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—— Abstract

We consider the STEINER ORIENTATION problem, where we are given as input a mixed graph
G = (V,E, A) and a set of k demand pairs (s;,%;), ¢ € [k]. The goal is to orient the undirected
edges of GG in a way that the resulting directed graph has a directed path from s; to t; for all

i € [k]. We adopt the point of view of structural parameterized complexity and investigate the

complexity of STEINER ORIENTATION for standard measures, such as treewidth. Our results indicate

that STEINER, ORIENTATION is a surprisingly hard problem from this point of view. In particular,
our main contributions are the following:

1. We show that STEINER ORIENTATION is NP-complete on instances where the underlying graph
has feedback vertex number 2, treewidth 2, pathwidth 3, and vertex integrity 6.

2. We present an XP algorithm parameterized by vertex cover number vc of complexity nOve®),
Furthermore, we show that this running time is essentially optimal by proving that a running
time of n°*") would refute the ETH.

3. We consider parameterizations by the number of undirected or directed edges (| E| or |A|) and we
observe that the trivial 2/%n®M-time algorithm for the former parameter is optimal under the
SETH. Complementing this, we show that the problem admits a 2°U4Dn®® _time algorithm.

In addition to the above, we consider the complexity of STEINER ORIENTATION parameterized
by tw + k (FPT), distance to clique (FPT), and vc + k (FPT with a polynomial kernel).
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Structural Parameters for Steiner Orientation

1 Introduction

The STEINER ORIENTATION problem is an NP-hard graph optimization problem, which
involves assigning directions to the undirected edges of a mixed graph — a graph containing
both directed and undirected edges — to satisfy specific connectivity requirements, given by
pairs of terminals. The objective is to orient the undirected edges in such a way that there
exists a directed path between each given terminal pair. Formally, the problem is defined as
follows.

STEINER ORIENTATION

Instance: A mixed graph G = (V, E, A) where E and A denote the set of edges and
arcs in G respectively. Additionally, we are given a set of terminal pairs
T =A{(ss,ti) € V x V :i € [k]} such that s; # ¢;, for all ¢ € [k].

Goal: Determine whether there exists an orientation of E such that k directed
paths P, = s; — ... = t;, @ € [k] exist.

The STEINER ORIENTATION problem has been well-studied in bioinformatics, motivated
by modeling protein—protein or protein—-DNA interactions [9,16,18,19]. Another motiva-
tion naturally arises from designing transportation networks. For example, in an urban
transportation network with a mix of one-way streets (directed arcs) and two-way streets
(undirected edges), one can consider the traffic control problem of deciding the direction of
some streets to ensure routes from specific origins to destinations. This scenario is naturally
modeled as the STEINER ORIENTATION problem.

Regarding its complexity, Arkin and Hassin show that STEINER ORIENTATION is NP-
complete in general, but polynomially solvable if & = 2 [1]. From the perspective of
O(%)_time algorithm for the number
of terminal pairs k as a parameter, which shows that the problem belongs to the class XP.
However, subsequent research has revealed the problem’s intractability for this parameteriza-
tion; STEINER ORIENTATION is shown to be W[1]-hard when parameterized by k and cannot
be solved in time f(k) - n°*/1°¢k) ynder ETH [17]. This lower bound was later improved to
a f(k)- n°¥) ETH-based lower bound even on planar graphs [4]. Surprisingly, Wtodarczyk
recently proved that the problem is not just W[1]-hard, but W[1]-complete [20]. This series
of studies has almost completely characterized the complexity with respect to the parameter
k. Despite this literature, to the best of our knowledge, the parameterized complexity of
STEINER ORIENTATION is only studied for the number k of terminal pairs. The complexity
with respect to graph parameters such as treewidth or vertex cover number has been almost

parameterized complexity, Cygan et al. [7] proposed an n

entirely unstudied. This paper aims to provide the first systematic study in this direction.

1.1 OQOur Contribution

In this paper, we first show the para-NP-completeness of STEINER ORIENTATION for the
parameters pathwidth, feedback vertex number, and vertex integrity.! Specifically, the
problem is NP-complete on series-parallel graphs (i.e., graphs of treewidth at most 2) of
vertex-deletion distance 2 to a forest of stars of size at most 4. By slightly modifying
our reduction, we further obtain NP-hardness for grid graphs (which are planar and have

! In this paper, graph parameters refer to those of the underlying graph of G, that is, the graph obtained
by replacing all arcs with undirected edges. We assume that the reader is familiar with standard
parameters, but recall some of the relevant definitions and relations further below.
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maximum degree 4) with bounded pathwidth. Notice that, in a sense, these results clearly
delineate the frontier of polynomial-time versus NP-complete cases for most standard graph
parameters: On the one hand, when we place no bound on the degree, STEINER ORIENTATION
is already NP-hard on graphs which are 2 vertices away from an extremely restricted class.
On the other hand, for bounded-degree graphs no such result can be obtained, as any graph
that has bounded tree-depth and bounded degree actually has bounded size, so the hardness
for bounded pathwidth graphs is essentially best possible.

