees [13]. The idea is to allow each tree node (or just the
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leaves) to store a block of entries instead of one. Both C-trees and PaC-trees are binary.
While their goal is to make the algorithms more cache-friendly in practice, no I/O bounds
were shown. To the best of our knowledge, our work is the first to study the I/O cost of the
join-based algorithms.

To achieve a better span bound, some techniques of our algorithms are inspired by existing
work, such as using a list of pointers based on the height of subtrees [4], and using

√
m + n

way divide-and-conquer with a work-inefficient base case [9]. Our solution provides non-trivial
and effective adaptions to use these ideas to achieve improved I/O bounds on B-trees.

Due to the elegance of the algorithm, many libraries later used the join-based algorithms
for their implementation for sequences, sets, or maps (e.g., Haskell [19], the LEDA library [20],
PAM [24], Aspen [14], CPAM [13]).

C B-Way Join Analysis

We will eventually show the I/O span of the B-Way-Join operation is O(hmax − hmin), and
the I/O work is O(B · (hmax − hmin)), where hmax and hmin are the maximum and minimal
tree heights among the input trees. First, we must show that the height of the output tree of
each recursive call does not increase the height of the input trees by more than a constant,
as this could lead to an increase in the I/O work and span.

▶ Lemma 5. Suppose we have an unbalanced B-tree T with b children and b − 1 keys. Let C

be the subset of children of T with height h, and the rest of the children have height h − 1.
Then we can rebalance the tree to have a valid B-tree of height h or h + 1. If the tree is of
height h + 1, then the root will have at most |C| keys.

Proof. For each child c ∈ C, we can bring the keys up to the root node and reattach the
children of c as children of the root node. Suppose c contains b′ keys, then the number of
keys at the root and the number of children both increase by b′.

The increase in the number of keys is straightforward. The number of children increases
by the same amount because bringing c up adds b′ + 1 children, and we lost a child by
bringing up c.

Performing this operation across all nodes in C will result in an at most |C|B keys at the
root. If the root node also contained B keys initially, then there would be (|C| + 1)B keys at
the root, which would then be split into a tree of height h + 1, and with at most |C| keys at
the root.

We know that the split will only ever occur once since |C| is upperbounded to be at most
B, thus a second split would not occur. ◀

▶ Lemma 6. Suppose we have a list of trees T1, . . . , Tb+1 and keys k1, . . . , kb, such that the
height of each tree is either h and the root contains at most B keys, or h + 1 and the root
contains at most 1 key, except for T1 which may contain 2 keys. Then we can join the trees
such that the node at level h + 1 contains at most b + |Hi| keys, where Hi is a subset of trees
T1, . . . , Ti with height h + 1. Note that if a tree is of height h, then the number of keys at the
node of level h + 1 is defined to be 0.

Proof. We prove the lemma by induction for i = 1, . . . , b + 1. The base case trivially holds
for i = 1, where if the height of the first tree is h, then the number of keys at the node of
level h + 1 is 0. If the height of the first tree is h + 1, then the number of keys at the node of
level h + 1 is at most 2, maintaining the stated bound. We assume the claim is true for i,

which means the first i trees produces B-tree T ∗ with at most i − 1 + |Hi| keys at the node
of level h + 1.
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If T ∗ is of height h, and the height of Ti+1 is h, then the join will result in at most 1 key
at level h + 1, if T ∗ and Ti+1 contain B keys each. In this case, T ∗ will be made the left
child, Ti+1 will be made the right child, and ki will be the key at the root.

If T ∗ is of height h + 1 and Ti+1 is of height h, then the join will cause Ti+1 to be the
right child of T ∗, and ki will be the right most key of T ∗. This increases the number of keys
at the node of level h + 1 by 1, and thus the bound is maintained. The same logic applies if
T ∗ is of height h and Ti+1 is of height h + 1.

If instead both trees are of height h + 1, then the join will cause the trees to be merged
at the same height, and the number of keys increases by 1 plus the number of keys in Ti+1.

Recall in the statement of the lemma that every tree except for T1 contains at most 1 key at
the root. Therefore, we can bound the increase by at most 2 keys, and we can see the bound
is maintained since i increase by 1 and |Hi| also increases by 1. ◀

▶ Theorem 7. Let T1, . . . , Tb+1 and k1, . . . , kb be the set of input trees and keys respectively,
where b ≤ B. If h is the height of the tallest tree in T, then after performing B-Way-Join(T, k),
the height of the output tree will be either h or h + 1.

