
Parameterized Reunion with Achromatic Number
Satyabrata Jana #

University of Warwick, UK

Souvik Saha #

The Institute of Mathematical Sciences, HBNI, Chenai, India

Saket Saurabh #

The Institute of Mathematical Sciences, HBNI, Chenai, India
University of Bergen, Norway

Anannya Upasana #

The Institute of Mathematical Sciences, HBNI, Chenai, India

Abstract
In this paper, we study the Achromatic Number problem. Given a graph G and an integer k,
the task is to determine whether there exists a proper coloring of G, using at least k colors, in
which every pair of distinct colors appears on the endpoints of some edge. It was established early
on that the problem is fixed-parameter tractable (FPT)– even before the formal development of
parameterized complexity. In fact, Farber, Hahn, Hell, and Miller [JCTB, 1986] devised an algorithm
with a running time of O(f(k) · |E(G)|). Although the exact form of f(k) was not specified, it
appears to be at least doubly exponential in k. In our work, we first present an algorithm with an
explicit dependence on k, and then introduce another algorithm that is parameterized by the vertex
cover number of the graph. More formally, we show the following.

Achromatic Number is solvable in time 2O(k5) + O(|E(G)|).

Achromatic Number admits a polynomial kernel when the input is restricted to a d-degenerate
graph and a more efficient kernel on trees.

We also study the parameterized complexity of the problem with respect to Vertex Cover and
show that it admits an FPT algorithm running in time 2O(ℓ2) · nO(1), where ℓ is the size of a
vertex cover.
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1 Introduction

In this paper, we revisit the Achromatic Number problem that had a fixed parameter
tractable (FPT) algorithm even before the concept of parameterized complexity was estab-
lished, as we currently understand it. A proper coloring of a graph is an assignment of colors
to the vertices such that no two endpoints of an edge are assigned the same color. A complete
coloring of a graph is a proper coloring of a graph such that for any pair of distinct colors,
there exists a pair of adjacent vertices that have been assigned those colors. The achromatic
number of a graph G, denoted by ψ(G), is the maximum number of colors that can be used
in a complete coloring of G. In this paper, we study the following problem.
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42:2 Parameterized Reunion with Achromatic Number

Achromatic Number Parameter: k

Input: A graph G on n vertices and m edges and an integer k.
Question: Is ψ(G) ≥ k?

The computational complexity of Achromatic Number was first considered by Yan-
nakakis and Gavril in 1980, who showed that the problem is NP-complete [22, Corollary 2].
The authors also observed that, unlike the classical Chromatic Number problem, which is
known to be NP-complete even for k = 3 (that is, whether the input graph can be properly
colored with 3 colors), Achromatic Number cannot be shown to be NP-complete for a
fixed value of k. Toward this, they show that for a graph G, ψ(G) ≥ k if and only if there
is a subset W ⊆ V (G) of size at most

(
k
2
)

such that ψ(G[W ]) ≥ k. This immediately leads
to an algorithm with running time O(nk2). In the modern terminology of parameterized
complexity (PC), this is an XP algorithm for Achromatic Number. Thus, a natural
question is whether there exists an algorithm with running time f(k)nO(1), that is, whether
the problem admits an FPT algorithm.

A natural question is whether there exists a uniform polynomial-time algorithm for
every fixed k. That is, do we have nO(1) time algorithm where O(1) does not depend
on k. (Pre PC Era)
In modern terminology, does there exist an algorithm with running time f(k) · nO(1),
that is, does the problem admit an FPT algorithm. (Post PC Era)

In 1986, Farber, Hahn, Hell and Miller [10] designed a “linear time algorithm” for
Achromatic Number. That is, an algorithm with running time O(m); which is actually
an algorithm with running time f(k) ·m. This established the parameterized complexity
of Achromatic Number. The exact value of f(k) in the running time is not given and it
appears to be at least doubly exponential in k. This algorithm was built on an earlier work of
Hell and Miller [14] done in 1976 who showed that the number of irreducible graphs (without
any twins) with ψ(G) = k is upper bounded by some function h(k). These results are the
starting point of our research. Our aim is to design an algorithm with explicit dependence on
k by a function that grows as slowly as possible. Furthermore, we also explore the problem
with a structural parameter.

Related Works. Bounds on Achromatic Number in terms of other graph variants like
vertex cover number and independence number have been studied [5, 12]. The Pseudo-
achromatic Number problem, a related problem, was introduced in 1969 [13] and has
been studied extensively [3, 4, 21]. The Pseudo-achromatic Number problem or Graph
Complete Partition problem checks whether an undirected graph can be partitioned into k
classes such that every pair of classes is connected by an edge. Unlike the achromatic number
problem, we do not require these classes to be independent sets. The pseudo-achromatic
number may strictly exceed the achromatic Number even for a family of trees [9]. Halldórsson
et al studied the problem from the approximation viewpoint, giving tight lower and upper
bounds on its approximability. The problem has a O(k2) kernel that also establishes that it
is FPT parameterized by the solution size [7]. Another related problem is the Harmonious
Coloring where the objective is to find a proper coloring of the graph such that each pair
of colors appears together on at most one edge [15]. It is known to be NP-hard on trees,
interval and permutation graphs [8, 2, 20]. Georges investigated the problem on paths, cycles,
complete graphs and complete bipartite graphs [11]. Kolay et al [17] studied it from an
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FPT perspective and showed that it is FPT parameterized by the solution size as well as the
vertex cover number of the graph. They also gave an exact exponential time algorithm in
split graphs.

1.1 Our Results and Methods with Solution Size as a Parameter
Our first main result is the following FPT algorithm for Achromatic Number.

▶ Theorem 1. Achromatic Number can be solved in 2O(k5) +O(m) time.

The idea behind the proof of Theorem 1 is motivated by results in the area of approximation
algorithms for an optimization variant of Achromatic Number. Kortsarz and Krauthgamer
gave an algorithm that approximates the achromatic number within a ratio of O

(
n·log log n

log n

)
for general graphs [18]. This algorithm in turn was motivated by an earlier combinatorial
work of Máté [19] on Achromatic Number on irreducible graphs. Our parameterized
algorithm builds on this approximation algorithm and incorporates new ideas and concepts
in several places to transform it into an FPT algorithm. We also mention in passing that
Kortsarz and Krauthgamer [18] showed that there is no (2− ϵ)-approximation algorithm for
every fixed ϵ > 0, unless P=NP.

The next natural question is whether the problem admits a polynomial kernel. That
is, in polynomial time, could we replace the given instance by an equivalent instance of
size polynomial in k? We do not know the answer to this question, and we leave this as
a challenging open problem. However, could we say something when the input instances
are restricted to some structured graph classes? In this regard, we first mention that
Achromatic Number is known to be NP-complete even when the input graph is a tree [6].
Thus, researchers have considered Achromatic Number on several classes of trees [10]
and designed polynomial time algorithms on these graph classes. In this paper, we design
polynomial kernels for Achromatic Number on trees and d-degenerate graphs and obtain
the following results.

▶ Theorem 2 (♠). Achromatic Number admits a kernel of size O(k2) on forests. 1

▶ Theorem 3. Achromatic Number admits a kernel of size O(k24d+2) on d-degenerate
graphs.

