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Abstract
In this paper, we present a general framework for efficiently computing diverse solutions to com-
binatorial optimization problems. Given a problem instance, the goal is to find k solutions that
maximize a specified diversity measure – the sum of pairwise Hamming distances or the size of the
union of the k solutions. Our framework applies to problems satisfying two structural properties: (i)
All solutions are of equal size and (ii) the family of all solutions can be represented by a surjection
from the family of ideals of some finite poset. Under these conditions, we show that the problem of
computing k diverse solutions can be reduced to the minimum cost flow problem and the maximum
s-t flow problem. As applications, we demonstrate that both the unweighted minimum s-t cut
problem and the stable matching problem satisfy the requirements of our framework. By utilizing
the recent advances in network flows algorithms, we improve the previously known time complexities
of the diverse problems, which were based on submodular function minimization.
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1 Introduction

In modeling real-world problems as optimization problems, many factors are inevitably omit-
ted from the model due to the limited information and the need for tractability. Consequently,
finding a single optimal solution to the optimization problem may not be enough. Motivated
by this issue, developing algorithms to find diverse multiple solutions has recently gained
attention in the field of combinatorial optimization [3, 4, 7, 8, 9, 10, 11, 15, 17].

We formally define the k-diverse problem for a positive integer k. Let ddiv be a function
that measures the “diversity” for a k-tuple of subsets of some arbitrary fixed ground set E.
For a combinatorial problem Prob, the k-diverse problem of Prob asks, given an instance I
of Prob, to find a k-tuple (S1, S2, . . . , Sk) of solutions of I that maximizes the fixed measure
ddiv. Typical examples of the measure of diversity include the following:
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41:2 A General Framework for Finding Diverse Solutions via Network Flow

dsum(S1, S2, . . . , Sk) :=
∑

1≤i<j≤k

|Si△Sj |, dcov(S1, S2, . . . , Sk) :=

∣∣∣∣∣∣
⋃

1≤i≤k

Si

∣∣∣∣∣∣.
If we use dsum (resp. dcov) as the measure, then we refer to the corresponding k-diverse
problem as Sum-k-Diverse (resp. Cov-k-Diverse).

In this paper, we present a general framework for efficiently finding diverse solutions to
combinatorial optimization problems. Namely, we focus on Sum-k-Diverse/Cov-k-Diverse
of a combinatorial problem Prob having two properties (S) and (R) introduced below. The
first property (S) states that all solutions of each instance of Prob have the same size:

(S) For any instance I of Prob, there exist a finite ground set E and a positive integer q
such that the family S(I) of solutions of I consists of subsets of E of size q.
The second property (R) indicates that S(I) admits a lattice structure and S(I) has a
compact representation using the lattice. To state this property precisely, we first introduce
some notation. Let (P,⪯) be a finite poset with minimum element ⊥ and maximum element
⊤. For such a poset P , let P ∗ denote the poset obtained from P by removing ⊥ and ⊤. For
a map r : E → P 2 that assigns each element e ∈ E to an ordered pair

r(e) := (e+, e−)

of elements in P with e+ ⪯ e−, we define a set supr(I) by

supr(I) := {e ∈ E | e+ ∈ I ∪ {⊥} ̸∋ e−}

for each ideal I ∈ I(P ∗). Here, an ideal of a poset is a subset I ⊆ P ∗ that is closed downward
under ⪯, that is, y ⪯ x ∈ I implies y ∈ I for all x, y ∈ P ∗, and I(P ∗) denotes the family of
ideals of the poset P ∗. With this notation, the property (R) can be stated as follows:

(R) For any instance I of Prob, there exist a finite poset (P,⪯) with distinct minimum
element ⊥ and maximum element ⊤ and a map r : E → P 2 given by e 7→ (e+, e−) with
e+ ⪯ e− such that

S(I) = {supr(I) | I ∈ I(P ∗)}.

We refer to a map r appearing in the property (R) as a reduction map. In other words, the
property (R) requires that every instance I of Prob admits a reduction map r such that
supr forms a surjection from the family I(P ∗) of ideals of P ∗ to the family S(I) of solutions
of I. A toy example of a reduction map is found in Example 1.

▶ Example 1. Let E = {a, b, c, d} be the ground set. Suppose that the set of solutions
is S(I) = {{a, b}, {b, c}, {c, d}}. We consider a poset (P = {⊥, u, v,⊤},⪯), where ⊥ is the
minimum element, ⊤ is the maximum element, and u ≺ v. We define a map r : E → P 2 by
r(a) = (⊥, u), r(b) = (⊥, v), r(c) = (u,⊤), r(d) = (v,⊤). Since I(P ∗) = {∅, {u}, {u, v}}, we
can see that r is a reduction map. Indeed, we have supr(∅) = {e ∈ E | e+ ∈ {⊥} ̸∋ e−} =
{a, b}, supr({u}) = {b, c}, and supr({u, v}) = {c, d}.

We show that if the problem Prob has the properties (S) and (R), then S(I) with a
partial order defined from a reduction map forms a distributive lattice (see Theorem 11).
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Our framework exploits network flow techniques to efficiently compute diverse solutions.
To utilize them, we will construct a directed acyclic graph (DAG) to represent a poset.
Here, we say that a DAG G represents a poset (P,⪯) with distinct minimum element ⊥ and
maximum element ⊤ if the vertex set of G is P , ⊤ is a source and ⊥ is a sink in G, and for
any u, v ∈ P ∗, there is a u-v path in G if and only if u ⪰ v.

Our main result is stated as follows. We focus on deterministic algorithms in this paper.

▶ Theorem 2. Suppose that a combinatorial problem Prob has the properties (S) and (R).
Then, for any instance I of Prob, the problems Sum-k-Diverse and Cov-k-Diverse of
Prob can be solved in O(TP (I) + Tr(I) + (|A| + k|E|)1+o(1)) time and in O(TP (I) + Tr(I) +
(|A| + |E|)1+o(1) log2 k + kq) time, respectively. Here, E is the ground set of I, q is the size
of each solution of I, TP (I) is the time required to construct a DAG representing the poset P
in (R), Tr(I) is the time required to construct a reduction map r in (R), and A is the set of
arcs of a DAG G that represents P .

We obtain Theorem 2 via the reduction of Sum-k-Diverse/Cov-k-Diverse of Prob
to a classical network flow problem, called the minimum cost flow problem. This enables
us to utilize the state-of-the-art (deterministic) algorithm [25] for the minimum cost flow
problem in solving Sum-k-Diverse/Cov-k-Diverse of Prob. To this end, we introduce
an intermediate problem called the minimum k-potential problem, and reduce the k-diverse
problems to the minimum k-potential problem. Then we further reduce the minimum
k-potential problem to the minimum cost flow problem by utilizing the idea of Ahuja,
Hochbaum, and Orlin [1], who dealt with a more general problem. Our novelty is to identify
the properties (S) and (R) as a sufficient condition to reduce the k-diverse problem to the
minimum k-potential problem.