Proof. We prove the theorem by induction. In the base case, if all trees in T1,...,b+1 are
of height h, joining them maintains the theorem trivially. We create a new root node v

containing all keys of k, and each tree in T1,...,b+1 is made a child of v. If any child node
contains less than B/2 keys, then we can use a standard rebalancing algorithm to fix it. This
may reduce the number of keys in v to less than b, but it will never increase. If all the keys
in v are removed, then the output tree will also be of height h. Otherwise, it will be h + 1.

Then we prove the inductive step. Let T ′
0,1,... be the set of trees which contain children

that are the result of a recursive call, i.e. the tallest trees in T1,...,b+1. Due to the inductive
hypothesis, all the trees will have a right most child of height either h − 1 or h. The first tree
may also have a left most child of height h. Due to the possible discrepancy in heights, we
must rebalance these trees. We know from Lemma 5, that we can rebalance these trees to
have heights of h or h + 1. If the height of a tree in T ′ is h + 1, then we know there is at
most 1 key at the root, except for T ′

0 which may have 2 keys at the root.
According to Lemma 6, we can see that merging the trees in T ′ will result in a tree of

height h or h + 1. If the tree is of height h, then the proof is complete. Otherwise, we must
ensure the root node has at most B keys. We know the root node has at most b′ + |Hb′ | keys,
where b′ = |T ′|. We know that b′ + |Hb′ | ≤ b, since in order for a tree to have height h + 1,

it must have been passed into the recursive call with at least one other tree as part of the
input set. Therefore, in order for |Hb′ | to increase by 1, the value of b′ must have decreased
by at least 1. Therefore, the number of keys at the root is upper bounded by b, and thus
cannot overflow again, maintaining the height of the tree h + 1. ◀

▶ Theorem 4.1 (B-Way Join Analysis). Let T1, T2, . . . , Tb+1 be a set of B-trees, with the largest
tree height hmax and the shortest tree height hmin, and k1, k2, . . . , kb be a set of separator
keys, where b ≤ B. The B-Way-Join operation can be performed in O(hmax − hmin) I/O span
and O(b · (hmax − hmin)) I/O work.

Proof. We can see each separator key is assigned a thread, which is then responsible for
traversing down a pair of input trees until it reaches the point where all trees are of the same
height, which is a traversal of length of at most O(hmax − hmin).

At each level of the tree, each thread will perform at most O(1) I/Os. We know from
Theorem 7 at each level of the tree, the resulting subtree will always stay either the same
height or increase by 1. Which means no additional I/Os must be performed in order to
compensate for the increased height of the tree, resulting in an I/O span of O(hmax − hmin).

The I/O work comes readily from the I/O span. ◀

ISAAC 2025



37:18 Parallel Joinable B-Trees in the Fork-Join I/O Model

D Multiway Split: Cost Analysis

▶ Theorem 1 (Multiway Split Cost). We can split a B-tree T by k1, . . . , kd keys in parallel
with O(logB d + logB n) I/O span and O(d logB n) I/O work, where n is

∑d
i=1 |Ti|, in the

Fork-Join I/O Model.

Proof. The algorithm spawns d + 1 threads, where each thread performs a search down the
tree. Each thread will perform O(logB n) I/Os, in order to perform the search and copying
the keys and pointers to the children takes O(1) I/Os per node.

When performing the B-Way-Join operation, recall that the I/O span of the B-Way-Join
operation is O(hmax −hmin), which is the difference in height between the tallest and shortest
trees being joined together, and that the output tree must be of height at least hmax.

We will be performing B-Way-Join along the path from the first divergence to each
key. This means if at least one key is within the range of the split, then every B-Way-Join
occurs with trees with height difference at most O(1), and satisfying the I/O span bound of
O(logB n).

For the cases where a node contains keys within the range, but some of their ancestor’s
does not, we may use an amortized argument to charge a constant I/O for each node which
does not contain keys within the range, which would otherwise not incur any cost. Then
when joining with trees of height difference larger than a constant, we use the charge to
pay for the extra I/O. The height difference can only be at most the number of consecutive
skipped B-Way-Join operations.

For the I/O work bounds, observe that for each B-Way-Join operation, at most two trees
being joined are of different heights, which are the trees along the search path to the split
key. Therefore, the I/O work bounds is O(1) instead of O(B) for each B-Way-Join operation,
which gives us the I/O work bound of O(d logB n) I/Os. ◀

E Multiway Join Cost Analysis

▶ Lemma 8. The cost of preprocessing d B-trees such that each tree T contains a list of
pointers to all nodes along their left and right spines is O(logB n + logB d) I/O span and
O(d logB n) I/O work, where n is the total number of keys in all trees.

