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—— Abstract

The minimum sum coloring problem with bundles was introduced by Darbouy and Friggstad (SWAT
2024) as a common generalization of the minimum coloring problem and the minimum sum coloring
problem. During their presentation, the following open problem was raised: whether the minimum
sum coloring problem with bundles could be solved in polynomial time for trees. We answer their
question in the negative by proving that the minimum sum coloring problem with bundles is NP-hard
even for paths. We complement this hardness by providing algorithms of the following types. First,
we provide a fixed-parameter algorithm for trees when the number of bundles is a parameter; this
can be extended to graphs of bounded treewidth. Second, we provide a polynomial-time algorithm
for trees when bundles form a partition of the vertex set and the difference between the number of
vertices and the number of bundles is constant. Third, we provide a polynomial-time algorithm for
trees when bundles form a partition of the vertex set and each bundle induces a connected subgraph.
We further show that for bipartite graphs, the problem with weights is NP-hard even when the
number of bundles is at least three, but is polynomial-time solvable when the number of bundles is
at most two. The threshold shifts to three versus four for the problem without weights.
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Figure 1 (Left) An instance of the minimum sum coloring problem with bundles. Bundles are
distinguished by color. In this example, bundles are disjoint, but they do not have to be disjoint in
general. Numbers on vertices represent the colors assigned to them. The maximum color is 3 for the
violet bundle, 3 for the blue bundle, and 2 for the orange bundle; their sum is 8. (Right) Scheduling
with conflicts. This is a Gantt chart, where each unit-time job corresponds to a square and the
numbers correspond to time slots. Colors show bundles. The graph on the left is a conflict graph
over the jobs, and the minimum sum coloring problem with bundles corresponds to minimizing the

T

sum of makespans over bundles.

1 Introduction

The minimum sum coloring problem with bundles was introduced by Darbouy and Frigg-
stad [10] as a common generalization of the minimum coloring problem and the minimum
sum coloring problem. For the minimum sum coloring problem with bundles, we are given
an undirected graph G and a family of vertex subsets of G, called bundles. Then, we want to
find a (proper) coloring of G by positive integers such that the sum of the maximum colors in
bundles is minimized (a precise definition will be given in the next section). Figure 1 (Left)
shows an example. The minimum coloring problem corresponds to the case where the vertex
set itself is a unique bundle; the minimum sum coloring problem corresponds to the case
where each vertex forms a singleton bundle.

The minimum sum coloring problem with bundles can be seen as a combinatorial model
for the following scheduling problem. We want to process n jobs with unit processing time.
Among them, some pairs of jobs cannot be processed concurrently due to conflicts such as
competing resources or precedence constraints. Those conflicts are modeled by an undirected
graph in which the vertices represent given jobs, and two vertices are joined by an edge if and
only if the corresponding jobs are in conflict. Furthermore, there are £ agents, and each of
them is interested in the completion of some set of jobs. Each of these sets of jobs is modeled
as a bundle, and the agents want to minimize the completion time of the last job in each of
their bundles. We assume that there are sufficiently many machines with identical power.
Then, an optimal solution to the minimum sum coloring problem with bundles corresponds
to a scheduling of jobs that minimizes the total (or average) completion time of the last jobs
in the bundles. Figure 1 (Right) shows the correspondence. With this application in mind, it
is natural to assume that the bundles form a partition of the vertex set. However, some of
our results can be applied even when the bundles do not form a partition.

The minimum sum coloring problem with bundles is a computationally hard problem.
This is expected since the minimum coloring problem is already NP-hard [16]. However, it
is known that the minimum coloring problem and the minimum sum coloring problem can
be solved in linear time for trees [17]. Darbouy and Friggstad [10], in their presentation at
SWAT 2024, asked whether the minimum sum coloring problem with bundles can be solved
in polynomial time for trees.
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The first main contribution of this paper is to prove that the minimum sum coloring
problem with bundles is NP-hard even when the graph is a path and bundles form a partition
of the vertex set. This answers the open question by Darbouy and Friggstad [10] mentioned
above since paths are trees. On the other hand, we already know from the literature that, if
the bundles form a partition, the problem is linear-time solvable when the number of bundles
is one (corresponding to the minimum coloring problem) or when it is equal to the number
of vertices (corresponding to the minimum sum coloring problem). We also observe that
in our reduction, the subgraph induced by a bundle can be disconnected. Therefore, we
wonder what happens if the number of bundles is small or large, or if each bundle induces a
connected subgraph.

