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Abstract
The Matching Cut problem is to decide if the vertex set of a connected graph can be partitioned

into two non-empty sets B and R such that the edges between B and R form a matching, that is,
every vertex in B has at most one neighbour in R, and vice versa. If for some integer d ≥ 1, we allow
every vertex in B to have at most d neighbours in R, and vice versa, we obtain the more general
problem d-Cut. It is known that d-Cut is NP-complete for every d ≥ 1. However, for claw-free
graphs, it is only known that d-Cut is polynomial-time solvable for d = 1 and NP-complete for
d ≥ 3. We resolve the missing case d = 2 by proving NP-completeness. This follows from our more
general study, in which we also bound the maximum degree. That is, we prove that for every d ≥ 2,
d-Cut, restricted to claw-free graphs of maximum degree p, is constant-time solvable if p ≤ 2d + 1
and NP-complete if p ≥ 2d + 3. Moreover, in the former case, we can find a d-cut in linear time. We
also show how our positive results for claw-free graphs can be generalized to S1t,ℓ-free graphs where
S1t,ℓ is the graph obtained from a star on t + 2 vertices by subdividing one of its edges exactly ℓ

times.
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1 Introduction

In this paper, we determine new complexity results for finding d-cuts, which form a natural
generalization of matching cuts. The latter form a well-studied notion that combines two
classic concepts in graph theory: matchings and edge cuts. Namely, a matching cut in a
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4:2 Finding d-Cuts in Claw-Free Graphs

Figure 1 Left: a graph with a matching cut (1-cut). Right: a graph with a 3-cut but no d-cut
for d ≤ 2. Figure taken from [21].

connected graph G = (V, E) is a set of edges M ⊆ E that is both a matching (i.e., no
two edges in M share an end-vertex) and an edge cut (i.e., V can be partitioned into two
non-empty sets B and R such that M consists of all the edges between B and R). The
Matching Cut problem is to decide if a connected graph has a matching cut.

Already in 1984, Chvátal [9] proved that Matching Cut is NP-complete even for K1,4-
free graphs of maximum degree 4. Here, the graph K1,ℓ denotes the star on ℓ + 1 vertices,
that is, the graph with vertices u, v1, . . . , vℓ and edges uvi, for i = 1, . . . , ℓ, and a graph
is H-free if it does not contain H as an induced subgraph. In contrast, Chvátal [9] also
showed that Matching Cut is polynomial-time solvable for graphs of maximum degree at
most 3. In 2009, Bonsma [6] proved the same for K1,3-free graphs (of arbitrary degree), which
are also known as claw-free graphs. Since then a growing sequence of papers appeared in
which the computational complexity of Matching Cut for various special graph classes was
determined, often in a systematic way (e.g., [8, 11, 18, 22, 23]) and also from a parameterized
complexity perspective (e.g. [1, 12, 13, 16, 17]) and for many closely related problem variants,
such as the problems of finding perfect matching cuts [5, 15, 19], maximum matching cuts [24],
minimum matching cuts [20], matching multicuts [14] and disconnected perfect matchings [7].
We refer to Section 5 for a summary of the complexity results for Matching Cut restricted
to H-free graphs as part of a summary for a more general notion, namely d-cuts, the topic of
our paper. For an integer d ≥ 1 and a connected graph G = (V, E), a set M ⊆ E is a d-cut
of G if V can be partitioned into two non-empty sets B and R such that:

the set M is the set of all edges between B and R; and
every vertex in B has at most d neighbours in R, and vice versa.

See Figure 1 for some examples. We note that a 1-cut is a matching cut and vice versa.
For a fixed integer d ≥ 1, the d-Cut problem is to decide if a connected graph G has a d-cut.
Hence, Matching Cut and 1-Cut are the same problems.

The d-Cut problem was introduced by Gomes and Sau [13]. Apart from several para-
meterized complexity results (see also [2]), they showed the following two results. The first
result is a structural result (shown for d = 1 in [9, 25]), which immediately implies the first
statement of the second result (shown for d = 1 in [9]).

▶ Theorem 1 (Gomes and Sau [13]). For d ≥ 1, every graph G = (V, E) with maximum
degree ∆(G) ≤ d + 2 and |V | > 7 has a d-cut, which can be found in polynomial time.

▶ Theorem 2 (Gomes and Sau [13]). For d ≥ 1, d-Cut is constant-time solvable for graphs
with maximum degree ∆ ≤ d + 2 but NP-complete for (2d + 2)-regular graphs (that is, graphs
in which every vertex has degree 2d + 2).

For d ≥ 1, the results in Theorem 2 are currently the best results for d-Cut of bounded
maximum degree, so for d ≥ 2 we have a complexity gap. Gomes and Sau [13] argued that it
is unlikely that the maximum degree bound of 2d + 2 in Theorem 2 can be lowered, as that
would disprove a conjecture about the existence of so-called internal partitions of r-regular
graphs for odd r; see [3].
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Figure 2 The graph S16,4.

In particular, Theorem 2 shows that 2-Cut is constant-time solvable for graphs of
maximum degree ∆ ≤ 4 and NP-complete for graphs of maximum degree ∆ = 6. Gomes
and Sau [13] showed that all maximum degree-5 graphs on 18 vertices without a 2-cut have
some specific structure: they are 5-regular or have exactly two vertices of degree 4, which
are adjacent. Interestingly, they mentioned in [13] that they were unable to find a maximum
degree-5 graph on more than 18 vertices without a 2-cut.

