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Abstract
In reconfiguration problems, we are given two feasible solutions to a graph problem and asked
whether one can be transformed into the other via a sequence of feasible intermediate solutions
under a given reconfiguration rule. While earlier work focused on modifying a single element at a
time, recent studies have started examining how different rules impact computational complexity.

Motivated by recent progress, we study Independent Set Reconfiguration (ISR) and
Vertex Cover Reconfiguration (VCR) under the k-Token Jumping (k-TJ) and k-Token Sliding
(k-TS) models. In k-TJ, up to k vertices may be replaced, while k-TS additionally requires a perfect
matching between removed and added vertices. It is known that the complexity of ISR crucially
depends on k, ranging from PSPACE-complete and NP-complete to polynomial-time solvable.

In this paper, we further explore the gradient of computational complexity of the problems. We
first show that ISR under k-TJ with k = |I|−µ remains NP-hard when µ is any fixed positive integer
and the input graph is restricted to graphs of maximum degree 3 or planar graphs of maximum
degree 4, where |I| is the size of feasible solutions. In addition, we prove that the problem belongs
to NP not only for µ = O(1) but also for µ = O(log |I|). In contrast, we show that VCR under k-TJ
is in XP when parameterized by µ = |S| − k, where |S| is the size of feasible solutions. Furthermore,
we establish the PSPACE-completeness of ISR and VCR under both k-TJ and k-TS on several graph
classes, for fixed k as well as superconstant k relative to the size of feasible solutions.
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1 Introduction

Reconfiguration problems ask whether it is possible to reach a target state from an initial
state by gradually transforming one feasible solution into another, where each intermediate
solution must also be feasible. At each step, the current solution can be changed to an
“adjacent” one, as defined by a given restriction known as a reconfiguration rule. One
of the most well-known examples is the 15-puzzle, where the rule permits sliding a tile
into an adjacent empty space. Reconfiguration problems have been extensively studied in
the context of classical graph problems involving feasible solutions such as independent
sets [3, 4, 6, 7, 11, 18, 20, 23, 27], cliques [22], vertex covers [29], dominating sets [16, 36],
and so on (see surveys [31, 38]). Three standard reconfiguration models have been widely
studied in the literature: token jumping (TJ) [20, 23], token sliding (TS) [3, 6, 18, 20], and
token addition/removal (TAR) [20, 23] models. In the TJ model, one can simultaneously
remove any vertex from the current solution and add any vertex outside it. The TS model is
a restricted version of TJ, where the removed vertex and the added vertex must be adjacent.
In the TAR model, vertices can be added or removed as long as the resulting set remains
above (or below) a specified size threshold.

Reconfiguration problems on graphs under those rules have attracted attention in the-
oretical computer science, and the computational complexity of such problems has been
settled [20, 23, 30, 40]. Besides, the field of reconfiguration problems is in the course of trying
to apply the theoretical viewpoint to functional implementation for practical use [9, 21, 37, 41].

However, one may find that, in practical scenarios, conventional rules such as changing
one element at a time may be too restrictive. For example, reconfiguring a monitoring
system or an infrastructure network often requires multiple simultaneous changes due to
physical or operational constraints. Even if the system cannot be reconfigured under standard
one-element rules, in practice, it is unjustified to conclude that it is “unreachable.” More
flexible reconfiguration processes – such as those allowing multiple simultaneous changes –
more accurately reflect the feasibility of real-world systems.

Motivated by recent progress and aiming to address the emerging issues, several studies
have begun to analyze the computational complexity of reconfiguration problems under
extended reconfiguration rules [10, 12, 17, 26, 35].

We study the reconfiguration problem under the extended rules, k-Token Jumping (k-TJ)
and k-Token Sliding (k-TS) [10, 35], which allow the simultaneous exchange of up to k

vertices.

1.1 Our Problems
In this paper, all graphs are simple and undirected. For two sets A and B, the set difference
A\B is {x ∈ A : x /∈ B}, and A△B denotes the symmetric difference between A and B, that
is, (A \ B) ∪ (B \ A). For two vertex subsets A and B of a graph G with |A| = |B|, we say
that they are adjacent under k-Token Jumping (k-TJ) if |A △ B| ≤ 2k. On the other hand,
they are said to be adjacent under k-Token Sliding (k-TS) if |A △ B| ≤ 2k and there exists a
perfect matching between A \ B and B \ A in the graph G. Intuitively, the transformation
from A to B can be seen as moving tokens placed on the vertices in the symmetric difference
A △ B. Under k-TJ, up to k tokens can be moved simultaneously to any vertices in G. In
contrast, under k-TS, up to k tokens can be moved simultaneously along the edges of G.
Note that 1-TJ and 1-TS coincide with TJ and TS, respectively.

Independent Set and Vertex Cover are NP-complete problems [15] that are thor-
oughly explored in graph theory. We define their reconfiguration variants, that is, Inde-
pendent Set Reconfiguration (ISR) and Vertex Cover Reconfiguration (VCR).
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Recall that a set of vertices in a graph G is called an independent set if no two vertices in
the set are adjacent in G, and a vertex cover if every edge in G has at least one endpoint in
the set.

In the Independent Set Reconfiguration problem, we are given a graph G, two
independent sets I and J of G (representing the “initial” and “target” configurations of
tokens, respectively) such that |I| = |J |, and a reconfiguration rule R ∈ {k-TJ, k-TS}. Then,
the problem asks whether there exists a sequence σ = ⟨I = I0, I1, . . . , Iℓ = J⟩ of independent
sets of G, where any two consecutive independent sets in σ are adjacent under R. Similarly,
in Vertex Cover Reconfiguration, we are given a graph G, two vertex covers S and
T of G (representing the “initial” and “target” configurations of tokens, respectively) such
that |S| = |T |, and a reconfiguration rule R ∈ {k-TJ, k-TS}. Then, the problem asks whether
there exists a sequence σ = ⟨S = S0, S1, . . . , Sℓ = T ⟩ of vertex covers of G, where any two
consecutive vertex covers in σ are adjacent under R. In each problem, we refer to such
a sequence of independent sets or vertex covers as a reconfiguration sequence, where ℓ is
the length of the reconfiguration sequence. Furthermore, we say that two vertex sets are
reconfigurable under R if there exists a reconfiguration sequence between them under R.
Formally, the two problems are defined as follows.

Problem Independent Set Reconfiguration (ISR)
Input A simple undirected graph G, two independent sets I and J of G with the same size,

and a reconfiguration rule R ∈ {k-TJ, k-TS}.
Output Are I and J reconfigurable under R?

Problem Vertex Cover Reconfiguration (VCR)
Input A simple undirected graph G, two vertex covers S and T of G with the same size, and

a reconfiguration rule R ∈ {k-TJ, k-TS}.
Output Are S and T reconfigurable under R?

Related work. ISR under TJ and TS is PSPACE-complete even for planar graphs of
maximum degree 3 and bounded bandwidth [18, 39, 40], and perfect graphs [23]. Under TJ,
it is known that any two independent sets of an even-hole-free graph are reconfigurable [23].
Under TS, the problem remains PSPACE-complete for split graphs [3], while it can be solved
in polynomial time for interval graphs [4]. For claw-free graphs, ISR under both TJ and TS
can be solved in polynomial time [6]. For bipartite graphs, interestingly, ISR is NP-complete
under TJ, while PSPACE-complete under TS [27]. Note that ISR and VCR under TJ
and TS are essentially equivalent due to their complementary relationship; therefore, their
computational complexities coincide.