The second contribution of this paper is to provide a fixed-parameter algorithm for the
minimum sum coloring problem with bundles in trees when the number of bundles is a
parameter. The algorithm also works when each bundle is associated with a non-negative
weight that acts as a coefficient in the sum. The algorithm is based on a combinatorial lemma
that states that the number of colors in an optimal coloring is bounded by the chromatic
number of the graph multiplied by the number of bundles, which holds for general graphs.

The third contribution is to provide a polynomial-time algorithm for the minimum sum
coloring problem with bundles in trees when bundles form a partition and the difference
between the number of vertices and the number of bundles is small. It should be noted that
this is not a fixed-parameter algorithm with respect to that difference.

The fourth contribution is to provide a polynomial-time algorithm for the minimum sum
coloring problem with bundles in trees when the family of bundles forms a partition of the
vertex set and each bundle induces a connected subgraph. Note that this algorithm does not
require the number of bundles to be bounded. We also show that the minimum sum coloring
problem with bundles in paths can be solved in polynomial time when each bundle induces a
connected subgraph (even if the bundle family does not necessarily form a partition).

Next, we turn our attention to bipartite graphs. Since for bipartite graphs, the minimum
coloring (i.e., when the number of bundles is one) is easy and the minimum sum coloring (i.e.,
when the number of bundles is equal to the number of vertices) is hard [3], we investigate how
the number of bundles affects the computational complexity of the minimum sum coloring
problem with bundles.

As the fifth contribution, we prove that for bipartite graphs, the minimum sum coloring
problem with bundles can be solved in polynomial time when the number of bundles is at
most three, and it is NP-hard when the number of bundles is at least four. For the weighted
case, the problem can be solved in polynomial time when the number of bundles is at most
two, and it is NP-hard when the number of bundles is at least three.

Our results are summarized in Table 1.

Related work

As mentioned in the introduction, the minimum sum coloring problem with bundles was
introduced by Darbouy and Friggstad [10] as a common generalization of the minimum
coloring problem and the minimum sum coloring problem.

The minimum coloring problem has been one of the central topics in graph theory, graph
algorithms, combinatorial optimization, and computational complexity theory. It is known

that the minimum coloring problem is NP-complete [16],! even for 4-regular planar graphs [9].

! Whenever we talk about NP-completeness of a minimization problem, we consider a canonical decision
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Table 1 Summary of the results in this paper. Here, n is the number of vertices.

# bundles Type of bundles Weights  Results Reference
Trees Unbounded Independent partition  Uniform NP-complete Theorem 3
Parameter General General FPT Theorem 5
n — Parameter  Partition General XP Theorem 7
Unbounded Connected partition General P Theorem 8
Bipartite <3 General Uniform P Theorem 13
>4 General Uniform  NP-complete Theorem 10
<2 General General P Theorem 12
>3 General General  NP-complete Theorem 11

For several classes of graphs, the minimum coloring problem can be solved in polynomial
time. Most notably, for perfect graphs, a polynomial-time algorithm is known that is based
on semidefinite programming relaxation [13]. The class of perfect graphs contains bipartite
graphs, interval graphs, and chordal graphs, for which the minimum coloring problem can be
solved in linear time.

The minimum sum coloring problem was introduced by Kubicka and Schwenk [17], where
the NP-completeness of the problem was established. The problem is also known to be
NP-complete even for bipartite graphs [3] and interval graphs [19, 18] (and hence for chordal
graphs). We recommend a survey by Halldérsson and Kortsarz [14] on approximability for
the minimum sum coloring.

The minimum coloring problem and the minimum sum coloring problem are closely
related to scheduling with conflict or mutual exclusion scheduling. In a basic version of
scheduling with conflict, we are given a set of n jobs with unit processing time, a set of m
machines, and a conflict graph G on the set of jobs. Then, we need to assign each job to one
of the machines and process the jobs along the timeline in such a way that two jobs are not
processed at the same time slot if they are adjacent in G. The objective is to minimize either
the makespan or the total completion time. The minimum coloring problem corresponds
to the case where m > n and the objective is makespan minimization; the minimum sum
coloring problem corresponds to the case where m > n and the objective is total completion
time minimization. Baker and Coffman Jr. [2] proved that the problem of scheduling with
conflict can be solved in polynomial time when m = 2 and is NP-hard when m > 3. For
more recent and related results, see a paper by Even et al. [11]. We note that there are
versions of scheduling with conflicts where we cannot process two jobs in conflict on the same
machine [5].