We also develop a reduction of Sum-k-Diverse/Cov-k-Diverse of Prob to the maximum
s-t flow problem via the minimum k-potential problem. We describe this in the full version.
While the running-time of this reduction is slightly worse than that of the reduction to
the minimum cost flow problem, its practical performance may be superior thanks to the
simplicity of the reduction and the maximum s-t flow problem.

As applications of our framework, we demonstrate that two classical combinatorial
problems, Unweighted Minimum s-t Cut and Stable Matching, have properties (S)
and (R). Here, Unweighted Minimum s-t Cut is to find an s-t cut of a given digraph G

with the minimum size, and Stable Matching is to find a matching of two parties such
that no unmatched pair both prefer each other to their current partners (see Sections 5.2
and 5.3 for the definitions). In fact, both problems are known to possess a distributive lattice
structure. By applying Theorem 2 to Sum-k-Diverse/Cov-k-Diverse of these problems,
we obtain the following results.

▶ Theorem 3.
1. The problems Sum-k-Diverse and Cov-k-Diverse of Unweighted Minimum s-t

Cut can be solved in O(n + (km)1+o(1)) time and in O(n + m1+o(1) log2 k + kq) time,
respectively, where n denotes the number of vertices of the input digraph G, m the number
of arcs of G, and q the size of a minimum s-t cut of G.

2. The problems Sum-k-Diverse and Cov-k-Diverse of Stable Matching can be solved
in O((kn2)1+o(1)) time and in O(n2+o(1) log2 k + kn) time, respectively, where n denotes
the size of the ground set U (or V ) of the input instance (U, V ; (≤u)u∈U , (≤v)v∈V ).

The polynomial-time solvability of Sum-k-Diverse/Cov-k-Diverse of Unweighted
Minimum s-t Cut has already been shown by De Berg, Martínez, and Spieksma [7]. Very
recently, independently of our work, the same authors [8] developed a framework for solving
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41:4 A General Framework for Finding Diverse Solutions via Network Flow

Sum-k-Diverse/Cov-k-Diverse of a combinatorial problem having a certain property, and
they show that Sum-k-Diverse/Cov-k-Diverse of Stable Matching can be solved in
polynomial time. Both of their tractability results in [7, 8] are based on the polynomial-time
solvability of the submodular function minimization (SFM) [2, 12]. Even if we use the
state-of-the-art algorithm for SFM, given in [18], the running-time of their algorithms is
(polynomial but) not very fast; it takes O(k5n5) time for Sum-k-Diverse/Cov-k-Diverse
of Unweighted Minimum s-t Cut, and O(k5n9) time for that of Stable Matching. As in
Theorem 3, our proposed algorithms for Sum-k-Diverse/Cov-k-Diverse of Unweighted
Minimum s-t Cut/Stable Matching are much faster, thanks to recent advance in network
flow algorithms. Moreover, we show that the framework of [8] for Sum-k-Diverse and
Cov-k-Diverse can be captured by our framework (see Section 5.4). This allows us to
improve the time complexity.

Due to the space limitation, all the proofs (marked with ⋆) are omitted, and they can be
found in the full version.

Related work. There exists a vast body of literature on the problem of finding diverse
solutions; here, we mention only a few representative papers. Finding diverse solutions is
generally harder than finding a single one. The k-diverse problems with respect to dsum of
some polynomial-time solvable problems – such as the maximum matching problem [10] and
the (global) minimum cut problem [15] – are known to be NP-hard. Thus, in recent years,
there has been a growing body of work on fixed-parameter tractable (FPT) algorithms for
NP-hard diverse problems [3, 4, 9, 10, 11, 17]. Meanwhile, polynomial-time algorithms are
known for several other k-diverse problems with respect to the diversity measures dsum or
dcov, including the k-diverse variants of the spanning-tree problem [17], the shortest s-t path
problem [16], as well as Unweighted Minimum s-t Cut [7] and Stable Matching [8],
which have already been mentioned.

2 Preliminaries

Let Z, Z+, R, and R+ denote the set of integers, nonnegative integers, real numbers, and
nonnegative real numbers, respectively. For a nonnegative integer k, let [k] := {1, 2, . . . , k}
and [0, k] := {0, 1, . . . , k}. The symmetric difference (S \ T ) ∪ (T \ S) of sets S and T is
denoted by S△T . For a finite set E and a nonnegative integer q ∈ Z+, let

(
E
q

)
denote the

family of all subsets of E of size q, i.e.,
(

E
q

)
:= {S ⊆ E | |S| = q}. For any finite set E,

element e ∈ E, and k-tuple S = (S1, S2, . . . , Sk) of subsets of E, the multiplicity of e with
respect to S, denoted by µe(S), is defined as the number of subsets Si that contain e, i.e.,
µe(S) := |{i ∈ [k] | e ∈ Si}|.

Posets. A partially ordered set (or poset) is a pair (P,⪯) of a set P and a binary relation
⪯ over P satisfying, for x, y, z ∈ P , that x ⪯ x (reflexivity), x ⪯ y and y ⪯ x imply x = y

(antisymmetry), and x ⪯ y and y ⪯ z imply x ⪯ z (transitivity). By x ≺ y we mean x ⪯ y

and x ≠ y. Such a binary relation is called a partial order. If no confusion arises, we denote
by P a poset and its underlying set interchangeably. In this paper, we consider only a finite
poset, i.e., posets whose underlying sets are finite. Hence, by a poset we mean a finite poset.
A partial order ⪯ on P is called a total order if x ⪯ y or y ⪯ x holds for any x, y ∈ P . For a
poset (P,⪯), a subset I ⊆ P is called an ideal if I is closed under ⪯, i.e., for any v ∈ P and
u ⪯ v, we have u ∈ P . Let I(P ) denote the set of all ideals of P . If P has the minimum
element ⊥ and the maximum element ⊤, then we denote by P ∗ the poset obtained from P

by removing ⊥ and ⊤.
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Network flows. Let G = (V,A) be a digraph. For a vertex subset X ⊆ V , let ∆+
G(X)

(resp. ∆−
G(X)) denote the set of outgoing arcs from (resp. incoming arcs to) X. If no

confusion arises, we omit the subscript G from ∆+
G(X) and ∆−

G(X). If X consists of a single
vertex v, i.e., X = {v}, we simply write ∆+(v) and ∆−(v) instead of ∆+({v}) and ∆−({v}),
respectively. A function f : A → Z+ from the arc set A to the nonnegative integers is called a
flow of G. In the case where the digraph G has an arc capacity c : A → Z+, a flow f : A → Z+
is said to be feasible (with respect to c) if f(a) ≤ c(a) for all a ∈ A. For a feasible flow f with
respect to an arc capacity c, its residual graph, denoted by Gf , is the digraph whose vertex
set is V and arc set is {a | a ∈ A, f(a) < c(a)} ∪ {a | ā ∈ A, 0 < f(ā)}, where ā denotes the
reverse arc (v, u) of a = (u, v). This plays an important role in algorithms for network flow
problems (and our algorithms). For a flow f : A → Z+, its boundary ∂f : V → Z is defined
by ∂f(v) :=

∑
a∈∆+(v) f(a) −

∑
a∈∆−(v) f(a) for each v ∈ V .