In [35], several results are presented for ISR under the k-TJ and k-TS rules. The paper
shows that ISR under both k-TJ and k-TS is PSPACE-complete on perfect graphs for any
fixed integer k ≥ 2. Furthermore, k-TS and TS are essentially equivalent on even-hole-free
graphs [35]. As a result, the computational complexity of ISR under k-TS on several graph
classes contained within the class of even-hole-free graphs follows from the results under TS.

Křišťan et al. studied several reconfiguration problems, including ISR and VCR, under
the (k, d)-Token Jumping model [26]. In this model, k tokens can move simultaneously, and
each token can travel within a distance of d. The (k, d)-Token Jumping model may appear to
generalize the reconfiguration rules k-TJ and k-TS; however, the settings are slightly different.
The (k, d)-Token Jumping model is defined by a bijection between the current configuration
and the next configuration. Consequently, a token can move to a vertex currently occupied
by another token, as long as the latter token moves to a different vertex in the same step. In
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contrast, the definitions of k-TJ and k-TS are based on the symmetric difference between
configurations. In these models, a token is prohibited from moving to a vertex that is
currently occupied by another token. Although both the (k, d)-Token Jumping model and
k-TJ (resp. k-TS) are natural generalizations of TJ (resp. TS), the difference between them
significantly impacts the computational complexity of problems. In fact, for the number t of
tokens, VCR under the (t, 1)-Token Jumping model can be solved in polynomial time [26],
while VCR under the k-TS is PSPACE-complete when k = t [35].

1.2 Our Contribution
We research the computational complexity of ISR and VCR under k-TJ and k-TS. An
overview of our results is provided in Tables 1 and 2. The numbering of theorems follows the
system starting from Section 3. Therefore, in this section, note that the numbering does not
begin consecutively.

The results when parameterized by the guaranteed value

We first investigate the complexity of ISR under k-TJ when k is defined as |I| − µ, where
I is the initial independent set of an ISR instance and µ is a parameter referred to as the
guaranteed value [28]. This parameter measures how far the instance is from the trivial
case: when µ = 0 (that is, k = |I|), ISR under k-TJ becomes trivial, as all vertices in the
independent set can be replaced simultaneously. Hence, we are interested in the computational
complexity of the problem when µ is small. It was shown in [35] that even for any fixed
positive integer µ, ISR under k-TJ is NP-complete when k = |I| − µ. However, the reduction
presented in [35] introduces a large number of edges. From a practical standpoint, it is
particularly important to understand the computational complexity of the problem on sparse
graphs, such as planar graphs or graphs with bounded degree.

To answer this question, we present NP-hardness results for these sparse classes.

▶ Theorem 2. Let µ be any fixed positive integer. ISR under k-TJ is NP-hard for graphs G

of maximum degree 3 when k = |I| − µ ≥ 1, where I is an initial independent set of G.

▶ Theorem 3. Let µ be any fixed positive integer. ISR under k-TJ is NP-hard for planar
graphs G of maximum degree 4 when k = |I| − µ ≥ 1, where I is an initial independent set
of G.

Here, let us explain the main obstacle in the proofs of these theorems. Consider the case
where µ = 1. If the initial and target independent sets I and J satisfy |I ∩ J | ≥ 1, then the
reconfiguration is trivial. Hence, to ensure that the instance is non-trivial, it is essential
to construct I and J so that I ∩ J = ∅. A common approach used in existing research
is to employ a complete bipartite graph; however, this prevents the resulting graph from
being sparse. A more delicate reduction is required to preserve the sparsity of the graph.
As a key step toward this goal, we introduce a new variant of Exactly 3-SAT, which we
call Internal Exactly 3-SAT, and show that it is NP-complete. In this variant, the
input is a 3-CNF formula that is promised to be satisfiable under both the all-true and
all-false assignments. The goal is to determine whether there exists a mixed satisfying
assignment, that is, a satisfying assignment that is neither all-true nor all-false. We convert
the all-true and all-false assignments to the initial and target independent sets, respectively.
The existence of a mixed satisfying assignment corresponds to the reconfigurability from I

to J via an independent set I ′ such that |I ′ ∩ I| ≥ 1 and |I ′ ∩ J | ≥ 1.
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Table 1 The complexity of ISR under k-TJ for various graph classes and values of k. Here, I

denotes an initial independent set, and ∆, bw, and cw denote the maximum degree, bandwidth, and
clique-width, respectively, of a given n-vertex graph. Let ε0 ∈ (0, 1) be a fixed constant.

k-TJ
any const. k = |I| − µ

k = 1 (TJ) k ≥ 2 any k ≤ ε0|I| µ = O(log |I|) any const. µ > 0 k = |I|
general PSPACE-c. PSPACE-c. open (in NP?) NP-c. [35] trivially
bounded ∆ PSPACE-c. PSPACE-c. [Theorem 9] NP-c. always
∆ = 3 [18, 39, 40] [Theorem 7] [Theorem 2] yes
planar ∩
∆ = o( n

log n )
NP-h. [Theorem 3]

[Theorem 4]
planar ∩ ∆ = 4
planar ∩ ∆ = 3 open open (NP-hard?)
planar ∩ ∆ = 3 XP
∩ bounded bw parameterized
bounded cw by µ = |I| − k

perfect PSPACE-c. [23] PSPACE-c. [35] [35]
bipartite NP-c. [27] open
claw-free P [6, 23] PSPACE-c. (k = 2)
line [Theorem 8]
even-hole-free always yes [23]

We next demonstrate that ISR under k-TJ with k = |I| − µ belongs to NP even when
µ = O(log |I|) for some graph classes. Since many reconfiguration problems are PSPACE-
complete due to the potentially super-polynomial length of reconfiguration sequences, showing
that a reconfiguration problem belongs to NP is non-trivial. It is known that ISR under
k-TJ with k = |I| − µ is in NP when µ is constant [35]. We strengthen this result by proving
NP-membership for specific graph classes under the condition µ = O(log |I|).

▶ Theorem 4. Let G be an input graph with n vertices, chromatic number O(1) and maximum
degree o( n

log n ), and let I be an initial independent set of G. ISR under k-TJ is in NP when
k = |I| − µ ≥ 1 with any non-negative integer µ at most O(log |I|).

In the proof of Theorem 4, we utilize the concept of an intersecting family of a set [13], which
has been extensively studied in the field of extremal set theory. Based on this concept, we
derive an upper bound on the length of the reconfiguration sequence.

Here, the following Theorem 6 constitutes another main result of our work.

▶ Theorem 6. VCR under k-TJ is in XP for general graphs G when parameterized by
µ = |S| − k ≥ 0, where S is an initial vertex cover of G.

Recall that in any graph G, a vertex cover and an independent set are complementary: the
complement of a vertex cover of G is an independent set of G. Thus, ISR and VCR are
generally considered equivalent problems. However, our result for VCR in Theorem 6 stands
in sharp contrast to the known results for ISR (see also Table 2). In the proof of Theorem 6,
we design an XP algorithm based on a clique-compressed reconfiguration graph [35].

The results when k is constant

We establish the PSPACE-completeness of ISR for fixed k on several graph classes.