The d-Cut problem has also been studied for H-free graphs. As mentioned, we summarize
these results in Section 5. For now, we focus on the case H = K1,3 for the following reason.
It is known that for all d ≥ 3, d-Cut is NP-complete for claw-free graphs. This was shown
in [21] (the gadget constructed in the proof of Theorem 2 is not claw-free). The result for
d = 3 contrasts the case d = 1 due to the aforementioned result of Bonsma [6] that 1-Cut
(Matching Cut) is polynomial-time solvable on claw-free graphs and leaves open exactly
the case d = 2. The authors of [21] could prove that 2-Cut is NP-complete for K1,4-free
graphs and asked about the case d = 2 in the following open problem:

▶ Open Problem 1 (Lucke et al. [21]). What is the complexity of 2-Cut for claw-free graphs?

Our Results
Inspired by Theorems 1 and 2 of Gomes and Sau [13] and motivated by Open Problem 1, we
consider claw-free graphs of bounded maximum degree. In Sections 3 and 4, respectively, we
show the following two results for d ≥ 2, the second of which solves Open Problem 1.

▶ Theorem 3. Let d ≥ 2. Every claw-free graph G = (V, E) with maximum degree
∆(G) ≤ 2d + 1 and |V | > 4d2(2d + 1) has a d-cut, which can be found in linear time. More-
over, there exist arbitrarily large claw-free (2d + 2)-regular graphs with no d-cut.

▶ Theorem 4. For d ≥ 2, d-Cut is constant-time solvable for claw-free graphs with maximum
degree ∆ ≤ 2d + 1 but NP-complete for claw-free graphs with maximum degree ∆ = 2d + 3.

The first statement of Theorem 3 is the analogue of Theorem 1 for claw-free graphs (for
which we can find the d-cut even in linear time). We show how this statement follows from
a corresponding stronger statement on S1t,ℓ-free graphs, where S1t,ℓ is the graph obtained
from a star on t + 2 vertices by subdividing one of its edges exactly ℓ times, see Figure 2 for
the case where t = 6 and ℓ = 4. The second statement of Theorem 3 not only shows that the
bound in the first statement is best possible, but also relates to Theorem 2: it shows that for
every d ≥ 2, there exists an infinite number of (2d + 2)-regular no-instances of d-Cut that
are also claw-free.

The first statement of Theorem 3 immediately implies the constant-time part of Theorem 4,
as d is a constant. We use the graph in the second statement of Theorem 3 as part of our
hardness gadget in the NP-completeness part of Theorem 4.

Theorem 4 shows in particular that 2-Cut is constant-time solvable for claw-free graphs
of maximum degree ∆ ≤ 5 but NP-complete for claw-free graphs of maximum degree ∆ = 7,
which solves Open Problem 1. Moreover, the gadget used in the reduction for d-Cut (d ≥ 3)
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Figure 3 A chain of diamonds has no 1-cut (the diamond is the graph K4 − e).

for claw-free graphs in [21] contains vertices of arbitrarily large degree. Theorem 4 strengthens
this result by adding a maximum degree bound that is only one higher than the maximum
degree bound in Theorem 2.

Note that d is at least 2 in both Theorems 3 and 4, which can be explained as follows. We
first recall that for d = 1, Bonsma [6] proved that d-Cut is polynomial-time solvable even
for claw-free graphs with arbitrarily large maximum degree ∆. Second, for d = 1, Theorem 3
would not hold: take, for example, a chain of graphs isomorphic to Kp − e (complete graph
minus an edge) which we obtain from k copies of Kp − e, for k ≥ 1, by identifying a pair
of degree (p − 2) vertices between consecutive copies. That is, where x1

i , x2
i is the pair of

degree (p − 2) vertices of the ith copy, we identify vertices x2
i and x1

i+1, for all 1 ≤ i ≤ k − 1.
The resulting chain is an arbitrarily large claw-free graph of arbitrarily large maximum
degree 2p − 4 but with no 1-cut, see Figure 3 for the case where p = 4.

In Section 5, we give some directions for future work and show the consequence of
Theorem 4 for the state-of-art summary of the complexity of d-Cut for H-free graphs.

2 Preliminaries

In this paper, we only consider finite, undirected graphs without multiple edges and self-loops.
For every integer n ≥ 1, let [n] := {1, . . . , n}.

Let G = (V, E) be a graph and let v be a vertex of G. We denote by NG(v) = {u ∈
V | uv ∈ E} the (open) neighbourhood of v and by NG[v] = NG(v) ∪ {v} the closed
neighbourhood of v. The degree of v is the size of NG(v), and we denote by ∆(G) the
maximum degree of G. For a set S ⊆ V , we denote by δ(S) the set of edges of G with exactly
one end-vertex in S.

A complete graph is a graph whose vertex set is a clique, which is a set of pairwise adjacent
vertices. For r ≥ 1, we let Kr denote the complete graph on r vertices. A vertex set I ⊆ V is
an independent set of G if no two vertices of I are adjacent in G. In addition, G is bipartite
if we can partition the vertex set into (possibly empty) sets A and B such that A ∪ B = V

and A and B are each an independent set.
The chromatic number of a graph G = (V, E) is the smallest integer k such that G has

a k-colouring, which is a mapping c : V → {1, . . . , k} with c(u) ̸= c(v) for every uv ∈ E.
The set of all vertices that are mapped to the same colour i ∈ {1, . . . , k} is called a colour
class of c. For k ≥ 0, a graph G is k-degenerate if every subgraph of G contains a vertex
of degree at most k. It is well known and readily seen that every k-degenerate graph is
(k + 1)-colourable. The degeneracy of G is the smallest integer k such that G is k-degenerate.
The following observation holds (we give a proof for completeness).

