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—— Abstract

In this paper, we study the ACHROMATIC NUMBER problem. Given a graph G and an integer k,
the task is to determine whether there exists a proper coloring of G, using at least k colors, in
which every pair of distinct colors appears on the endpoints of some edge. It was established early
on that the problem is fixed-parameter tractable (FPT)— even before the formal development of
parameterized complexity. In fact, Farber, Hahn, Hell, and Miller [JCTB, 1986] devised an algorithm
with a running time of O(f(k) - |E(G)|). Although the exact form of f(k) was not specified, it
appears to be at least doubly exponential in k. In our work, we first present an algorithm with an
explicit dependence on k, and then introduce another algorithm that is parameterized by the vertex
cover number of the graph. More formally, we show the following.

ACHROMATIC NUMBER is solvable in time 2°*") + O(|E(G))).

ACHROMATIC NUMBER admits a polynomial kernel when the input is restricted to a d-degenerate
graph and a more efficient kernel on trees.

We also study the parameterized complexity of the problem with respect to VERTEX COVER and
2

show that it admits an FPT algorithm running in time 2°*7) . n©®  where £ is the size of a

vertex cover.
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1 Introduction

In this paper, we revisit the ACHROMATIC NUMBER problem that had a fixed parameter
tractable (FPT) algorithm even before the concept of parameterized complexity was estab-
lished, as we currently understand it. A proper coloring of a graph is an assignment of colors
to the vertices such that no two endpoints of an edge are assigned the same color. A complete
coloring of a graph is a proper coloring of a graph such that for any pair of distinct colors,
there exists a pair of adjacent vertices that have been assigned those colors. The achromatic
number of a graph G, denoted by ¥(G), is the maximum number of colors that can be used
in a complete coloring of G. In this paper, we study the following problem.
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Parameterized Reunion with Achromatic Number

ACHROMATIC NUMBER Parameter: k
Input: A graph G on n vertices and m edges and an integer k.
Question: Is ¢(G) > k?

The computational complexity of ACHROMATIC NUMBER was first considered by Yan-
nakakis and Gavril in 1980, who showed that the problem is NP-complete [22, Corollary 2.
The authors also observed that, unlike the classical CHROMATIC NUMBER problem, which is
known to be NP-complete even for k = 3 (that is, whether the input graph can be properly
colored with 3 colors), ACHROMATIC NUMBER cannot be shown to be NP-complete for a
fixed value of k. Toward this, they show that for a graph G, ¥(G) > k if and only if there
is a subset W C V(G) of size at most (%) such that ¢(G[W]) > k. This immediately leads
to an algorithm with running time (’)(nkz). In the modern terminology of parameterized
complexity (PC), this is an XP algorithm for ACHROMATIC NUMBER. Thus, a natural
question is whether there exists an algorithm with running time f (k)no(l), that is, whether
the problem admits an FPT algorithm.

A natural question is whether there exists a uniform polynomial-time algorithm for
every fixed k. That is, do we have n®™) time algorithm where O(1) does not depend
on k. (Pre PC Era)

In modern terminology, does there exist an algorithm with running time f(k) - nf®)
that is, does the problem admit an FPT algorithm. (Post PC Era)

J

In 1986, Farber, Hahn, Hell and Miller [10] designed a “linear time algorithm” for
ACHROMATIC NUMBER. That is, an algorithm with running time O(m); which is actually
an algorithm with running time f(k) - m. This established the parameterized complexity
of ACHROMATIC NUMBER. The exact value of f(k) in the running time is not given and it
appears to be at least doubly exponential in k. This algorithm was built on an earlier work of
Hell and Miller [14] done in 1976 who showed that the number of irreducible graphs (without
any twins) with (G) = k is upper bounded by some function h(k). These results are the
starting point of our research. Our aim is to design an algorithm with explicit dependence on
k by a function that grows as slowly as possible. Furthermore, we also explore the problem
with a structural parameter.

Related Works. Bounds on ACHROMATIC NUMBER in terms of other graph variants like
vertex cover number and independence number have been studied [5, 12]. The PSEUDO-
ACHROMATIC NUMBER problem, a related problem, was introduced in 1969 [13] and has
been studied extensively [3, 4, 21]. The PSEUDO-ACHROMATIC NUMBER problem or GRAPH
COMPLETE PARTITION problem checks whether an undirected graph can be partitioned into k
classes such that every pair of classes is connected by an edge. Unlike the achromatic number
problem, we do not require these classes to be independent sets. The pseudo-achromatic
number may strictly exceed the achromatic Number even for a family of trees [9]. Halldérsson
et al studied the problem from the approximation viewpoint, giving tight lower and upper
bounds on its approximability. The problem has a O(k?) kernel that also establishes that it
is FPT parameterized by the solution size [7]. Another related problem is the HARMONIOUS
COLORING where the objective is to find a proper coloring of the graph such that each pair
of colors appears together on at most one edge [15]. It is known to be NP-hard on trees,
interval and permutation graphs [8, 2, 20]. Georges investigated the problem on paths, cycles,
complete graphs and complete bipartite graphs [11]. Kolay et al [17] studied it from an
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FPT perspective and showed that it is FPT parameterized by the solution size as well as the
vertex cover number of the graph. They also gave an exact exponential time algorithm in
split graphs.

1.1 Our Results and Methods with Solution Size as a Parameter
Our first main result is the following FPT algorithm for ACHROMATIC NUMBER.
» Theorem 1. ACHROMATIC NUMBER can be solved in 2°*°) + O(m) time.

The idea behind the proof of Theorem 1 is motivated by results in the area of approximation
algorithms for an optimization variant of ACHROMATIC NUMBER. Kortsarz and Krauthgamer
gave an algorithm that approximates the achromatic number within a ratio of O (%)
for general graphs [18]. This algorithm in turn was motivated by an earlier combinatorial
work of M&té [19] on ACHROMATIC NUMBER on irreducible graphs. Our parameterized
algorithm builds on this approximation algorithm and incorporates new ideas and concepts
in several places to transform it into an FPT algorithm. We also mention in passing that
Kortsarz and Krauthgamer [18] showed that there is no (2 — €)-approximation algorithm for
every fixed € > 0, unless P=NP.

The next natural question is whether the problem admits a polynomial kernel. That
is, in polynomial time, could we replace the given instance by an equivalent instance of
size polynomial in k7 We do not know the answer to this question, and we leave this as
a challenging open problem. However, could we say something when the input instances
are restricted to some structured graph classes? In this regard, we first mention that

ACHROMATIC NUMBER is known to be NP-complete even when the input graph is a tree [6].

Thus, researchers have considered ACHROMATIC NUMBER on several classes of trees [10]
and designed polynomial time algorithms on these graph classes. In this paper, we design
polynomial kernels for ACHROMATIC NUMBER on trees and d-degenerate graphs and obtain
the following results.