The results above motivate us to consider more restrictive parameters. In this direction,
we present an XP algorithm parameterized by vertex cover number, vec, that runs in time
nO0<*). Even though this improves the situation compared to the paraNP-completeness for
treewidth, this complexity is rather disappointing, raising the natural question whether the
square in the exponent is necessary. Our main contribution for this parameter is to answer
this question by proving that an n°e) time algorithm would refute the ETH. Along the way,
we also show that STEINER ORIENTATION is fixed-parameter tractable when parameterized
by distance to a clique, which can be seen as the dense analogue of vertex cover (a vertex
cover of a graph is a clique modulator of its complement).

Moving in another direction, we consider the number of undirected or directed edges as
parameters. Here, we show that STEINER ORIENTATION is fixed-parameter tractable (FPT)
when parameterized by the number |A| of directed edges. We observe that if |A| = 0, the
problem is solvable in polynomial time as a consequence of Robbins’ theorem [14]. Thus,
our result generalizes this classical polynomial-time case. Here, it is natural to consider the
number |E| of undirected edges. Since we have only two directions for each undirected edge,
STEINER ORIENTATION is clearly solvable in 2/Z1n(M) time. Indeed, this running time is
essentially tight, as a careful observation of the standard NP-hardness reduction for STEINER
ORIENTATION [1] yields a (2 — £)/ZIn®™) lower bound under the SETH.

Finally, we investigate the parameterized complexity with respect to the combined param-
eters k+tw and k+vc. We show that STEINER ORIENTATION is FPT when parameterized by
k + tw by formulating it as an MSOs problem, which stands in contrast to the NP-hardness
on series-parallel graphs. Furthermore, we give a polynomial kernel when parameterized by
k 4 ve.

Overview of Techniques. Our NP-completeness proof for STEINER ORIENTATION on graphs
of treewidth 2 is based on a direct reduction from a variant of 3-SAT, where we naturally
use undirected edges to represent variables of the initial formula, with directions representing
truth assignments (this is standard). The key new insight is the following: we can transmit
information between copies of such edges, ensuring they must be oriented in a consistent way,
by adding demand pairs which must be routed through two main hub vertices. By using
appropriately oriented arcs to connect our gadgets to the two hubs we ensure that gadgets
don’t interfere with each other. In a sense, the take-home message of this construction is that
the structure of G alone is not enough to measure the complexity of an instance, because the
way that demand pairs interact with the graph can significantly complicate the structure of
the instance.

The XP algorithm parameterized by vertex cover is based on a simple branching procedure:
for each pair u, v of vertices of the vertex cover, guess if there is a directed path of length
at most 2 from u to v in the solution and, if yes, which is (potentially) the vertex w in the
middle of the path. This clearly leads to at most nOve*) guesses, and once we have fixed
these decisions it is not hard to complete the solution because we can infer exactly which
vertices of the cover have directed paths to each other.

38:3
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Given the simplicity of the algorithm sketched above for vertex cover, it is somewhat
surprising that this is essentially optimal (under the ETH). We establish this by giving a
reduction from k-CLIQUE producing a STEINER ORIENTATION instance with vertex cover
O(Vk). The key intuition is again that we can use a small number (O(v/k)) of hubs, through
which information will be routed. In particular, we set up a complete bipartite graph K NV
and for each edge of this graph we set up a gadget encoding a selection in the original
instance: the number of edges of this graph is sufficient to encode all selections, but the
vertex cover of the construction is determined by the number of vertices of the complete
bipartite graph.

To obtain an algorithm for parameter |A| we face significantly more obstacles than for
parameter |E| (which is trivially FPT). Our approach relies on exhaustive applications of
some (standard) reduction rules for this problem, which eliminate all cycles and degree 1
vertices. We then focus on a restricted special case of STEINER ORIENTATION, where all
undirected components are paths, all internal vertices of the paths are incident on no arcs,
and the endpoints of each path are incident on at most one arc. We solve this restricted
case using a reduction to 2-SAT. We then show, using arguments which essentially take
into account that A is a feedback edge set of the underlying graph, that a simple branching
algorithm can reduce any instance into 2°U41) instances of the (polynomial-time solvable)
restricted case.

The FPT algorithm for distance to clique relies again on exhaustively applying reduction
rules that eliminate cycles and then making some simple structural observations: there are
few edges incident on the modulator vertices (so we can guess their orientation); and the
edges contained in the clique must have a very simple structure (they form a matching).
The FPT algorithm for tw + k relies on a formulation of the problem in MSO; logic and
Courcelle’s theorem — we leave it as an interesting open problem to determine the best
dependence for this parameterization. Finally, for the more restrictive parameter vc + k
we obtain a polynomial kernel via a maximum matching argument. In particular, we show
that by calculating a maximum matching between pairs of vertices of the vertex cover
and non-terminals in the indpendent set, we can identify a set of O(vc?) vertices of the
independent set which are sufficient to obtain a solution and delete the rest, giving a kernel
of order O(ve? + k).