▶ Observation 5. Let t ≥ 2 and let G = (V, E) be a graph. If G has no independent set of
size t, then G has a subgraph of minimum degree at least |V |

t−1 − 1.

Proof. Assume G has no independent set of size t. Let k be the degeneracy of G, so G has a
subgraph of minimum degree at least k. Consider a (k + 1)-colouring c of G. As every colour
class of c is an independent set, we have k + 1 ≥ |V |

t−1 and thus k ≥ |V |
t−1 − 1. ◀
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S

Figure 4 An example of the procedure in the proof of Lemma 9 if d = 2. Left: every vertex in S

has at most 2 neighbours outside of S. The edges in δ(S) are highlighted in black. Right: The
red-blue d-colouring we obtain from the procedure.

Let d ≥ 1 be an integer. A red-blue colouring of G gives each vertex of G either colour red or
blue. A red-blue d-colouring of G is a red-blue colouring where every vertex has at most d

neighbours of the other colour and both colours, red and blue, are used at least once. See
Figure 1 for an example of a red-blue 1-colouring (left figure) and a red-blue 3-colouring
(right figure). In our proofs, we use the following well-known observation; see e.g. [21].

▶ Observation 6. For every integer d ≥ 1, G has a red-blue d-colouring with sets B and R

if and only if the set of edges between B and R form a d-cut of G.

Let G be a graph with a red-blue d-colouring for some d ≥ 1. We say that a set S ⊆ V is
monochromatic if all vertices in S have the same colour.

We will also use the following observations, which can be readily seen.

▶ Observation 7. Let d ≥ 1. Let G = (V, E) be a graph and let S ⊆ V with |S| ≥ d + 1. For
every red-blue colouring of G, in which S is monochromatic, each vertex in V \ S with at
least d + 1 neighbours in S has the same colour as the vertices of S.

▶ Observation 8. Let d ≥ 1. Let G be a graph with a clique K on at least 2d + 1 vertices.
Then K is monochromatic in every red-blue d-colouring of G.

3 The Proof of Theorem 3

In this section, we prove Theorem 3, which states that for all d ≥ 2, every claw-free
graph G = (V, E) with maximum degree ∆(G) ≤ 2d + 1 and |V | > 4d2(2d + 1) has a d-cut,
which we can find in linear time, and moreover, that there exist arbitrarily large claw-free
(2d + 2)-regular graphs with no d-cut.

We start with a lemma. In its proof, we extend the argument that Chvátal [9] used to
observe that 1-Cut is constant-time solvable for graphs of maximum degree at most 3.

▶ Lemma 9. Let d ≥ 1. Let G = (V, E) be a graph with ∆(G) ≤ 2d + 1, and let S be a
non-empty set of vertices with |S| + |δ(S)| < |V |. If each vertex in S is incident to at most d

edges in δ(S), then G has a d-cut, which can be found in linear time.

Proof. Assume that each vertex in S is incident to at most d edges in δ(S). We will now
construct a red-blue d-colouring of G, which, by Observation 6, gives that G has a d-cut.
We first colour every vertex in S blue and recursively colour an uncoloured vertex blue if it
has at least d + 1 blue neighbours. Note that this takes O(|V |) time, as |E| ≤ (2d + 1)|V |/2.
We colour all remaining vertices of G red. See also Figure 4.

ISAAC 2025



4:6 Finding d-Cuts in Claw-Free Graphs

Let R and B be the sets of red and blue vertices, respectively. Note that S ⊆ B. By
construction, every vertex in R has at most d neighbours in B. As we assume that each
vertex in S is incident to at most d edges in δ(S), each vertex in S has at most d neighbours
in R. Since ∆(G) ≤ 2d + 1 and each vertex in B \ S has at least d + 1 neighbours in B,
each vertex in B \ S has at most d neighbours in R. Hence, every vertex in B has at most d

neighbours in R. It remains to show that R ̸= ∅, or equivalently, that B ̸= V , which we will
do below.

Let v1, . . . , vb denote the vertices in B \ S in the order they are coloured blue. For
an arbitrary i ∈ [b], let B′ := S ∪ {v1, . . . , vi}. Recall that by construction, each vertex
v ∈ B′ \ S has at least d + 1 neighbours in B′ and at most d neighbours not in B′. So
when we colour v blue, that is, add v to B, we lose at least d + 1 edges with exactly one
blue end-vertex and gain at most d new edges with exactly one blue end-vertex. In other
words, |δ(B′ \ {v})| ≥ |δ(B′)| + 1. This implies |δ(S)| ≥ |δ(B)| + (|B| − |S|), and thus
|δ(S)| + |S| ≥ |δ(B)| + |B|. We use this and our assumption that |V | > |δ(S)| + |S| to deduce
that

|V | > |δ(S)| + |S| ≥ |δ(B)| + |B| ≥ |B|,

and thus B ̸= V . Hence, we obtained a red-blue d-colouring of G. ◀

To prove the first part of Theorem 3, we prove a stronger statement in Theorem 10 and
afterwards we show how Theorem 10 implies the first part of Theorem 3. For every positive
integer t and ℓ, we recall that S1t,ℓ is the graph obtained from K1,t+1 by replacing one edge
with a path of length ℓ, see Figure 2. Note that S1t,ℓ contains exactly t + ℓ edges. In addition,
S1t,1 is the graph K1,t+1.