» Theorem 2 (#). ACHROMATIC NUMBER admits a kernel of size O(k?) on forests. !
» Theorem 3. ACHROMATIC NUMBER admits a kernel of size O(k?*4+2) on d-degenerate
graphs.

1.2 OQur Results and Methods for Structural Parameterization

We further study the ACHROMATIC NUMBER problem with respect to other parameters. We
define the problem ACHROMATIC NUMBER/MoD(7), where 7 is a graph class, as follows.

ACHROMATIC NUMBER/MobD(7) Parameter: /¢
Input: An undirected graph G, a modulator of size £ to m and a positive integer k.
Question: Is ¢(G) > k?

Recall that ACHROMATIC NUMBER is known to be NP-complete even when the input
graph is a tree [6]. This immediately rules out the treewidth or the size of the feedback
vertex set as parameters.

1 Due to space constraints, the proofs of results marked with # have been omitted and will appear in the
full version of the paper.
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Parameterized Reunion with Achromatic Number

Modulator to edgeless graphs. Our parameter of study is the vertex cover number of the
graph, that is, a vertex set whose deletion results in an edgeless graph. Here, 7 is the family
of edgeless graphs. Our result in this direction is the following.

» Theorem 4. ACHROMATIC NUMBER/VC can be solved in 2°¢) . n®() time.

To prove Theorem 4, we first show that the achromatic number of the graph is bounded
by ¢+ 1. Then, we guess the color of the vertices in the modulator (one that will result in a
solution). It is possible that there exists a pair of colors that is not assigned to the endpoints
of any edge, for e.g., there may not be an edge between color classes C; and C5. To address
this issue, we utilize a vertex v outside the modulator and assign it either color Cy or Cy,
thereby resolving the pair formed by color classes C; and Cs (in essence, we resolve the
conflict between color classes C; and C; that arises because there is no edge between the color
classes). We solve this by reducing the problem to an instance of SUBGRAPH ISOMORPHISM
(given a host graph G and a pattern graph H, find a copy of H in G), where the pattern
graph H has size O(£?) and treewidth O(1). It is known that SUBGRAPH ISOMORPHISM
can be solved in time 2°UHD . |V (G)[**+1, where tw is the treewidth of the pattern graph,
leading to the desired running time of our algorithm.

2 Preliminaries

In this study, we examine undirected graphs. For a given graph G, we represent its set of
vertices as V(G) and its set of edges as E(G). When the context allows, we will refer to
these simply as V and E. n refers to the number of vertices and m represents the number of
edges. For any vertex u € V, the set of vertices adjacent to u in G is represented by Ng(u).
In particular, Ng(u) denotes the open neighborhood of u in G. We will abbreviate this to
N (u) when the graph is clear from the context. The degree of a vertex u, denoted as deg(u),
refers to the number of vertices in its neighborhood, i.e., deg(u) = |N(u)|. We call a graph
trreducible or twin-free if any pair of distinct vertices has distinct open neighborhoods. A
graph is called d-degenerate if every subgraph has a vertex with degree at most d. An induced
matching or an independent matching is a set of edges such that no two endpoints of distinct
edges of the matching are adjacent to each other. A semi-independent matching M is a set
of edges {(x1,¥1), (z2,92), .., (Z|nm),yn)} such that the sets X = {x1,22,..., 2} and
Y = {y1,v2,...,ym} are independent and for any z; and y; with i < j, ; is not adjacent
to y; (see Figure 1). We call a matching M maximal if, after adding any edge in E(G)\M to
M, M does not remain a matching. An independent set is a set of vertices that are pairwise
non-adjacent. An independent set S C V(G) is called maximal if adding any vertex from
V(G)\S to S destroys its property of being an independent set. For a given proper coloring
of a graph, a color class refers to a set of vertices that are assigned the same color. A partial
complete coloring of G is a complete coloring of a subset of vertices of G. A partial complete
k-coloring is a partial complete coloring with k colors. A greedy independent partition of a
graph G is an ordered partition of the vertex set V(G) into independent sets, constructed
through a greedy process, prioritizing the largest set first while ignoring the order of the rest.
At each step, a maximal independent set is selected from the remaining vertices and the
process continues until all vertices are covered. The size of a greedy independent partition is
the number of independent sets in the partition.



S. Jana, S. Saha, S. Saurabh, and A. Upasana

3 FPT algorithm for Achromatic Number

In this section, we give an FPT algorithm for ACHROMATIC NUMBER parameterized by
solution size in general graphs. We start with describing our kernelization procedure that
takes an instance (G, k) of ACHROMATIC NUMBER as input and in O(|E(G)|) time return
an equivalent instance (kernel). We prove the following result.

» Theorem 5. ACHROMATIC NUMBER admits a kernel of size kFT22k*+k+2ck* - And moreover
we can find it in O(m) time where m is the number of edges in the given graph.

Our kernelization procedure for a given instance (G, k) involves the following steps. Let
R be an equivalence relation defined as follows: for a vertex v € V(G), the class R, contains
the vertices {u | Ng(u) = Ng(v)}.

1. If n < kF+22K°+k4+20k  we return G as kernel.

2. Using Lemma 13, we check in O(|E(G)|) time whether the number of equivalence
classes exceeds k*+12F°Th+2¢k” o1 clse obtain their count g.

a. If the number of equivalence classes exceeds kFT12+°+k+26k° rotyurn a trivial
YES-instance of ACHROMATIC NUMBER.

b. Otherwise, ¢ < k*+12K°+k+2¢k” - Apply Reduction Rules 1 and 2 exhaustively,

. . 3 2
and return the reduced instance as a kernel of size kFT22k" +k+20k"

We now show the correctness of this procedure. Toward that, we have to prove two
things. First, we need to show that if the number of equivalence classes in G is more than
Jk 19k +h+26k then (@) > k (Lemma 15). And secondly, we have to show that after
exhaustive application of the Reduction Rules 2 and 1 the size of V(G) gets reduced to
k22K +k4+2¢K* (Lemma 16). An example of a trivial YES instance of ACHROMATIC NUMBER
is (K1,1,1). We now describe the Reduction Rule 1 that removes all isolated vertices from
the graph. The proof of the rule follows from the fact that removing isolated vertices from
the graph will not affect its achromatic number, since no edge in the graph is incident to
that vertex.

» Reduction Rule 1. If G has an isolated vertex v, then return the instance (G — v, k).
Now mention two known facts regarding complete coloring of a graph.

» Lemma 6 ([18, Lemma 1.1]). A partial complete coloring in a graph G can be extended to
a complete coloring of G in time O(|E(G)|).

» Lemma 7 ([18, Lemma 1.4]). Given a semi-independent matching of a graph G of size at
least (’;), a partial complete k-coloring can be computed in time O(|E(G)]).

Lemma 6 and Lemma 7 together conclude the following lemma.

» Lemma 8. If a graph G has a semi-independent matching of size (]2“), then (G) > k.
We now prove the following crucial lemma.

» Lemma 9. Let G be an irreducible graph with |V (G)| > kF+12F T5+2ek - Then o) (G) > k.