1.2 Our Results and Methods for Structural Parameterization
We further study the Achromatic Number problem with respect to other parameters. We
define the problem Achromatic Number/Mod(π), where π is a graph class, as follows.

Achromatic Number/Mod(π) Parameter: ℓ

Input: An undirected graph G, a modulator of size ℓ to π and a positive integer k.
Question: Is ψ(G) ≥ k?

Recall that Achromatic Number is known to be NP-complete even when the input
graph is a tree [6]. This immediately rules out the treewidth or the size of the feedback
vertex set as parameters.

1 Due to space constraints, the proofs of results marked with ♠ have been omitted and will appear in the
full version of the paper.
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42:4 Parameterized Reunion with Achromatic Number

Modulator to edgeless graphs. Our parameter of study is the vertex cover number of the
graph, that is, a vertex set whose deletion results in an edgeless graph. Here, π is the family
of edgeless graphs. Our result in this direction is the following.

▶ Theorem 4. Achromatic Number/VC can be solved in 2O(ℓ2) · nO(1) time.

To prove Theorem 4, we first show that the achromatic number of the graph is bounded
by ℓ+ 1. Then, we guess the color of the vertices in the modulator (one that will result in a
solution). It is possible that there exists a pair of colors that is not assigned to the endpoints
of any edge, for e.g., there may not be an edge between color classes C1 and C2. To address
this issue, we utilize a vertex v outside the modulator and assign it either color C1 or C2,
thereby resolving the pair formed by color classes C1 and C2 (in essence, we resolve the
conflict between color classes C1 and C2 that arises because there is no edge between the color
classes). We solve this by reducing the problem to an instance of Subgraph Isomorphism
(given a host graph G and a pattern graph H, find a copy of H in G), where the pattern
graph H has size O(ℓ2) and treewidth O(1). It is known that Subgraph Isomorphism
can be solved in time 2O(|H|) · |V (G)|tw+1, where tw is the treewidth of the pattern graph,
leading to the desired running time of our algorithm.

2 Preliminaries

In this study, we examine undirected graphs. For a given graph G, we represent its set of
vertices as V (G) and its set of edges as E(G). When the context allows, we will refer to
these simply as V and E. n refers to the number of vertices and m represents the number of
edges. For any vertex u ∈ V , the set of vertices adjacent to u in G is represented by NG(u).
In particular, NG(u) denotes the open neighborhood of u in G. We will abbreviate this to
N(u) when the graph is clear from the context. The degree of a vertex u, denoted as deg(u),
refers to the number of vertices in its neighborhood, i.e., deg(u) = |N(u)|. We call a graph
irreducible or twin-free if any pair of distinct vertices has distinct open neighborhoods. A
graph is called d-degenerate if every subgraph has a vertex with degree at most d. An induced
matching or an independent matching is a set of edges such that no two endpoints of distinct
edges of the matching are adjacent to each other. A semi-independent matching M is a set
of edges {(x1, y1), (x2, y2), . . . , (x|M |, y|M |)} such that the sets X = {x1, x2, . . . , x|M |} and
Y = {y1, y2, . . . , y|M |} are independent and for any xi and yj with i < j, xi is not adjacent
to yj (see Figure 1). We call a matching M maximal if, after adding any edge in E(G)\M to
M , M does not remain a matching. An independent set is a set of vertices that are pairwise
non-adjacent. An independent set S ⊆ V (G) is called maximal if adding any vertex from
V (G)\S to S destroys its property of being an independent set. For a given proper coloring
of a graph, a color class refers to a set of vertices that are assigned the same color. A partial
complete coloring of G is a complete coloring of a subset of vertices of G. A partial complete
k-coloring is a partial complete coloring with k colors. A greedy independent partition of a
graph G is an ordered partition of the vertex set V (G) into independent sets, constructed
through a greedy process, prioritizing the largest set first while ignoring the order of the rest.
At each step, a maximal independent set is selected from the remaining vertices and the
process continues until all vertices are covered. The size of a greedy independent partition is
the number of independent sets in the partition.
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3 FPT algorithm for Achromatic Number

In this section, we give an FPT algorithm for Achromatic Number parameterized by
solution size in general graphs. We start with describing our kernelization procedure that
takes an instance (G, k) of Achromatic Number as input and in O(|E(G)|) time return
an equivalent instance (kernel). We prove the following result.

▶ Theorem 5. Achromatic Number admits a kernel of size kk+22k3+k+2ek2 . And moreover
we can find it in O(m) time where m is the number of edges in the given graph.

Our kernelization procedure for a given instance (G, k) involves the following steps. Let
R be an equivalence relation defined as follows: for a vertex v ∈ V (G), the class Rv contains
the vertices {u | NG(u) = NG(v)}.

1. If n ≤ kk+22k3+k+2ek2 , we return G as kernel.
2. Using Lemma 13, we check in O(|E(G)|) time whether the number of equivalence

classes exceeds kk+12k3+k+2ek2 , or else obtain their count q.
a. If the number of equivalence classes exceeds kk+12k3+k+2ek2 , return a trivial

YES-instance of Achromatic Number.
b. Otherwise, q ≤ kk+12k3+k+2ek2 . Apply Reduction Rules 1 and 2 exhaustively,

and return the reduced instance as a kernel of size kk+22k3+k+2ek2 .

We now show the correctness of this procedure. Toward that, we have to prove two
things. First, we need to show that if the number of equivalence classes in G is more than
kk+12k3+k+2ek2 then ψ(G) ≥ k (Lemma 15). And secondly, we have to show that after
exhaustive application of the Reduction Rules 2 and 1 the size of V (G) gets reduced to
kk+22k3+k+2ek2 (Lemma 16). An example of a trivial YES instance of Achromatic Number
is (K1,1, 1). We now describe the Reduction Rule 1 that removes all isolated vertices from
the graph. The proof of the rule follows from the fact that removing isolated vertices from
the graph will not affect its achromatic number, since no edge in the graph is incident to
that vertex.

▶ Reduction Rule 1. If G has an isolated vertex v, then return the instance (G− v, k).

Now mention two known facts regarding complete coloring of a graph.

▶ Lemma 6 ([18, Lemma 1.1]). A partial complete coloring in a graph G can be extended to
a complete coloring of G in time O(|E(G)|).

▶ Lemma 7 ([18, Lemma 1.4]). Given a semi-independent matching of a graph G of size at
least

(
k
2
)
, a partial complete k-coloring can be computed in time O(|E(G)|).

Lemma 6 and Lemma 7 together conclude the following lemma.

▶ Lemma 8. If a graph G has a semi-independent matching of size
(

k
2
)
, then ψ(G) ≥ k.

We now prove the following crucial lemma.

▶ Lemma 9. Let G be an irreducible graph with |V (G)| > kk+12k3+k+2ek2 . Then ψ(G) ≥ k.

Proof. Let G be an irreducible graph. We show that if G has more than kk+12k3+k+2ek2

vertices then ψ(G) ≥ k. Moreover, we design an algorithm for such a graph, i.e., we give a
complete coloring with at least k colors. We first describe the algorithm briefly.