▶ Theorem 10. For d ≥ 2, t ≥ 2 and ℓ ≥ 1, every S1t,ℓ-free graph G = (V, E) with either
maximum degree ∆ = 2, or 3 ≤ ∆ ≤ t

t−1 d + 1
t−1 and |V | > (d + 1)

(
∆(∆−1)ℓ+1−2

∆−2

)
has a

d-cut, which can be found in linear time.

Proof. Let d ≥ 2, t ≥ 2 and ℓ ≥ 1. Let G be an S1t,ℓ-free graph. If ∆ = 2, then G has a
d-cut: take all edges between any vertex of G and its neighbours. From now on, assume
3 ≤ ∆ ≤ t

t−1 d + 1
t−1 and and |V | > (d + 1)

(
∆(∆−1)ℓ+1−2

∆−2

)
.

We choose an arbitrary vertex v of G and let S0 := {v}. For each i ∈ [ℓ + 1], we denote
by Si the set of vertices which are at distance exactly i from v in G. Note that |S1| ≤ ∆ and
for each i ∈ [ℓ], |Si+1| ≤ (∆ − 1)|Si|. Thus,

ℓ+1∑
i=0

|Si| ≤ ∆((∆ − 1)ℓ+1 − 1)
∆ − 2 + 1 = ∆(∆ − 1)ℓ+1 − 2

∆ − 2 .

Let U be the set of vertices in Sℓ which are incident to at least d + 1 edges in δ(Sℓ−1 ∪ Sℓ).
For each u ∈ U , we denote by Nu the set of neighbours of u not in Sℓ−1 ∪ Sℓ and by Gu the
subgraph of G induced on Nu.

We first show that Nu, for u ∈ U , has no independent set of size t. Suppose not. By the
definition of Sℓ, there is an induced path of length ℓ between v and u. Together with this path
and the independent set in Nu, we can find S1t,ℓ as an induced subgraph, a contradiction.
Thus, Nu has no independent set of size t.

For each u ∈ U , since Gu has no independent set of size t, by Observation 5, Gu has a
subgraph Hu whose minimum degree is at least

|V (Gu)|
t − 1 − 1 ≥ d + 1

t − 1 − 1.
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We remark that Hu can be found in constant time as |Nu| ≤ ∆ − 1, which is a constant.
Now, we let

S :=
(

ℓ⋃
i=0

Si

)
∪

(⋃
u∈U

V (Hu)
)

.

Note that S can be found in constant time as |U | ≤ |Sℓ| ≤ ∆(∆ − 1)ℓ−1, which is a constant.
We are going to apply Lemma 9 to S. Since t ≥ 2, we have t ≤ 2(t − 1), and therefore

∆ ≤ t

t − 1d + 1
t − 1 ≤ 2d + 1.

To apply Lemma 9 to S, we first show that every vertex in S is incident to at most d edges
in δ(S). By construction, this holds for every vertex in S \

⋃
u∈U (Nu ∪ {u}). Let u be a

vertex in U and let w be a vertex in Nu ∪ {u}. Note that u and w might be the same. Since
the minimum degree of Hu is at least

d + 1
t − 1 − 1

and u is adjacent to every vertex in Nu, there are at least

d + 1
t − 1

neighbours of w in S. Then w is incident to at most

∆ − d + 1
t − 1 ≤ t

t − 1d + 1
t − 1 − d + 1

t − 1 = d

edges in δ(S). That is, w is incident to at most d edges in δ(S). Hence, every vertex in S is
incident to at most d edges in δ(S).

We now show that |V | > |S| + |δ(S)|. Since S ⊆
⋃ℓ+1

i=0 Si, we have

|S| ≤
ℓ+1∑
i=0

|Si| ≤ ∆(∆ − 1)ℓ+1 − 2
∆ − 2 .

Since every vertex in S is incident to at most d edges in δ(S), we have |δ(S)| ≤ d|S|. Thus,

|V | > (d + 1)
(

∆(∆ − 1)ℓ+1 − 2
∆ − 2

)
≥ (d + 1)|S| = |S| + d|S| ≥ |S| + |δ(S)|.

Hence, by Lemma 9, we can find a d-cut of G in linear time. ◀

We now show that Theorem 10 implies Theorem 3, which we recall below.

▶ Theorem 3 (first part, restated). For d ≥ 2, every claw-free graph G = (V, E) with
maximum degree ∆(G) ≤ 2d + 1 and |V | > 4d2(2d + 1) has a d-cut, which can be found in
linear time.

Proof. Let G be a claw-free graph. If ∆(G) = 2, then we can apply Theorem 10 directly.
Assume ∆(G) ≥ 3. Theorem 10 with t = 2 and ℓ = 1 implies the first part of Theorem 3.
In order to see this, let G be a claw-free graph with maximum degree ∆(G) ≤ 2d + 1 and
|V | > 4d2(2d + 1). As 2d + 1 = t

t−1 d + 1
t−1 if t = 2, we obtain ∆(G) ≤ t

t−1 d + 1
t−1 . We also

observe:

|V | > 4d2(2d + 1) = (2d − 1)
(

(2d + 1)(2d)2

2d − 1

)
> (d + 1)

(
∆(∆ − 1)2 − 2

∆ − 2

)

ISAAC 2025



4:8 Finding d-Cuts in Claw-Free Graphs

A1 B1 A2 B2 A3 B3

v1 v2v3

T1 T2 T3

Figure 5 The graph constructed in Theorem 11 for k = 3. Note that for each i ∈ [3], Ai ∪ Bi is
a clique and vi is complete to Bi ∪ Ai+1, where A4 := A1.

where the last inequality holds from the fact that 2d − 1 ≥ d + 1 and the function
x(x − 1)2/(x − 2) is increasing for x ≥ 3. Hence, the conditions in Theorem 10 are satisfied,
and we may conclude that G has a d-cut, which can be found in linear time. ◀

We now prove the second part of Theorem 3, which shows that the bound given in the first
part of Theorem 3 is best possible. We slightly reformulate the statement as follows.