1.2 Related work

The STEINER ORIENTATION problem has been studied extensively. From a bioinformatics
perspective, an optimization version of STEINER ORIENTATION is widely studied [9,16,18,19].
In this optimization version, called MAXIMUM STEINER ORIENTATION, the goal is to find an
orientation that maximizes the number of satisfied terminals pairs.

Unfortunately, MAXIMUM STEINER ORIENTATION is significantly more difficult than
STEINER ORIENTATION. Medvedovsky et al. [16] show that the problem is inapproximable
within a factor of 12/13 even on undirected stars and binary trees. Elberfeld et al. then
observe that the NP-hardness reduction for STEINER ORIENTATION in [1] implies the
inapproximability within a factor of 7/8 [10]. More recently, Horsch [15] considered the
maximization version of STEINER ORIENTATION but under the restriction that the set of
demand pairs includes all possible demands and showed that this case is also APX-hard.
Interestingly, for this version of the problem Hoérsch supplies an XP algorithm for parameter
|A| and leaves it as an open question whether an FPT algorithm can be obtained. In this
paper we provide an FPT algorithm for STEINER ORIENTATION parameterized by |A|, but
this is somewhat orthogonal to Horsch’s question, as we are not dealing with the maximization
version (which makes our problem easier) but we are also not assuming that all pairs of
vertices have a demand (which makes our problem harder).



T. Hanaka, M. Lampis, N. Melissinos, E. Nemery, H. Ono, and M. Vasilakis

For the approximability, an O(logn)-approximation is presented for undirected graphs [16
This has been improved to a factor O(logn/loglogn) [11], and later to O(log k/ loglog k) [7
For bounded feedback vertex number graphs and bounded treewidth graphs, an O(logn)-
approximation algorithm and an O(log® n)-approximation algorithm are presented [10].

.
.

From the viewpoint of parameterized complexity, Dorn et al. [9] and Roayaei [18] propose
several FPT algorithms for parameters related to terminal pairs.

Regarding the parameterized approximation, Chitnis, Feldmann, and Suchy [4] show that
there is no constant € > 0 such that MAXIMUM STEINER ORIENTATION on planar graphs
admits an (19/20 — €)-approximation? in time f(k)n°). Wtodarczyk [20] shows that there
is no (log k)°M-approximation algorithm for MAXIMUM STEINER ORIENTATION that runs in
FPT time with respect to k assuming FPT # W[1].

2 Preliminaries

We use the standard notations in graph theory. Let G = (V, E, A) be a mixed graph where
V is a set of vertices, F is a set of undirected edges, and A is a set of directed edges. We
denote by {u,v} € E an undirected edge between u and v and by (u,v) € A a directed edge
from u to v.

A mixed graph G is a mized acyclic graph if it has no cycle. Notice that in the context of
mixed graphs a cycle is any sequence of vertices vy, vg, ..., v, with v; = v, such that between
any two consecutive vertices v;, v; 11 the graph contains either the edge {v;, v;+1} or the arc
(vi, vi+1). By definition, the subgraph induced by undirected edges in a mixed acyclic graph
is a forest. Moreover, the graph obtained from a mixed acyclic graph G by contracting all
the undirected edges is a directed acyclic graph. For a vertex subset V/ C V', we denote by
G[V'] = (V',E(V"), A(V")) the subgraph induced by V', where E(V') C E and A(V’) C A.
A mixed path of a mixed graph is a path using both edges and arcs respecting the orientation
of the arcs. For a mixed graph G = (V, E, A), A\(E) denotes an orientation of E and G
denotes the directed graph obtained by the orientation \(E).

Graph parameters. Throughout the paper we will use several structural graph parameters
which will in general refer to the underlying graph of a given mixed graph G. Recall that
the underlying graph is the graph obtained by replacing each arc by an edge with the same
endpoints. The parameters we will mention are treewidth (tw), pathwidth (pw), vertex
integrity (vi), feedback vertex set (fvs), vertex cover (vc), and distance to clique (dtc). For
the definitions of treewidth and pathwidth we refer the reader to [6]; fvs, ve, and dtc denote
the size of the smallest set of vertices whose removal leaves the graph a forest, an independent
set, or a clique respectively; while a graph has vertex integrity at most k if there exists
a set of vertices S whose removal results in a graph where all components have size at
most k — |S|. It is known that four of these parameters form a hierarchy, in the sense that
tw < pw < vi < vc + 1 for all graphs. We note that all these parameters are closed under
vertex deletion and edge contraction, meaning that these operations can only decrease the
parameter value of a graph.