ISAAC 2025



42:6 Parameterized Reunion with Achromatic Number

We start with finding a greedy independent partition Π. If the size of Π is at least k, we
have that ψ(G) ≥ k (by Lemma 17). Moreover Π gives a complete coloring with at least k
colors by assigning a distinct color to each set. Next, we focus on the first independent set
S0 in Π. At each recursive step i, we construct Si+1 ⊂ Si as follows:

We fix an arbitrary vertex ordering.
Let x2i and x2i+1 be the two minimal vertices with respect to the ordering.
We identify a distinguishing vertex dxy that is adjacent to exactly one of x2i and x2i+1.
Then we partition Si into S0

i (⊆ N(dxy)) and S1
i (not intersect N(dxy)).

We set Si+1 = S0
i if |S0

i | ≥ |Si|/k; otherwise, set Si+1 = S1
i .

This process yields nested independent sets S0 ⊃ S1 ⊃ · · · ⊃ Sl, forming either a partial
complete coloring or a semi-independent matching, both can be extendable to a complete
coloring. We also store a pair of sets U0 and U1 of witness vertices. Simultaneously we keep
two index set Q0 and Q1. Next we show that for |V (G)| ≥ kk+12k3+k+2ek2 the Algorithm 1
always terminates. In addition we show that either of the cases Q0 ≥ k or Q1 ≥ k3 leads to
a complete coloring with at least k colors (Claims 11 and 12). A complete description of
this above mentioned procedure is given in Algorithm 1. Now we show that Algorithm 1
always terminates. Assume that p < k inside Algorithm 1 as otherwise it returns ψ(G) ≥ k
so terminates. Note that if the Algorithm 1 does not terminate at Step 3 then the while loop
(Step 11) runs at most (k + k3) steps as per our construction of the set Q0 and Q1. Now we
show that either |Q0| ≥ k or |Q1| ≥ k3 in the output of Algorithm 1.

▷ Claim 10. Let G be an irreducible graph with more than kk+12k3+k+2ek2 vertices. If the
Algorithm 1 outputs the pair of sets Q0 and Q1 then either |Q0| ≥ k or |Q1| ≥ k3.

Proof. We prove this by contradiction. Assume G is an irreducible graph with n >

kk+12k3+k+2ek2 vertices and the Algorithm 1 outputs the pair of sets Q0 and Q1 with
|Q0| < k or |Q1| < k3. Let Sα,β denote the independent set obtained after applying Step 14
α times and Step 15 β times, starting from S0. We claim that

|Sα,β | ≥
(

1
2k

)α (
1
2

(
1− 1

k

))β

|S0| (1)

Base case: When α+ β = 0, we have Sα,β = S0, so the inequality trivially holds.

Inductive step: By the construction of the algorithm:

|Sα,β | ≥ min
{

1
2k |Sα−1,β |,

1
2

(
1− 1

k

)
|Sα,β−1|

}
By induction hypothesis:

|Sα−1,β | ≥
(

1
2k

)α−1 (
1
2

(
1− 1

k

))β

|S0|, |Sα,β−1| ≥
(

1
2k

)α (
1
2

(
1− 1

k

))β−1
|S0|

Thus, in either case, i.e., |Sα,β | ≥ 1
2k |Sα−1,β | or |Sα,β | ≥ 1

2
(
1− 1

k

)
|Sα,β−1| Equation (1) is

satisfied. Now, since |Q0| < k and |Q1| < k3, the loop terminates after at most k + k3 steps.
Therefore, the set Sk,k3 has size at most 4, but also satisfies:

|Sk,k3 | ≥
(

1
2k

)k (
1
2

(
1− 1

k

))k3

|S0|
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Algorithm 1 Algorithm for the case when the graph is large and irreducible.

Input: An irreducible graph G with n > kk+12k3+k+2ek2 vertices.
Output: Either ψ(G) ≥ k or a pair of sets Q0 and Q1.

1: Compute a greedy independent partition I1, . . . , Ip of G
2: if p ≥ k then
3: return ψ(G) ≥ k
4: Let I = Iα where |Iα| ≥ |Ij |,∀j ∈ [p], with a total order ≺ on I ▷ |I| ≥ n/k
5: for all x, y ∈ I do
6: Choose dxy adjacent to exactly one of x, y
7: c(x, y)← color of dxy

8: for all z ≻ y ≻ x in I do

9: g(x, y, z)←
{

0 if (z, dxy) ∈ E
1 otherwise

10: Initialize S0 = I, Q0 = Q1 = ∅, i = 0
11: while |Si| > 4 do
12: x2i ← min≺ Si, x2i+1 ← next in Si

13: Partition Si \ {x2i, x2i+1} into S0
i and S1

i :

S0
i = {x | g(x2i, x2i+1, x) = 0}, S1

i = {x | g(x2i, x2i+1, x) = 1}

14: if |S0
i | ≥

|Si|
2k then Si+1 ← S0

i , Q0 ← Q0 ∪ {i}
15: else |S1

i | ≥ 1
2

(
1− 1

k

)
|Si| then Si+1 ← S1

i , Q1 ← Q1 ∪ {i}
16: if |Q0| ≥ k or |Q1| ≥ k3 then
17: break
18: i← i+ 1
19: return Q0 and Q1

Since p < k, we have |S0| ≥ n
k , giving |Sk,k3 | ≥

( 1
2k

)k ( 1
2

(
1− 1

k

))k3
n
k . Using the standard

inequality (1 − 1
k )k3 ≥ e−k2 for large k, and the condition |Sk,k3 | ≤ 4, we have n ≤

kk+1 · 2k3+k+2 · ek2 . This contradicts our assumption that n > kk+1 · 2k3+k+2 · ek2 . Therefore,
either |Q0| ≥ k or |Q1| ≥ k3 must hold. ◁

We now compute a pair of sets U0 and U1 as follows: U0 = {(x2i, x2i+1) | i ∈ Q0} and
U1 = {(x2i, x2i+1) | i ∈ Q1}, where Q0 and Q1 be the set returned by Algorithm 1.

▷ Claim 11. If |Q0| ≥ k then ψ(G) ≥ k.

Proof. Since |Q0| ≥ k, there are at least k tuples of the form (x2i, x2i+1, dx2i,x2i+1) for
i ∈ [|Q0|]. For each such tuple, let xh denote the vertex between x2i and x2i+1 that is not
adjacent to dx2i,x2i+1 . We assign a new color ci to the pair (xh, dx2i,x2i+1), thereby assigning
at least k new colors. We now show that this coloring forms a partial |Q0|-complete coloring.
From the construction of Q0 in Step 14 of the algorithm, we know that each vertex dx2i,x2i+1 ,
for i ∈ [|Q0|], is adjacent to both x2j and x2j+1 for all j > i. Thus, for any pair of colors ci

and cj with i > j, the vertex dx2j ,x2j+1 (colored with cj) is adjacent to both x2i and x2i+1,
at least one of which is colored with ci. Therefore, there is an edge between every pair of
color classes assigned in Step 7. By applying Lemma 6, this partial |Q0|-complete coloring
can be extended to a complete coloring of size at least |Q0|. ◁

ISAAC 2025
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x2i

x2i+1

dx2ix2i+1

S0
i

S1
i

x1

x2

x3

x4

x5

x6

x7

x8

y1

y2

y3

y4

y5

y6

y7

y8

Figure 1 Figure depicting a partition of Si in Algorithm 1, an instance of a semi-independent
matching and a greedy independent partition respectively.