▶ Theorem 11. For every integer d ≥ 2, k ≥ 2, and r ≥ 2d + 2, there exists a claw-free
r-regular graph on (r + 1)k vertices that has no d-cut.

Proof. Let T1, . . . , Tk be pairwise disjoint cliques of size r. For each i ∈ [k], let {Ai, Bi} be
a partition of Ti such that |Ai| = d + 1. Note that

|Bi| = r − (d + 1) ≥ d + 1.

Let H be the graph obtained from T1 ∪ · · · ∪ Tk by adding k new vertices v1, . . . , vk such
that for each i ∈ [k], NH(vi) is equal to Bi ∪ Ai+1 where Ak+1 := A1, see Figure 5. Note
that H has rk + k = (r + 1)k vertices.

We first show that H is claw-free and r-regular. Let i be an arbitrary integer in [k].
Since the neighbourhood of vi is the disjoint union of two cliques Bi and Ai+1, H has
no claw centred at vi. Note further that vi has degree r. Consider now a vertex v in Ti.
The neighbourhood of v consists of all other vertices in Ti and some vertex vj , where
j ∈ {i − 1, i, k}. Hence, v has degree (r − 1) + 1 = r and since Ti is a clique, H has no claw
centred at v. We conclude that H is claw-free and r-regular.

It remains to show that H has no d-cut. Note that in any red-blue d-colouring of H, Ti,
for i ∈ [k], is monochromatic by Observation 8, since it is a clique of size at least 2d + 2. We
claim that

T :=
k⋃

i=1
Ti

is monochromatic in every red-blue d-colouring of H. Suppose for a contradiction that H

has a red-blue d-colouring where T is not monochromatic. Then there exists j ∈ [k] such
that Tj and Tj+1 have different colours, where Tk+1 := T1. Without loss of generality, assume
that Tj is coloured red. Consequently, Tj+1 is coloured blue. Since vj has at least d + 1
red neighbours in Bj , it is coloured red. However, vj has d + 1 blue neighbours in Aj+1,
contradicting the fact that we considered a red-blue d-colouring. Hence, if H has a red-blue
d-colouring, then T is monochromatic.

Thus, if H has a red-blue d-colouring, then T is monochromatic and hence, vi, for i ∈ [k],
is coloured the same as T since vi has at least 2d + 2 neighbours in T . Therefore, there is no
red-blue d-colouring of H. By Observation 6, H has no d-cut. ◀
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A1 B1 A2 B2 A3 B3

w1 v1 w2 v2 w3 v3

Figure 6 The graph illustrating Hd,k,r for k = 3. Note that for each i ∈ [3], Ai ∪ Bi is a clique,
vi is complete to Bi ∪ Ai+1, where A4 := A1, and wi is complete to Ai. If we remove w1, w2, and w3,
we obtain the graph in Figure 5.

4 The Proof of Theorem 4

In this section we prove Theorem 4. We first recall that the first statement of Theorem 3
immediately implies the constant-time part of Theorem 4, as d is a constant. Hence, it
remains to show the NP-completeness part of Theorem 4, that is, that for every integer
d ≥ 2, d-Cut is NP-complete for claw-free graphs of maximum degree 2d + 3. To do this, we
will reduce from NAE 3-Sat 0-1, which is a variant of Not-All-Equal 3-Satisfiability
(NAE 3-Sat). An instance of NAE 3-Sat consists of a set of clauses C1, . . . , Cm, each
containing three variables. The problem is to decide whether there is an assignment of the
variables such that every clause contains both a true and a false literal. Such an assignment
is called an NAE-satisfying assignment.

An instance of the problem we will reduce from NAE 3-Sat 0-1 is an instance of NAE
3-Sat that is satisfied both by the assignment where every variable is true and the assignment
where every variable is false. In other words, given an instance of NAE 3-Sat 0-1, every
clause contains a positive literal and a negative literal. Additionally, since the clause (x̄∨ ȳ∨z)
has the same set of NAE-satisfying assignments as the clause (x ∨ y ∨ z̄), we may assume
that each clause contains exactly one negative literal.

The problem NAE 3-Sat 0-1 is to decide whether an instance has a third NAE-satisfying
assignment. That is, we must decide whether there exists an assignment of variables such
that at least one variable is true, at least one variable is false, and each clause contains both
a true and a false literal. The next result was shown in [10].

▶ Proposition 12 (Eagling-Vose et al. [10]). NAE 3-Sat 0-1 is NP-complete.

We remark that it is possible to combine the reduction from Matching Cut to NAE 3-Sat
0-1 given in [10] with the reduction given here from the latter problem to d-Cut to obtain a
reduction directly from Matching Cut to d-Cut. However, we separate the two reductions
for ease of explanation.

For the reduction in the proof of our NP-hardness result, we use a lemma that is based
on the class of graphs from Theorem 11. For all integers d ≥ 2, k ≥ 2, and r ≥ 2d + 2,
let Hd,k,r be the graph obtained from the graph in Theorem 11, with respect to the same
integers, by adding k new vertices w1, . . . , wk such that for each i ∈ [k], the neighbourhood
of wi in Hd,k,r is equal to Ai ∪ {vi−1} where v0 := vk. See also Figure 6.