2 Note that in [4] the approximation ratio is defined as the value of the approximate solution divided by
the value of the optimal solution, which results in ratios smaller than 1. In most other works, the ratio
is instead defined as the optimal solution divided by the approximate solution, which gives values larger
than 1.

38:5
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2.1 Preprocessing

We present two basic polynomial-time reduction rules for STEINER ORIENTATION, which
eliminate cycles and degree-1-vertices respectively. Applying these rules will never increase
the values of our parameters, as the rules use edge contractions and vertex deletions, so in the
rest of the paper we will mostly focus on instances where these rules have been exhaustively
applied.

» Proposition 1 ( [19]). Let (G,T) be an instance of STEINER ORIENTATION. Let G’ be
a mized graph obtained from G by contracting all the cycles and T’ be the corresponding
set of terminal pairs. Then (G,T) is a yes-instance if and only if (G',T") is a yes-instance.
Moreover, G’ is a mized acyclic graph and can be computed in polynomial time.

» Proposition 2. Let (G,7T) be an instance of STEINER ORIENTATION. If G has a vertex
v €V of degree 1 in the underlying graph, then we can either correctly conclude that (G,T)
is a no-instance or construct a new instance (G',T") such that G' = G[V \ {v}] and (G, T)
is a yes-instance if and only if (G',T") is a yes-instance.

3 NP-hardness

Our main result in this section is to show that STEINER ORIENTATION remains NP-hard
even on very restricted families of graphs. We focus on restrictions on the structure of the
underlying undirected graph and show that even if the underlying graph is series-parallel
and has vertex-deletion distance 2 to a forest of stars of size at most 4 the problem is still
NP-complete. Note that all series-parallel graphs have treewidth at most 2 [2, Theorem 41]
and are planar [3, Chapter 11.2], while the graph constructed by our reduction has feedback
vertex number 2, pathwidth 3, and vertex integrity 6. Since STEINER ORIENTATION is
polynomial-time solvable when the underlying graph of the input is a tree (as there exists a
unique path between every pair of terminals), our result establishes a sharp dichotomy on the
polynomial-time solvability of STEINER ORIENTATION with respect to the treewidth of the
input graph. Moreover, by slightly modifying our reduction we further obtain NP-hardness
for grid graphs of bounded pathwidth.

» Theorem 3. STEINER ORIENTATION is NP-complete on series-parallel graphs of vertez-
deletion distance 2 to a forest of stars of size at most 4.

Proof. It is easy to see that STEINER ORIENTATION belongs to NP, thus in the rest of the
proof we argue about its NP-hardness. The starting point of our reduction is the MONOTONE
3-SAT problem, which is the variation of 3-SAT where every clause contains at most 3
literals and is monotone, that is, it contains only unnegated or only negated variables. This
variation is well-known to be NP-hard [8,12].

Let ¢ be an instance of MONOTONE 3-SAT, where X = {z1,...,x,} denotes its variables
and C = {c1,...,cn} its clauses. We say that a clause is positive if it consists of only
unnegated variables, and negative if it consists of only negated variables.

We will construct an instance (G, 7T) of STEINER ORIENTATION that is equivalent to ¢.
For each variable x;, introduce vertices ¢;, r; that are connected via an undirected edge. We
further introduce vertices £ and r, as well as the arcs ¢; — ¢ and r; — r, for all i € [n]. Now
let ¢; be a positive clause containing 3 variables, that is, ¢; = x;, V x4, V x4, for distinct
i1,12,13 € [n]. We construct the corresponding clause gadget as depicted in Figure 1. In
Jd

particular, we introduce vertices v;_ , v;,, vfs, all of which have an incoming arc from /¢, as well
J . v?  v) and has an incoming arc

as a vertex ¢; that is connected via undirected edges with v; ,v;_,v;,
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from r. We further introduce the terminal pairs (¢,;), (ril,vgl), (ri2,vf2), (ris,vgs) into T.

We treat positive clauses that contain 2 variables in an analogous way, while the construction
for the negative clauses is entirely symmetric.

(a) Positive clause ¢; = 5, V zi, Vxs,.  (b) Negative clause ¢; = —z4, Vi, Voxg, .

Figure 1 The terminal pairs added during the construction of the clause gadget are denoted by
dashed arcs, apart from (4,¢;) and (r,t;) respectively for the sake of clarity.

This completes the construction of the instance (G, 7T ) of STEINER ORIENTATION. It is
easy to see that G is series-parallel, while G — {¢,r} is a forest whose connected components
are either a K, a Kj 2, or a K 3, thus indeed it holds that fvs(G) = 2, pw(G) = 3, and
vi(G@) = 6. It remains to argue that the instance is equivalent to ¢.