▷ Claim 12. If |Q1| ≥ k3 then ψ(G) ≥ k.

Proof. Let c′ be the color that appears most frequently among the colors assigned to the
vertices dx2i,x2i+1 for all (x2i, x2i+1) ∈ U1. Define the subset U ′ ⊆ U1 as the set of all
pairs (x2i, x2i+1) ∈ U1 such that c(dx2i,x2i+1) = c′. Since the graph G is colored using at
most k colors, it follows by the pigeonhole principle that |U ′| ≥ k2. We now construct a
semi-independent matching from U ′. For each pair (x2i, x2i+1) ∈ U ′, include the vertex
dx2i,x2i+1 and the one among x2i and x2i+1 to which it is adjacent. Note that, by the
definition of Q1, any vertex xj in U1 with j > 2i+ 1 is not adjacent to dx2i,x2i+1 . Therefore,
the matching constructed in this way is semi-independent and has size at least k2 ≥

(
k
2
)
.

Hence, if |Q1| ≥ k3, then we can compute a semi-independent matching of size at least
(

k
2
)
.

By applying Lemma 8, we conclude that ψ(G) ≥ k. ◁

The correctness of Step 3 follows from Lemma 17. In Claim 10, we show that if the
Algorithm 1 outputs the pair of sets Q0 and Q1 then either |Q0| ≥ k or |Q1| ≥ k3. In both
the cases, we have that ψ(G) ≥ k (by Claim 11 and 12). Hence we are done with showing that
if the given graph G is irreducible and more than kk+12k3+k+2ek2 vertices then ψ(G) ≥ k.
This completes the proof. ◀

Recall that R was an equivalence relation defined as follows: for a vertex v ∈ V (G), the
class Rv contains the vertices {u | NG(u) = NG(v)}.

▶ Lemma 13 ([10, Theorem 3.3]). Given a graph G and an integer k, in time O(|E(G)|),
we can

determine if G has at least f(k) equivalence classes, or
build all the equivalence classes.

Now we define a rule that bounds the number of vertices to each equivalence class.

▶ Reduction Rule 2. If |Rv| ≥ k + 1, then delete v. Return the instance (G− v, k).

The correctness of the Reduction Rule 2 follows from the following claim.

▷ Claim 14. Reduction Rule 2 is safe.

Proof. In the forward direction, assume that (G, k) is a YES-instance of Achromatic
Number. Then, ψ(G) ≥ k. If ψ(G) ≥ k + 1 then ψ(G− v) ≥ k trivially holds, as deleting
any vertex can decrease the achromatic number by at most one.

So we can assume that ψ(G) = k. Let Rv be an equivalence class with at least k + 1
vertices u1, u2, . . . , uk+1. Without loss of generality, assume that v = uk+1. By the definition
of an equivalence class, we have ∀i, j ∈ [k + 1], NG(ui) = NG(uj). On the contrary, assume
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that ψ(G− v) < k. Let C1, . . . , Ck be the color classes defined by the complete coloring of
G. More precisely, for each i ∈ [k], the set Ci is the set of all vertices in G with color i.
Additionally, assume that v ∈ Ck. Now, if for all i ∈ [k − 1], we have an edge between a pair
of vertices in Ci and Ck, excluding v, then we are done. Else, there exists a color class Ci

such that, on removal of v = uk+1, there is no edge between any pair of vertices in Ci and
Ck. Assume that u is a vertex in Ci such that (u, v) ∈ E(G). Note that in this case the k
vertices u1, . . . uk are present in the remaining color classes C1, . . . Ck−1.

Thus by the pigeon hole principle, there exist uℓ and uℓ′ in Rv, with ℓ ̸= ℓ′ ∈ [k], which
belong to the same color class, say Cj , j ∈ [k − 1]. Because NG(uℓ) = NG(uℓ′), removing
uℓ from Cj will not affect the achromatic number of G as uℓ′ serves the same purpose as
uℓ. Now, we can add uℓ to Ct. Since uℓ and v = uk+1 belong to the same equivalence class,
they are not connected by an edge and therefore uℓ, along with the vertices of Ct forms an
independent set. The edge (u, uℓ) ensures an edge between the color classes Ci and Ct, and
hence the achromatic number of the graph G− v is k. Thus, (G′, k) is also a YES-instance.

In the backward direction, let (G′, k) be a YES-instance of Achromatic Number. Then,
ψ(G′) ≥ k. Let C1, . . . , Ck′ , where k′ ≥ k be the partition of color classes corresponding to
a complete coloring of G′. If for some i ∈ [k′], v does not have a neighbor in the vertices
corresponding to Ci, then we can assign the color i to v and get a complete coloring of G
with at least k colors. Otherwise, for each i ∈ [k′], the color class Ci contains a vertex from
NG(v). Then, we assign a new color k′ + 1 to v and obtain a complete coloring of G with
k′ + 1 colors. Hence, in both cases, we obtain a complete coloring on G with at least k colors.
Thus, (G, k) is a YES-instance. ◁

▶ Lemma 15. If the number of equivalence classes in G is strictly greater than
kk+12k3+k+2ek2 , then ψ(G) ≥ k.

Proof. Let V (G) be partitioned into q equivalence classes. Assume q > kk+12k3+k+2ek2 .
Construct a subgraph G[S], where S ⊆ V (G) contains exactly one arbitrarily chosen vertex
from each equivalence class. Clearly, |S| = q. Now we show that no two distinct vertices in
S have the same open neighborhood. Suppose, for contradiction, that there exist distinct
vertices u, v ∈ S such that N(u) = N(v). Then, by the definition of the equivalence relation,
u and v must belong to the same equivalence class. However, since S contains exactly one
vertex from each equivalence class, this contradicts the assumption that both u and v are
in S. Therefore, all vertices in S have distinct open neighborhoods. Therefore, G[S] is
an irreducible graph. Since q > kk+12k3+k+2ek2 , it follows that |S| > kk+12k3+k+2ek2 . By
applying Lemma 9, we obtain ψ(G[S]) ≥ k. This gives a partial complete coloring of G with
at least k colors. Finally, by applying Lemma 6, we conclude that ψ(G) ≥ k. ◀

Let (G, k) be an instance where none of Reduction Rules 1 and 2 is applicable. Then
each equivalence class is bounded by k. This imply the following lemma.

▶ Lemma 16. Let (G, k) be an instance where none of Reduction Rules 1 and 2 is applic-
able. If the number of equivalence classes in G is at most kk+12k3+k+2ek2 , then |V (G)| ≤
kk+22k3+k+2ek2 .

▶ Lemma 17. For any graph G, if size of greedy independent partition is at least k, then
ψ(G) ≥ k.