Proof. Let G be an irreducible graph. We show that if G has more than kF+12k +k+2ck”
vertices then ¢ (G) > k. Moreover, we design an algorithm for such a graph, i.e., we give a
complete coloring with at least k colors. We first describe the algorithm briefly.

42:5
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We start with finding a greedy independent partition II. If the size of II is at least k, we
have that ¥(G) > k (by Lemma 17). Moreover II gives a complete coloring with at least k
colors by assigning a distinct color to each set. Next, we focus on the first independent set
Sp in IT. At each recursive step i, we construct S;1 C .S; as follows:

We fix an arbitrary vertex ordering.

Let x9; and x9;41 be the two minimal vertices with respect to the ordering.

We identify a distinguishing vertex d, that is adjacent to exactly one of x9; and x2;41.

Then we partition S; into S? (C N(dyy)) and S} (not intersect N (dyy))-

We set S;11 = SY if |SY| > |S;|/k; otherwise, set S;y1 = Si.

This process yields nested independent sets Sg O S1 D --- D 5, forming either a partial
complete coloring or a semi-independent matching, both can be extendable to a complete
coloring. We also store a pair of sets UY and U' of witness vertices. Simultaneously we keep
two index set Q° and Q. Next we show that for |V (G)| > k* 128 +k+2¢h” the Algorithm 1
always terminates. In addition we show that either of the cases Q° > k or Q' > k? leads to
a complete coloring with at least & colors (Claims 11 and 12). A complete description of
this above mentioned procedure is given in Algorithm 1. Now we show that Algorithm 1
always terminates. Assume that p < k inside Algorithm 1 as otherwise it returns ¥(G) > k
so terminates. Note that if the Algorithm 1 does not terminate at Step 3 then the while loop
(Step 11) runs at most (k + k%) steps as per our construction of the set Qp and Q1. Now we
show that either |Q°] > k or |Q!| > k3 in the output of Algorithm 1.

> Claim 10. Let G be an irreducible graph with more than k*+125° +k+2¢k* vertices. If the
Algorithm 1 outputs the pair of sets Qo and Q; then either |Q°| > k or |Q'| > k®.

Proof. We prove this by contradiction. Assume G is an irreducible graph with n >
fh+10k +h+2ek* yertices and the Algorithm 1 outputs the pair of sets Qo and @Q; with
|Q° < k or |Q| < k3. Let S, s denote the independent set obtained after applying Step 14
« times and Step 15 3 times, starting from Sy. We claim that

o () (6

Base case: When o+ 8 = 0, we have S, g = Sy, so the inequality trivially holds.

Inductive step: By the construction of the algorithm:

. 1 1 1
ol 2 min { 1801l 5 (1- 1) 18011}

By induction hypothesis:

1 a—1 1 1 B 1\* /1 1 B—1
|Sa—1,8] > (%) (2 (1 - k)) [Sol,  |Sa,p-1] = (%) (2 (1 - k)) S0l

Thus, in either case, i.e., [Sa5| > 57[Sa-1,8] or |Sa,s] = 3 (1 — 1) [Sa,s-1| Equation (1) is
satisfied. Now, since |Q°| < k and |Q*| < k3, the loop terminates after at most k + &k steps.
Therefore, the set Sy ;s has size at most 4, but also satisfies:

k K?
1 1 1
S hl _
|Skpa| = (2k> (2 (1 k)) S0l
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Algorithm 1 Algorithm for the case when the graph is large and irreducible.

Input: An irreducible graph G with n > kF+12F°+k+26k* yertices.
Output: Either ¢)(G) > k or a pair of sets Q° and Q.

1: Compute a greedy independent partition I,..., I, of G

2: if p > k then

3 return ¥(G) > k

4: Let I = I, where |I,| > |I;|,Vj € [p], with a total order < on I > |I| >n/k
5. for all z,y € I do

6 Choose d, adjacent to exactly one of z,y

7 c(x,y) < color of dyy

8

:forallz>y>=zxin I do
0 if (2,dyy) € E

1 otherwise

9: g(x,y,2) + {

10: Initialize So =1, Q°=Q'=0,i=0

11: while |S;| >4 do

12: Zo; ¢ miny S;, X941 < next in S;

13: Partition S; \ {Z2i, z2i11} into S? and S}:

SP = {x | g(w2i, x2i11,2) = 0}, 57 = {x | g(22i, 22541, 2) = 1}

14:if |89 > 2 then Sy« S, Q0+ QO U {4}

15: else [S}| > 1 (1— 1) |S;| then S;y1 + S}, Q' + Q' U {i}
16:  if |Q° > k or |Q'| > K then

17: break

18: 1 1+1

19: return Q° and Q!

Since p < k, we have |So| > 7, giving | Sy xs| > (i)k (% (1 - %))kS %. Using the standard
inequality (1 — %)kg > e for large k, and the condition |Sk k3| < 4, we have n <
Jh+1 . ok®+h+2 . ok®  This contradicts our assumption that n > kF+1. 28" +k+2. ck*  Therefore,
either |Q°| > k or |Q'| > k2 must hold. <

We now compute a pair of sets U? and U? as follows: UY = {(x2;,72,41) | i € Q°} and
Ul = {(295,72i11) | i € Q'}, where Q° and Q! be the set returned by Algorithm 1.

> Claim 11. If |Q°| > k then ¥/(G) > k.

) for
i € [|Q°|]. For each such tuple, let x;, denote the vertex between zy; and ;41 that is not
adjacent to dg,, z,,,,. We assign a new color ¢; to the pair (x4, dy,, 25, ), thereby assigning
at least k£ new colors. We now show that this coloring forms a partial

Proof. Since |Q"| > Fk, there are at least k tuples of the form (z2;, Z2it1, dug; z0i1s

From the construction of QY in Step 14 of the algorithm, we know that each vertex dy,, ., 1

for i € [|Q|], is adjacent to both xa; and zaj41 for all j > 4. Thus, for any pair of colors ¢;

and c¢; with 7 > j, the vertex d (colored with ¢;) is adjacent to both xg; and x2;41,

T25,T25+1
at least one of which is colored with ¢;. Therefore, there is an edge between every pair of
color classes assigned in Step 7. By applying Lemma 6, this partial |Q°|-complete coloring

can be extended to a complete coloring of size at least |Q|. <

Q°|-complete coloring.
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S}

Figure 1 Figure depicting a partition of S; in Algorithm 1, an instance of a semi-independent
matching and a greedy independent partition respectively.

> Claim 12. If |Q!| > k® then ¢(G) > k.