For the forward direction, let o: X — {true,false} be a satisfying assignment for ¢.
Consider the following orientation for the undirected edges of G. If a(x;) = true then we
orient the edge {¢;,r;} as r; — ¢;, otherwise if a(z;) = false then we orient it as £; — r;. As
for the clauses ¢; that contain z; and the edge {vf ,t;}, if ¢; is a positive clause (resp. negative)
then if a(z;) = true we orient it as v] — t; (resp. t; — v!), otherwise if a(x;) = false we
orient it as t; — v? (resp. v/ — t;). It suffices to argue that this orientation satisfies all
terminal pairs in 7.

Let ¢; = x;, V 4, V x4, be a positive clause involving three variables. We will argue that
the described orientation satisfies all terminal pairs introduced due to the clause gadget
of ¢;. Since « is a satisfying assignment for ¢, it holds that there exists i € {iy, 12,13}
such that a(x;) = true. Consequently, the arc vf — t; exists in our orientation, thus the
terminal pair (¢,t;) is satisfied by the directed path ¢ — vf — t;. As for the terminal pair
(74, vg,), where i’ € {i1,1i2,43}, notice that if a(x;/) = true then it is satisfied by the directed
path ryy — £y — £ — vg,, while if a(z;/) = false then it is satisfied by the directed path
Ty =T =t — vg,. The argumentation is similar for positive clauses involving two variables,
and symmetric for negative clauses.

For the converse direction, assume there exists an orientation of G such that all terminal
pairs in 7 are satisfied. Consider the assignment «: X — {true, false} where a(x;) = true if
and only if the edge {¢;,7;} has been oriented as r; — ¢;. We will prove by contradiction that
this is a satisfying assignment for ¢. Let c; = z;, V 3, V 3, be a positive clause involving
three variables, and assume that «(z;) = false for all ¢ € {iy,i2,45}. In that case, for the
terminal pair (r;, ’UZ ) to be satisfied, it follows that the edge {vf ,t;} has been directed as
t; — vf Since this holds for all ¢ € {iy,i2,43}, it contradicts the fact that the terminal
pair (¢,t;) is satisfied by the orientation. The argumentation is similar for positive clauses
involving two variables, and symmetric for negative clauses. <

» Corollary 4. STEINER ORIENTATION is NP-complete on grid graphs of constant pathwidth.

38:7
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4 FPT algorithm by distance to clique

In this section, we give an FPT algorithm parameterized by distance to clique. More precisely,
we consider the case where the underlying undirected graph of the input is at most dtc
vertex deletions away from being a clique. In a sense, this parameterization is the dense
analogue of the parameterization by vertex cover (because a vertex cover of a graph is a
clique modulator of its complement). As usual, we will assume that the set whose removal
leaves the underlying graph a clique is given to us in the input. The main result of this
section is the following.

» Theorem 5. STEINER ORIENTATION can be solved in time 49t¢n@1).

We establish Theorem 5 starting via a series of reduction rules given by the lemmas below.
Throughout we will assume that we are given a set S of dtc vertices such that removing S
from the input graph leaves a mixed graph whose underlying graph is a clique. We will also
assume that, using Proposition 1, the input is a mixed acyclic graph.

» Lemma 6. Let G be a mized acyclic graph and S a set of vertices such that the underlying
graph of G — S is a clique. Then, each vertex in S has at most one undirected edge to V '\ S.

» Lemma 7. In a mized acyclic graph G, let C be a clique in the underlying graph of G.
Then there is no vertex incident to at least two undirected edges in C. In other words, the
set of undirected edges in C' forms a matching.

We can now proceed to the proof of Theorem 5. The high-level idea is that by using our
previous observations the number of undirected edges incident on S is at most 2dtc; we will
therefore enumerate all possible orientations of these edges and check for each orientation
if it can be extended to a feasible solution. The challenge will be in establishing that this
check can be performed in polynomial time.

5 Vertex cover number

In this section we consider STEINER ORIENTATION parameterized by the vertex cover number
ve of the input graph, arguably one of the most restrictive structural parameterizations one
could consider. We first show in Theorem 8 that even in this extremely restrictive setting, the
problem remains intractable and prove its W[1]-hardness. As a matter of fact, our reduction
implies that the problem does not admit any n°<*)_time algorithm under the ETH, and our
next result is in Theorem 10 to present such an optimal algorithm.

5.1 Hardness

» Theorem 8. STEINER ORIENTATION is W/1]-hard parameterized by the vertex cover
number vc of the input graph, and for any computable function f it cannot be solved in time
f(vc)no(VCQ) under the ETH.

Proof. In k-MULTICOLORED CLIQUE we are given a graph G and a partition of V(G) into k
independent sets each of size n, and we are asked to determine whether G contains a k-clique.
It is well-known that k-MULTICOLORED CLIQUE parameterized by k is W[1]-hard and does
not admit any f(k)n°*)-time algorithm, where f is any computable function, unless the ETH
is false [6]. Let (G, k) be an instance of k-MULTICOLORED CLIQUE, where we assume without
loss of generality that v/k € N (one can do so by adding dummy independent sets connected
to all the other vertices of the graph). Recall that we assume that G is given to us partitioned
into k independent sets Vi,. ..V, where V; = {v¢,... v} }. We will construct in polynomial
time an equivalent instance (H,7) of STEINER ORIENTATION, with vc(H) = O(Vk).
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Figure 2 Part of the construction of graph H. Rectangles denote independent sets of size n.