Proof. We construct a greedy independent partition of G, say I1, I2, . . . , Ip. We color each
independent set with a different color. Since the size of the greedy independent partition is
at least k, we use at least k colors. Now, from the construction of the greedy independent
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partition, observe that all vertices in G outside I1 must be adjacent to at least one vertex in
I1. Similarly, for each i > 1, the neighborhood of all vertices in Ii includes all vertices in⋃p

j=i+1 Ij . Thus, there exists no pair of independent sets in a greedy independent partition
of G such that their union is also an independent set. Hence, our coloring is a complete
coloring of size at least k, that is, ψ(G) ≥ k. ◀

FPT algorithm for Achromatic Number. We first compute a kernel of size at most
kk+22k3+k+2ek2 in O(m) time (by Theorem 5). It is easy to observe that if a graph admits a
complete coloring with at least k colors, then there exists an induced subgraph H ⊆ G with
at most

(
k
2
)

vertices that also admits a complete k-coloring. Therefore, on the kernelized
instance, we can perform a brute-force search: enumerate all subsets of at most

(
k
2
)

vertices
and check whether any of them admits a complete coloring with at least k colors. Each such
check can be performed in O(k2) time. If such a subgraph is found, we return YES for the
original instance (by Lemma 6); otherwise, we return NO. The kernelization step takes O(m)
time, and the brute-force step takes at most

(
kk+22k3+k+2ek2

(k
2)

)
· O(k2) = 2O(k5) time. Hence,

the total running time of the algorithm for solving Achromatic Number is 2O(k5) +O(m).

▶ Theorem 1. Achromatic Number can be solved in 2O(k5) +O(m) time.

4 Parameterized by Vertex Cover

In this section, we study the parameterized complexity of Achromatic Number with
respect to a structural parameter that is a modulator to edgeless graphs (also known as
vertex cover). We call this version of the problem Achromatic Number/VC which is
formally defined below.

Achromatic Number/VC Parameter: ℓ

Input: An undirected graph G, a set S ⊆ V (G) of size ℓ such that G − S is an
independent set and a positive integer k.
Question: Is ψ(G) ≥ k?

The following is the main result of this section.

▶ Theorem 4. Achromatic Number/VC can be solved in 2O(ℓ2) · nO(1) time.

▶ Observation 18. If G has a vertex cover of size at most ℓ, then ψ(G) ≤ (ℓ+ 1).

Proof. Let S be a vertex cover of size at most ℓ in G. Suppose, for a contradiction,
ψ(G) > (ℓ+ 1). Then, there exists a complete coloring C using at least ℓ+ 2 colors. Since
|S| ≤ ℓ, at most ℓ color classes of C contain the vertices of the set S. This implies that there
are at least two color classes, say Ci and Cj , which do not contain any vertices of S. Now
the subgraph of G induced by the vertices of Ci ∪ Cj is an independent set, which implies
that there is no edge across the color classes Ci and Cj . This contradicts the fact that C is a
complete coloring. ◀

An input instance of our problem is (G,S, k, ℓ), where S is a vertex cover of size at most
ℓ. Furthermore, assume that (G,S, k, ℓ) is a YES instance and Π = (X1, X2, . . . , Xk) is a
hypothetical solution where Π is a partition of vertices into k independent sets X1, X2, . . . , Xk

and, for each pair i, j there is a pair of vertices u ∈ Xi and v ∈ Xj such that (u, v) ∈ E(G).
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Our ultimate objective is to get Π. To do this, we try to obtain as much information as
possible about Π in time ℓℓ · nO(1). Observe that if S is an empty set, then (G,S, k, ℓ) is a
YES instance if and only if k = 1, and we can obtain Π by simply setting X1 = V (G). In what
follows, we assume that we are given an input (G,S, k, ℓ) and a partition π = (Y1, Y2, . . . , Yk)
of S, and our problem is to test whether π can be extended to the desired partition Π. More
specifically, we test whether there is a feasible solution, that is, partition Π = (X1, X2, . . . , Xk)
of V (G) such that Yi ⊆ Xi, for each 1 ≤ i ≤ k. This leads us to the following problem.

Disjoint Achromatic Number/vc Parameter: ℓ

Input: A graph G, a set S ⊆ V (G) of size at most ℓ such that G−S is an independent
set, an integer k, and a partition π = (Y1, Y2, . . . , Yk) of S.
Question: Does there exist a solution Π = (X1, X2, . . . , Xk) with the requisite
properties that extends π?

We use (G,S, k, ℓ, π) to denote an instance of Disjoint Achromatic Number/vc.
Our next lemma formally proves our discussion by showing that Achromatic Num-

ber/VC and Disjoint Achromatic Number/vc are FPT equivalent. That is, Achromatic
Number/VC is FPT if and only if Disjoint Achromatic Number/vc is FPT.

▶ Lemma 19. Let G be a graph and S be a vertex cover of size at most ℓ. For any integer k,
(G,S, k, ℓ) is a YES-instance of Achromatic Number/VC if and only if either (G,S, k, ℓ, π)
is a YES-instance or there exists a non-empty set X ⊆ V (G) \ S such that |X| ≤ ℓ and
(G,S ∪ X, k, 2ℓ, π) is a YES-instance of Disjoint Achromatic Number/vc, for some
partition π of S or S ∪X respectively.

Proof. The backward direction is obvious due to the definition of Disjoint Achromatic
Number/vc. If either (G,S, k, ℓ, π) or (G,S ∪X, k, 2ℓ, π) for some X ⊆ V (G) \ S is YES,
then by definition we have a feasible solution with at least k colors that extends π.

In the forward direction, let (G,S, k, ℓ) be a YES instance of Achromatic Number/VC,
then there exists a partition of G, say C1, . . . , Ct, with t ≥ k, such that between any two
pairs of color classes Ci and Cj , i ̸= j ∈ [t], there exist vertices u ∈ Ci and v ∈ Cj with
(u, v) ∈ E(G). Observe that there can be at most one color class that does not contain any
vertices from S. Now there are two cases.
Case 1. Every color class Ci intersects S. In this case, we define a partition π=(Y1, Y2, . . . , Yt)

of S as follows. For each i ∈ [t] the set Yi := S ∩Ci. Hence (G,S, k, ℓ, π) is a YES instance.
Case 2. There is a color class that does not intersect S. Wlog, assume that C1 is such a

color class. Note t ≤ ℓ + 1. Observe that for every set Ci, 2 ≤ i ≤ t, there is a vertex
in C1 that has a neighbor in Ci. There may be many vertices that has a neighbor in Ci

but we choose an arbitrary vertex ui ∈ C1 that has a neighbor in Ci. In this process,
for each i, 2 ≤ i < [t], we find a vertex ui ∈ C1. Let X = {u2, . . . , uq}, where q ≤ t. As
q ≤ t ≤ ℓ+ 1, so |X| ≤ ℓ. Clearly, S ∪X is a vertex cover of size at most 2ℓ. Now we
define a partition π = (Y1, Y2, . . . , Yk) of S ∪X as follows. For i = 1, define Y1 := X, for
all other i, 2 ≤ i ≤ [t] we define the set Yi := S ∩ Ci. Hence (G,S ∪X, k, 2ℓ, π) is a YES
instance. ◀

Next, we aim to generate a collection I of f(ℓ) many instances for Disjoint Achroma-
tic Number/vc from an input instance (G,S, k, ℓ) of Achromatic Number/VC. First,
for each partition π of S, we include an instance (G,S, k, ℓ, π) into I. Next, consider the
equivalence relation R defined for Lemma 13. Given that |S| ≤ ℓ, it follows that the number
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of equivalence classes is at most 2ℓ. Thus, for any pair of vertices u, v in the same equivalence
class, we have N(u) = N(v). Let Z∗ be a set of vertices formed by arbitrarily choosing a
vertex from each equivalence class. Since the number of equivalence classes is at most 2ℓ, it
follows that |Z∗| ≤ 2ℓ. Now for each subset Z ⊆ Z∗ where |Z| ≤ ℓ, and for each partition
π of S ∪ Z, we add an instance (G,S ∪ Z, k, 2ℓ, π) to I. Therefore, the total number of
instances is bounded by ℓℓ +

(2ℓ

ℓ

)
· (ℓ+ 1)2ℓ ≤ 2O(ℓ2). The following claim is derived from the

arguments of the proof of Lemma 19 which basically tells that these two problems are FPT
equivalent.