▶ Theorem 7. Let k ≥ 2 be any fixed positive integer. ISR under R ∈ {k-TS, k-TJ} is
PSPACE-complete for planar graphs of maximum degree 3 and bounded bandwidth.

ISAAC 2025
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Table 2 Comparison between the complexity of ISR and VCR under k-TJ on general graphs
and graphs of maximum degree 3. The vertex subset A of the input graph represents the initial
solution for both ISR and VCR. Specifically, A is the input independent set for ISR, and the input
vertex cover for VCR. Let ε0 ∈ (0, 1) be some constant.

any k ≤ ε0|A|
k = |A| − µ

problems graph classes µ = O(log |A|) any fixed µ ≥ 1

ISR general PSPACE-c. open (in NP?) NP-c. [35]
maximum degree 3 [Theorem 9] NP-c. [Theorem 2, Theorem 4]

VCR general PSPACE-c. XP [Theorem 6]
maximum degree 3 [Theorem 12] parameterized by µ = |A| − k

Together with known results for the case k = 1 [18, 39, 40], our findings provide a complete
characterization of the PSPACE-completeness of ISR under k-TJ and k-TS for every fixed
positive integer k and planar graphs of maximum degree 3 and bounded bandwidth.

We further demonstrate the following Theorem 8.

▶ Theorem 8. ISR under R ∈ {2-TJ, 2-TS} is PSPACE-complete for line graphs.

This result stands in sharp contrast to the polynomial-time solvability of ISR under TJ and
TS on claw-free graphs [6], which include line graphs as a special case.

The results when k is superconstant

We investigate the complexity of ISR under k-TJ when k is superconstant in the initial
independent set size |I|. To this end, we construct a polynomial-time reduction from
the “optimization variant” called MaxminISR to ISR. By using the PSPACE-hardness of
approximating MaxminISR [19, 24, 32], we prove that ISR under k-TJ is PSPACE-complete
on graphs of maximum degree 3 for a wide range of values of k, including k = O(1), Θ(log |I|),
Θ(|I|O(1)), and Θ(|I|).

In particular, we show the following Theorem 9.

▶ Theorem 9. There exists some constant ε0 ∈ (0, 1) such that ISR under k-TJ on graphs
of maximum degree 3 is PSPACE-complete for any k satisfying the following condition:
there exists a constant c such that k ≤ ε0|I| holds whenever |I| ≥ c, where I is the initial
independent set of the input graph.

We show that a similar result holds for VCR.

▶ Theorem 12. There exists some constant ε0 ∈ (0, 1) such that VCR under k-TJ on graphs
of maximum degree 3 is PSPACE-complete for any k satisfying the following condition: there
exists a constant c such that k ≤ ε0|S| holds whenever |S| ≥ c, where S is the initial vertex
cover of the input graph.

Outline. The remainder of this paper is organized as follows. We begin with preliminaries
in Section 2. In Section 3, we study the problems ISR and VCR under k-TJ, focusing on
the guaranteed value µ. In Section 4, we demonstrate the PSPACE-completeness of these
problems when k is fixed. Finally, in Section 5, we analyze the case where k is superconstant.
Due to the space limitation, proofs marked ∗ are omitted and can be found in the full version
of this paper.
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2 Preliminaries

For a positive integer i, we write [i] = {1, 2, . . . , i}. Let G = (V, E) be a finite, simple, and
undirected graph with the vertex set V and the edge set E. We use V (G) and E(G) to
denote the vertex set and the edge set of G, respectively. For a vertex v of G, NG(v) and
NG[v] denote the open neighborhood and the closed neighborhood of v, respectively, that is,
NG(v) = {u ∈ V (G) : uv ∈ E(G)} and NG[v] = NG(v) ∪ {v}. For a vertex set X ⊆ V (G), we
define NG(X) = {v ∈ V (G) \ X : uv ∈ E(G), u ∈ X} and NG[X] = NG(X) ∪ X. A subgraph
of G is a graph G′ such that V (G′) ⊆ V (G) and E(G′) ⊆ E(G). For a subset S ⊆ V (G),
G[S] denotes the subgraph induced by S. The degree of a vertex v in a graph G is the number
of edges incident to v. The maximum degree of G is the largest degree among all vertices in
G. A sequence ⟨v0, v1, . . . , vℓ⟩G of vertices of a graph G, where vi−1vi ∈ E for each i ∈ [ℓ], is
called a path if all the vertices are distinct. It is called a cycle if v0, v1, . . . , vℓ−1 are distinct
and v0 = vℓ. The value ℓ is referred to as the length of the path or cycle. A graph G is said to
be connected if there exists a path between u and v for any pair of vertices u, v ∈ V (G). The
chromatic number of G is the smallest positive integer c such that G has a c-coloring, where
a c-coloring of a graph G is a mapping f : V (G) → [c] such that f(u) ̸= f(v) if uv ∈ E(G).
The bandwidth of a graph G = (V, E) is the minimum integer b such that there exists a
bijection f : V → {1, . . . , |V |} satisfying |f(u) − f(v)| ≤ b for every edge uv ∈ E(G).

We conclude this section with the following simple remark. We can observe that the
problems ISR and VCR can be solved in nondeterministic polynomial space. Thus, by
applying Savitch’s Theorem [34], these problems are in PSPACE. Consequently, to establish
PSPACE-completeness of ISR and VCR, it suffices to prove PSPACE-hardness.

3 When Parameterized by a Guaranteed Value

In this section, we discuss ISR and VCR under k-TJ, focusing on the guaranteed value.

3.1 ISR

We investigate the NP-completeness of ISR under k-TJ when k = |I| − µ, where I is the
initial independent set of an ISR instance, and µ is a parameter called the guaranteed value.
Hereafter, we use I to denote the initial independent set of an ISR instance. For any fixed
positive integer µ, it is known that ISR under k-TJ is NP-complete when k = |I| − µ [35]. In
Section 3.1.1, we show that ISR under k-TJ remains NP-hard even when the input graph is
restricted to graphs of maximum degree 3, or to planar graphs of maximum degree 4, where
k = |I| − µ for any fixed positive integer µ. Then, in Section 3.1.2, we prove that the problem
remains in NP even when µ = O(log |I|) and an input graph is a graph of bounded chromatic
number and maximum degree o( n

log n ), where n is the number of vertices in the input graph.

3.1.1 NP-hardness

We show the NP-hardness of ISR under k-TJ for graphs of maximum degree 3 and planar
graphs of maximum degree 4 when k = |I| − µ with any fixed positive integer µ. To this
end, we construct a chain of reductions. As a source problem of our reduction, we will
use Exactly 3-SAT (E3-SAT for short), which is NP-complete [15]. Firstly, E3-SAT is
reduced to Internal Exactly 3-SAT (IntE3-SAT for short), a new variant of E3-SAT
(to the best of our knowledge). Afterward, IntE3-SAT is reduced to our problem.
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Figure 1 Illustration of the construction of G from a Boolean formula ϕ′ used in the proof of
Theorem 2, where ϕ′ = (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4). The blue marked tokens are
on I, and the red marked tokens are on J .