Proof. Let ¢’ be the color that appears most frequently among the colors assigned to the
vertices duy, zg.,, for all (z9;,x2,41) € U'. Define the subset U’ C U' as the set of all
pairs (z2;, Z2;41) € U' such that ¢(dy,, 4,,,,) = ¢/. Since the graph G is colored using at
most k colors, it follows by the pigeonhole principle that [U’| > k%. We now construct a
semi-independent matching from U’. For each pair (29, z2;41) € U’, include the vertex
d
definition of Q!, any vertex x; in U! with j > 2i + 1 is not adjacent to d

wos,22041 and the one among xo; and x2;11 to which it is adjacent. Note that, by the

woi,w0iq, - Lherefore,
the matching constructed in this way is semi-independent and has size at least k2 > (g)
Hence, if Q'] > k3, then we can compute a semi-independent matching of size at least (g)

By applying Lemma 8, we conclude that (G) > k. <

The correctness of Step 3 follows from Lemma 17. In Claim 10, we show that if the
Algorithm 1 outputs the pair of sets Qg and @Q; then either |QY| > k or |Q!| > k3. In both
the cases, we have that ¢»(G) > k (by Claim 11 and 12). Hence we are done with showing that
if the given graph G is irreducible and more than kF+12% +5+2¢k” vertices then 1(G) > k.
This completes the proof. |

Recall that R was an equivalence relation defined as follows: for a vertex v € V(G), the
class R, contains the vertices {u | Ng(u) = Ng(v)}.

» Lemma 13 ([10, Theorem 3.3]). Given a graph G and an integer k, in time O(|E(G)|),
we can

determine if G has at least f(k) equivalence classes, or

build all the equivalence classes.
Now we define a rule that bounds the number of vertices to each equivalence class.

» Reduction Rule 2. If |R,| > k + 1, then delete v. Return the instance (G — v, k).
The correctness of the Reduction Rule 2 follows from the following claim.
> Claim 14. Reduction Rule 2 is safe.

Proof. In the forward direction, assume that (G, k) is a YES-instance of ACHROMATIC
NUMBER. Then, ¥/(G) > k. If ¥(G) > k + 1 then ¢(G — v) > k trivially holds, as deleting
any vertex can decrease the achromatic number by at most one.

So we can assume that ¢(G) = k. Let R, be an equivalence class with at least k + 1
vertices uy, ug, ..., ur+1. Without loss of generality, assume that v = uyy1. By the definition
of an equivalence class, we have Vi,j € [k + 1], Ng(u;) = Ng(u;). On the contrary, assume
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that ¥(G —v) < k. Let C, ..., C) be the color classes defined by the complete coloring of
G. More precisely, for each ¢ € [k], the set C; is the set of all vertices in G with color i.
Additionally, assume that v € Cj. Now, if for all ¢ € [k — 1], we have an edge between a pair
of vertices in C; and C}, excluding v, then we are done. Else, there exists a color class C;
such that, on removal of v = uy41, there is no edge between any pair of vertices in C; and
C. Assume that u is a vertex in C; such that (u,v) € E(G). Note that in this case the k
vertices ui, ... ux are present in the remaining color classes Cy,...Cg_1.

Thus by the pigeon hole principle, there exist uy and wug in R, with £ # ¢/ € [k], which
belong to the same color class, say C;,j € [k — 1]. Because Ng(u¢) = Ng(up), removing
ug from C; will not affect the achromatic number of G' as uy serves the same purpose as
ug. Now, we can add ug to C;. Since uy and v = ug41 belong to the same equivalence class,
they are not connected by an edge and therefore u,, along with the vertices of C; forms an
independent set. The edge (u,uy) ensures an edge between the color classes C; and Cy, and
hence the achromatic number of the graph G — v is k. Thus, (G, k) is also a YES-instance.

In the backward direction, let (G’, k) be a YES-instance of ACHROMATIC NUMBER. Then,
Y(G") > k. Let Cy,...,Cy, where k' > k be the partition of color classes corresponding to
a complete coloring of G’. If for some i € [k], v does not have a neighbor in the vertices
corresponding to C;, then we can assign the color ¢ to v and get a complete coloring of G
with at least k colors. Otherwise, for each ¢ € [£'], the color class C; contains a vertex from
N¢g(v). Then, we assign a new color ¥’ + 1 to v and obtain a complete coloring of G with
k' +1 colors. Hence, in both cases, we obtain a complete coloring on G with at least k colors.
Thus, (G, k) is a YES-instance. <

» Lemma 15. If the number of equivalence classes in G is strictly greater than
KRR HR26K® then o (G) > k.

Proof. Let V(G) be partitioned into ¢ equivalence classes. Assume g > Rt 1ok’ +h+2k
Construct a subgraph G[S], where S C V(G) contains exactly one arbitrarily chosen vertex
from each equivalence class. Clearly, |S| = ¢. Now we show that no two distinct vertices in
S have the same open neighborhood. Suppose, for contradiction, that there exist distinct
vertices u,v € S such that N(u) = N(v). Then, by the definition of the equivalence relation,
u and v must belong to the same equivalence class. However, since S contains exactly one
vertex from each equivalence class, this contradicts the assumption that both u and v are
in S. Therefore, all vertices in S have distinct open neighborhoods. Therefore, G[S] is
an irreducible graph. Since ¢ > kFH12F Th+2¢k° it follows that |S| > kF+12° +k+2+° By
applying Lemma 9, we obtain ¢(G[S]) > k. This gives a partial complete coloring of G with
at least k colors. Finally, by applying Lemma 6, we conclude that ¢(G) > k. <

Let (G, k) be an instance where none of Reduction Rules 1 and 2 is applicable. Then
each equivalence class is bounded by k. This imply the following lemma.

» Lemma 16. Let (G, k) be an instance where none of Reduction Rules 1 and 2 is applic-

able. If the number of equivalence classes in G is at most kF+12K°+k42eE* then |V(Q)| <
LFT29k° +k+2 k%

» Lemma 17. For any graph G, if size of greedy independent partition is at least k, then
W(G) > k.

Proof. We construct a greedy independent partition of G, say I, Is,...,I,. We color each
independent set with a different color. Since the size of the greedy independent partition is
at least k, we use at least k colors. Now, from the construction of the greedy independent
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partition, observe that all vertices in G outside I; must be adjacent to at least one vertex in
I;. Similarly, for each i > 1, the neighborhood of all vertices in I; includes all vertices in

é.):i 4115 Thus, there exists no pair of independent sets in a greedy independent partition
of G such that their union is also an independent set. Hence, our coloring is a complete
coloring of size at least k, that is, (G) > k. <

FPT algorithm for ACHROMATIC NUMBER. We first compute a kernel of size at most
29k + k426 i O(m) time (by Theorem 5). It is easy to observe that if a graph admits a
complete coloring with at least k colors, then there exists an induced subgraph H C G with
at most (’2“) vertices that also admits a complete k-coloring. Therefore, on the kernelized
instance, we can perform a brute-force search: enumerate all subsets of at most (’2“) vertices
and check whether any of them admits a complete coloring with at least k£ colors. Each such
check can be performed in O(k?) time. If such a subgraph is found, we return YES for the
original instance (by Lemma 6); otherwise, we return NO. The kernelization step takes O(m)

k4+2ok3 4k42 k2 5
time, and the brute-force step takes at most (k AN ) -O(k?) = 2°%") time. Hence,

the total running time of the algorithm for solving ACHROMATIC NUMBER is 20(K%) 4 O(m).