▷ Claim 20. (G,S, k, ℓ) is YES instance if and only if one of the instances of I is YES.

4.1 Algorithm for Disjoint Achromatic Number/vc
Let (G,S, k, ℓ, π) be an instance of Disjoint Achromatic Number/vc, where π =
(Y1, Y2, . . . , Yk). Our algorithm works as follows. First, the algorithm performs a simple
sanity check reduction rule. In essence, it checks whether π is valid.

▶ Reduction Rule 3. Return that (G,S, k, ℓ, π) is a NO instance of Disjoint Achromatic
Number/vc, if one of the following holds:
1. S = ∅ and k ≥ 2.
2. There is a set Yi in π = (Y1, . . . , Yk) such that Yi is not an independent set.
3. There is a pair of sets Yi and Yj in π = (Y1, . . . , Yk) such that Yi ∪ Yj ∪ (V − S) is an

independent set.

▶ Lemma 21. Reduction Rule 3 is safe.

Proof.
1. If S = ∅, then G is an independent set. If there are at least 2 color classes, then there is

no edge going across any pair of color classes. Therefore, (G,S, k, ℓ, π) is a NO instance of
Disjoint Achromatic Number/vc for k ≥ 2.

2. If there is a set Yi in π = (Y1, . . . , Yk) such that Yi is not an independent set, then if we
extend π to Π, a partition of G, we get Xi ⊇ Yi which is not an independent set. This
violates the property of complete coloring.

3. If there are two sets Yi and Yj in π, then an edge that goes across the pair of color classes
Yi and Yj must have endpoints in Yi and Yj , Yi and V − S or Yj and V − S. However,
the graph induced on Yi ∪ Yj ∪ (V − S) is an independent set. Therefore, (G,S, k, ℓ, π) is
a NO instance of Disjoint Achromatic Number/vc. ◀

Now we describe our algorithm. We first find the bad pairs in [k]× [k]. We say that a pair
(i, j) is a bad pair if and only if Yi ∪Yj induces an independent set in G. It is easy to observe
that the number of bad pairs is at most k2.
We now construct two graphs; one is the host graph, denoted by G1, and another is the
pattern graph G2 satisfying the condition as follows: G1 has a subgraph isomorphic to G2 if
and only if (G,S, k, ℓ, π) is an YES-instance. Let b be the number of bad pairs in [k] × [k]
and t = |V \ S|. See Figure 2 and Figure 3 for an illustration of the construction.

Construction of host graph G1

1. We add two sets A1 = {w1, . . . , wb} and B1 = {u1, . . . , ub}, each of the b vertices in
V (G1) corresponding to each bad pair in [k]× [k].

2. We add a set I1 = {v1, . . . , vt} of t vertices to V (G1), one for each vertex in V \ S.
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Figure 2 An illustration of the construction of host graph.
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Figure 3 An illustration of the construction of pattern graph.

3. We add a set Ii
1 = {v1

i , . . . , v
k
i } of k vertices for each 1 ≤ i ≤ t in V (G1).

4. We add t cliques Z1, . . . , Zt, each of size 50 in G1. For each clique Zi take an arbitrary
vertex in it and make it adjacent to vi ∈ I1.

5. We add a clique Z of size 100 to G1. Choose an arbitrary vertex in Z and make it
adjacent to each vertex in I1.

6. Add the set {(ui, wi) : i ∈ [b]} of edges to E(G1).
7. Add the set {(vi, v

j
i ) : i ∈ [t], j ∈ [k]} of edges to E(G1).

8. For any pair of integers i and j, we add an edge between vj
i ∈ Ii

1 and a vertex u ∈ B1,
where u is a bad pair corresponding to (c, j) or (j, c) if (i) vi has no neighbor in Yj and
(ii) vi has a neighbor in Yc.

Observe here that in step 8 when we add an edge between vj
i ∈ Ii

1 and a vertex u ∈ B1, if
the vertex vi is assigned a color j, that is, vi is added to the partition Yj then it satisfies the
bad pair corresponding to u. Here, we say that a vertex satisfies a bad pair when its addition
to one of the partitions of the pair introduces an edge between the pair. Our goal is to check
if there exists an assignment of colors to the vertices in G \ S that satisfies all the bad pairs.

We create 2b many pattern graphs as follows: Let M be a minimal set of vertices in⋃t
i=1 I

i
1 such that (i) M ∩ Ii

1 ≤ 1 for each 1 ≤ i ≤ t, (ii) N(u) ∩M ̸= ∅ for any u ∈ B1.
Clearly |M | ≤ b. We guess the value of |M |. Then we guess |M | numbers such that their
sum is b. We use the following fact to bound the number of such partitions.
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▶ Fact 1. For any positive integers n and k the number of k tuples of positive integers whose
sum is n equals

(
n−1
k−1

)
≤ 2n.

Let us guess the value of |M | and |M | numbers n1, n2, . . . , n|M | whose sum equals b. Each
value ni is essentially the number of bad pairs that a vertex will satisfy privately. We will
later describe the notion of satisfying privately. In the following, we describe how to construct
a pattern graph for such a guess. Putting n = b in Fact 1, we can decide that the number of
such partitions is at most 2b. Let H denote the set of all pattern graphs.

Construction of pattern graph G2 ∈ H: For n1 + n2 + . . . + n|M | = b

1. We add two sets A2 = {w′
1, . . . , w

′
b} and B2 = {u′

1, . . . , u
′
b}, each of the b vertices in

V (G2).
2. We add a set I2 = {v′

1, v
′
2, . . . , v

′
|M |} of |M | vertices to V (G2).

3. We add a set I ′
2 = {v′′

1 , v
′′
2 , . . . , v

′′
|M |} of |M | vertices to V (G2).

4. We add |M | cliques Z ′
1, . . . , Z

′
|M |, each of size 50 in G2. For each clique Z ′

i take an
arbitrary vertex in it and make it adjacent to v′′

i ∈ I ′
2.

5. We add a clique Z ′ of size 100 in G2. Choose an arbitrary vertex in Z ′ and make it
adjacent to each vertex in I ′

2.
6. Add the set {(u′

i, w
′
i) : i ∈ [b]}

⋃
{(v′

i, v
′′
i ) : i ∈ [|M |]} of edges to E(G2).

7. Add the set {(v′
i, u

′
j) : i ∈ [|M |], (n1 + . . . + ni−1) + 1 ≤ j ≤ (n1 + . . . + ni), n0 = 0} of

edges to E(G2).

▷ Claim 22. tw(G2) = O(1).