Construction. We first introduce the vertices {{n, £, 7o, 7, : @ € [V/k]} and add the arcs
lo — Uy and rq — 1 forall o, B € [V/E]. For all i € [k], we further introduce the independent
sets X; = {x%,..., 20} and Y; = {y},...,y.}. We fix a bijective function h: [k] — [VE]?
that maps every independent set V; to a distinct pair (a, 8) € [V/k]?, and for all i € [k] with
h(i) = (@, 8)

we add the edge {(,, 2%} for all 2 € Xj,

we add the arc (z},7p) for all 2} € X,

we add the arc (£,,y5) for all y% € Y;,

we add the edge {r},y;} for all y; € V.

This completes the construction of the graph H, and we refer to Figure 2 for an illustration

of a part of it. As for the terminal pairs, we proceed in three steps:

1. We initially add into 7 the pairs (£s,73) and (£,,,77}), for all o, 8 € [VE].

2. Next, for all @ € [k] and j € [n], we add the terminal pair (z},y}) into T, for all
j € [n]\ {j}. We refer to the terminal pairs added in this step as consistency terminal
Pairs.

3. Lastly, for distinct i1,i2 € [k], if {vﬁ , vg} ¢ E(G) we add the terminal pairs
(xéll,yg), (ajzz,yﬁ) into 7, where ji,j2 € [n]. We refer to the terminal pairs added
in this step as edge-checking terminal pairs.

This completes the construction of the instance (H, 7).

It is easy to see that {(,, £/, o, 7, : a € [Vk]} is a vertex cover of H, thus vc(H) =

O(Vk). To complete the proof, we show the following claim.

> Claim 9. The instance (G, k) of k-MULTICOLORED CLIQUE is a yes-instance if and only if
the constructed instance (H,T) of STEINER ORIENTATION is a yes-instance. <
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5.2 XP algorithm

In this section, we give an XP algorithm parameterized by vc with complexity no("cz),

matching our lower bound result.

» Theorem 10. There is an algorithm that solves STEINER ORIENTATION in time nOve®),
Proof. First we note that contracting all mixed cycles as in Proposition 1 does not increase
the size of a minimal vertex cover, so we can suppose that our graph is mixed acyclic.

Let G be a graph of vertex cover number vc. Let S C V be a vertex cover G of size vc.
It can be computed in time 2°(v®) [13]. First we guess the orientation of the edges of G[S].
There are 20(v¢*) possibilities. Then, for all pairs (u,v) € S?, we guess if there is, in the final
solution, an oriented path u — w — v with w € V'\ S; if we guessed there is at least one, we
guess one such w, and orient its edges in consequence. There are nOve?) possibilities. As
we will see in Claim 12, after this guessing phase, as S is a vertex cover, the connectivity of
S in any solution respecting the guesses is already decided. This will allow us to check the
existence of such a solution in polynomial time.

> Claim 11. Let w € V'\ S, u,v € S such that at the end of the guessing steps, there are two
undirected edges {u, w} and {v,w}. In any feasible solution respecting the guesses, either
we orient them both from w to u,v or from u,v to w.

The above claim shows that for any w € V' \ S, after the guessing steps, either all of its
undirected edges must be oriented from w to S or from S to w.

> Claim 12. Let u,v € V; in any solution respecting the guesses, if there is a path from
to v, then there is one that only uses already oriented edges after the guessing steps, except
possibly for the first one if u € V'\ S, and the last one if v € V' \ S.

This claim shows us that after the guessing steps, for any (s;,t;) pair of terminals that is
not already satisfied, the only way to satisfy them while respecting the guessing steps is to
orient the edges of s; and t;.

We now argue that there exists a demand pair (s;,?;) which should be treated “first”. To
see this, consider an auxiliary directed graph which has a vertex for each demand pair, and
an arc from (s;,%;) to (sj,t;) when s; = t;. If this auxiliary graph contains a directed cycle,
this implies that the original instance must be oriented in a way that creates a directed cycle,
but since we assumed that G is mixed acyclic, this is impossible. Hence, the interesting case
is when the auxiliary graph is a DAG, therefore there exists a demand pair (s;,¢;) such that
for all other demands (s;,t;) we have, t; # s;

We can apply the following method: take such a pair (s;, ;) (as described in the previous
paragraph). If s; € V'\ S, then orient all undirected edges between s; and S from s; to S.
If the demand (s;,t;) is now satisfied, that is, there is a path from s; to t; using arcs and
oriented edges, we remove this demand.

If (si,t;) is still unsatisfied, if ¢; € V'\ S, then orient all undirected edges between ¢; and
S from S to t;.