» Theorem 1. ACHROMATIC NUMBER can be solved in 2°*°) + O(m) time.

4 Parameterized by Vertex Cover

In this section, we study the parameterized complexity of ACHROMATIC NUMBER with
respect to a structural parameter that is a modulator to edgeless graphs (also known as
vertex cover). We call this version of the problem ACHROMATIC NUMBER/VC which is
formally defined below.

ACHROMATIC NUMBER/VC Parameter: /¢
Input: An undirected graph G, a set S C V(G) of size ¢ such that G — S is an
independent set and a positive integer k.

Question: Is ¢(G) > k?

The following is the main result of this section.

» Theorem 4. ACHROMATIC NUMBER/VC can be solved in 2°¢) . n®() time.

» Observation 18. If G has a vertex cover of size at most €, then ¥(G) < (£ +1).

Proof. Let S be a vertex cover of size at most ¢ in G. Suppose, for a contradiction,
Y(G) > (£ 4+ 1). Then, there exists a complete coloring C using at least £ + 2 colors. Since
|S] < £, at most ¢ color classes of C contain the vertices of the set S. This implies that there
are at least two color classes, say C; and C}, which do not contain any vertices of S. Now
the subgraph of GG induced by the vertices of C; U Cj is an independent set, which implies
that there is no edge across the color classes C; and C;. This contradicts the fact that C is a
complete coloring. |

An input instance of our problem is (G, S, k, £), where S is a vertex cover of size at most
£. Furthermore, assume that (G, S, k,¢) is a YES instance and II = (X, Xo,..., Xk) is a
hypothetical solution where II is a partition of vertices into k independent sets X1, Xo, ..., Xk
and, for each pair 4, j there is a pair of vertices v € X; and v € X, such that (u,v) € E(G).
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Our ultimate objective is to get II. To do this, we try to obtain as much information as
possible about IT in time ¢/ - n®(). Observe that if S is an empty set, then (G,S,k,0) is a
YES instance if and only if £ = 1, and we can obtain II by simply setting X; = V(G). In what
follows, we assume that we are given an input (G, S, k, ) and a partition 7 = (Y1, Ya,...,Ys)
of S, and our problem is to test whether w can be extended to the desired partition II. More
specifically, we test whether there is a feasible solution, that is, partition IT = (X1, Xa, ..., Xi)
of V(G) such that Y; C X, for each 1 < ¢ < k. This leads us to the following problem.

DISJOINT ACHROMATIC NUMBER/VC Parameter: /¢
Input: A graph G, aset S C V(G) of size at most £ such that G — .S is an independent
set, an integer k, and a partition 7 = (Y7,Ya,...,Y%) of S.

Question: Does there exist a solution IT = (X1, Xa,..., X)) with the requisite
properties that extends 7?7

We use (G, S, k, £, 7) to denote an instance of DISJOINT ACHROMATIC NUMBER/VC.

Our next lemma formally proves our discussion by showing that ACHROMATIC NUM-
BER/VC and DISJOINT ACHROMATIC NUMBER/VC are FPT equivalent. That is, ACHROMATIC
NUMBER/VC is FPT if and only if D1SJOINT ACHROMATIC NUMBER/VC is FPT.

» Lemma 19. Let G be a graph and S be a vertex cover of size at most £. For any integer k,
(G, S, k,0) is a YES-instance of ACHROMATIC NUMBER/VC if and only if either (G, S, k, ¢, )
is a YES-instance or there exists a non-empty set X C V(G)\ S such that |X| < ¢ and
(G,S U X,k ,2¢,m) is a YES-instance of DISJOINT ACHROMATIC NUMBER/VC, for some
partition w of S or S U X respectively.

Proof. The backward direction is obvious due to the definition of DISJOINT ACHROMATIC
NuMBER/vC. If either (G, S,k,¢,7) or (G,S U X, k,2¢,7) for some X C V(G)\ S is YES,
then by definition we have a feasible solution with at least k colors that extends .

In the forward direction, let (G, S, k, £) be a YES instance of ACHROMATIC NUMBER/VC,
then there exists a partition of G, say Cy,...,C:, with ¢ > k, such that between any two
pairs of color classes C; and Cj, i # j € [t], there exist vertices u € C; and v € C; with
(u,v) € E(G). Observe that there can be at most one color class that does not contain any
vertices from S. Now there are two cases.

Case 1. Every color class C; intersects S. In this case, we define a partition 7= (Y1, Y5, ..., Y;)
of S as follows. For each ¢ € [t] the set Y; := SNC;. Hence (G, S, k, £, ) is a YES instance.

Case 2. There is a color class that does not intersect S. Wlog, assume that C is such a
color class. Note t < /4 1. Observe that for every set C;, 2 < i < t, there is a vertex
in C; that has a neighbor in C;. There may be many vertices that has a neighbor in C;
but we choose an arbitrary vertex u; € Cy that has a neighbor in C;. In this process,
for each 4, 2 <@ < [t], we find a vertex u; € C1. Let X = {ug,...,u,}, where ¢ <t. As
g<t<{+1, s0|X]| </l Clearly, SUX is a vertex cover of size at most 2¢. Now we
define a partition 7 = (Y7,Y5,...,Y%) of SU X as follows. For ¢ = 1, define Y7 := X, for
all other ¢, 2 < i < [t] we define the set Y; :== SN C;. Hence (G,SU X, k,2¢,7) is a YES
instance. <

Next, we aim to generate a collection Z of f(¢) many instances for DISJOINT ACHROMA-
TIC NUMBER/VC from an input instance (G, S, k,¢) of ACHROMATIC NUMBER/VC. First,
for each partition 7 of S, we include an instance (G, S, k, ¢, 7) into Z. Next, consider the
equivalence relation R defined for Lemma 13. Given that |S| < ¢, it follows that the number
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of equivalence classes is at most 2¢. Thus, for any pair of vertices u, v in the same equivalence
class, we have N(u) = N(v). Let Z* be a set of vertices formed by arbitrarily choosing a
vertex from each equivalence class. Since the number of equivalence classes is at most 2¢, it
follows that |Z*| < 2¢. Now for each subset Z C Z* where |Z| < £, and for each partition
m of SUZ, we add an instance (G,S U Z,k,2¢,7) to Z. Therefore, the total number of
instances is bounded by £¢ + (2;) L+ 1) < 20(®*) The following claim is derived from the
arguments of the proof of Lemma 19 which basically tells that these two problems are FPT
equivalent.

> Claim 20. (G, S, k, /) is YES instance if and only if one of the instances of Z is YES.