Here, let us define E3-SAT and IntE3-SAT. Let ϕ = C1 ∧ C2 ∧ · · · ∧ Cm be a Boolean
formula in conjunctive normal form (CNF), and X = {x1, . . . , xn} be the variable set of ϕ.
Each clause Ci for i ∈ [m] in ϕ is a disjunction of literals and each literal appears as either
a positive form xj or a negative form xj for a variable xj ∈ X. A variable assignment is a
mapping b : X → {T, F}. We say that a variable assignment satisfies ϕ if ϕ evaluates to T .
A CNF formula ϕ is called an Ek-CNF formula if any clause in ϕ consists of exactly k literals.
Given an E3-CNF formula ϕ, E3-SAT asks whether there exists a variable assignment that
satisfies ϕ.

A variable assignment b is called an all-T assignment if b(x) = T for all x ∈ X, and
an all-F assignment if b(x) = F for all x ∈ X. Otherwise, it is called mixed. An Ek-CNF
formula ϕ is called sandwiched if all-T and all-F assignments satisfy ϕ. In other words, any
clause of a sandwiched Ek-CNF formula ϕ contains both positive and negative literals. Given
a sandwiched Ek-CNF formula ϕ, IntEk-SAT asks whether there exists a mixed variable
assignment that satisfies ϕ. We first show that IntE3-SAT is NP-complete by reducing
E3-SAT.

▶ Lemma 1. IntE3-SAT is NP-complete.

For the proof, refer to Section 3.1.1.1. By the polynomial-time reduction from IntE3-SAT,
we prove the following Theorem 2.

▶ Theorem 2. Let µ be any fixed positive integer. ISR under k-TJ is NP-hard for graphs G

of maximum degree 3 when k = |I| − µ ≥ 1, where I is an initial independent set of G.

Proof. We use a polynomial-time reduction from IntE3-SAT. Let ϕ′ be an instance of
IntE3-SAT and X ′ be the set of variables of ϕ′. We will construct an instance (G, I, J, k-TJ)
of ISR under k-TJ where k = |I| − 1 (see Figure 1 for an illustration), and then modify for
any fixed µ ≥ 1.

For each variable x ∈ X ′, let ax denote the number of clauses of ϕ′ in which x appears as
a literal. For each variable x ∈ X ′, we set up a variable gadget Yx, which is defined as a cycle
with 2ax vertices (note that if x appears only once, then Yx is a path with two vertices).
The vertices in Yx are labeled with t1

x, f1
x , t2

x, f2
x , . . . , tax

x , fax
x in a counterclockwise order.

Intuitively, ti
x and f i

x for each i ∈ [ax] correspond to T and F assignments for x, respectively.
We refer to a vertex of Yx corresponding to T (resp. F ) assignment to x as a true vertex
(resp. false vertex). For each clause C, we set up a clause gadget KC , which is defined as
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a complete graph with three vertices. The vertices in KC correspond to the three literals
in C. We refer to a vertex of KC corresponding to a positive literal (resp. negative literal)
of C as a positive vertex (resp. negative vertex). Finally, we connect variable gadgets and
clause gadgets with edges as follows: For a vertex v in a clause gadget corresponding to a
literal l of a variable x with occurrence i ∈ [ax], connect v to ti

x if the literal is negative;
otherwise, connect v to f i

x. Let G be the obtained graph. Observe that G is a graph of
maximum degree 3. Let I be a set of all false vertices in variable gadgets and a negative
vertex arbitrarily chosen from each clause gadget. Let J be a set of all true vertices in
variable gadgets and a positive vertex arbitrarily chosen from each clause gadget. Note that
such I and J always exist as each clause has both positive and negative literals due to the
definition of IntE3-SAT. Finally, we set k = |I| − 1.

If µ ≥ 2, then we also add µ − 1 isolated vertices to G. Let V ∗ be the set of all
added vertices. Then let G∗ be an obtained graph, I∗ = I ∪ V ∗, and J∗ = J ∪ V ∗. We
also set k = |I∗| − µ. Note that I is a maximum independent set of G and thus any
independent set with size |I∗| = |I| + |V ∗| of G∗ contains V ∗. This allows us to move at
most k = |I∗| − µ = |I| + |V ∗| − µ = |I| − 1 tokens simultaneously only on G. Therefore,
(G, I, J, (|I|−1)-TJ) is a yes-instance if and only if (G∗, I∗, J∗, (|I∗|−µ)-TJ) is a yes-instance.

For this reason, we discuss only the case when µ = 1 here. The instance (G, I, J, k-TJ) of
ISR under k-TJ is clearly obtained in polynomial time. To complete our reduction, we will
show that ϕ′ is a yes-instance of IntE3-SAT if and only if (G, I, J, k-TJ) is a yes-instance
of ISR under k-TJ where k = |I| − 1.

Assume that there is a variable assignment b′ that is mixed and satisfies ϕ′. We construct
an independent set I ′ of G as follows. For a variable xi with i ∈ [n], if xi is assigned T ,
then all true vertices of Yxi are contained in I ′. Similarly, if xi is assigned F , then all false
vertices of Yxi

are contained in I ′. Since those vertices are chosen according to b′, one vertex
in each clause gadget that corresponds to a literal evaluating T can also be contained in
I ′. Furthermore, since b′ is mixed, we have |I ∩ I ′| ≥ 1 and |I ′ ∩ J | ≥ 1. Therefore, a
reconfiguration sequence σ = ⟨I, I ′, J⟩ exists.

Conversely, assume that there is a reconfiguration sequence σ = ⟨I = I0, I1, . . . , Iℓ = J⟩.
Consider an integer i ∈ [ℓ] such that tokens on Ii are placed on true vertices for the first
time. In other words, all tokens of Ii−1 in variable gadgets are on false vertices. Since any
positive vertex of any clause gadget is adjacent to a false vertex of a variable gadget, all
positive vertices are not in Ii−1. Then, we claim that not all true vertices are in Ii. For
the sake of contradiction, assume that all true vertices are in Ii. Then, since each negative
vertex is adjacent to a true vertex, each token of Ii in clause gadgets is on a positive vertex.
Thus, since Ii−1 contains only false vertices and negative vertices, Ii−1 ∩ Ii = ∅. However,
|Ii−1 ∩ Ii| ≥ 1 must hold because they are adjacent under k-TJ, which is a contradiction.
Therefore, we conclude that Ii contains both true and false vertices. From our construction of
the variable gadgets, either true or false vertices are in Ii for each variable gadget. For each
j ∈ [n], let b′ be a variable assignment such that xj is assigned T if and only if true vertices
of Yxj

are in Ii. Then, literals of clauses in ϕ′ corresponding to vertices in Ii evaluate T from
our construction, that is, b′ satisfies ϕ′. Therefore, ϕ′ is a yes-instance of IntE3-SAT. ◀

By Theorem 2, we have proven the NP-hardness of ISR under k-TJ on graphs of maximum
degree 3 unless we can move all tokens. We now proceed to the NP-hardness of ISR under
k-TJ on planar graphs of maximum degree 4. The constructed graph G in the proof of
Theorem 2 may have some edges crossing on a plane. We will eliminate these crossings by
replacing them with a crossover gadget (as shown in Figure 2). A crossover gadget consists
of eight vertices u′

1, u′
2, v′

1, v′
2, w1, . . . , w4 and twelve edges: u′

1w1, u′
1w4, u′

2w2, u′
2w3, v′

1w1,
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u1

u2

v1

v2

u1

u2

v1

v2

u′
1

u′
2

v′
1

v′
2

w1

w4

w2

w3

Figure 2 An illustration of replacing the crossing edges u1u2 and v1v2 with a crossover gadget.
The gadget contains eight vertices and three tokens, and its maximum degree is 4.

v′
1w2, v′

2w3, v′
2w4, w1w2, w2w3, w3w4, and w4w1. For two crossing edges u1u2 and v1v2 of

G, replacing this crossing with a crossover gadget means removing the edges u1u2 and v1v2,
inserting a crossover gadget, and adding the edges u1u′

1, u2u′
2, v1v′

1, and v2v′
2. The crossover

gadget always contains exactly three tokens corresponding to a maximum independent set of
the gadget.