We have now handled the demand (s;, t;): if it is satisfied after the steps above, we remove
it from the instance and continue with the remaining demands; otherwise this demand cannot
be satisfied and we reject. We eat this method until there are no unsatisfied terminals.

This method is correct: indeed, from Claim 12, after the guessing steps, the satisfaction
of (s;,t;) only depends on the orientation of the undirected edges incident on {s;,;} \ S.
Furthermore, from the same claim, if s; € V'\ S, in any feasible solution, its undirected edges
will only be used to satisfy pairs of terminals that contain s;. But our choice of terminals
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ensures that for any such pair (sj,t;), s; # tj, so s; = s;. So in a feasible solution respecting
the guessing steps, if an undirected edge of s; is used to satisfy such a pair, it will be oriented
from s; to S, so it was safe to select this orientation. For the second step, if (s;,¢;) is still
not satisfied, then from Claim 12, the only way to satisfy it while respecting the guessing
steps is, if t; € V'\ S, to direct one undirected edge between ¢; and S from S to ¢;. But from

Claim 11, they all have the same orientation, so it was safe to orient all of them from S to ¢;.

If (s;,t;) is still unsatisfied after these steps, then, from Claim 12, there is no way to satisfy
those terminals while respecting the guessing steps.

The above method can be applied in time n®®), and must be applied at most n? times.

(ve?)

In the end, we have an algorithm of complexity n® <

6 Parameterized by Number of Edges or Arcs

Arguably one of the most natural ways to structurally parameterize STEINER ORIENTATION is

to consider either the number of undirected edges |E| or the number of arcs |A| as a parameter.

Our goal in this section is to investigate the complexities of these two parameterizations.

We begin with the parameterization by |E|, which is trivially FPT: one can simply guess
the orientation of each edge and then check if this gives a valid solution. The complexity
is therefore 2/€1n®M) | Qur contribution is to observe that this trivial algorithm is perhaps
optimal, as if one could obtain an algorithm of complexity (2 — £)!/FIn®®) | then the Strong
Exponential Time Hypothesis (SETH) would be false. Recall that, informally, the SETH
states that there is no algorithm for SAT running faster than the 2" brute-force algorithm
enumerating all assignments. We show the lower bound by reusing a simple reduction from
SAT which appeared in [1].

» Theorem 13. If there exists an € > 0 such that STEINER ORIENTATION can be solved
in time (2 — )!FIn®W) | then the satisfiability of a CNF formula ¢ with n variables can be
decided in time (2 —£)"|p|°M), hence the SETH is false.

The main result of this section is then to establish that the parameterization by |A|
also gives a fixed-parameter tractable problem, and indeed that we are again able to obtain
a single-exponential parameter dependence. This parameterization is significantly more
challenging, so we will need to rely on structural properties obtained by any graph where
|A| is small after we apply some simple reduction rules. The main result we obtain is stated
below.

» Theorem 14. STEINER ORIENTATION admits a 2°UADnOW) algorithm.

Our high-level strategy will be made up of two parts. First, we define a (very) restricted
special case of STEINER ORIENTATION, where, notably, all undirected components are paths
(and we have some additional restrictions). With those severe restrictions, this case becomes
simpler. In particular, we will show that it admits an polynomial algorithm, via a reduction
to 2-SAT. Second, we will show how a branching procedure can reduce any initial instance
into a collection of at most 26141 = 644! instances of the restricted problem. The result will
then follow by composing the two algorithms. In order to ease presentation, we start with
the algorithm for the restricted case in Section 6.1 and then give the algorithm for parameter
|A] in Section 6.2.

6.1 A Restricted Case

We define a restricted case of STEINER ORIENTATION as follows:
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» Definition 15. An instance G = (V, E, A) of STEINER ORIENTATION is called restricted
if we have the following: all vertices v € V' of mized degree at least 3 are not incident on any
unoriented edges, only arcs.

Intuitively, a restricted instance which is also mixed acyclic is an instance where each
non-trivial undirected component is a path (because the maximum degree induced by E is
2 and we have no cycles), the internal vertices of each such path have no arcs connecting
them to the outside, and furthermore each endpoint of such path has only one arc. In the
following, we will show that these restricted instances are polynomial time solvable.

Our strategy to handle restricted instances of STEINER ORIENTATION will be the following;:
first, we simplify our instance by making several observations allowing us to orient several
edges deterministically. Then, we encode the obtained instance as a 2-SAT formula, by
defining for each terminal in an undirected path a variable which encodes whether this vertex
can reach (or be reached by) one endpoint of its path or the other in the final solution, and
verifying that each terminal pair is satisfied.

» Lemma 16. There is an algorithm that takes a restricted STEINER ORIENTATION instance

G = (V,E, A) that is mized acyclic and decides if a solution exists in time n®W).