▶ Lemma 13. For all integers d ≥ 2, k ≥ 2, and r ≥ 2d + 2, the graph Hd,k,r is a claw-free
graph with maximum degree r + 1 on (r + 2)k vertices which has no d-cut. In particular, each
of w1, . . . , wk has degree d + 2, and the other vertices have degree at least r.
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wi1 Fi1

wi2 Fi2

wi3Fi3

Di,1 Di,2

ci

Figure 7 The clause gadget consisting of the vertex ci and the clique Di,1 ∪ Di,2 representing
the clause Ci = (xi1 ∨ xi2 ∨ xi3 ), together with the corresponding variable vertices.

Proof. Let H be the graph in Theorem 11, with respect to the same integers, and let
H ′ := Hd,k,r. Note that

|V (H ′)| = |V (H)| + k = (r + 1)k + k = (r + 2)k.

Since H is r-regular and w1, . . . , wk have pairwise disjoint neighbourhoods, each of w1, . . . , wk

has degree d + 2, and the other vertices have degree either r or r + 1.
We show that H ′ is claw-free. Suppose that H ′ has a claw K centred at a vertex c.

Since H is claw-free, K contains wi for some i ∈ [k]. As NH′(wi) is a clique, c ̸= wi. So
NH′(c) is the union of two cliques, contradicting that K is a claw. Hence, H ′ is claw-free.

It remains to show that H ′ has no d-cut. By Observation 6, H ′ has a d-cut if and only
if H ′ has a red-blue d-colouring. By Theorem 11, we know that V (H) is monochromatic in
every red-blue d-colouring. Further, wi, for i ∈ [k], has d + 2 neighbours in H. Thus, by
Observation 7, wi is coloured the same as V (H). This implies that V (H ′) is monochromatic
in every red-blue d-colouring and hence H ′ has no red-blue d-colouring. It follows that H ′

has no d-cut. ◀

We are now ready to prove the remaining part of Theorem 4, which we restate below.

▶ Theorem 4 (NP-completeness part, restated). For d ≥ 2, d-Cut is NP-complete for
claw-free graphs with maximum degree ∆ = 2d + 3.

Proof. We reduce from NAE 3-Sat 0-1. Let ϕ be an instance of NAE 3-Sat 0-1 with
variables x1, . . . , xn and clauses C1, . . . , Cm. In the following, we construct an instance G of
d-Cut which is claw-free and has maximum degree 2d + 3. For each ℓ ∈ [n], let kℓ be the
number of occurrences of xℓ in ϕ and let Fℓ be a copy of Hd,kℓ,2d+2. We say that a vertex
of Fℓ is free if it has degree d + 2 in Fℓ. Note that Fℓ has exactly kℓ free vertices. We remark
that these free vertices will play the role of variable vertices for xℓ.

For each clause Ci = (xi1 ∨ xi2 ∨ xi3), for i ∈ [m], we add two disjoint cliques Di,1 of
size d and Di,2 of size d + 1. In addition, we add a vertex ci. We let Di := Di,1 ∪ Di,2
and call Di ∪ {ci} a clause gadget. We add all edges between Di,1 and Di,2 and between ci

and Di,1. For each j ∈ [3], we choose some free vertex of Fij
and call this vertex wij

. We
add edges between wi1 and each vertex in Di,1 ∪ {ci}, edges between wi2 and each vertex
in Di,2, and we also add an edge between ci and wi3 , see Figure 7. We choose these free
vertices in such a way that every free vertex has neighbours in exactly one clause gadget.
This is possible as, for every ℓ ∈ [n], Fℓ has kℓ free vertices and xℓ appears kℓ times in ϕ.
Let G be the resulting graph.
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We first show that G is a claw-free graph of maximum degree 2d+3. Let ℓ be an arbitrary
integer in [n]. Let v ∈ V (Fℓ) be a vertex that is not free. Then, by Lemma 13, v has degree
at most 2d + 3 and further, since v has neighbours only in Fℓ, G has no claw centred at v.
Let w be a free vertex of Fℓ. Recall that w has a neighbour in a clause gadget Di ∪ {ci} for
some i ∈ [m]. Note that w has degree at most (d + 2) + (d + 1) = 2d + 3 since it has d + 2
neighbours within Fℓ and at most d + 1 neighbours in Di ∪ {ci}. In addition, the neighbours
of w in Di ∪ {ci} form a clique of size 1 or d + 1. Thus, the neighbourhood of w in G is the
union of this clique in Di ∪ {ci} and some clique in Fℓ, so G has no claw centred at w.

Finally, we consider the clause gadget Di ∪ {ci}. Recall that ci is a fixed vertex with
neighbourhood Di,1 ∪ {wi1 , wi3}. Thus, it has degree d + 2. Since wi1 is complete to Di,1,
the neighbourhood of ci is the union of two cliques. Hence, the vertex ci is not the centre
of a claw of G. Let u be a vertex in Di,1. The closed neighbourhood of u is Di ∪ {ci, wi1},
which is the union of the two cliques Di,1 ∪ {ci, wi1} and Di2 . Hence, u is not the centre of a
claw in G. Since |Di| = 2d + 1, u has degree 2d + 2. Now, let u′ be a vertex in Di,2. The
closed neighbourhood of u′ is Di ∪ {wi2}, which is the union of the two cliques Di and {wi2}.
So u′ is not the centre of a claw in G. Again, as |Di| = 2d + 1, the vertex u′ has degree
2d + 1. It follows that G is a claw-free graph of maximum degree at most 2d + 3.