▶ Theorem 3. Let µ be any fixed positive integer. ISR under k-TJ is NP-hard for planar
graphs G of maximum degree 4 when k = |I| − µ ≥ 1, where I is an initial independent set
of G.

Proof. As the same reason in the proof of Theorem 2, we provide the proof when µ = 1
(that is, k = |I| − 1). Let (G, I, J, k-TJ) be the instance of ISR constructed from ϕ′ in the
proof of Theorem 2, where k = |I| − 1. Consider any drawing of G on the plane, which may
have crossings.

To make G into a planar graph of maximum degree 4, we replace each crossing in the
drawing with a crossover gadget, which is shown in Figure 2. Suppose that we replaced a
crossing of edges u1u2 and v1v2 with a crossover gadget. We claim that the crossover gadget
correctly “simulates” the crossing if the crossing is good, that is, every independent set I ′

of G with size |I| satisfies |I ′ ∩ {u1, u2}| = |I ′ ∩ {v1, v2}| = 1. Although not every drawing
of G meets this condition1, we claim that G always admits a drawing where all crossings
are good. To this end, we construct a drawing of G in which all edge crossings occur only
between edges belonging to distinct variable gadgets.

Let m be the number of clauses and n be the number of variables in ϕ′, respectively.
We will represent all variable gadgets and clause gadgets on a grid with (2n + 3) rows and
6m columns such that edges between variable gadgets and clause gadgets have no crossing
(see also Figure 3). Let (i, j) be the coordinates of a point on the Euclidean plane, where
i ∈ [6m] and j ∈ [2n + 3]. For each clause gadget corresponding to a clause Ci of ϕ′, the
three literal vertices of the gadget are positioned at (6(i − 1) + 1, 2), (6(i − 1) + 3, 2), and
(6(i − 1) + 5, 2). Furthermore, the edges are embedded to minimize the sum of their length,
with one of the three edges utilizing the bottom border. If a literal vertex, corresponding to

1 For example, the drawing in Figure 1 contains a non-good crossing of two edges f2
x3 vx3 and f2

x4 ux4 ,
where the two vertices vx3 and ux4 correspond to the literal x3 in clause C3 and the literal x4 in clause
C2, respectively. In this crossing, f2

x3 and vx3 are both not in the independent set J .
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1
2
3
4
5
6
7
8
9
10
11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

C1 C2 C3

x1

x2

x3

x4

Figure 3 Another drawing of G (shown in Figure 1), corresponding to the Boolean formula
ϕ′ = (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4), on a grid with 11 rows and 18 columns. The
intersection of a dotted horizontal line labeled i ∈ {1, . . . , 11} and a dotted vertical line labeled
j ∈ {1, . . . , 18} represents the coordinate (i, j). Thick lines represent the edges of the graph G, and
all edge crossings occur only between edges belonging to distinct variable gadgets.

the j-th occurrence of a literal of variable x, is placed at (i′, 2), then the true vertex tj
x and

the false vertex f j
x are positioned at (i′, 3) and (i′ + 1, 3), respectively, and are connected by

a shortest edge.
Additionally, each literal vertex is joined with either of them, which follows the construction

of G in the proof of Theorem 2: for a vertex v in a clause gadget corresponding to a literal l

of a variable x with occurrence j ∈ [ax], connect v to tj
x if l is negative, and to f j

x otherwise.
Then, for a variable gadget corresponding to a variable xp with p ∈ [n], we embed the
remaining edges in the gadget using only the vertical lines where its vertices are located and
the (2p + 2)-th and (2p + 3)-th horizontal lines, minimizing the total length. (If the variable
gadget is a path with 2 vertices, there is nothing to do.)

Now, a new embedding of G is obtained and denoted by D(G). Although D(G) and
G are isomorphic, D(G) only has crossing edges in variable gadgets. Since every variable
gadget forms a cycle of even length and has tokens placed alternately on its vertices, exactly
one endpoint of each edge in the variable gadgets belongs to any independent set of G of size
exactly |I|. Thus, all crossings of D(G) are good.

We pick a crossing of two edges, say u1u2 and v1v2. Since both u1u2 and v1v2 are edges
of variable gadgets, we may assume without loss of generality that u1, v1 ∈ I and u2, v2 ∈ J .
We then replace this crossing with our crossover gadget. Let G∗ denote the resulting graph.
For the initial (resp. target) independent set I (resp. J) of G, adding three tokens on w1, u′

2,
and v′

2 (resp. w3, u′
1, and v′

1) in the crossover gadget (as shown in Figure 4) results in the
independent set I∗ (resp. J∗). Let (G∗, I∗, J∗, k-TJ) be a new instance of ISR under k-TJ,
where k = |I∗| − 1. Note that, since the sets of vertices added to I and J are disjoint, we
have I∗ ∩ J∗ = ∅.

For each configuration of tokens on u1, u2, v1, and v2 in G, there exists a unique
configuration of three tokens on the crossover gadgets in G∗ as shown in Figure 5. Thus,
the configuration of tokens on the vertices of the crossover gadget can be changed in G∗ if
and only if the configuration of tokens on u1, u2, v1, and v2 is changed in G. Therefore,
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(a)

u1

u2

v1

v2

(b)

u1

u2

v1

v2

u′
1

u′
2

v′
1

v′
2

w1

w4

w2

w3

Figure 4 An illustration of adding tokens to I and J , yielding I∗ and J∗. (a) Vertices u1 and v1

belong to I (red tokens), and u2 and v2 belong to J (blue tokens). (b) In I∗, the new vertices w1,
u′

2, and v′
2 are added, while in J∗, the new vertices w3, u′

1, and v′
1 are added. The two independent

sets I∗ and J∗ remain disjoint.

by faithfully simulating token moves along the edges u1u2 and v1v2 of G using the token
arrangements shown in Figure 5, one can show that (G, I, J, k-TJ) is a yes-instance if and
only if (G∗, I∗, J∗, k-TJ) is a yes-instance.

The graph G∗ has one less edge crossing than G. Consequently, we can obtain a plane
graph G′ by repeating the above replacement for each crossing of D(G). As D(G) has O(mn)
crossings, the construction of G′ can be done in polynomial time. Since a crossover gadget is
a graph of maximum degree 4, G′ is a plane graph of maximum degree 4. This completes
our proof. ◀

3.1.1.1 Proof of Lemma 1

Proof. It is obvious that IntE3-SAT is in NP. To prove the NP-completeness, we use a
polynomial-time reduction from E3-SAT.