In the following (except for Section 5.4), we assume that Prob is a combinatorial problem
having the properties (S) and (R). For an instance I of Prob, we denote by S(I) the family
of solutions of I, TP (I) the time required to construct a DAG representing the poset P in (R),
and Tr(I) the time required to construct a reduction map r in (R).

3 Reduction to the minimum k-potential problem

In this section, we provide a reduction from the k-diverse problem of Prob to the minimum
k-potential problem, which we introduce later.

In Sum-k-Diverse and Cov-k-Diverse of Prob, we can regard the diversity measures
dsum and dcov as the functions over (S(I))k for each instance I of Prob. Since S(I) ⊆

(
E
q

)
holds

by the property (S), we have
∑

e∈E µe(S) =
∑k

i=1 |Si| = kq for any S = (S1, S2, . . . , Sk) ∈
(S(I))k, which is a constant. Hence, the functions dsum and dcov are representable as

dsum(S) =
∑
e∈E

µe(S)(k − µe(S)) = Const.−
∑
e∈E

µe(S)2,

dcov(S) =
∑
e∈E

min{1, µe(S)} = Const.−
∑
e∈E

max{0, µe(S) − 1}

for each S ∈ (S(I))k. Thus, the problems Sum-k-Diverse and Cov-k-Diverse of Prob,
namely, the problems of maximizing the functions dsum and dcov over (S(I))k, are equivalent
to those of minimizing

d∗
sum(S) :=

∑
e∈E

µe(S)2, d∗
cov(S) :=

∑
e∈E

max{0, µe(S) − 1},

respectively.
By using the concept of discrete convex functions, we can uniformly handle these functions

d∗
sum and d∗

cov as follows. A function φ : Z → Z is said to be discrete convex [20, Chapter 3.4]
if φ(x − 1) + φ(x + 1) ≥ 2φ(x) for all x ∈ Z, and said to be non-decreasing on Z+ if
φ(x) ≤ φ(x + 1) for all x ∈ Z+. For a discrete convex function φ with φ(0) = 0 that is
non-decreasing on Z+, we define

d∗
φ(S) :=

∑
e∈E

φ(µe(S))

for S ∈ (S(I))k. Since the functions x 7→ x2 and x 7→ max{0, x − 1} are discrete convex
functions that are non-decreasing on Z+ and satisfy 0 7→ 0, both of d∗

sum and d∗
cov admit

such representations.
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41:6 A General Framework for Finding Diverse Solutions via Network Flow

Our framework can be applied to the k-diverse problem with respect to the diversity
measure of the form

dφ(S) := Const.− d∗
φ(S)

for S ∈ (S(I))k, where φ is a discrete convex function with φ(0) = 0 that is non-decreasing
on Z+. In the following, we consider the k-diverse problem with respect to dφ of Prob, or
equivalently, the problem of minimizing d∗

φ over (S(I))k for a discrete convex function φ.
We then introduce the minimum k-potential problem, to which we reduce the problem

of minimizing d∗
φ later. Let G = (V,A) be a DAG having unique source vertex ⊤ and sink

vertex ⊥ with ⊤ ̸= ⊥. We refer to an assignment p : V → Z+ of integers to vertices as a
k-potential if p satisfies the following conditions:

(P1) p(⊥) = k and p(⊤) = 0.
(P2) 0 ≤ p(v) ≤ k for each v ∈ V .
(P3) p is monotone non-increasing with respect to A, i.e., p(u) ≤ p(v) for each (u, v) ∈ A.

In the minimum k-potential problem, we are given a DAG G = (V,A) with unique source
⊤ and sink ⊥, an arc weight w : A → Z+, and a discrete convex function φ : Z → Z with
φ(0) = 0 that is non-decreasing on Z+, and asked to find a k-potential p of G that minimizes

H(p) :=
∑

a=(u,v)∈A

w(a)φ(p(v) − p(u)).

We note that the function H does not change even if we remove vertices v ∈ V \ {⊥,⊤} with
∆+(v) = ∆−(v) = ∅, called isolated vertices, from G.

Finally, we reduce, for an instance I of Prob, the problem of minimizing d∗
φ over (S(I))k

to the minimum k-potential problem by utilizing the property (R). Let (P,⪯) be a poset
having minimum element ⊥ and maximum element ⊤, and let r : E → P 2 be a reduction
map as in the property (R). Then, we construct a DAG GI whose vertex set is V = P and
whose arc set is A = AP ∪AE , where AP is an arc set such that a DAG (P,AP ) represents
the poset (P,⪯), and AE := {(e−, e+) | e ∈ E}. The resulting GI is still a DAG that
represents P and has unique source ⊤ and sink ⊥; each arc (e−, e+) ∈ AE is compatible
with the partial order ⪯ of P , since e− ⪰ e+. An arc weight wI : A → Z+ is defined by
wI(a) := |{e ∈ E | a = (e−, e+)}| for a ∈ A. Note that wI(a) = 0 for each a ∈ A \ AE .
We set φ, which satisfies the non-decreasing property on Z+ and φ(0) = 0, as the input
discrete convex function of the minimum k-potential problem. Then, the triple (GI, wI, φ) is
an instance of the minimum k-potential problem; its construction time is |E|.

▶ Example 4. Recall the toy example in Example 1. A graph G = (P = {⊥, u, v,⊤}, AP )
with AP = {(u,⊥), (v, u), (⊤, v)} is a DAG representing (P,⪯). By construction, AE =
{(u,⊥), (v,⊥), (⊤, u), (⊤, v)}. Then, the DAG GI = (P,AP ∪AE) is illustrated in Figure 1.
The arc weights are wI(v, u) = 0, and wI(a) = 1 for all other arcs a ∈ (AP ∪AE) \ {(v, u)}.