We show that G has a d-cut if and only if ϕ has an NAE-satisfying assignment with both
a true and a false variable. By Observation 6, this is equivalent to showing that G has a
red-blue d-colouring if and only if ϕ has an NAE-satisfying assignment with both a true and
a false variable.

We assume first that G has a red-blue d-colouring and show that ϕ has an NAE-satisfying
assignment with both a true and a false variable. Recall that by Lemma 13, Fℓ is mono-
chromatic for each ℓ ∈ [n]. We set a variable xℓ to true if Fℓ is coloured blue and to false
otherwise.

We first show that the resulting assignment contains both a true and a false variable.
Suppose for a contradiction that this is not the case. We may assume without loss of
generality that all variables are true. This implies that for every ℓ ∈ [n], Fℓ is coloured blue.
Note that Di, for i ∈ [m], is a clique of size 2d + 1 and thus monochromatic by Observation 8.
As wi2 ∈ Fi2 , it is coloured blue. Further, wi2 has d + 1 neighbours in Di,2 ⊆ Di. Hence,
since Di,2 is monochromatic, Di,2 is coloured blue. It follows that Di,1 is blue as well and,
since ci has d + 1 blue neighbours in Di,1 ∪ {wi1}, it is coloured blue. Thus, the whole graph
is coloured blue, contradicting the fact that we considered a red-blue d-colouring. Therefore,
the assignment contains both a true and a false variable.

We now show that the assignment is NAE-satisfying for ϕ. Suppose for a contradiction
that the assignment is not NAE-satisfying. Then there exists a clause Ci = (xi1 ∨ xi2 ∨ xi3),
for some i ∈ [m], such that all literals have the same value. Note that this implies that
both xi2 and xi3 take the opposite value of xi1 . Without loss of generality, assume that xi1

is true and xi2 and xi3 are both false. That is, wi1 is coloured blue while wi2 and wi3 are
coloured red. Recall that Di is monochromatic. Since wi2 has d + 1 neighbours in Di,2, Di

is coloured the same as wi2 and is thus coloured red. This implies that the blue vertex wi1

has d red neighbours in Di,1, so its neighbour ci is coloured blue. However, as wi3 is coloured
red, ci has d + 1 red neighbours in Di,1 ∪ {wi3}, contradicting the fact that we considered a
red-blue d-colouring. Hence, the assignment is NAE-satisfying for ϕ.

For the other direction, we now assume that ϕ has an NAE-satisfying assignment with
both a true and a false variable. We construct a red-blue d-colouring of G as follows. For
each ℓ ∈ [n], we colour Fℓ blue if it corresponds to a true variable and red otherwise. For
each i ∈ [m], we colour Di the same as wi2 . In addition, we colour ci the same as wi1 .
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We show that this colouring is indeed a red-blue d-colouring of G. Note first that since
the assignment contains both a true and a false variable, we have both red and blue vertices.
It remains to show that every vertex has at most d neighbours of the other colour. Let ℓ be
an arbitrary integer in [n]. Note that every vertex of Fℓ which is not a free vertex has no
neighbour of the other colour. Let w be a free vertex of Fℓ. Recall that there is exactly one
clause Ci, for i ∈ [m], such that w is adjacent to the corresponding clause gadget Di. That
is, w ∈ {wi1 , wi2 , wi3}. We distinguish between these cases:

If w = wi3 , then it has one neighbour outside of Fℓ and thus at most one neighbour of
the other colour.
If w = wi2 , then, by construction, it has no neighbour of the other colour.
If w = wi1 , then it has d + 1 neighbours outside of Fℓ and, by construction, at least one
of them, namely ci, has the same colour as w.

Thus, w has at most d neighbours of the other colour.
Now, let u be a vertex in Di. If u ∈ Di,2, then its closed neighbourhood is Di ∪ {wi2},

which is monochromatic by construction. Thus, u has no neighbour of the other colour. If
u ∈ Di,1, then, since Di is monochromatic, the only neighbours of u which may be coloured
with the other colour are wi1 and ci. Since d ≥ 2, it follows that u has at most d neighbours
of the other colour. Thus, we may assume that u = ci. Recall that the neighbourhood
of ci is Di,1 ∪ {wi1 , wi3} and that ci is coloured the same as wi1 . Assume without loss of
generality that ci is coloured blue. Suppose for a contradiction that ci has at least d + 1
red neighbours. That is, Di,1 and wi,3 are coloured red. Since Di is monochromatic by
construction, this implies that Di,2 and thus wi,2 are coloured red as well. Hence, wi,2
and wi,3 are both coloured red, while wi,1 is coloured blue, a contradiction to the assumption
that the assignment is NAE-satisfying. Thus, ci has at most d neighbours of the other colour.
Hence, the colouring is indeed a red-blue d-colouring of G. This completes the proof. ◀

We remark that for every ∆ > 2d + 3, d-Cut is still NP-complete on claw-free graphs with
maximum degree ∆: after replacing each Fℓ as a copy of Hd,kℓ,∆−1, instead of Hd,kℓ,2d+2,
the same hardness proof works.

5 Conclusions

We proved both constant-time and NP-completeness results for d-Cut restricted to claw-free
graphs of bounded maximum degree, leaving open only one case, which replaces Open
Problem 1:

▶ Open Problem 2. For every integer d ≥ 2, what is the computational complexity of d-Cut
on claw-free graphs of maximum degree ∆ = 2d + 2?