Let ϕ = C1 ∧ C2 ∧ · · · ∧ Cm be an instance of E3-SAT, and X = {x1, . . . , xn} be the
variable set of ϕ. We will construct a sandwiched E3-CNF formula ϕ′ with 7mn2 clauses and
n+2mn2 variables at the end of our construction. Before starting our construction, we restrict
ϕ so that neither the all-T assignment nor the all-F assignment satisfies ϕ. E3-SAT remains
NP-hard with this restriction; otherwise, we could solve E3-SAT without the restriction by
checking whether the all-T or all-F assignment satisfies ϕ at first. We obtain a new CNF
formula ϕ∗ as follows:

ϕ∗ = ϕ ∨
n∧

i=1
xi ∨

n∧
i=1

xi =
m∧

h=1
Ch ∨

n∧
i=1

xi ∨
n∧

i=1
xi =

m∧
h=1

n∧
i=1

n∧
j=1

(Ch ∨ xi ∨ xj).

Since Ch consists of exactly three literals, Ch ∨ xi ∨ xj is a disjunction of five literals. Thus,
ϕ∗ is an E5-CNF formula. Furthermore, ϕ∗ is a sandwiched E5-CNF formula, that is, each
clause of ϕ∗ has both a positive literal xi and a negative literal xj . From our conversion,
ϕ∗ has mn2 clauses and n variables. It is observed that for any mixed variable assignment
b, ϕ evaluates T if and only if ϕ∗ evaluates T . Thus, we can immediately say that ϕ is a
yes-instance of E3-SAT without all-T and all-F assignments if and only if ϕ′ is a yes-instance
of IntE5-SAT.
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(a)

u1

u2

v1

v2

(b)

u1

u2

v1

v2

(c)

u1

u2

v1

v2

(d)

u1

u2

v1

v2

Figure 5 An illustration of how the crossover gadget works. The crossing edges u1u2 and v1v2,
where one endpoint of each edge is occupied by a token, are replaced by a crossover gadget: (a)
u1 and v1 are occupied; (b) u2 and v1 are occupied; (c) u1 and v2 are occupied; (b) u2 and v2 are
occupied.

Then, we explain how to convert a sandwiched E5-CNF formula ϕ∗ to a sandwiched
E3-CNF formula ϕ′ with 7mn2 clauses and n + 2mn2 variables. We repeat the following
operation on ϕ∗ until all clauses have size exactly 3. Let ϕ∗

0 = ϕ∗ and ϕ∗
i for a positive integer

i be a formula obtained from a sandwiched CNF formula ϕ∗
i−1.

Let C be a clause in ϕ∗
i−1 with size at least 4. Then C contains x ∨ y or x ∨ y for variables

x, y. If C contains x ∨ y, then we replace x ∨ y with a new variable z and combine the
modified formula with the formula x ∨ y ↔ z using the ∧ operator. Furthermore, x ∨ y ↔ z

is transformed as follows:

x ∨ y ↔ z = (x ∨ y ∨ z) ∧ ((x ∨ y) ∨ z)
= (x ∨ y ∨ z) ∧ ((x ∧ y) ∨ z)
= (x ∨ y ∨ z) ∧ (x ∨ z) ∧ (y ∨ z)
= (x ∨ y ∨ z) ∧ (x ∨ x ∨ z) ∧ (y ∨ y ∨ z). (1)

We claim that ϕ∗
i obtained from ϕ∗

i−1 by the above operation is a sandwiched CNF
formula. Clearly, each clause in ϕ∗

i that remains unchanged from ϕ∗
i−1 contains both positive

and negative literals. The clause in ϕ∗
i obtained from C by replacing x ∨ y with a positive

literal z contains a negative literal because C also has a negative literal. Combined with
Equation (1), ϕ∗

i is a sandwiched CNF formula. Consequently, if there is a clause in ϕ∗
i−1

that contains x ∨ y, then a sandwiched CNF formula ϕ∗
i is obtained.
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Similarly, if C contains x ∨ y, then we replace x ∨ y with the negative literal of a new
variable z and combine the modified formula with the formula x ∨ y ↔ z = (x ∨ y ∨ z) ∧ (x ∨
x ∨ z) ∧ (y ∨ y ∨ z) using the ∧ operator. As with the previous argument, we can say that ϕ∗

i

is a sandwiched CNF formula.
Let ϕ′ be the sandwiched CNF formula obtained from ϕ∗ = ϕ∗

0 by repeating the above
operation until all clauses have size exactly 3. Since exactly two replacements occur per
clause in ϕ∗, we have ϕ′ = ϕ∗

2mn2 . Moreover, six new clauses and two new variables are
added for each clause in ϕ∗. Therefore, ϕ′ has 7mn2 clauses and n + 2mn2 variables.

To complete our reduction, for each i ∈ [2mn2], we will show that there exists a mixed
variable assignment that satisfies ϕ∗

i−1 if and only if there exists a mixed variable assignment
that satisfies ϕ∗

i . This immediately implies that ϕ∗ = ϕ∗
0 is a yes-instance of IntE5-SAT if

and only if ϕ′ = ϕ∗
2mn2 is a yes-instance of IntE3-SAT. Let Xi be the set of variables in ϕ∗

i .
Suppose that there is a mixed variable assignment bi−1 for Xi−1 that satisfies ϕ∗

i−1.
Consider a variable assignment bi for Xi = Xi−1 ∪ {z} such that bi(x) = bi−1(x) for each
x ∈ Xi−1. Moreover, set bi(z) = x ∨ y if z replaces x ∨ y, and set bi(z) = x ∨ y if z replaces
x ∨ y. Since bi−1 is a mixed variable assignment, bi is also a mixed variable assignment.
Furthermore, it is easy to see that bi satisfies ϕ∗

i .
Conversely, suppose that there is a mixed variable assignment bi for Xi that satisfies

ϕ∗
i . Due to x ∨ y ↔ z or x ∨ y ↔ z, the variable assignment bi−1 such that bi−1(x) = bi(x)

for each x ∈ Xi−1 satisfies ϕ∗
i−1. We claim that the variable assignment bi−1 is mixed. For

the sake of contradiction, assume that bi−1 is not mixed, that is, bi−1 is either the all-T
assignment or all-F assignment. If x ∨ y ↔ z is added into ϕ∗

i−1, then bi(x) = bi(y) = bi(z)
holds. Thus, bi is also not mixed, a contradiction. Similarly, if x ∨ y ↔ z is added into ϕ∗

i−1,
then bi(x) = bi(y) = bi(z) holds, a contradiction. Therefore, we conclude that bi−1 is a mixed
variable assignment for Xi−1 that satisfies ϕ∗

i−1. This completes the proof. ◀

3.1.2 Membership in NP

Next, we show that ISR under k-TJ with k = |I| − µ is in NP not only when µ is constant
but also µ is at most O(log |I|) for graphs of bounded maximum degree and planar graphs of
maximum degree o( n

log n ), where n is the number of vertices in the input graph.

▶ Theorem 4. Let G be an input graph with n vertices, chromatic number O(1) and maximum
degree o( n

log n ), and let I be an initial independent set of G. ISR under k-TJ is in NP when
k = |I| − µ ≥ 1 with any non-negative integer µ at most O(log |I|).

To prove Theorem 4, we will evaluate the length of a shortest reconfiguration sequence
between any two independent sets of an input graph. Firstly, we introduce a lemma on
the maximum size of intersecting families of sets. Let N, r be positive integers with N ≥ r,
and let L ⊆ {0, 1, . . . , r − 1}. We say that a family F of r-element subsets of [N ] is an
(N, r, L)-system if |F ∩ F ′| ∈ L holds for all distinct F, F ′ ∈ F . Let m(N, r, L) denote the
maximum size of (N, r, L)-systems.