Intuitively, any k-potential represents the direct sum of k ideals I1, I2, . . . , Ik ∈ I(P ∗) as a
multiset. Conversely, for any k ideals in I(P ∗), there exists a k-potential that represents their
direct sum as a multiset. Furthermore, by the property (R), each ideal of P ∗ corresponds to
a solution of I via supr. The following lemma verifies this intuition.

▶ Lemma 5 (⋆). For each k-tuple S ∈ (S(I))k, there is a k-potential pS of GI such that
H(pS) = d∗

φ(S). Conversely, for each k-potential p of GI, there is a k-tuple Sp ∈ (S(I))k of
solutions of I such that H(p) = d∗

φ(Sp), and we can construct Sp from p in O(|E| + kq) time.
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⊥ ⊤
u

v

a+, b+ c−, d−

a−, c+

b−, d+

Figure 1 A DAG GI for the toy example. Arcs in AP and AE \ AP are shown as solid and dashed
lines, respectively.

Lemma 5 immediately implies that we can construct in O(|E| + kq) time a minimizer Sp

of d∗
φ over (S(I))k from a minimum k-potential p for the instance (GI, wI, φ) of the minimum

k-potential problem. Therefore, we obtain the following.

▶ Theorem 6 (⋆). We can solve the k-diverse problem with respect to dφ of Prob in
O(TP (I) + Tr(I) + Tmp(I) + |E| + kq) time, where I is a given instance of Prob and Tmp(I)
is the time of solving the instance of the minimum k-potential problem reduced from I.

4 Solving the minimum k-potential problem via minimum cost flow

Here, we reduce the minimum k-potential problem to the minimum cost flow problem.
Let us first recall the minimum cost flow problem (see e.g., [19, Chapter 9] and [23,

Chapter 12] for details). In this problem, we are given a digraph G = (V,A), arc cost
γ : A → Z, arc capacity c : A → Z+, and vertex demand d : V → Z, and asked to find a
feasible flow f : A → Z+ (i.e., f(a) ≤ c(a) for a ∈ A) that minimizes

∑
a∈A γ(a)f(a) subject

to ∂f(v) = d(v) for all v ∈ V . An optimal solution of the minimum cost flow problem is
called a minimum cost flow. We denote by Tmcf(n,m,Γ, C,D) the time required to solve the
minimum cost flow problem for a network of n vertices and m arcs with cost at most Γ in
absolute values, capacity at most C, and a demand vector with values at most D in absolute
values. Using the state-of-the-art algorithm for the minimum cost flow problem given in [25],
we have Tmcf(n,m,Γ, C,D) = O(m1+o(1) log(max{C,D}) log Γ).

Our reduction follows the work by Ahuja, Hochbaum, and Orlin [1], who dealt with a
more general problem called the convex cost integer dual network flow problem. They showed
that the Lagrangian dual of their problem is reduced to the minimum cost flow problem. For
the complexity analysis, we explicitly provide the reduction in our case and the construction
of a minimum k-potential from a minimum cost flow.

For a discrete convex function ψ : Z → Z, an integer x ∈ Z is called a breakpoint of ψ if
ψ(x+1)+ψ(x−1) > 2ψ(x), i.e., the left slope ψ(x)−ψ(x−1) and right slope ψ(x+1)−ψ(x)
of ψ at x are different. We can observe that, for each x ∈ Z, the left slope of ψ at x is at
most the right slope of ψ at x. Let B(ψ) denote the set of breakpoints of ψ.

Let (G = (V,A), w : A → Z+, φ : Z → Z) be an instance of the minimum k-potential prob-
lem. We define Bk(φ) := (B(φ) ∩ [0, k]) ∪ {0, k} and suppose that Bk(φ) = {b0, b1, . . . , bz}
with (0 =)b0 < b1 < · · · < bz(= k). Let s−

i (resp. s+
i ) denote the left (resp. right) slope of φ

at bi ∈ B(φ) ∩ [k − 1]; note that s+
i = s−

i+1 < s+
i+1. We set M ∈ Z+ as a sufficiently large

integer satisfying M > H(p) for any k-potential p of G, e.g., M =
∑

a∈A w(a)φ(k) + 1.
We construct an instance of the minimum cost flow problem. The vertex set of the input

digraph Ḡ is V̄ := V ∪ {0}. We set the arc set Ā of Ḡ, arc cost γ̄ : Ā → Z, and capacity
c̄ : Ā → Z+ by creating

|Bk(φ)| = z+1 copies of each a ∈ A satisfying w(a) > 0 with costs b0, b1, . . . , bz−1, bz and
capacities w(a)s−

1 +M,w(a)(s+
1 −s−

1 ), w(a)(s+
2 −s−

2 ), . . . , w(a)(s+
z−1−s−

z−1),M−w(a)s+
z−1,

respectively,
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41:8 A General Framework for Finding Diverse Solutions via Network Flow

two copies of each a ∈ A satisfying w(a) = 0 or each a = (0, u) for u ∈ V \ {⊥,⊤} with
costs 0, k and capacities M,M , respectively,
arcs (0,⊥) and (0,⊤) with cost k and 0, respectively, and capacity 2M .

The vertex demand d̄ : V̄ → Z is set as d̄(v) := M(|∆+
G′(v)| − |∆−

G′(v)|) for each v ∈ V̄ , where
G′ := (V̄ , A′) and A′ := A ∪ {(0, v) | v ∈ V }.

Let f∗ be a minimum cost flow of the resulting instance (Ḡ, γ̄, c̄, d̄). Then we construct
the residual graph Ḡf∗ of Ḡ with respect to f∗, and set the arc length ℓ of Ḡf∗ as ℓ(a) := γ(a)
if a ∈ Ā, and ℓ(a) := −γ(a) if ā ∈ Ā. Let us define p̄∗ : V̄ → Z as a feasible potential with
p̄∗(0) = 0 in Ḡf∗ with respect to arc length ℓ, i.e., an assignment p̄∗ : V̄ → Z satisfying
p̄∗(0) = 0 and ℓ(a) ≥ p̄∗(v) − p̄∗(u) for each arc a = (u, v) ∈ Ā. The following lemma justifies
our reduction.

▶ Lemma 7 (⋆). The restriction p∗ : V → Z of p̄∗ to V forms a minimum k-potential of
(G,w, φ).

The validity of Lemma 7 follows from exactly the same argument given in [1]. For the sake
of completeness, we provide a direct proof in the full version.