Recall that we showed in Theorem 3 that there are many claw-free (2d + 2)-regular graphs
with no d-cut and also that every claw-free graph of maximum degree ∆ ≤ 2d + 1 has a d-cut.
This shows that our bound is best possible. On the other hand, our construction used in the
proof of Theorem 4 for graphs of maximum degree ∆ = 2d + 3 cannot easily be modified
to work for graphs of maximum degree ∆ ≤ 2d + 2. The variable gadget is based on our
construction for (2d + 2)-regular graphs without a d-cut. We modify the construction such
that it contains vertices of degree d + 2 that can be used to connect the gadget to the rest
of the construction. However, to make sure that we do not get a d-cut by partitioning the
graph into a variable gadget and the rest, there has to be a vertex in the variable gadget that
has at least d + 1 neighbours outside the gadget. This leads to vertices of degree 2d + 3 in
the construction. Hence, reducing the degree in this construction requires us to construct a
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u v. . .

i edges

Figure 8 The graph H∗
i . Figure taken from [21].

variable gadget containing some vertices of degree smaller than d + 2. If we want the gadget
to be monochromatic, this implies we need a gadget with vertices of degree d + 1. However,
finding such a gadget seems to be a challenging task.

In our paper we also showed that our positive results for d-Cut on claw-free graphs can
be generalized to even S1t,ℓ-free graphs. A natural question, which we leave for future work,
is whether our results can also be generalized to S1,2,2-free graphs. Here, S1,2,2 is the graph
obtained from the claw by subdividing two of its edges exactly once. In order to answer this
question, we need some new arguments as our current proof techniques cannot be applied
immediately. For instance, in the proof of Theorem 10, a key observation is that for each
u ∈ U , G[Nu] has no independent set of size t, as otherwise we can find an induced S1t,ℓ

by combining such an independent set with the path of length ℓ between u and v. This
observation no longer holds for the S1,2,2 case.

We recall that in particular, our results imply that 2-Cut, restricted to claw-free graphs
of maximum degree p, is constant-time solvable if p ≤ 5 and NP-complete if p ≥ 7. The latter
result resolved an open case in the complexity classification of d-Cut on H-free graphs, as
the complexity of 2-Cut for claw-free graphs was not previously known. This brings us to
the state-of-the-art summary for d-Cut on H-free graphs, which we update below.

We first give some more terminology. For r ≥ 1, we denote by Pr and Cr, respectively, a
path and a cycle on r vertices. For s ≥ 1, we denote by sPr the disjoint union of s copies
of Pr. We denote by S1,1,2 the graph obtained from a claw by subdividing one edge once, so
that it has four edges. Let H∗

1 be a graph that looks like the letter “H”. It is obtained by
taking the graph 2P3 and making the middle vertices, say u and v, of each P3 adjacent to
each other. We obtain the graph H∗

i , for i ≥ 2, by subdividing uv exactly i − 1 times, see
Figure 8. The girth of a graph that is not a forest is the length of a shortest cycle in it.

We now present the updated state-of-the-art summary. For every d ≥ 1, d-Cut is NP-
complete for graphs of girth at least g for every fixed g ≥ 3 [11], and thus for Cr-free graphs
for every r ≥ 3. It is also known that 1-Cut is NP-complete for (H∗

1 , . . . , H∗
i )-free graphs

for every i ≥ 1 [11], K1,4-free graphs [9], (3P5, P15)-free graphs [23] and (3P6, 2P7, P14)-free
graphs [18]. On the positive side, 1-Cut is polynomial-time solvable for (sP3 + S1,1,2)-free
graphs [20], (sP3 + P4 + P6)-free graphs [20] and (sP3 + P7)-free graphs [20] for every s ≥ 1.

We summarize the above results and our new result for 2-Cut on claw-free graphs in the
following theorem, in which all unreferenced results for d-Cut (d ≥ 2) are shown in [21]. For
two graphs H and H ′, we write H ⊆i H ′ if H is an induced subgraph of H ′, and denote by
H + H ′ the disjoint union of a copy of H and a copy of H ′.

▶ Theorem 14. Let d ≥ 1 and let H be a graph.
If d = 1, then d-Cut (Matching Cut) on H-free graphs is

polynomial-time solvable if H ⊆i sP3 + S1,1,2, sP3 + P4 + P6, or sP3 + P7 for some
s ≥ 1;
NP-complete if H ⊇i K1,4, P14, 2P7, 3P5, Cr for some r ≥ 3, or H∗

i for some i ≥ 1.
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If d ≥ 2, then d-Cut on H-free graphs is
polynomial-time solvable if H ⊆i sP1 + P3 + P4 or sP1 + P5 for some s ≥ 1;
NP-complete if H ⊇i K1,3, 3P2, Cr for some r ≥ 3.

It is known that for d ≥ 2, d-Cut is polynomial-time solvable on (H + P1)-free graphs
whenever d-Cut is polynomial-time solvable for H-free graphs. This means that the cases
{H + sP1 | s ≥ 0} are all polynomially equivalent. Hence, for d ≥ 2, there are, due to our
new result, now only three non-equivalent open cases left, namely when H ∈ {2P4, P6, P7}.

Finally, we are currently exploring the consequences of our results and proofs for finding
internal partitions of graphs. To explain, a partition (V1, V2) of the vertex set V of a graph G

is an internal partition of G if for every i ∈ {1, 2}, every vertex in Vi has at least half of its
neighbours in Vi. Internal partitions are well studied; see, for example, the survey of Bazgan,
Tuza and Vanderpooten [4]. The corresponding decision problem that asks whether a graph
has an internal partition is known as Satisfactory Partition. As we briefly mentioned in
Section 1, there are connections between d-cuts and internal partitions [13].
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