4.1 Algorithm for DiSJOINT ACHROMATIC NUMBER/VC

Let (G,S,k,¢,m) be an instance of DISJOINT ACHROMATIC NUMBER/VC, where m =
(Y1,Ya,...,Y,). Our algorithm works as follows. First, the algorithm performs a simple
sanity check reduction rule. In essence, it checks whether 7 is valid.

» Reduction Rule 3. Return that (G, S, k,¢,7) is a NO instance of DISJOINT ACHROMATIC

NUMBER/VC, if one of the following holds:

1. S=0 and k > 2.

2. There is a set Y; inm = (Y1,...,Y)) such that Y; is not an independent set.

3. There is a pair of sets Y; and Y; inm = (Y1,...,Yy) such that Y; UY; U(V —S) is an
independent set.

» Lemma 21. Reduction Rule 3 is safe.

Proof.

1. If S = (), then G is an independent set. If there are at least 2 color classes, then there is
no edge going across any pair of color classes. Therefore, (G, S, k, ¢, 7) is a NO instance of
DISJOINT ACHROMATIC NUMBER/VC for k > 2.

2. If there is a set Y; in m = (Y1, ..., Y%) such that Y; is not an independent set, then if we
extend 7 to II, a partition of G, we get X; 2 Y; which is not an independent set. This
violates the property of complete coloring.

3. If there are two sets Y; and Y; in 7, then an edge that goes across the pair of color classes
Y; and Y; must have endpoints in ¥; and Y}, ¥; and V — S or Y and V' — S. However,
the graph induced on Y; UY; U (V' — S) is an independent set. Therefore, (G, S, k, ¢, ™) is
a NO instance of DISJOINT ACHROMATIC NUMBER/VC. |

Now we describe our algorithm. We first find the bad pairs in [k] x [k]. We say that a pair

(4,7) is a bad pair if and only if Y; UY; induces an independent set in G. It is easy to observe

that the number of bad pairs is at most k2.

We now construct two graphs; one is the host graph, denoted by G, and another is the

pattern graph Go satisfying the condition as follows: G has a subgraph isomorphic to Gy if

and only if (G, S, k, ¢, ) is an YES-instance. Let b be the number of bad pairs in [k] x [k]

and t = |V \ S|. See Figure 2 and Figure 3 for an illustration of the construction.

Construction of host graph G,

1. We add two sets Ay = {wy,...,wp} and By = {uq,...,up}, each of the b vertices in
V(G1) corresponding to each bad pair in [k] x [k].
2. We add a set Iy = {vq,..., v} of t vertices to V(G1), one for each vertex in V' \ S.
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Figure 3 An illustration of the construction of pattern graph.

w

. We add a set It = {v},...,vF} of k vertices for each 1 <i <t in V(Gy).

. We add t cliques Z1, ..., Z;, each of size 50 in G;. For each clique Z; take an arbitrary
vertex in it and make it adjacent to v; € I3.

5. We add a clique Z of size 100 to G;. Choose an arbitrary vertex in Z and make it
adjacent to each vertex in I;.

. Add the set {(u;,w;): i € [b]} of edges to E(G1).

. Add the set {(v;,v?): i € [t],j € [k]} of edges to E(G1).

. For any pair of integers ¢ and j, we add an edge between vf € Ii and a vertex u € By,
where u is a bad pair corresponding to (c, j) or (j,c¢) if (i) v; has no neighbor in Y; and
(ii) v; has a neighbor in Y.

Observe here that in step 8 when we add an edge between vf € Ii and a vertex u € By, if

the vertex v; is assigned a color j, that is, v; is added to the partition Y; then it satisfies the

bad pair corresponding to u. Here, we say that a vertex satisfies a bad pair when its addition
to one of the partitions of the pair introduces an edge between the pair. Our goal is to check
if there exists an assignment of colors to the vertices in G \ S that satisfies all the bad pairs.

S

[== B =]

We create 2° many pattern graphs as follows: Let M be a minimal set of vertices in
Ui_, Ii such that (i) M NI} <1 for each 1 < i < t, (ii) N(u) N M # @ for any u € Bj.
Clearly |M| < b. We guess the value of |[M|. Then we guess |M| numbers such that their
sum is b. We use the following fact to bound the number of such partitions.
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» Fact 1. For any positive integers n and k the number of k tuples of positive integers whose

sum is n equals (Zj) < 2m,

Let us guess the value of [M| and [M| numbers n1,n2, . ..,n|3 whose sum equals b. Each
value n; is essentially the number of bad pairs that a vertex will satisfy privately. We will
later describe the notion of satisfying privately. In the following, we describe how to construct
a pattern graph for such a guess. Putting n = b in Fact 1, we can decide that the number of
such partitions is at most 2°. Let H denote the set of all pattern graphs.

Construction of pattern graph G, € H: Forn; +na + ... +np = b

1. We add two sets Ay = {w],...,w;} and By = {u},...,u;}, each of the b vertices in
V(G2).

2. We add a set Iy = {v],v5,..., vy} of [M] vertices to V(G2).

We add a set I5 = {v{,v5,..., vy} of [M] vertices to V/(G2).

4. We add [M] cliques Z1,..., 2y, each of size 50 in G3. For each clique Z] take an
arbitrary vertex in it and make it adjacent to v}’ € IJ.

5. We add a clique Z’ of size 100 in G5. Choose an arbitrary vertex in Z’ and make it
adjacent to each vertex in I}.

6. Add the set {(u;,w}): i€ [b]} U{(v],v)): i € [|[M]]} of edges to E(G2).

7. Add the set {(vj,u}): i € [[M[],(n1+...+ni1) +1 <5 < (1 + ... +n;),n9 = 0} of

edges to E(G2).

w

> Claim 22. tw(G2) = O(1).

Proof. Consider the graph G/2 without copies of cliques Kjpo and Ksg. Let (T, 3) be the tree
decomposition of GIQ. The treewidth of G,2 is 1 as it is a tree. We add the cliques K199 and
K50 to every bag of T'. This gives us a tree decomposition of G2 with a constant treewidth.

<

» Observation 23. |V (G2)| = O(k?).

Proof. We know that |As| = |B2| < b < k?, and |5 = |I5| < b < k?. There are |M| cliques
of size 50 each and a clique of size 100. Thus, |V (G2)| < 4k? + 50k? + 100 = O(k?). <

The following lemma proves the correctness of our algorithm.

» Lemma 24. (G, S, k, ¢, ) is a YES instance of DISJOINT ACHROMATIC NUMBER/VC if
and only if there exists a subgraph of Gy which is isomorphic to Gy for some Gy € H.

Proof. Assume (G, S,k, ¢, ) is a YES instance of DISJOINT ACHROMATIC NUMBER/VC.
Then there is a partition 7 of S that can be extended to a partition IT of G (each part of
a partition corresponds to a color class) such that there is an edge across any pair of color
classes in the partition II. We show the existence of a pattern graph G5 that is isomorphic
to a subgraph of G;. We construct a subgraph G} of graph G; as follows:

In the graph G, for each set I%, keep only the vertex vy where the vertex corresponding

to v; in G gets color J € [k] in the solution IT and delete other vertices of I

Delete the edges of v; to those vertices of By that are adjacent to some vertex v , where

p<i—1and Q € [k]. Now no two vertices v;, v have any common neighbor.