Proof. Consider the graph G′

2 without copies of cliques K100 and K50. Let (T, β) be the tree
decomposition of G′

2. The treewidth of G′

2 is 1 as it is a tree. We add the cliques K100 and
K50 to every bag of T . This gives us a tree decomposition of G2 with a constant treewidth.

◁

▶ Observation 23. |V (G2)| = O(k2).

Proof. We know that |A2| = |B2| ≤ b ≤ k2, and |I2| = |I ′
2| ≤ b ≤ k2. There are |M | cliques

of size 50 each and a clique of size 100. Thus, |V (G2)| ≤ 4k2 + 50k2 + 100 = O(k2). ◀

The following lemma proves the correctness of our algorithm.

▶ Lemma 24. (G,S, k, ℓ, π) is a YES instance of Disjoint Achromatic Number/vc if
and only if there exists a subgraph of G1 which is isomorphic to G2 for some G2 ∈ H.

Proof. Assume (G,S, k, ℓ, π) is a YES instance of Disjoint Achromatic Number/vc.
Then there is a partition π of S that can be extended to a partition Π of G (each part of
a partition corresponds to a color class) such that there is an edge across any pair of color
classes in the partition Π. We show the existence of a pattern graph G2 that is isomorphic
to a subgraph of G1. We construct a subgraph G′

1 of graph G1 as follows:
In the graph G1, for each set Ii

1, keep only the vertex vJ
i where the vertex corresponding

to vi in G gets color J ∈ [k] in the solution Π and delete other vertices of Ii
1

Delete the edges of vJ
i to those vertices of B1 that are adjacent to some vertex vQ

p , where
p ≤ i− 1 and Q ∈ [k]. Now no two vertices vJ

i , v
Q
p have any common neighbor.

Let ni be the number of neighbors of vJ
i in B1, for i ∈ [t], J ∈ [k].

If ni = 0, then we also delete vJ
i
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After this step let {vJ1
1 , vJ2

2 , . . . vJh

h } be the vertices remaining from vertices of the form
vJ

i

Now in A1, B1 keep only the vertices wi, ui such that ui has neighbor of the form vJ
p .

In the set I1 keep only vertices vp such that it has a neighbor of the form vJ
p . Let the

remaining vertices be {v1, . . . vh}.
Delete all the isolated K50.

We will show that this constructed subgraph G′
1 is isomorphic to a pattern graph G2 ∈ H

corresponding to the values n1 + n2 + . . .+ nh = b. We show the isomorphism f : V (G′
1)→

V (G2) as follows.
For every vJi

i ∈ G′
1, we map f(vJi

i ) = v′
i.

Now both vJi
i , v

′
i have ni neighbors in B1, B2 respectively. Suppose vJi

i is adjacent to
{ui1 , ui2 , . . . uini

} ⊂ B1. Then we have f(uij
) = u′

(1+...ni−1)+j

Correspondingly f(wij
) = w′

(1+...ni−1)+j

For vi ∈ I1 we have f(vi) = v′′
i .

The K50 which is neighbor of vi ∈ I1 gets mapped to the K50 which is neighbor of v′′
i

K100 in G′
1 gets mapped to the K100 in G2

Conversely, suppose that there is a subgraph of G1 that is isomorphic to some pattern graph
G2 ∈ H. Since K100 is the largest clique in G1, it is isomorphic to the K100 in G2. The
set I ′

2 in G2 is isomorphic to a subset of the set I1 in G1, as the vertices of both sets are
neighbors of the cliques K100 and copies of K50. Every vertex v′′

i ∈ I ′
2 is adjacent one vertex

in I2. Thus at most one vertex from each Ii
1 is mapped to a vertex in I2. Now for each

set Ii
1 consider the vertex that was mapped to a vertex in I2. It has neighbors in B1 and

hence this subset of B1 is mapped to B2 in G2. Similarly, the corresponding subset of A1 is
mapped to A2 in G2. Since, the pattern graph G2 is isomorphic to a subgraph of G1 and
there exists at most one vertex vJ

i in each Ii
1 in G1 that has ni private neighbors in B1. Since

n1 + . . . n|M | = b, the selected vertices in Ii
1 in total have b neighbors in B1, which implies

that each vertex in B1 has a unique neighbor in Ii
1. Thus, the neighborhood of the mapped

vertices in Ii
1 in B1 is exactly B1. An edge (ur, v

J
i ) in G1 implies that the vertex vi when

colored with color J satisfies the bad pair corresponding to r in B1. Thus, all the bad pairs
in B1 are being satisfied. Therefore, we can conclude that (G,S, k, ℓ, π) is a YES instance.

◀

▶ Fact 2. [1, Theorem 6.3] Let H be a directed or an undirected graph on k vertices with
treewidth tw. Let G = (V,E) be a (directed or undirected) graph. A subgraph of G isomorphic
to H, if one exists, can be found in the expected time 2O(k) · |V |tw+1 and in the worst-case
time 2O(k) · |V |tw+1 · log |V |.

We describe our algorithm in Figure 4. Note that by the construction of our pattern graph
and the proof of Lemma 24 our algorithm will also be able to return a satisfying coloring in
the case of a YES instance.

Running time. First, we analyze the running time of the algorithm for Disjoint Achroma-
tic Number/vc. The number of guesses in step 2 is at most b2b ≤ k22k2 . The running
time of the algorithm at step 4 is 2O(k2)nO(1) from Fact 2. Thus, the overall running time of
the algorithm for Disjoint Achromatic Number/vc is k22k22O(k2)nO(1) = 2O(k2)nO(1) =
2O(ℓ2)nO(1) since ℓ ≤ k+1 from Observation 18. Note that the proof works even if the cliques
in the host and pattern graph are K3 and K5 in place of K50 and K100, respectively. We
assumed a large clique for clarity of understanding. Now, in the algorithm for Achromatic
Number/VC, we make ℓℓ many guesses of the partitions of S and run the algorithm for

ISAAC 2025



42:16 Parameterized Reunion with Achromatic Number

Disjoint Achromatic Number/vc (I = (G,S, k, π))
(It checks if (G,S, k, π) is a YES instance)

1. Construct the host graph G1.
2. Guess a value of |M |, (|M | ≤ b), and a partition of b into |M | positive integers
{n1, . . . , n|M |}.

3. For each such guess construct a pattern graph G2.
4. Use the algorithm from Fact 2 to check if a subgraph of G1 is isomorphic to G2 .
5. If a subgraph of G1 is isomorphic to G2 output YES instance .
6. Return NO if none of the pattern graphs G2 is isomorphic to a subgraph of G1

Figure 4 Algorithm for Disjoint Achromatic Number/vc.

Disjoint Achromatic Number/vc for each guess. Thus, the overall running time of the
algorithm for Disjoint Achromatic Number/vc is ℓℓ ·2O(ℓ2) ·nO(1) = 2O(ℓ2) ·nO(1). Thus,
we get the following theorem.

▶ Theorem 4. Achromatic Number/VC can be solved in 2O(ℓ2) · nO(1) time.

5 Kernel for d-degenerate graphs

In this section, we obtain a polynomial kernel for Achromatic Number when the graph is
d-degenerate. First, we state a crucial theorem that we use to design the polynomial kernel
for graphs that are d-degenerate. Then, we prove a few lemmatas to show the correctness of
our kernelization algorithm. We start with the following lemma, which asserts that if a graph
contains a large induced matching, then the achromatic number of the graph is also large.