We then show the time complexity of solving the minimum k-potential problem via our
reduction. The digraph Ḡ has |V | + 1 = O(|V |) vertices, and at most 2(|V | − 1 + |A0|) +
|Bk(φ)||A+| = O(|V | + |A0| + |Bk(φ)||A+|) arcs. Here, A0 and A+ denote the set of arcs
a with w(a) = 0 and w(a) > 0, respectively. Thus, we can construct the minimum cost
flow instance (Ḡ, γ̄, c̄, d̄) in O(|V | + |A0| + |Bk(φ)||A+|) time. The costs and capacities
are nonnegative integers at most k and C̄ := max{2M,maxa∈A w(a)φ(k) + M}, respect-
ively. The demands are at most M |V | in absolute values. Hence, we can find a minimum
cost flow f∗ : Ā → Z+ of (Ḡ, γ̄, c̄, d̄) in O

(
Tmcf(|V |, |V | + |A0| + |Bk(φ)||A+|, k, C̄,M |V |)

)
time. The residual graph Ḡf∗ of Ḡ with respect to f∗ is constructed in O(|Ā|) = O(|V | +
|A0| + |Bk(φ)||A+|) time. A feasible potential p̄∗ in Ḡf∗ with respect to ℓ is found in
O(Tmcf(|V |, |V | + |A0| + |Bk(φ)||A+|, k, |V |, |V |)) time by computing shortest distances from
a supernode to vertices in V̄ . Therefore, by Lemma 7, we can obtain a minimum k-potential
p∗, which is a restriction of p̄∗ to V , in O

(
Tmcf(|V |, |V | + |A0| + |Bk(φ)||A+|, k, C̄,M |V |)

)
time.

By applying the algorithm in [25], we obtain the following, which implies Theorem 2.

▶ Theorem 8 (⋆). We can solve the k-diverse problem with respect to dφ of Prob for an
instance I in O(TP (I) + Tr(I) + (|AP | + |Bk(φ)||E|)1+o(1) log(φ(k)) log k + kq) time. In
particular, the problems Sum-k-Diverse of Prob and Cov-k-Diverse of Prob can be
solved in O(TP (I) + Tr(I) + (|AP | + k|E|)1+o(1)) time and in O(TP (I) + Tr(I) + (|AP | +
|E|)1+o(1) log2 k + kq) time, respectively.

5 Applications

In this section, we introduce two applications of our framework; one is the k-diverse problems
of Unweighted Minimum s-t Cut and the other is that of Stable Matching.

In order to apply our framework to the k-diverse problem of a concrete combinatorial
problem, we need to construct a poset and a reduction map appearing in the property (R) for
each instance. In Section 5.1, we develop a common strategy of building these components.
In fact, it is known that both families of minimum s-t cuts and stable matchings are naturally
identified with set families called ring families. A ring family with inclusion order forms a
poset, particularly a distributive lattice. We will utilize these facts to construct a reduction
map for Unweighted Minimum s-t Cut and Stable Matching in Sections 5.2 and 5.3,
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respectively. In Section 5.4, we briefly describe a framework for the k-diverse problem recently
developed by De Berg, Martínez, and Spieksma in [8], and show that our framework can
capture theirs in the case of Sum-k-Diverse/Cov-k-Diverse.

5.1 How to construct a poset and a reduction map
We start this subsection with introducing terminology on lattices (see e.g., [6] for details). A
poset (L,⪯) is called a lattice if, for any two elements x, y ∈ L, their least upper bound (join)
x ∨ y and greatest lower bound (meet) x ∧ y exist in L. A lattice L is said to be distributive
if the distributive law x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) holds for any x, y, z ∈ L.

A typical example of a distributive lattice is the family I(P ) of ideals of a poset over
P with inclusion order ⊆. In this case, the join of two ideals I and I ′ is their union I ∪ I ′,
and the meet is their intersection I ∩ I ′; we can easily see that they are also ideals. More
generally, a ring family, which is a nonempty family R ⊆ 2R of subsets of a nonempty finite
set R such that it is closed under the union and intersection, endowed with inclusion order ⊆
forms a distributive lattice (R,⊆), where X ∨ Y = X ∪ Y and X ∧ Y = X ∩ Y for X,Y ∈ R.

The celebrated Birkhoff’s representation theorem [5] states that every distributive lattice
(L,⪯) is isomorphic to the distributive lattice (I(P ),⊆) for some poset P . Here, two lattices
(L,⪯) and (L′,⪯′) are said to be isomorphic if there is a bijection h : L → L′ such that x ⪯ y

if and only if h(x) ⪯ h(y) for any x, y ∈ L. For a distributive lattice (L,⪯), we refer to a
poset P such that (L,⪯) and (I(P ),⊆) are isomorphic as a Birkhoff representation of (L,⪯).

A Birkhoff representation of the distributive lattice (R,⊆) over a ring family R can be
obtained as follows. The ring family R has the unique minimal set X⊥ :=

⋂
X∈R X and unique

maximal set X⊤ :=
⋃

X∈R X. Take any maximal chain X⊥ =: X0 ⊊ X1 ⊊ · · · ⊊ Xn := X⊤
from X⊥ to X⊤ in R; namely, there are no X ∈ R and i ∈ [n] with Xi−1 ⊊ X ⊊ Xi.
Then, Π∗(R) := {Xi \ Xi−1 | i ∈ [n]} forms a partition of X⊤ \ X⊥. We define a partial
order ⪯ on Π∗(R) by setting X̂ ⪯ Ŷ if and only if every Z ∈ R with Z ⊇ Ŷ also includes
X̂. The resulting (Π∗(R),⪯) is actually a poset and is independent of the choice of a
maximal chain from X⊥ to X⊤. It is known (see e.g., [21, Chapter 2.2.2]) that (Π∗(R),⪯)
is a Birkhoff representation of (R,⊆); more precisely, the map Y 7→ (

⋃
X̂∈Y X̂) ∪X⊥ is an

isomorphism from (I(Π∗(R)),⊆) to (R,⊆). In this paper, we refer to (Π∗(R),⪯) as the
Birkhoff representation of (R,⊆).

We are ready to develop a strategy to construct a reduction map by using a ring family.
Let R ⊆ 2R be a ring family over a nonempty finite set R. We may assume that the minimal
set X⊥ is nonempty and the maximal set X⊤ is a proper subset of R; otherwise we add two
elements ⊥ and ⊤ to R and update each subset X ∈ R as X ∪ {⊥}, which makes R satisfy
⊥ ∈ X⊥ and ⊤ ∈ X⊤ := R \X⊤. Let Π(R) denote the partition Π∗(R) ∪ {X⊥, X⊤} of R.
We extend the partial order ⪯ on Π∗(R) to that on Π(R) by setting X⊥ ≺ X̂ ≺ X⊤ for any
X̂ ∈ Π∗(R). For a map r̂ : E → R2 given by e 7→ (ê+, ê−), we define

supr̂(X) := {e ∈ E | ê+ ∈ X ̸∋ ê−}

for X ∈ R. We say that r̂ : E → R2 is a pre-reduction map if ê− ∈ X implies ê+ ∈ X for
all X ∈ R and e ∈ E, and S(I) = {supr̂(X) | X ∈ R}. We show that we can construct a
reduction map as long as we have a pre-reduction map.