2 Preliminaries

For a positive integer k € Z~, we use the notation [k] = {1,2,...,k}.

All graphs in this paper are finite, undirected, and simple (i.e., having no self-loops or
multiple edges). A graph G = (V| E) is bipartite if the vertex set V' can be partitioned into
two disjoint sets A and B in such a way that every edge e € E has one endpoint in A and
the other endpoint in B. A graph G is a tree if it is connected and has no cycles. For v € V|
let ¢ (v) denote the set of all edges incident to v.

version of the problem in which we are also given an upper bound C of the optimal value, and want to
decide whether the optimal value is at most C'.
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Let G = (V, E) be a graph. A (proper) coloring of G is a map ¢: V — Z~ such that
c(u) # ¢(v) for every edge uv € E. For a vertex subset S C V, an S-partial coloring of G is
amap c: V — Z>¢ such that c¢(v) >0 forv e S, ¢(v) =0 for v € V'\ S, and c(u) # c(v) for
every edge uv € E with u,v € S.

The problem MINIMUM SuM COLORING WITH BUNDLES is defined as follows.

Problem: MINIMUM SUM COLORING WITH BUNDLES

Input: An undirected graph G = (V, E), a family B = {B;, Bs, ..., B¢} of non-empty
subsets of V', a weight function w: B — Z~¢, and a positive integer C' € Z~.

Question: Determine whether there exists a (proper) coloring ¢: V' — Z~¢ such that

¢
cost(c) := Zw(Bj) max{c(v) | v e B;} <C.
j=1

For an instance I = (G, B, w, C) of MINIMUM SuM COLORING WITH BUNDLES, we call a
coloring ¢ of G optimal if cost(c) < cost(c¢’) for all colorings ¢’ of G.

Each member of B is called a bundle. Throughout the paper, we assume that each vertex
v € V is contained in at least one bundle; otherwise, we can remove v from the instance.
The family B is a partition if for each vertex v € V there exists a unique bundle B; such that
v € Bj. A bundle B is connected if the induced subgraph G[B] is connected. A bundle B is
independent if the induced subgraph G[B] has no edges. The family B is called connected
(and independent) if all its members are connected (and independent, respectively).

The following observation will be used later explicitly or implicitly.

» Observation 1. For any graph G = (V, E) in MINIMUM SuM COLORING WITH BUNDLES,
there exists an optimal coloring in which the color of every vertex v is at most |dg(v)| + 1.

Proof. If the color of v exceeds |0g(v)| + 1, then one of the colors in {1,2,...,|dg(v)| + 1}
is missing in the neighborhood of v, and v can be recolored with that missing color without
increasing the cost. |

3 Trees
3.1 NP-Completeness for Paths

As an intermediate step, we first prove that MINIMUM SUM COLORING WITH BUNDLES is
NP-complete for perfect matchings. Here, a perfect matching is a set of edges in which no
pair of edges shares a common endpoint.

» Theorem 2. MINIMUM SuM COLORING WITH BUNDLES is NP-complete even when the
edge set of the input graph forms a perfect matching, B is an independent partition of the
vertex set, and w(B) =1 for every B € B.

Proof. It is easy to see that MINIMUM SuM COLORING WITH BUNDLES is in NP. To prove

NP-hardness, we reduce INDEPENDENT SET to MINIMUM SUM COLORING WITH BUNDLES.

Here, for an undirected graph G = (V, E), we say that S C V is independent if G has no
edge connecting the vertices in S.

40:5
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Problem: INDEPENDENT SET
Input: An undirected graph G = (V, E) and a positive integer k € Z~.
Question: Determine whether there exists an independent set S C V with |S| > k.
It is well-known that INDEPENDENT SET is NP-complete (see [16]).

Suppose that we are given an instance of INDEPENDENT SET that consists of a graph
G = (V, E) and a positive integer k. We construct a new graph G’ = (V', E’) by replacing
each vertex v € V with |0g(v)| new vertices so that each new vertex has exactly one incident
edge. Formally, G’ is defined as follows:

V' ={pu.e) |veV, e€ida(v)}, E' = {pu,e)P(v,e) | € =uv € E}.