Let n; be the number of neighbors of v/ in By, for i € [t], J € [k].

If n; = 0, then we also delete v
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After this step let {v{",v32,... 0"} be the vertices remaining from vertices of the form

J
Ui

Now in Aj, By keep only the vertices w;, u; such that u; has neighbor of the form v

In the set I; keep only vertices v, such that it has a neighbor of the form vg . Letpthe
remaining vertices be {vy,...vp}.
Delete all the isolated Kxg.
We will show that this constructed subgraph G is isomorphic to a pattern graph Gy € H
corresponding to the values ny 4+ ng + ...+ np = b. We show the isomorphism f: V(G}) —
V(G2) as follows.
For every v} € G, we map f(v]*) = v/.
Now both v;] ¢, v; have n; neighbors in By, By respectively. Suppose v;] * is adjacent to
{wiy, iy, - us,, } € B1. Then we have f(u;;) = u]
Correspondingly f(w;,)

1+..n;-1)+]

= ’u}/
(I4..n5-1)+j
For v; € I we have f(v;) = v/

The K¢ which is neighbor of v; € I1 gets mapped to the K5 which is neighbor of v’
K100 in G/l gets mapped to the K100 in G2
Conversely, suppose that there is a subgraph of G; that is isomorphic to some pattern graph
G2 € H. Since Ko is the largest clique in Gy, it is isomorphic to the Kigp in Gy. The
set I} in G is isomorphic to a subset of the set I} in Gy, as the vertices of both sets are
neighbors of the cliques K19 and copies of Kyo. Every vertex v € I} is adjacent one vertex
in I. Thus at most one vertex from each I} is mapped to a vertex in I,. Now for each
set I consider the vertex that was mapped to a vertex in Io. It has neighbors in B; and
hence this subset of B; is mapped to Bs in Go. Similarly, the corresponding subset of A; is
mapped to Ay in G5. Since, the pattern graph G5 is isomorphic to a subgraph of G; and
there exists at most one vertex U{I in each I { in G that has n; private neighbors in B;. Since
ni +...np = b, the selected vertices in I! in total have b neighbors in By, which implies
that each vertex in B has a unique neighbor in I7. Thus, the neighborhood of the mapped
vertices in I{ in Bj is exactly By. An edge (u,,vy) in Gy implies that the vertex v; when
colored with color J satisfies the bad pair corresponding to r in By. Thus, all the bad pairs
in B; are being satisfied. Therefore, we can conclude that (G, S, k, ¢, 7) is a YES instance.
<4

» Fact 2. [1, Theorem 6.3] Let H be a directed or an undirected graph on k vertices with
treewidth tw. Let G = (V, E) be a (directed or undirected) graph. A subgraph of G isomorphic
to H, if one exists, can be found in the expected time 20
time 200) .|V |twtl L log |V].

)|V [*+Y and in the worst-case

We describe our algorithm in Figure 4. Note that by the construction of our pattern graph
and the proof of Lemma 24 our algorithm will also be able to return a satisfying coloring in
the case of a YES instance.

Running time. First, we analyze the running time of the algorithm for DISJOINT ACHROMA-
TIC NUMBER/vVC. The number of guesses in step 2 is at most 2% < k22%*. The running
time of the algorithm at step 4 is 20(k) 01 from Fact 2. Thus, the overall running time of
the algorithm for DISJOINT ACHROMATIC NUMBER/VC is k22F°20(K)p0(1) — 90(*)p0(1) —
20(#)pO0M) gince ¢ < k+1 from Observation 18. Note that the proof works even if the cliques
in the host and pattern graph are K3 and K5 in place of K5y and Kigg, respectively. We
assumed a large clique for clarity of understanding. Now, in the algorithm for ACHROMATIC

NUMBER/VC, we make £ many guesses of the partitions of S and run the algorithm for
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DISJOINT ACHROMATIC NUMBER/VC (I = (G, S, k,m))
(It checks if (G, S, k,7) is a YES instance)

—

Construct the host graph G.

Guess a value of |[M|, (|[M] < b), and a partition of b into |M| positive integers
{’l’Ll,. .. ,n‘M|}

For each such guess construct a pattern graph Gs.

Use the algorithm from Fact 2 to check if a subgraph of Gy is isomorphic to G .

If a subgraph of G is isomorphic to G5 output YES instance .

Return NO if none of the pattern graphs G5 is isomorphic to a subgraph of G

N

Sk w

Figure 4 Algorithm for DISJOINT ACHROMATIC NUMBER/VC.

D1sJOINT ACHROMATIC NUMBER/VC for each guess. Thus, the overall running time of the
algorithm for DISJOINT ACHROMATIC NUMBER/VC is £¢-20(") . pO(1) = 20(¢*) . ,O0() Ty,
we get the following theorem.

» Theorem 4. ACHROMATIC NUMBER/VC can be solved in 20(*) . O time.

5 Kernel for d-degenerate graphs

In this section, we obtain a polynomial kernel for ACHROMATIC NUMBER when the graph is
d-degenerate. First, we state a crucial theorem that we use to design the polynomial kernel
for graphs that are d-degenerate. Then, we prove a few lemmatas to show the correctness of
our kernelization algorithm. We start with the following lemma, which asserts that if a graph
contains a large induced matching, then the achromatic number of the graph is also large.

» Lemma 25. Let G be an undirected graph. For any positive integer k, if G has an induced
matching of size at least k?, then (G) > k.

Proof. Let G be an undirected graph and k be a positive integer. Let us assume that the
graph G contains an induced matching M of size (’2“) The set V(M) denotes the set of
vertices in G that are saturated by the matching M. First, we give a complete coloring
using k colors on the matched vertices. Note that there are exactly (g) < k2 distinct pairs
of colors. We color the end points of the edges of M in the following greedy way. We say
that a pair (¢,7) is unassigned if there is no edge e = (u,v) in M such that color (u) = ¢ and
color (v) = j. Furthermore, an edge e = (u,v) is uncolored if we have not assigned any color
to u and v. Initially, all edges in M are uncolored, and all pairs (i, 5), where 1 <14 < j < [k],
are unassigned. In each step, we take an uncolored edge e = (u,v) € M, an unassigned pair
(i,7), chosen arbitrarily, and add the color ¢ and j to u and v, respectively. We stop when
there is no such pair and an uncolored edge exists. As both the number of pairs and edges in
M is exactly (g), for any 4,j € [k] with ¢ < j, we have exactly one edge whose end points
are colored with colors ¢ and j.