▶ Lemma 9 (⋆). Suppose that r̂ : E → R2 given by e 7→ (ê+, ê−) is a pre-reduction map.
Then, the map r : E → Π(R)2 defined by

r(e) := (Π(ê+),Π(ê−)) (e ∈ E)

is a reduction map, where Π(x) (x ∈ R) denotes the unique member of Π(R) that contains x.
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Thus, we obtain the following:

▶ Proposition 10. Let R be a nonempty finite set, and let R be a ring family over R. Suppose
we are given a pre-reduction map r̂ : E → R2 and the partition Π(R) of R. Then, we can
construct a reduction map r : E → Π(R)2 in constant time.

The property (R) requires that, for each instance I of Prob, the family S(I) of its
solutions is closely related to the family I(P ∗) of ideals of the poset P ∗. Hence, it is natural
to expect that S(I) admits the distributive lattice structure. We conclude this subsection by
showing that this indeed holds, which might be viewed as a necessary condition on Prob for
our framework to be applicable.

Recall the notation in the property (R). We may assume that e+ ≺ e− for each e ∈ E,
since if e+ = e−, then no member S in S(I) contains e, i.e., S(I) ⊆

(
E\{e}

q

)
, and hence we

can remove e from E. Let ≤ denote a partial order on E such that e ≤ e′ if and only if
e = e′ or e− ⪯ e′+. This ≤ can be extended for S(I) by setting S ≤ T if and only if there
exists a bijection π : S → T such that e ≤ π(e) for all e ∈ S. Then, the following holds.

▶ Theorem 11 (⋆). Suppose that a combinatorial problem Prob has the properties (S)
and (R). For any instance I of Prob, the poset (S(I),≤) forms a distributive lattice.

5.2 The k-diverse unweighted minimum s-t cut problem
In this subsection, we consider the k-diverse problem of Unweighted Minimum s-t Cut.
Here, this is the minimum s-t cut problem for a digraph G = (V,A) with unit arc capacity
c : A → Z+, i.e., c(a) = 1 for all a ∈ A. Clearly, Unweighted Minimum s-t Cut has the
property (S) by setting the ground set E as the arc set A and the integer q as the size of
minimum s-t cuts. Our aim is to construct, for some ring family R, a DAG D representing
the Birkhoff representation (Π∗(R),⪯), the partition Π(R), and a pre-reduction map r̂

based on R, which implies that Unweighted Minimum s-t Cut has the property (R) by
Lemma 9.

Let G = (V,A) with s, t ∈ V be a digraph that is an instance of Unweighted Minimum
s-t Cut. Then, the family S(G) ⊆ 2A of solutions of the instance G is the set of all minimum
s-t cuts, which is a subset of the family {∆+(X) | X ⊆ V with s ∈ X ̸∋ t}. Let Rst denote
the family of vertex subsets X ⊆ V with s ∈ X ̸∋ t such that its outgoing arcs form a
minimum s-t cut of G, i.e.,

Rst := {X ⊆ V | s ∈ X ̸∋ t, ∆+(X) ∈ S(G)}.

It is well-known that Rst forms a ring family, which directly follows from Lemma 12 below.
Moreover, since the unique minimal set X⊥ in Rst contains s and the unique maximal set
X⊤ in Rst excludes t, we have X⊥ ̸= ∅ ≠ X⊤ := V \X⊤. We will construct a pre-reduction
map based on Rst.

We utilize the representation introduced by Picard and Queyranne [22], which is used for
enumerating all minimum s-t cuts of a digraph (with arbitrary positive capacities). In our
case, we consider the unit capacity case, and use this representation to construct a DAG
representing the Birkhoff representation (Π∗(Rst),⪯) of the distributive lattice (Rst,⊆), as
well as the partition Π(Rst) of V .

To begin, we briefly describe the representation proposed by Picard and Queyranne. Let
f be an arbitrary maximum s-t flow of G, where each arc has unit capacity. Let Gf denote
the residual graph of f . Then, the following characterization is known.
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▶ Lemma 12 ([22]). An s-t cut ∆+(X) is a minimum s-t cut in G if and only if X is a
closed set under reachability in Gf , containing s but not t.

Using this, Picard and Queyranne constructed a DAG D = (V ′, A′) from G through the
following steps: (1) Contract each strongly connected component in Gf into a single vertex,
(2) remove the component containing s along with all vertices reachable from s, and (3) remove
the component containing t along with all vertices reachable to t. For each vertex v′ ∈ V ′,
let R(v′) denote the set of vertices in Gf contracted into v′. Similarly, let R(s′) and R(t′)
denote the sets of vertices in Gf removed in steps (2) and (3), respectively. By Lemma 12,
the DAG D represents all minimum s-t cuts in G. Specifically, for any X ⊆ V ′ that is closed
under reachability in D, the set of outgoing arcs from R(X) := (

⋃
v′∈X R(v′)) ∪R(s′) in G

forms a minimum s-t cut in G. Conversely, for any minimum s-t cut ∆+(X) in G, the set of
components corresponding to X \R(s′) is closed under reachability in D.

In fact, D is the desired DAG that represents the Birkhoff representation (Π∗(Rst),⪯)
of (Rst,⊆). Let (V ′,⪯) be a poset where reachability in D defines the partial order i.e.,
for any u, v ∈ V ′, u ⪯ v if and only if u is reachable from v in D. From the above
discussion, the map R : I(V ′) → Rst is an isomorphism between (I(V ′),⊆) and (Rst,⊆),
because for all X,X ′ ∈ I(V ′), we have X ⊆ X ′ if and only if R(X) ⊆ R(X ′). Moreover,
choose an arbitrary maximal chain ∅ = X0 ⊊ X1 ⊊ · · · ⊊ Xn = V ′ in I(V ′). Since
R(X0) ⊊ R(X1) ⊊ · · · ⊊ R(Xn) forms a maximal chain from X⊥ to X⊤ in Rst, and
|Xi \ Xi−1| = 1 for all i ∈ [n], we obtain an isomorphism that maps each v ∈ V ′ to R(v),
implying the equivalence between (V ′,⪯) and (Π∗(Rst),⪯).

Thus, as all strongly connected components in G can be found in linear time by [24],
the partition Π(Rst) and a DAG representing (Π∗(Rst),⪯) can be constructed from Gf in
O(|V | + |A|) time. Furthermore, the number of vertices and arcs representing (Π∗(Rst),⪯)
are at most |V | and |A|, respectively.