Let By := {p,e) | € € dg(v)} for each v € V, and define B = {B, | v € V}. Then, it is easy
to see that E’ forms a perfect matching in G’ and B is a partition of V'. Let w(B) =1 for
any B € B, and let C = 2|V| — k. This defines an instance (G’, B, w,C) of MINIMUM SUM
COLORING WITH BUNDLES. See Figure 2.

To show the validity of this reduction, it suffices to show that G has an independent set
of size at least k if and only if there exists a coloring c of G’ such that ), max{c(p) | p €
B,} <C.

We first show the sufficiency (“if” part). Suppose that G’ has a coloring ¢: V' — Z<¢
such that cost(c) < C =2|V| —k. Let S:={v € V | max{c(p) | p € B,} = 1}. Then, since

C > cost(c) = 3 max{e(p) | p € B} = 2(V| - [S]) + 5],
veV

we obtain [S| > k. For any edge e = uv € E, since c(p(u,e)) 7 ¢(P(v,e)) as ¢ is a coloring, at
least one of ¢(p(y,e)) > 2 and ¢(p(y,e)) > 2 holds, which implies that at least one of v and v
is in V'\ S. Therefore, S is an independent set in GG, which shows the sufficiency.

We next show the necessity (“only if” part). Suppose that G has an independent set
S CV with |S| > k. Let ¢: V' — Z<q be a coloring of G’ such that

for each edge e = uv € E, one of ¢(p(y,e)) and c(p(y.e)) is 1 and the other is 2, and

for any v € S and any e € dg(v), it holds that c(p(y,e)) = 1.
Note that such a coloring ¢ exists, because S is an independent set in G. Since max{c(p) |
p € B,} =1forveSand max{c(p) | p € B,} <2forveV\S, weobtain

cost(c) = Z max{c(p) | p € By} <2|V|—|S| < C,
veV

which shows the necessity.

Therefore, the reduction is valid, and hence MINIMUM SuM COLORING WITH BUNDLES
is NP-hard even when the edge set forms a perfect matching, B is an independent partition
of the vertex set, and w(B) =1 for every B € B. <

We then prove the NP-hardness of MINIMUM SuM COLORING WITH BUNDLES on paths
by reducing MINIMUM SUM COLORING WITH BUNDLES with the conditions in Theorem 2.
Roughly speaking, the reduction involves creating four copies of the instance described in
Theorem 2 and carefully connecting their edges to form a single path. See the full version
for details.

» Theorem 3. MINIMUM SuM COLORING WITH BUNDLES is NP-complete even when G is
a path, B is an independent partition of the vertex set, and w(B) =1 for every B € B.
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Figure 2 Reduction when a graph forms a perfect matching.

3.2 Fixed-Parameter Tractability when |B| is a Parameter

In the reduction of the previous section, the number of bundles is unbounded. As a positive
algorithmic result that is in contrast to Theorem 3, we prove that MINIMUM SuM COLORING
WITH BUNDLES in graphs of bounded treewidth can be solved in fixed-parameter tractable

time when the number of bundles and the treewidth are parameters. See a textbook (e.g.

[8]) for an introduction to treewidths and Courcelle’s theorem.

First, we prove the lemma that bounds the number of colors in any optimal coloring. For
a graph G = (V, E), we denote by x(G) the chromatic number of G, which is defined as the
minimum of max,cy ¢(v) over all (proper) colorings ¢ of G.

» Lemma 4. Let I = (G = (V. E),B,w,C) be an instance of MINIMUM SuM COLORING
WITH BUNDLES such that each vertex is contained in some bundle. Then, every optimal
coloring ¢: V= Zsq for I satisfies c(v) < x(G)|B| for allv e V.

Proof. The proof proceeds by induction on |B|. Consider the case where |B| = 1 and B = {B}.

Note that B =V as each vertex is contained in some bundle. Let ¢ be a minimum coloring,
i.e., a coloring that attains x(G). Then, max,ecp c(v) < max,cv c(v) = x(G) = x(G)|B|.
Now, let £ > 1 be a positive integer, and assume that the lemma holds when the number

of bundles is ¢. Then, we prove that the lemma holds when the number of bundles is £ + 1.

For the sake of contradiction, suppose that there exists an optimal coloring ¢* such that
maxyep ¢ (v) > x(G)(¢ + 1) for some B € B. Fix such a member B, and let U be the set
of vertices of G that belong to B, but not to other bundles. Then, consider the instance
I' = (G - U,B\ {B},w|y\v,C), where w|y\y is the restriction of w on V' \ U. By the
induction hypothesis, there exists an optimal coloring ¢: V \ U — Zsq for I’ such that
max,ep\u ¢ (v) < xX(G—U)l < x(G)€. We now extend ¢’ to a coloring c of G by giving colors

in {x(G)l+1,...,x(G)+ x(G)} to the vertices of U. This is possible since x(G[U]) < x(G).