In the above process, we color exactly 2|M]|, that is, 2(;“) vertices. For the remaining
n— 2(;) vertices in the graph, we do the following. Let ¢t denote the number of colors used
so far in the process. Obviously, t > k. We take an uncolored vertex v € V(G) \ V(M).
If there is an ¢ € [t] such that v does not have neighbors in the vertices that have already
been colored i, we assign the color ¢ to the vertex v. If no such i exists, then we give a new
color to the vertex v. It is easy to see that this procedure does not violate the complete
coloring property. As we use at least k colors, we get a complete coloring of G with at least
k colors. <
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Kernelization Algorithm(G = (V, E), k)
Given a d-degenerate graph G, it returns a kernel of size k(.

1. Apply Reduction Rule 2 exhaustively to get G’ with n’ vertices.
If |n'| > %(/ﬂ?’ +8d — 1)8¢, return a trivial YES instance
3. Else, return the reduced graph G’.

N

Figure 5 Kernelization Algorithm for ACHROMATIC NUMBER on d-degenerate graphs.

» Definition 26 (Strong system of distinct representatives). A system of distinct representatives
for the sets S1, So, ..., Sk is a k-tuple (z1, z2,...,zx) where the elements x; are distinct and
x; € S, for all ¢ € [k]. In addition to that, if we have z; ¢ S, for all ¢ # j, then such a
system is called strong.

» Theorem 27 ([16, Theorem 8.12]). For a pair of integers r and t, in any family of more

than (’Tt) sets of cardinality at most r, at least t + 2 of its members have a strong system of

distinct representatives.
The following property of a d-degenerate graph follows directly from the definition.

» Proposition 28. The number of edges in a d-degenerate graph is bounded by dn.

Next, we give a lower bound on the number of low-degree vertices in a d-degenerate graph.

» Lemma 29. Let G be a d-degenerate graph and c be a positive integer with ¢ > 2. Then,
G contains strictly more than (=2)n vertices with degree at most cd.

c

Proof. Let G be a d-degenerate graph on n vertices. By Proposition 28, the number of edges

is at most dn. Therefore, the sum of the degrees of the vertices in GG is bounded by 2dn.

Assume that there are at most (#)n vertices of degree at most cd in G. Then we have a set
U C V(G) of size at least n — (<2)n = 22 vertices of degree strictly more than cd. Now, the
sum of the degrees of the vertices in U is strictly more than 27”

Therefore, there are strictly more than (022)71 vertices of degree at most ¢d in G. |

Let us define a greedy independent partition of G as follows. Construct a partition of
V(@) into independent sets by iteratively finding maximal independent sets. Then, in such
a partition, among all sets, choose a maximal independent, say I;, which has the highest
cardinality (if there is more than one such set, then arbitrarily choose one) and arbitrarily
order the remaining sets in the partition keeping I; as the first element. We denote this
ordered family of sets as a greedy independent partition. Note that a greedy independent
partition of G can be constructed in O(m) time.

Now, we describe our kernelization algorithm. A brief description of our algorithm is given
in Figure 5.

» Theorem 3. ACHROMATIC NUMBER admits a kernel of size O(k?49*2) on d-degenerate
graphs.

Proof. First, we construct a greedy independent partition of G, say I1,Is,...,I,. If p >k,
then from Lemma 17, we get a complete coloring of G of size at least k and return a trivial
YES-instance. Else, we do as follows.

- cd = 2dn, a contradiction.
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We apply Reduction Rule 2 exhaustively. Let G’ be the reduced graph with n’ vertices.
Note that after this step, at most k + 1 vertices can have the same open neighborhood. Since
our graph G is d-degenerate, the reduced graph G’ is also d-degenerate. From Lemma 29,
we know that the number of vertices with degree at most 8d is at least 37”/. Let us call
vertices with degree at most 8d as low-degree vertices. We denote these vertices by Viow-
Let A= {A;, As,... A;} be a greedy independent partition of G'[View]. If |A1] < %, then
we have | > k (as |Viow| > BT"/ ). So, applying Lemma 17, we have ©)(G'[Viow]) > k and that
immediately implies (G’) > k, and we return a trivial YES instance. Otherwise, we have
|AL| > iik

Let {v1,v2,...,v]4,} be the vertices in A; and {S1,Ss,...,S|4,} be their corresponding

|41
k+1

of these open neighborhoods are distinct. Let |k’3_11| =g and {51,52,...,5¢} be the pairwise

open neighborhoods. Due to the exhaustive application of Reduction Rule 2 at least

q ’
distinct sets. Let S = [J{S;}. Thus, S is a family of more than % sets, each of
i=1

cardinality at most 8d. Let k' be the integer such that

o /
Sd+K —1\ _ 30 _ (8d+k )
K1 ak(k + 1) 1%

By applying Theorem 27 on the family of sets S, we know at least &' —1+2 =k" + 1 of its
members have a strong system of distinct representatives. We match each representative
vertex with its corresponding vertex in A;. Let B be the set of those representative vertices.
Basically B represents those set of vertices in G — A; such that we have a set of vertices
A" C Ay satisfying (i) |B| = |A4'|, (ii) for each vertex b € B there exists a unique vertex
vg € A’ such that b € N(v,) and b ¢ N(v) for all v € A"\ {v,}. We compute a greedy
independent partition, say B = {B1, B, ..., B;} in G'[B]. Now we have the following cases.

If |By] < ‘%, then we have j > k. From Lemma 17, we get ¢»(G’'[B]) > k and that

immediately implies ¢(G’) > k, and we return a trivial YES instance.
Otherwise, we have |B;| > ‘—fl. So, we have an induced matching of size at least LBl i

G '

If ‘—fl > k2, then we obtain an induced matching of size at least k2. Then applying
Lemma 25, we have ¢(G’) > k. Hence, we return a trivial YES instance.
Otherwise, we have ‘—g' < k2.
Now |B| > k' + 1 and % < k? together imply
K<k -1 (3)

Using a binomial formula, we have the following.
8d + K 8d + K
— < (8d + k')8¢ 4
(k) <8d>(8+) (4)
From Equation (2) and Equation (4) we have

!/ !/
3’ _ (8d+k> < (844 K

k(k+1) —\ K
’ 3n’ 1
>(——)8d
= (8d + k') > (4k(k+1))8
/
Sk > (2 Y gy (5)

4k(k+1)
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From Equation (3) and Equation (5), we get

3’!7,/ 1

—  Vma—8d <k <kP-1
()™ ~8I=k <

4k(k+1
n' < %(kﬁ +8d—1)8%¢
n/ —_ O(k24d+2) (6)

Hence ACHROMATIC NUMBER admits a kernel of size O(k?49*+2) on d-degenerate graph. <

6

Conclusion

In this paper, we do a parameterized reunion with ACHROMATIC NUMBER, and design an
FPT algorithm with explicit running time on general graphs. We also study the problem with
respect to structural parameterizations. Our work leaves several intriguing open questions.

1.

Does ACHROMATIC NUMBER admit a polynomial kernel on general graphs?

2. We showed that ACHROMATIC NUMBER/VC can be solved in 20(5) . (M) We can
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