We then define a map r̂ : A → V 2 by

r̂(a) :=
{
a if f(a) = 1,
(t, t) if f(a) = 0.

(1)

We confirm that r̂ is a pre-reduction map.

▶ Lemma 13 (⋆). The map r̂ : A → V 2 defined as (1) is a pre-reduction map.

This together with Proposition 10 and the above argument implies that TP (G) +Tr(G) =
O(|V | + |A|). Thus, by Theorem 8, we obtain the following, which implies Theorem 3 (1).

▶ Theorem 14 (⋆). The k-diverse problem with respect to dφ of Unweighted Minimum
s-t Cut can be solved in O(n+ (|Bk(φ)|m)1+o(1) log(φ(k)) log k+ kq) time, where n denotes
the number of vertices in the input digraph G, m the number of arcs, and q the size of any
minimum s-t cut in G. In particular, Sum-k-Diverse and Cov-k-Diverse of Unweighted
Minimum s-t Cut can be solved in O(n+(km)1+o(1)) time and in O(n+m1+o(1) log2 k+kq)
time, respectively.

5.3 The k-diverse stable matching problem
In this subsection, we consider the k-diverse problem of Stable Matching. Let us first
introduce the problem Stable Matching (see e.g., [14] for details). Let U and V be disjoint
finite sets with the same size n endowed with total orders ≤u on V (u ∈ U) and ≤v on U

(v ∈ V ). Intuitively, the total order ≤u (resp. ≤v) represents the preference of u on V (resp. v
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on U); v <u v
′ means that “u prefer v to v′.” A subset M = {(u1, v1), (u2, v2), . . . , (un, vn)} ⊆

U × V is called a matching if M provides the one-to-one correspondence between U and V ,
i.e., all ui, vj are different, U = {u1, u2, . . . , un}, and V = {v1, v2, . . . , vn}. For a matching
M , we denote by pM (u) (resp. pM (v)) the partner of u ∈ U (resp. v ∈ V ) in M , i.e.,
(u, pM (u)) ∈ M (resp. (pM (v), v) ∈ M). A matching M is said to be stable if there is no
pair (u, v) ∈ U × V such that v <u pM (u) and u <v pM (v). In Stable Matching, we are
given a tuple (U, V ; (≤u)u∈U , (≤v)v∈V ) of finite sets U, V with the same size n and the total
orders (≤u)u∈U on V and (≤v)v∈V on U , and asked to find a stable matching M . A stable
matching always exists and can be found in O(n2) time by the Gale–Shapley algorithm [13].

Clearly, Stable Matching has the property (S), in which q = |U | = |V |. Similarly to
Section 5.2, our aim is to construct, for some ring family R, a DAG representing the Birkhoff
representation (Π∗(R),⪯), the partition Π(R), and a pre-reduction map r̂ based on R.

Let I := (U, V ; (≤u)u∈U , (≤v)v∈V ) be an instance of Stable Matching, and let n :=
|U | = |V |. Then, the family S(I) of solutions of the instance I is the set of all stable matchings
of I. It is known [14, Theorem 1.3.2] that S(I) forms a distributive lattice with the partial
order ⪯ defined by setting M ⪯ M ′ if and only if pM (u) ≤u pM ′(u) for all u ∈ U . For each
stable matching M ∈ S(I), the P-set of M , denoted by P (M), is the set of pairs (u, v) such
that v is at least as preferred as pM (u) by u ∈ U , i.e., P (M) := {(u, v) ∈ U×V | v ≤u pM (u)}.
Let RI denote the family of all P-sets for I, i.e.,

RI := {P (M) | M ∈ S(I)}.

The map that sends a stable matching to its P-set is an isomorphism between (S(I),⪯) and
(RI,⊆). Hence, RI forms a ring family, which serves the base of our pre-reduction map. We
note that the unique minimal set X⊥ of RI is nonempty. To ensure that X⊤ is a proper
subset of the ground set, we add a new element ⊤ to V , and we regard U × (V ∪ {⊤}) as
the ground set in the following.

We can construct the Birkhoff representation (Π∗(RI),⪯) of the distributive lattice (RI,⊆)
following the work of Gusfield and Irving [14, Chapter 3]. For each stable matching M and
each u ∈ U , let sM (u) denote the most preferable element v ∈ V for u such that u <v pM (v),
if such a v exists. A rotation is an ordered list ρ = ((u0, v0), (u1, v1), . . . , (uc−1, vc−1)) of
pairs in some stable matching M , satisfying sM (ui) = vi+1 for all i ∈ [0, c− 1] (where i+ 1 is
taken modulo c). Let ΛI be the set of all rotations of I. It is shown that the map d defined
by

d(ρ) = {(ui, v) ∈ U × V | i ∈ [0, c− 1], vi <ui
v ≤ui

vi+1}

is a bijection between ΛI and Π∗(RI). A partial order on ΛI is induced by Π∗(RI) through d.
Gusfield and Irving present an O(n2)-time algorithm that constructs ΛI along with a DAG
representing the poset over ΛI having O(n2) arcs [14, Lemma 3.3.2 and Corollary 3.3.1]. In
particular, their algorithm computes the unique minimal and maximal stable matchings.

We can construct Π∗(RI), which is a partition of X⊤ \X⊥, from ΛI in O(n2) time using
d. Clearly, X⊥ is the P-set of the unique minimal stable matching. Thus, we can construct
the partition Π(RI) and a DAG with O(n2) arcs representing (Π∗(RI),⪯) in O(n2) time.

We then construct a pre-reduction map. For each u ∈ U and v ∈ V , we denote by v−
u the

element in V that is the cover of v with respect to ≤u, i.e., v <u v
−
u and there is no element

v′ in V with v <u v
′ <u v

−
u . If v is the maximum element with respect to ≤u, then we define

v−
u := ⊤. We define a map r̂ : U × V → (U × (V ∪ {⊤}))2 by

r̂(u, v) :=
(
(u, v), (u, v−

u )
)
. (2)

We show that this is a pre-reduction map.
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▶ Lemma 15 (⋆). The map r̂ : U × V → ((U × V ) ∪ {⊤})2 defined as (2) is a pre-reduction
map.

This together with Proposition 10 and the above argument implies that we have TP (I) +
Tr(I) = O(n2). Thus, by Theorem 8, we obtain the following, which implies Theorem 3 (2).

▶ Theorem 16 (⋆). The k-diverse problem with respect to dφ of Stable Matching
can be solved in O((|Bk(φ)|n2)1+o(1) log(φ(k)) log k + kn) time. In particular, Sum-k-
Diverse of Stable Matching and Cov-k-Diverse of Stable Matching can be solved
in O((kn2)1+o(1)) time and in O(n2+o(1) log2 k + kn) time, respectively.