Then,
cost(c) = Z w(B') max c(v) + w(B) max c(v)
BreB\{B} ve ve
< > w®B) max ¢/ (v) + w(B)x(G)(¢ +1)
B/EB\{B} Ve
/ * * . *
< Z w(B )ggg}gc (v) +w(B) max c (v) = cost(c").
B'eB\{B}
This contradicts the optimality of c¢*. |
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We now focus on the case where the input graph G has treewidth at most tw. Note that
X(G) < tw+1, because the degeneracy of G is at most tw. Thus, the number of colors in any
optimal coloring is at most (tw+1)|B| by Lemma 4.

To solve MINIMUM SUM COLORING WITH BUNDLES for graphs G = (V, E) with treewidth
at most tw, we employ Courcelle’s theorem [1, 6, 7]. To this end, we introduce the following
auxiliary decision problem. In addition to the input (G, B, w, C) to MINIMUM SUM COLORING
WITH BUNDLES, where B = {Bj, Ba, ..., B¢}, we also take a sequence k = (ky, k2, ..., k¢) of
integers. Then, we want to decide whether there exists a coloring ¢: V' — Z~( such that
max,ep; c(v) < k; for all j € [¢]. If we have a solution to this auxiliary problem for every
k € [(tw+1)¢])*, then the optimal cost for the instance (G, B, w,C) can be derived as

‘
mkin Z w(Bj)k; | the answer to the instance (G, B, w, C, k) is yes » . (1)
j=1

We now focus on solving the auxiliary problem above. To solve the auxiliary problem
using Courcelle’s theorem [1, 6, 7], it is sufficient to write down an MSO formula that
expresses the decision. An instance is given as (G, B, w, C, k), and we want to decide whether
there exists a coloring ¢ such that max,cp; c(v) < k; for all j € [(]. By Lemma 4, we can
assume that our coloring ¢ uses colors in [(tw +1)¢]. For brevity, let p = (tw +1)¢. To express
conditions with an MSO formula, we regard a coloring c as a partition {C1,Cs,...,Cp} of
the vertex set V' into independent sets, where C; = {v € V' | ¢(v) = i}. Note that in such a
partition a set C; can be empty.

Then, the decision can be expressed by the following MSO formula:

P P
30,0, ...,C, C V' /\ /\ VoeV:=(veC;AveCy) (2)
i=1i'=i+1
P
AYveV: \/(vGC’i) (3)
i=1
P
A/\VU,UEV: (ueCiNveCC; - —~(uww € E)) (4)
i=1
¢ k;
/\/\VvGV: UGBj*)\/(UGCi) . (5)
Jj=1 i=1

In the formula, the conjunction of Formulae (2) and (3) represents that {Cy,Cy,...,Cp} is a
partition of V. Formula (4) represents that each C; is independent. Formula (5) represents
that the maximum color in bundle B; is at most k; for each j € [{]. Thus, the formula
correctly represents the conditions in the auxiliary problem.

By Courcelle’s theorem, this auxiliary problem can be solved in O(f(tw,?)|V|) time
for some computable function f. To evaluate the minimum in (1), we solve the auxiliary
problem for every choice of k € [(tw +1)¢]*, thus at most ((tw +1)¢)* times. Let g(tw)|V|
be the running time of Bodlaender’s algorithm [4] for computing a tree decomposition of
width tw. Then, the overall running time is g(tw)|V| + ((tw +1)€)¢ - O(f(tw, £)|V]). Setting
h(tw, £) = g(tw) + ((tw +1)£)* f(tw, £), we obtain the following theorem.

» Theorem 5. MiNniMUM SumM COLORING WITH BUNDLES can be solved in O(h(tw, £)|V|)
time for some computable function h: Z>o X Z>o — Z>o, where tw is the treewidth of G and
{ is the number of bundles. <
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3.3 An XP-Algorithm when |V | — |B| is a Parameter

We consider the case where G is a tree, the bundle family is a partition of the vertex set,
and the number of bundles is large. More specifically, if n is the number of vertices and £ is
the number of bundles that form a partition of the vertex set, we treat n — £ as a parameter.