We can see that the fuse operations are completely independent of each other, and since
each thread is able to access the number of keys that will be copied to the same tree ahead
of them, then this process is able to occur in O(1) I/O span and O(B) I/O work, which gives
us the following lemma.

▶ Lemma 9. The cost of fusing B trees in the B-Way-Join-Fast operation is O(1) I/O span
and O(B) I/O work.

Next we show the following lemma, so that we can guarantee that after the first round of
divisions, no overloaded node will push more than a single key up to their parent node.

▶ Lemma 10. After fusing B trees together in the B-Way-Join-Fast operation, we can
guarantee after one round of dividing the overloaded nodes, that each subsequent overloaded
node may push up at most one key to their parent node.

Proof. Recall that we are joining at most B trees together. Since the root and all nodes
it may fuse with contains at most B keys, then including the paired key which the tree is
associated with, each tree contributes at most 1 key to be pushed up to their parent node.
In other words, for every tree that a node fuses with, they contribute at most 1 key to push
to the parent per node.
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Therefore, after a single round of divisions, even in the worst case where all keys were
pushed up to a single node, this node would contain at most 2B keys, which would only
push up a single key to the parent. ◀

▶ Lemma 11. The cost of dividing the nodes up the tree in the B-Way-Join-Fast operation is
O(log2 logB n) I/O span and O(B logB n) I/O work.

Proof. The first set of divide operations cost O(1) I/O span and O(B) I/O work, since at
most B new nodes are created, which can all be done in parallel.

Then we gather the number of keys in each node along the path from the root to every
overloaded node. This takes O(logB logB n) I/O span and O(B logB n) I/O work, as we can
use the list of pointers to jump directly to their assigned node along the path, since the path
must consist of only nodes which were along the spines of a fused tree. There are at most B

overloaded nodes, which means we create B arrays for the paths to the root.
We then perform the prefix sum operation along each of these arrays, which takes

O(log2 logB n) I/O span and O(B logB n) I/O work. Finally, using the information provided
by the prefix sum, each node can be divided in a O(1) I/O for each thread, which gives us
our desired results. ◀

▶ Lemma 12. The cost of updating the list of pointers in the B-Way-Join-Fast operation is
O(logB logB n) I/O span and O(B logB logB n) I/O work.

Proof. Each list of pointers is a standard sequential B-tree. Therefore, the split operation
takes O(logB logB n) I/O span and work for each list. There are B lists of pointers, which
gives us O(B logB logB n) I/O work.

Then by using the B-Way-Join operation from Section 4.1, we can join these trees in
O(logB logB n) I/O span and O(B logB logB n) I/O work. ◀

Now we can prove the main theorem of this section.

▶ Theorem 13. We can join T1, . . . , Td B-trees and k1, . . . , kd keys together in parallel with
O(logB d · log2 logB n + logB n) I/O span and O(d logB n) I/O work, where n is

∑d
i=1 |Ti|,

in the Fork-Join I/O Model.

Proof. We get from Lemma 8 that the cost of preprocessing is O(logB n + logB d) I/O span
and O(d logB n) I/O work.

The Multi-Join operation performs O(logB d) rounds of B-Way-Join-Fast operations. This
and preprocessing gives us the I/O span of O(logB d · log2 logB n + logB n).

To analyze the I/O work cost, we can see that the total number of B-Way-Join-Fast
operations reduces by a factor of B each round. Therefore, we calculate the total I/O work
cost from the following equation

logB d∑
i=1

Bi logB n = O(d logB n). ◀

F Prefix Sum

The prefix sums problem is a fundamental aspect of parallel computing. The applications for
this problem extends to a wide variety of domains, including for the Parallel Joinable B-Tree.

▶ Definition 14. Given an ordered set A of n elements, the prefix sums operation returns an
ordered set A′ of n elements, such that B[i] =

∑i
j=0 A[j] for all 0 ≤ i < n.
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We show that if the input set A is located in contiguous main memory, then the prefix
sums problem can be solved in the Fork-Join I/O Model in O(log2 n) I/O span and O(n)
I/O work. By using the Gather operation, n non-contiguous elements can be gathered into
a single contiguous array in O(logB n) I/O span and O(n) I/O work, thus the above result
also holds for non-contiguous input sets.

▶ Lemma 15. The prefix sum problem can be solved in the Fork-Join I/O Model in O(log2 n)
I/O I/O span and O(n) I/O work.