For any positive integers N, r, p with N ≥ r > p ≥ 1, the following upper bound is
known (see, for example, [14, 25, 33]):

m(N, r, {0, . . . , p − 1}) ≤
(

N
p

)
/
(

r
p

)
. (2)

Using Equation (2), we prove Lemma 5, which provides an upper bound on the length of
any shortest reconfiguration sequence in the general case.
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▶ Lemma 5. Let G be an input graph with n = |V (G)|, I and J be initial and target
independent sets of G, and µ < |I| be any non-negative integer. If I and J are reconfigurable
under k-TJ, then the length of a shortest reconfiguration sequence between I and J under
k-TJ, where k = |I| − µ ≥ 1, is at most O(( n

k )µ).

Proof. When µ = 0, there exists a reconfiguration sequence ⟨I, J⟩ of length 1. Therefore, we
assume that µ ≥ 1. Consider any shortest reconfiguration sequence σ = ⟨I = I0, I1, . . . , Iℓ =
J⟩ between I and J . Let I = {Ii : i ∈ {0, 1, . . . , ℓ}, i is even}. Note that |I| = ⌊ ℓ

2 ⌋ + 1. Since
σ is the shortest reconfiguration sequence, for any two independent sets Ii and Ij in I with
i < j, we have |Ii ∩ Ij | < µ; otherwise, Ii and Ij are adjacent under k-TJ and we can obtain
a shorter reconfiguration sequence σ′ from σ by removing all independent sets Ii+1, . . . , Ij−1,
which is a contradiction. Then, we observe that I is an (n, |I|, {0, . . . , µ − 1})-system. By
using Equation (2), we have

|I| =
⌊

ℓ

2

⌋
+ 1 ≤ m(n, |I|, {0, . . . , µ − 1}) ≤

(
n
µ

)
/
(|I|

µ

)
≤

(
n

|I| − µ

)µ

.

Therefore, the length ℓ of σ is at most O(( n
|I|−µ )µ) = O(( n

k )µ). ◀

Now, we can prove Theorem 4.

Proof of Theorem 4. It is trivial when µ = 0, thus we assume that µ ≥ 1. Suppose first
that 2µ ≥ |I|. Then, there is some constant c such that |I| < c since µ = O(log |I|). We
can solve ISR under k-TJ by enumerating all independent sets of G with constant size in
polynomial time.

Suppose next that 2µ < |I| for sufficiently large |I|. Let A and B be two independent
sets such that A ⊆ I and B ⊆ J with size exactly µ. Let G∗ be the subgraph of G obtained
by removing all vertices in N [A ∪ B]. If G∗ has an independent set I∗ with size k, then
there is a reconfiguration sequence ⟨I, A ∪ I∗, B ∪ I∗, J⟩ between I and J . We say that this
reconfiguration sequence is a simple reconfiguration sequence. Since the vertex set of G∗ is
V (G)\N [A∪B], the size of V (G∗) is at least n−2µ(∆+1), where ∆ is the maximum degree
of G. Let χ and χ∗ be the chromatic numbers of G and G∗, respectively. Then, we observe
that χ∗ ≤ χ. By the relationship between the chromatic number and the independence
number, G∗ has an independent set with size at least |V (G∗)|/χ∗ ≥ (n−2µ(∆+1))/χ∗. Thus,
if (n−2µ(∆+1))/χ∗ ≥ k, then I and J are always reconfigurable, as a simple reconfiguration
sequence exists. Note that the length of a simple reconfiguration sequence is 3.

It remains to consider the case where (n − 2µ(∆ + 1))/χ∗ < k, in which a simple
reconfiguration sequence between I and J may not exist. Combined with Lemma 5, the
length ℓ of a shortest reconfiguration sequence between I and J satisfies

ℓ = O

((
n

k

)µ)
= O

((
nχ∗

n − 2µ(∆ + 1)

)µ)
= O

(
(χ∗)µ

(
1

1 − 2µ(∆+1)
n

)µ)
. (3)

Since µ = O(log |I|) = O(log n) and ∆ = o( n
log n ), we have µ∆ = o(n). Hence, we have

(2µ(∆ + 1))/n = o(1). Furthermore, χ∗ ≤ χ = O(1). Thus, from Equation (3), we have

ℓ = O((χ∗)µ( 1
1 − o(1))µ) = O(1)O(log n) = O(nO(1)).

Therefore, ℓ is polynomially bounded in n, and hence the problem belongs to NP. This
completes the proof. ◀

ISAAC 2025



39:16 ISR and VCR Under Extended Reconfiguration Rules

It is known that the chromatic number of G is at most ∆ + 1, where ∆ is the maximum
degree of G [8]. In addition, the chromatic number of any planar graph is at most 4 [1, 2].
Therefore, Theorem 4 gives the results including graphs of bounded maximum degree and
planar graphs of maximum degree o( n

log n ).

3.2 VCR
In Section 3.1, we showed that ISR under k-TJ with k = |I| − µ, where µ is any fixed
positive integer, is NP-complete even for graphs of maximum degree 3 and for planar graphs
of maximum degree 4. In contrast to this intractability, VCR under k-TJ is in XP for general
graphs when parameterized by µ = |S| − k > 0, where S is an initial vertex cover of an input
graph.

▶ Theorem 6 (∗). VCR under k-TJ is in XP for general graphs G when parameterized by
µ = |S| − k ≥ 0, where S is an initial vertex cover of G.

In the proof of Theorem 6, we present an XP algorithm for the problem.
Let (G, S, T, k-TJ) be an instance of VCR. We can consider the reconfiguration graph

C = (V, E) for the instance, such that each node wS′ ∈ V corresponds to a vertex cover S′

of G with size exactly |S|, and edges represent adjacency under k-TJ. Since the number of
such vertex covers can be superpolynomial, explicitly constructing C is infeasible in general.

Our approach builds on the clique-compressed reconfiguration graph technique introduced
in [35], which compactly represents C by grouping cliques into single nodes. This compressed
graph has at most O(nµ) nodes and preserves essential connectivity, making it sufficient for
solving the problem if constructed efficiently.

Here, we briefly describe the characteristics of instances that enable the construction of our
XP algorithm. If |S ∩ T | ≥ µ, then S and T are reconfigurable, since we can simultaneously
move k = |S| − µ tokens. Therefore, we focus on the case where |S ∩ T | < µ. Since both S

and T are vertex covers, the induced subgraph G[V (G) \ (S ∩ T )] is a bipartite graph. This
restricted structural property serves as a key ingredient in the design of our XP algorithm.

4 PSPACE-completeness When k is Constant

In this section, we investigate the PSPACE-completeness of ISR under k-TJ and k-TS when
k is fixed. Note that the computational complexity of ISR and VCR under k-TJ and k-TS
is the same when k is fixed, due to their complementary relationship.

4.1 Planar Graphs
▶ Theorem 7 (∗). Let k ≥ 2 be any fixed positive integer. ISR under R ∈ {k-TS, k-TJ} is
PSPACE-complete for planar graphs of maximum degree 3 and bounded bandwidth.

To prove Theorem 7, we construct a reduction from Nondeterministic Constraint
Logic, which was invented by Hearn and Demaine [18] and has been used to prove the
PSPACE-hardness of reconfiguration problems, including ISR under TS [18].