Let B € B be a bundle. We call B a singleton bundle if | B| = 1; otherwise, we call B a
non-singleton bundle.

» Lemma 6. Let [ = (G = (V,E),B,w,C) be an instance of MINIMUM SuM COLORING
WITH BUNDLES, where B is a partition of V.. Then, the number of non-singleton bundles in
B is at most |V|— |B|.

Proof. Let ¢t be the number of non-singleton bundles. Since B is a partition of V', we obtain
V| > 2t + (|IB| —t) = |B| +t. Thus, t < |V|—|B|. <

Let I = (G = (V,E),B,w,C) be an instance of MINIMUM SuM COLORING WITH
BUNDLES, and assume that G is a tree, B is a partition of V. Let ¢ be the number of
non-singleton bundles in B. By Lemma 6, ¢t < |V| — |B| = n — £. Denote the non-singleton
bundles in B by Bi, Bs, ..., B;, and the set of vertices, each of which forms a singleton
bundle, by V.

A primary idea of our algorithm is to fix upper bounds on the colors used in non-singleton
bundles and to optimize the colors in singleton bundles with this restriction. For a non-
singleton bundle B;, j € [t], let k; be an upper bound on the colors in Bj; namely, we
seek a coloring ¢ such that max,cp, c(u) < k; for every j € [t]. For brevity, we denote
k = (ki1,k2,..., k). By Lemma 4, it is enough to consider the situations with k; < 2¢ for all
Jj € [t], and thus the number of possible choices for k is bounded by (2¢)* from above.

We regard G as a rooted tree with a root r € V. For each vertex v € V, we denote by
V(v) the vertex set of the subtree of G rooted at v. For each vertex v € V, each color k, and
an upper-bound tuple k, we define

¢ is a V(v)-partial coloring of G,

f(v,k; k) := min Z w{u})e(uw)| c(v) =k,

uev; max,ep; c(u) < k; for all j € [t]
Then, the optimal value for the instance I is read by

t

min | f(r,k;k) + > k|,

)

j=1

where the minimum is taken over all possible choices of k = (k1, ks, ..., k) and k. Note that
we only need to consider the value of k in the interval k € [2{] by Lemma 4.

We now establish a recursive formula for f(v, k; k). First, consider the case where v is a
leaf of G. We have two subcases. If v forms a singleton bundle by itself, then

flu, ks k) = w({v})k.

If v belongs to a non-singleton bundle B; for some j € [t], which is unique since B forms a
partition of V', then

0 ifk<k,

+o00  otherwise.

f(%k;k):{
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Next, consider the case where v is not a leaf of G. Let vq,...,v, be the children of v in
G. We again have two subcases. If v forms a singleton bundle by itself, then

f(v,k; k) = w({v})k + min {Z [y, by k)

ky # k for all y € [2]}

=w({vDk+ Y min{f(vy, k;k) |k, # k}

since the values f(vy, k;; k) are independent from each other. Similarly, if v belongs to a
non-singleton bundle B; for some j € [t], then

i KK VKD AR ik <k,
f(v, k; k) = ;mln{f(vy yK) |k, # R} j

+00 otherwise.

For each fixed k, we compute f(v, k; k) in a bottom-up manner from leaves to root. When
v is not a leaf, the computation of f(v, k;k) can be done in O(z¢) time for each fixed k since
we may suppose that k; < 2¢ by Lemma 4. In total, for each fixed k, the computation of
f(v,k; k) over all v and k can be done in O(nf?) time. Hence, for varying k, the running
time of our algorithm is O((2¢)'n¢?). When n — /£ is a parameter, this is an XP algorithm
since t < n — ¢ by Lemma 6.

We summarize our findings in the following theorem.

» Theorem 7. MiNIMUM SUM COLORING WITH BUNDLES can be solved in O((2€)'nf?) time
when G is a tree, n is the number of vertices, { is the number of bundles, and t is the number
of non-singleton bundles.

3.4 Polynomial-time Algorithm for the Connected Partition Case

In this subsection, we consider MINIMUM SUM COLORING WITH BUNDLES in trees when
the bundle family is a connected partition, namely, when each bundle induces a connected
subgraph and each vertex belongs to a unique bundle.