6.2 FPT algorithm by Number of Arcs

Proof of Theorem 14. We begin by applying Proposition 1 and Proposition 2 exhaustively.
This does not increase |A|, so we can assume that the input is mixed acyclic and has no
vertices of degree at most 1. Our algorithm is now the following: take all vertices of mixed
degree 3 or more, and for each possible orientation of their edges, create a new instance. We
claim that we obtain at most 2614l restricted instances, such that at least one of them will
have a solution if and only if the original instance did.

First, we argue that if we perform this branching on all vertices of mixed degree 3 or
more, we obtain an instance conforming to Definition 15. Indeed, after the orientation, all
vertices of mixed degree 3 are not incident on any unoriented edges, only arcs.

In order to bound the number of instances, let us count the number of edges to orient.
We will need the following lemma:

> Claim 17. Let T'= (V, E) be an undirected forest, V3 C V be the set of vertices of degree
at least 3 in T" and V3 C V the set of vertices of degree 1. Then, > d(v) < 3|V

Armed with this claim, let us continue: take T' C G[E] composed of the non-trivial
connected components of G[E]. As G is mixed acyclic, it is a forest. Furthermore, as G does
not contain any leaf, each leaf of T" has at least one arc. Let Vj be the set of leaves of T" with a
unique arc, V7 be the set of leaves of T with two arcs or more, V5 the set of vertices with two
edges and at least one arc, and V3 the set of vertices with at least 3 edges. We need to orient
the unoriented edges of Vi, V2 and V3, which make V1| + 2[Va| + > v, d(v) edges. But, as
each arc has only two endpoints, |Vy| 4+ 2|V1| + |Va| < 2]4|. And, from the previous claim,
> vev, AW) < 3(IVo| + [Va]). Therefore, [Vi| +2[Va| + 3 oy, d(v) < 3[Vo| + 4[Vi] +2[V2| <
3(|Vo| 4 2|Vi| + |Va]) < 6]A]:, so we need to orient at most 6| A| edges, thus obtaining at most
26141 restricted instances. <

veEV3

7 Kernelization

In this section we show that any instance (G,7T) of STEINER ORIENTATION admits a
polynomial kernel with respect to parameter vc 4 k, where vc is the size of a minimum vertex
cover of G and k is the number of terminal pairs.



T. Hanaka, M. Lampis, N. Melissinos, E. Nemery, H. Ono, and M. Vasilakis

In particular we will prove that:

» Theorem 18. STEINER ORIENTATION admits a kernel of order O(vc? + k), where vc is
the size of the minimum vertex cover of G and k is the number of terminal pairs.

The high-level idea is that in the final kernel we will keep (i) the vertices of the vertex
cover (which are O(vc)) (ii) all terminals (which are O(k)) (iii) O(vc?) additional vertices
from the independent set. Similarly to the XP algorithm for parameter vertex cover, we
use the idea that once we have fixed all paths of length at most 2 between vertices of the
vertex cover, this is sufficient to fully determine connectivity in the graph. Therefore, at most
O(vc?) vertices from the independent set are needed to form the solution. The challenge
is then to identify a set of that size which is always sufficient and we achieve this via a
reduction to MAXIMUM MATCHING.

8 FPT by Treewidth plus Number of Terminals

Our goal in this section is to show that even though STEINER ORIENTATION is NP-hard
for graphs of constant treewidth and also W[1]-complete parameterized by the number of
terminals k, it is in fact FPT when parameterized by the two parameters together. In order
to ease presentation we will avoid giving an argument based on a dynamic programming
algorithm and will prefer to instead rely on Courcelle’s theorem [5]. This will of course have
the disadvantage that we obtain an algorithm with running time of the form f(tw,k)n®®),
where the function f is not explicitly bounded (and could be a tower of exponentials). This
is sufficient for our purpose of classifying the complexity of this case as FPT, but we leave
it as an interesting open problem to determine the best parameter dependence f one can
achieve. We in fact establish the following slightly stronger claim:

» Theorem 19. STEINER ORIENTATION is FPT parameterized by the treewidth of the
augmented underlying graph, that is, the treewidth of the graph obtained by taking the
underlying graph of the input and adding for each terminal pair (s;,t;) the edge s;t; to the
graph.

We observe that Theorem 19 implies that STEINER ORIENTATION is FPT parameterized
by treewidth plus k (the number of terminals), because adding the extra edges to the
underlying graph can increase its treewidth by at most k.

9 Conclusion

Even though we have characterized the complexity of STEINER ORIENTATION for all possible
values of treewidth (the only polynomial case is when the input is a forest), our NP-
completeness only applies for graphs of pathwidth 3: is the problem in P or NP-complete for
graphs of pathwidth 2. A similar question can be asked for feedback vertex set, where we
show hardness when the feedback vertex set has size at least 2: does the problem become
tractable on graphs which are one vertex away from being forests? On the parameterized
complexity side, even though we obtain a 2°U0ADROM) algorithm, the base in the exponential
is large (64), so improving this is a natural question.
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