5.4 The k-diverse problem on the product of total orders
Very recently, De Berg, Martínez, and Spieksma [8] introduce a framework for the k-diverse
problem on the product of total orders, which leads to the polynomial-time solvability of
Sum-k-Diverse/Cov-k-Diverse of Unweighted Minimum s-t Cut/Stable Matching.
In this subsection, we briefly introduce their framework and show that our framework can
capture theirs for Sum-k-Diverse and Cov-k-Diverse. Here, we do not assume that Prob
has the properties (S) and (R).

We first introduce some terminology. For a distributive lattice (L,⪯), an element x ∈ L
is said to be join-irreducible if x ̸= y ∨ z for any y, z ∈ L \ {x}. Let Lir denote the set of
join-irreducible elements in L. Then, it is known [5] that the subposet (Lir,⪯) of L induced
by Lir forms a Birkhoff representation of L; the map I 7→

∨
x∈I x is an isomorphism from

(I(Lir),⊆) to (L,⪯). We refer to this Birkhoff representation (Lir,⪯) as the join-irreducible
representation of L. For total orders (E1,≤1), (E2,≤2), . . . , (Eq,≤q), their product (E ,≤) is
the poset such that its ground set E is the product E1 ×E2 ×· · ·×Eq of E1, E2, . . . , Eq and the
partial order ≤ is defined by setting (e1, e2, . . . , eq) ≤ (e′

1, e
′
2, . . . , e

′
q) if and only if ei ≤i e

′
i for

all i ∈ [n]. Actually, this E forms a lattice; the meet (e1, e2, . . . , eq) ∧ (e′
1, e

′
2, . . . , e

′
q) is given

by (min{ei, e
′
i})i∈[q] and the join (e1, e2, . . . , eq)∨(e′

1, e
′
2, . . . , e

′
q) is given by (max{ei, e

′
i})i∈[q],

where

min{ei, e
′
i} :=

{
ei if ei ≤i e

′
i,

e′
i if e′

i <i ei,
max{ei, e

′
i} :=

{
e′

i if ei ≤i e
′
i,

ei if e′
i <i ei

for each i ∈ [n]. We say that a subset L ⊆ E is a sublattice if L is closed under the meet ∧
and join ∨, i.e., x, y ∈ L implies x ∧ y, x ∨ y ∈ L. We can observe that a sublattice of the
product of total orders is distributive (see the paragraph after Theorem 17).

De Berg, Martínez, and Spieksma [8] impose the following property on Prob:

(T) For any instance I of Prob, there are q total orders (E1,≤1), (E2,≤2), . . . , (Eq,≤q)
such that the family S(I) of solutions of I is a sublattice of the product of those total orders.
Then they show that, if Prob has the property (T) and we can construct (a DAG representing)
the join-irreducible representation (S(I)ir,≤) of S(I) in polynomial time, then we can solve
Sum-k-Diverse/Cov-k-Diverse of Prob in polynomial time by using an algorithm for
the SFM problem over the distributive lattice I(S(I)ir). The problem Stable Matching
has the property (T). Indeed, for an instance I := (U, V ; (≤u)u∈U , (≤v)v∈V ) of Stable
Matching, we define Eu := {(u, v) | v ∈ V } for each u ∈ U and extend the total order ≤u

on V to that on Eu by setting (u, v) ≤u (u, v′) if and only if v ≤u v
′. Then, S(I) forms a

sublattice of the product of (Eu,≤u) for all u ∈ U . Similarly, Unweighted Minimum s-t
Cut also has the property (T) by introducing the left-right order to q arc disjoint paths,
where q denotes the size of a minimum s-t cut (or the maximum number of arc disjoint s-t
paths); see [7, 8] for details.
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We can show the following, whose proof is almost the same as that in Section 5.3.

▶ Theorem 17 (⋆). If a combinatorial problem Prob has the property (T), then it also has
the properties (S) and (R).

Here, for a solution X = (e1, e2, . . . , eq) ∈ S(I), we define its P-set P (X) by P (X) :=
{(e′

1, e
′
2, . . . , e

′
q) | e′

i ≤i ei (i ∈ [q])} and denote by RI the family of all P-sets of I, as in
Section 5.3. Then we can easily see that (S(I),≤) and (RI,⊆) are isomorphic, both of which
are distributive.

Let us see the result of De Berg, Martínez, and Spieksma [8] in detail to compare the
time complexity of their algorithm with ours. Let E be the disjoint union (or direct sum) of
E1, E2, . . . , Eq. We denote by Tir(I) the time required to construct a DAG representing the
join-irreducible representation (S(I)ir,≤), and by TSFM(n,EO) the time required to minimize
a submodular function f with n variables such that one value evaluation of f takes EO time.
Then, it is shown in [8] that we can solve Sum-k-Diverse/Cov-k-Diverse of Prob having
the property (T) in O(Tir(I)+TSFM(k|E|, k2|E|q)) time. Using the state-of-the-art algorithm
for SFM given in [18] with we have TSFM(n,EO) = O(n3EO). Hence, the running-time of
the algorithms of De Berg, Martínez, and Spieksma is O(Tir(I) + k5|E|4q).

Our framework provides much faster algorithms for Sum-k-Diverse and Cov-k-Diverse
of Prob as follows.

▶ Theorem 18 (⋆). Suppose that a combinatorial problem Prob has the property (T). Then we
can solve Sum-k-Diverse and Cov-k-Diverse of Prob in O(Tir(I)+|E|q+(|A|+k|E|)1+o(1))
time and in O(Tir(I) + (|E| + k)q + (|A| + |E|)1+o(1) log2 k) time for an instance I of Prob,
respectively, where A denotes the arc set of a constructed DAG representing (S(I)ir,≤).

Since |S(I)ir| is upper-bounded by the length of a maximal chain in the product of
total orders (E1,≤1), (E2,≤2), . . . , (Eq,≤q), we have |S(I)ir| = O(|E|). Thus, |A| is upper-
bounded by |S(I)ir|(|S(I)ir| − 1) = O(|E|2). Even in the worst case of |A| = Θ(|E|2),
the running-time of our algorithms for Sum-k-Diverse and Cov-k-Diverse of Prob are
O(Tir(I) + (|E|2 + k|E|)1+o(1)) time and O(Tir(I) + kq + |E|2+o(1) log2 k) time, respectively,
which are much faster than the previous ones that take O(Tir(I) + k5|E|4q) time.

We also mention that the framework of [8] works for a diversity measure based on lengths
of the maximal chains. It may be interesting to generalize our result to treat such a measure.
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