Let I = (G = (V,E),B,w,C) be an instance of MINIMUM SuM COLORING WITH
BUNDLES, and assume that G is a tree, B is a connected partition of V. Define n := |V|. For
each vertex v € V, we denote by B(v) a unique bundle in B containing v. Notice that there
exists an optimal coloring ¢ such that c(v) € [n] for every vertex v € V' by Observation 1.

We regard G as a rooted tree with a root » € V. For each vertex v € V', we denote by
V(v) the vertex set of the subtree of G rooted at v. For each vertex v € V, each integer
k € [n], and each integer g € [n], we define

¢ is a V(v)-partial coloring of G,

. clu) <nforallueV,
floskeg) = min ¢ 32 w(B)magew)| (0=

max{c(u) |u € Bv)} =g

We now establish a recursive formula for f(v, k,g). First, consider the case where v is a
leaf of G. For k € [n] and g € [n], we obtain

w(B))g itk =g,

400 otherwise.

f(vakag) :{
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B(v)

Figure 3 Notation for the case where B is a partition of V.

Next, consider the case where v is not a leaf of G. Let U be the set of children of v and
let W := U N B(v). See Figure 3. Notice that B(u) = B(v) for every v € W. Furthermore,
since B(v) is connected, B(v) NV (u) = 0 for every u € U\ W. If k > g, then we obtain
f(v,k,g) = 400 since ¢(v) < max{c(u) | u € B(v)}. Since B is a connected partition of V,
HueU|BnNnV(u)#0} <1 for each bundle B € B\ {B(v)}. Thus, if k = g, then

Sokg) =wBONo+ 30 min (£luk.g) = w(Bw@)Y)

gl

min u, k', g").
Z k’E[n]\{k}yg/G["]f( g)

ueU\W

Similarly, if k£ < g, then

k,g) = mi i K
flv,k,g) %%{k@%{l{k}f(“’ .9)

+ Z min (f(u,k’,g’) - w(B(u))g’)

k'e[n]\{k}.g’€[g]

ueW\{u'}
p oty K\ gl j

By computing f(r, k, g) over all k and g with these equations, we can solve MINIMUM SUM
COLORING WITH BUNDLES in this case. For each vertex v € V, we can compute f(v, k, g)
over all k and g in O(|6¢(v)|*n?*) time. Thus, we obtain the following theorem.

» Theorem 8. MiNniMuM Sum COLORING WITH BUNDLES can be solved in O(n®) time
when G is a tree, the subgraph of G induced by each bundle B € B is connected, and B is a
partition of V.

Finally, we present the following theorem, asserting that if G is a path, we can solve in
polynomial time MINIMUM SuM COLORING WITH BUNDLES when B is connected but not
necessarily a partition. See the full version for the proof.

» Theorem 9. MiNiMUM SuM COLORING WITH BUNDLES can be solved in O(|V|?|B|) time

when G = (V, E) is a path and the subgraph of G induced by each bundle B € B is connected.

4 Bipartite Graphs

In this section, we first prove that MINIMUM SuM COLORING WITH BUNDLES is NP-complete

even when G is a bipartite graph, the number of bundles is four, and the weights are uniform.

To prove NP-completeness, we use the following problem.

40:11
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Problem: BIPARTITE 3-LiST-COLORING

Input: A bipartite graph G = (V| F) and a list L(v) C {1, 2,3} of available colors for each
vertex v € V.

Question: Determine whether there exists a proper coloring ¢: V' — {1,2,3} such that
¢(v) € L(v) for each v € V.

As observed by Golovach and Paulusma [12], a reduction given by Jansen and Scheffler [15]
proves the NP-completeness of BIPARTITE 3-LiST-COLORING.

» Theorem 10. MiINIMUM SuM COLORING WITH BUNDLES is NP-complete even when G is
a bipartite graph, |B| =4, and w(B) =1 for every B € B.

Proof. It is easy to see that the problem is in NP. In what follows, we prove that the
problem is NP-hard by reducing BIPARTITE 3-L1ST-COLORING.

Suppose that we are given an instance of the problem BIPARTITE 3-LiST-COLORING.
Specifically, let G = (V, E) be a bipartite graph, and let L(v) C {1,2, 3} be a list of available
colors for each vertex v € V. For Z C {1,2,3}, we define Uy = {v € V | L(v) = Z}. Then
{Uz | Z € {1,2,3}} forms a partition of V; that is, V = U c (123 Uz and Uz N Uz =0
for any distinct subsets Z, Z' C {1, 2, 3}.