Proof. The Fork-Join I/O Model solution to the prefix sums problem is performed by
simulating the optimal I/O work efficient PRAM algorithm. The algorithm performs two
passes: building a tree bottom-up and then traversing the tree top-down. Each element in A

is a leaf node, ordered from left to right, and we combine the elements in pairs to form a
binary tree, where each node is the sum of its two children. Naturally this costs O(log2 n)
I/O span and O(n) I/O work. Then from top down the tree, we pass the sum of the left
child to the right child, summing up the left child’s values until we reach the leaf, which then
sums up the values of the left children passed. This top-down traversal also costs O(log2 n)
I/O span and O(n) I/O work.

The tree can be implemented as an array, which would take advantage of the locality
of the data. However, for the sake of simplicity, we will not use this optimization in our
implementation as it does not affect the bounds of our algorithm. ◀

G Union Algorithm: Base Case Cost

▶ Lemma 16. The Work-Inefficient-Union algorithm takes O(logB m · log2 logB n + logB n)
I/O span and O(m logB n) I/O work.

Proof. The cost of the Work-Inefficient-Union algorithm is dominated by the Multi-Join
operation, which comes readily from Theorem 13, where d = m. This gives us the I/O span
O(logB m · log2 logB n + logB n) and I/O work O(m logB n). ◀

▶ Lemma 2 (Union Algorithm Base Case Cost). The Work-Inefficient-Union algorithm takes
O(logB m · log2 logB n + logB n) I/O span and O(m logB n) I/O work.

Proof. Suppose we have k base cases, then the total cost of all base cases in the union
algorithm is

∑k
i=1 O(mi(logB ni + B)), where mi and ni are the number of keys in the i-th

base case. Recall that for each base case, mi <
√

ni + mi.

From Lemma B.2 from Blelloch et al. [8], we know that
∑k

i=1 mi log ni = O(m log n),
where

∑k
i=1 mi = m,

∑k
i=1 ni = n, and for all i, mi ≤

√
ni + mi. In the proof, the base of

the logarithm is independent of the result, thus we can use the same proof to show that the
I/O work is O(m logB( n

m )). ◀
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H Additional Pseudocode for Multiway Split and Join

The pseudocode for the Multi-Split, Multi-Join, Join-With-Tall, and Divide-Node algorithms
are ommitted from this version due to space constraints. However, they are provided in the
full version of this paper. 2

I Additional Set Operations

The Intersection and Difference operations are similar to the Union algorithm under the
join-based framework. Hence, due to the space limit, we postpone the details of these two
operations here in the appendix. The main difference lies in how subtrees are joined back.

▶ Theorem 17. Given two B-trees with sizes m and n ≥ m, there exists a parallel algorithm
that returns a new B-tree containing the intersection and difference of the two input trees
in O

(
m logB

(
n
m

))
I/O work, O(logB m · log2 logB n + logB n) and I/O span, where B is the

block size.

Proof. We first modify the Multi-Join operation slightly to take in an array d boolean values,
where each boolean value indicates whether the corresponding key should be included in the
final result. Suppose ki is not to be part of the final result. Then we instead find the largest
key in Ti, denoted as k′

i, and split on Ti using k′
i. Then we replace ki with k′

i, and perform
the join operation as normal.

In the Intersection operation, after searching for the d − 1 split keys, we check if all d − 1
keys are in both trees. If a key is in both trees, then we mark the key to be included in the
final result. Then we perform the Multi-Split operation as normal, make our recursive calls,
then use the modified Multi-Join operation to combine the results, excluding any keys which
did not appear in both trees.

The base case of the Intersection operation is also very similar to the Work-Inefficient-Union
algorithm. Let |T1| ≥ |T2|, as we can always swap the two trees if this is not the case. Then
we use the keys from T2 to search for the keys in T1. Any keys which are not found in T1
are discarded. All remaining keys are then joined together using the traditional Multi-Join
operation.

For the Difference operation, if a split key is found to be in T1 and T2 during the main
recursive algorithm, then it is marked as excluded, and all the same steps as the Intersection
operation are performed. For the base case, we use a slightly different approach depending
on which tree is larger. If |T1| ≥ |T2|, then we split T1 using the keys in T2, and join with
none of the keys from T2. Otherwise, we use all keys in T1 to search for the keys in T2, and
join all keys from T1 which were not found in T2.

As such, the same analysis used to get the bounds from the Union algorithm can also be
applied to the Intersection and Difference operations and achieve the same bounds . ◀

2 The full version of this paper is available at https://arxiv.org/abs/2510.20053.
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