4.2 Line Graphs and Claw-free Graphs
We state that ISR under R ∈ {2-TJ, 2-TS} is PSPACE-complete even for line graphs, which
contrasts that ISR under R ∈ {TJ, TS} can be solved in polynomial time for line graphs (more
generally, claw-free graphs) [6]. For a graph G, its line graph L(G) is defined as follows: each
vertex of L(G) corresponds to an edge of G, and two vertices in L(G) are adjacent if and
only if their corresponding edges in G share a common endpoint.
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▶ Theorem 8 (∗). ISR under R ∈ {2-TJ, 2-TS} is PSPACE-complete for line graphs.

In the proof of Theorem 8, we reduce Perfect Matching Reconfiguration, which
is known to be PSPACE-complete on bipartite graphs of maximum degree 5 and bounded
bandwidth [5], to our problem.

5 PSPACE-completeness When k is Superconstant

This section is devoted to establishing the PSPACE-completeness of ISR and VCR under
k-TJ when k is superconstant in the initial independent set size |I| and the initial vertex
cover size |S|, respectively.

5.1 ISR
The main result in this section is the following.

▶ Theorem 9. There exists some constant ε0 ∈ (0, 1) such that ISR under k-TJ on graphs
of maximum degree 3 is PSPACE-complete for any k satisfying the following condition:
there exists a constant c such that k ≤ ε0|I| holds whenever |I| ≥ c, where I is the initial
independent set of the input graph.

To prove Theorem 9, we will construct a polynomial-time reduction from the optimization
variant of ISR called Maxmin Independent Set Reconfiguration (MaxminISR for
short) [20]. In the problem, we adopt the token addition and removal (TAR for short) [20],
under which two independent sets of a graph G are adjacent if one is obtained from the other by
adding or removing a single vertex of G. In MaxminISR, given a graph G and two independent
sets I, J of G, we are asked to find a reconfiguration sequence σ = ⟨I = I0, I1, . . . , Iℓ = J⟩
under TAR that maximizes val(σ), where val(σ) = min{|I ′| : I ′ ∈ σ}. For a graph G, we use
α(G) to denote the number of vertices in a maximum independent set of G. Let (G, I, J) be
an instance of MaxminISR, and valmax(I, J) be the maximum value of val(σ) over all possible
reconfiguration sequences σ from I to J under TAR. Recently, the following Theorem 10 was
proven [19, 24, 32].

▶ Theorem 10 ([19, 24, 32]). Let I and J be initial and target independent sets of an
input graph G in MaxminISR. Then, there exists some constant ε0 ∈ (0, 1) such that it is
PSPACE-hard to distinguish between the following two cases:
(i) valmax(I, J) ≥ α(G) − 1, and
(ii) valmax(I, J) < (1 − ε0)(α(G) − 1).
The same hardness result holds even when the maximum degree of G is 3, |I| = |J | = α(G),
and α(G)

|V (G)| ∈ [ 1
3 , 1

2 ].

To lead to Theorem 9 from Theorem 10, we provide the following lemma.

▶ Lemma 11. Let I and J be initial and target independent sets of an input graph G in
MaxminISR and ISR. Let f be a given function and g be any function defined on integers
such that x − g(x) ≥ 1 for all positive integers x and there exists a fixed positive integer n0
satisfying g(n) ≥ f(n) for all integers n ≥ n0. Suppose that it is PSPACE-hard to distinguish
between the following two cases:
(i) valmax(I, J) ≥ |I| − 1, and
(ii) valmax(I, J) < f(|I|).
Then, ISR under k-TJ is PSPACE-hard, where k = |I| − g(|I|) ≥ 1.

ISAAC 2025



39:18 ISR and VCR Under Extended Reconfiguration Rules

Proof. Let (G, I, J) be an instance of MaxminISR, and (G, I, J, k-TJ) be an instance of
ISR where k = |I| − g(|I|). We assume that |I| ≥ n0 and hence k ≥ 1 since we can solve all
instances with |I| < n0 by enumerating all independent sets of constant size. We now show
that if (G, I, J) satisfies condition (i), then (G, I, J, k-TJ) is a yes-instance, and if (G, I, J)
satisfies condition (ii), then (G, I, J, k-TJ) is a no-instance. We will show the latter one by
proving the contrapositive: if (G, I, J, k-TJ) is a yes-instance, then (G, I, J) does not satisfy
condition (ii).

Firstly, suppose that there is a reconfiguration sequence σ = ⟨I = I0, I1, . . . , Iℓ = J⟩
between I and J under TAR such that val(σ) ≥ |I|−1. It is known that this assumption holds
if and only if there is a reconfiguration sequence under TJ between I and J [23]. Thus, there
is a reconfiguration sequence under TJ between I and J , and that is also a reconfiguration
sequence under k-TJ. Therefore, (G, I, J, k-TJ) is a yes-instance.

Conversely, suppose that there is a reconfiguration sequence σ′ = ⟨I = I0, I1, . . . , Iℓ = J⟩
between I and J under k-TJ where k = |I| − g(|I|) ≥ 1. Then, for any two consecutive
independent sets Ii−1 and Ii with i ∈ [ℓ], we have |Ii−1 ∩ Ii| ≥ |I| − k = g(|I|). Additionally,
we can transform from Ii−1 to Ii under TAR as follows: Firstly, we remove tokens on vertices
in Ii−1 \ Ii one by one; then, we add tokens on vertices in Ii \ Ii−1 one by one. Through
these steps, we have no independent set with size smaller than |Ii−1 ∩ Ii| ≥ g(|I|) ≥ f(|I|).
Therefore, there is a sequence σ under TAR such that val(σ) ≥ g(|I|) ≥ f(|I|). That is,
(G, I, J) does not satisfy condition (ii). This completes the proof. ◀

We set f(x) = (1 − ε0)(x − 1) and let g(x) be an arbitrary function such that x − 1 ≥
g(x) ≥ f(x) for all x ≥ x0, for some constant x0. For example, g(x) may be chosen as
x − c for some constant c, x − ⌈log x⌉, x − ⌈x1/2⌉, or x − ⌈εx⌉ for some constant ε ≤ ε0.
Combining Theorem 10 and Lemma 11, ISR under k-TJ on graphs of maximum degree 3
is PSPACE-complete for k = |I| − g(|I|), as claimed in Theorem 9. This result includes the
PSPACE-completeness of ISR under k-TJ for various values of k, such as Θ(1), Θ(log |I|),
Θ(|I|O(1)), and Θ(|I|).

5.2 VCR

Similarly to Theorem 9, we can prove the following Theorem 12.

▶ Theorem 12 (∗). There exists some constant ε0 ∈ (0, 1) such that VCR under k-TJ on
graphs of maximum degree 3 is PSPACE-complete for any k satisfying the following condition:
there exists a constant c such that k ≤ ε0|S| holds whenever |S| ≥ c, where S is the initial
vertex cover of the input graph.

6 Conclusion and Future Work

In this paper, we investigated the computational complexity of the fundamental reconfigura-
tion problems ISR and VCR on various graph classes under the extended reconfiguration
rules k-TJ and k-TS.

The following open problems are suggested for future research: (1) Is ISR under k-TJ
with k = |I| − µ NP-hard on planar graphs of maximum degree 3 for any fixed positive
integer µ? (2) Is ISR under k-TJ with k = |I| − µ in NP on general graphs not only when µ

is fixed but also when µ = O(log |I|)? (See also Table 1.)
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