We construct an instance (G, B,w,C) of MINIMUM SuM COLORING WITH BUNDLES,
where G = (V, E), as follows. For Z € {{2},{2,3}}, we denote by U} a copy of Uy, where
u! € U} means a copy of u € Uz. Similarly, we define two copies U{11,3} and U{Zl,g} of Ugy 3y,
and three copies U{13}, U{QB}7 and U{33} of Uysy. Then, the vertex set V of G is defined as

3 2
V=V UUly U JUis U JU{ 5 VUL U{w: | i € [16]}.
i=1 i=1

The edge set E is defined as

E=FEU E{Q} @] E{g} @] E{Lg} @] E{213} U Ey,
where we define

Epay = {uu' [ u € Uy}, Egy = {we®, w’ul,uu® | u € Ugsy },
Ef 3y = {ud®, v*u' [ u € Up gy}, B3 = {uu' | u € U5},
= {U1’1)27’0111}12} @] {Uivi+1 | 1€ {3,47 5} @] {7, 8,9} U {13, 14, 15}}

We note that each of Fyigy, Fy3y, Fy13), and Eyy 3y consists of disjoint edges and paths.
Also, Ey contains 3 disjoint paths of length 3 and 2 disjoint edges. Since G is obtained from
the bipartite graph G by adding edges of E{2y U E3y U Eqy 31 U Eys 33 U Ep, the constructed
graph G is bipartite. Moreover, define a family of bundles B = {Bi1, Ba, B3, B4} as

By = Upy UUfyy UU5y UU WU 5 UU 5y U {01, 03,06},

By =Ugy WU 93 U U{23} U U{21,3} U {v2, v7,v10, 12},

By = U3y UUy1,3) UUq2,3y UUj1,2,33 U{va, s, 08,9, V14, V15 },

By = {v11,v13,v16}-
We set w(B;) = 1 for i € {1,2,3,4} and C = 7. This defines an instance (G, B,w,C) of
MiNiMUM SUM COLORING WITH BUNDLES. See Figure 4.

We claim that the instance (G, B, w, C) of MiNIMUM SuM COLORING WITH BUNDLES is

a yes-instance if and only if the given instance (G, L) of BIPARTITE 3-LisT-COLORING is a
yes-instance. The proof of this claim can be found in the full version. <
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"

Figure 4 Reduction for bipartite graphs with uniform weight. (Left) An instance of BIPARTITE
3-L1sT-COLORING. The flag attached to each vertex v represents the list L(v). The numbers on
vertices represent a proper coloring that respects the lists. (Right) The instance of MINIMUM SUM
COLORING WITH BUNDLES that is constructed from the left instance of BIPARTITE 3-L1ST-COLORING.
Colors represent bundles: the violet vertices form B, the blue vertices form Ba, the orange vertices
form Bsj, and the green vertices form Bi. The numbers on vertices represent the coloring obtained
as in the proof of the if-part.

For the weighted case, MINIMUM SUM COLORING WITH BUNDLES on bipartite graphs is
NP-complete even when |B| = 3. The proof is an adaptation of that for Theorem 10, and
can be found in the full version.

» Theorem 11. MiNIMUM SuM COLORING WITH BUNDLES is NP-complete even when G is
a bipartite graph, |B| =3, and w(B) € {1,2} for every B € B.

To complement Theorems 10 and 11 concerning bipartite graphs, we prove that MINIMUM
SuM COLORING WITH BUNDLES can be solved in polynomial time under two specific
conditions: when |B| < 2 and when |B| < 3 with uniform weights. The proofs can be found
in the full version.

» Theorem 12. MiNiMUM SuM COLORING WITH BUNDLES can be solved in polynomial
time when G is bipartite and |B| < 2.

» Theorem 13. MiNIMUM SuM COLORING WITH BUNDLES with uniform weight can be
solved in polynomial time when G is bipartite and |B| < 3.

5 Concluding Remarks

We have completed a detailed complexity analysis of MINIMUM SuM COLORING WITH
BUNDLES for trees and bipartite graphs, and solved an open problem by Darbouy and
Friggstad [10]. Here, we pose a few open problems. First, we do not know the existence of
an FPT algorithm for trees when |V| — |B] is a parameter and the bundles form a partition
of V. Second, we do not know the complexity for bipartite graphs when the bundles form
an independent partition or a connected partition. Third, we do not know any better
approximation ratio for trees and bipartite graphs than the one proposed by Darbouy and
Friggstad [10].
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