▶ Lemma 25. Let G be an undirected graph. For any positive integer k, if G has an induced
matching of size at least k2, then ψ(G) ≥ k.

Proof. Let G be an undirected graph and k be a positive integer. Let us assume that the
graph G contains an induced matching M of size

(
k
2
)
. The set V (M) denotes the set of

vertices in G that are saturated by the matching M . First, we give a complete coloring
using k colors on the matched vertices. Note that there are exactly

(
k
2
)
≤ k2 distinct pairs

of colors. We color the end points of the edges of M in the following greedy way. We say
that a pair (i, j) is unassigned if there is no edge e = (u, v) in M such that color (u) = i and
color (v) = j. Furthermore, an edge e = (u, v) is uncolored if we have not assigned any color
to u and v. Initially, all edges in M are uncolored, and all pairs (i, j), where 1 ≤ i < j ≤ [k],
are unassigned. In each step, we take an uncolored edge e = (u, v) ∈M , an unassigned pair
(i, j), chosen arbitrarily, and add the color i and j to u and v, respectively. We stop when
there is no such pair and an uncolored edge exists. As both the number of pairs and edges in
M is exactly

(
k
2
)
, for any i, j ∈ [k] with i < j, we have exactly one edge whose end points

are colored with colors i and j.
In the above process, we color exactly 2|M |, that is, 2

(
k
2
)

vertices. For the remaining
n− 2

(
k
2
)

vertices in the graph, we do the following. Let t denote the number of colors used
so far in the process. Obviously, t ≥ k. We take an uncolored vertex v ∈ V (G) \ V (M).
If there is an i ∈ [t] such that v does not have neighbors in the vertices that have already
been colored i, we assign the color i to the vertex v. If no such i exists, then we give a new
color to the vertex v. It is easy to see that this procedure does not violate the complete
coloring property. As we use at least k colors, we get a complete coloring of G with at least
k colors. ◀
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Kernelization Algorithm(G = (V,E), k)
Given a d-degenerate graph G, it returns a kernel of size kO(d).

1. Apply Reduction Rule 2 exhaustively to get G′ with n′ vertices.
2. If |n′| ≥ 4k(k+1)

3 (k3 + 8d− 1)8d, return a trivial YES instance
3. Else, return the reduced graph G′.

Figure 5 Kernelization Algorithm for Achromatic Number on d-degenerate graphs.

▶ Definition 26 (Strong system of distinct representatives). A system of distinct representatives
for the sets S1, S2, . . . , Sk is a k-tuple (x1, x2, . . . , xk) where the elements xi are distinct and
xi ∈ Si, for all i ∈ [k]. In addition to that, if we have xi /∈ Sj for all i ̸= j, then such a
system is called strong.

▶ Theorem 27 ([16, Theorem 8.12]). For a pair of integers r and t, in any family of more
than

(
r+t

t

)
sets of cardinality at most r, at least t+ 2 of its members have a strong system of

distinct representatives.

The following property of a d-degenerate graph follows directly from the definition.

▶ Proposition 28. The number of edges in a d-degenerate graph is bounded by dn.

Next, we give a lower bound on the number of low-degree vertices in a d-degenerate graph.

▶ Lemma 29. Let G be a d-degenerate graph and c be a positive integer with c > 2. Then,
G contains strictly more than ( c−2

c )n vertices with degree at most cd.

Proof. Let G be a d-degenerate graph on n vertices. By Proposition 28, the number of edges
is at most dn. Therefore, the sum of the degrees of the vertices in G is bounded by 2dn.
Assume that there are at most ( c−2

c )n vertices of degree at most cd in G. Then we have a set
U ⊆ V (G) of size at least n− ( c−2

c )n = 2n
c vertices of degree strictly more than cd. Now, the

sum of the degrees of the vertices in U is strictly more than 2n
c · cd = 2dn, a contradiction.

Therefore, there are strictly more than ( c−2
c )n vertices of degree at most cd in G. ◀

Let us define a greedy independent partition of G as follows. Construct a partition of
V (G) into independent sets by iteratively finding maximal independent sets. Then, in such
a partition, among all sets, choose a maximal independent, say I1, which has the highest
cardinality (if there is more than one such set, then arbitrarily choose one) and arbitrarily
order the remaining sets in the partition keeping I1 as the first element. We denote this
ordered family of sets as a greedy independent partition. Note that a greedy independent
partition of G can be constructed in O(m) time.

Now, we describe our kernelization algorithm. A brief description of our algorithm is given
in Figure 5.

▶ Theorem 3. Achromatic Number admits a kernel of size O(k24d+2) on d-degenerate
graphs.

Proof. First, we construct a greedy independent partition of G, say I1, I2, . . . , Ip. If p ≥ k,
then from Lemma 17, we get a complete coloring of G of size at least k and return a trivial
YES-instance. Else, we do as follows.

ISAAC 2025
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We apply Reduction Rule 2 exhaustively. Let G′ be the reduced graph with n′ vertices.
Note that after this step, at most k+ 1 vertices can have the same open neighborhood. Since
our graph G is d-degenerate, the reduced graph G′ is also d-degenerate. From Lemma 29,
we know that the number of vertices with degree at most 8d is at least 3n′

4 . Let us call
vertices with degree at most 8d as low-degree vertices. We denote these vertices by Vlow.
Let A = {A1, A2, . . . Al} be a greedy independent partition of G′[Vlow]. If |A1| < 3n′

4k , then
we have l ≥ k (as |Vlow| ≥ 3n′

4 ). So, applying Lemma 17, we have ψ(G′[Vlow]) ≥ k and that
immediately implies ψ(G′) ≥ k, and we return a trivial YES instance. Otherwise, we have
|A1| ≥ 3n′

4k .
Let {v1, v2, . . . , v|A1|} be the vertices in A1 and {S1, S2, . . . , S|A1|} be their corresponding

open neighborhoods. Due to the exhaustive application of Reduction Rule 2 at least |A1|
k+1

of these open neighborhoods are distinct. Let |A1|
k+1 = q and {S1, S2, . . . , Sq} be the pairwise

distinct sets. Let S =
q⋃

i=1
{Si}. Thus, S is a family of more than 3n′

4k(k+1) sets, each of

cardinality at most 8d. Let k′ be the integer such that(
8d+ k′ − 1
k′ − 1

)
≤ 3n

4k(k + 1) ≤
(

8d+ k′

k′

)
(2)

By applying Theorem 27 on the family of sets S, we know at least k′ − 1 + 2 = k′ + 1 of its
members have a strong system of distinct representatives. We match each representative
vertex with its corresponding vertex in A1. Let B be the set of those representative vertices.
Basically B represents those set of vertices in G − A1 such that we have a set of vertices
A′ ⊆ A1 satisfying (i) |B| = |A′|, (ii) for each vertex b ∈ B there exists a unique vertex
va ∈ A′ such that b ∈ N(va) and b /∈ N(v) for all v ∈ A′ \ {va}. We compute a greedy
independent partition, say B = {B1, B2, . . . , Bj} in G′[B]. Now we have the following cases.

If |B1| < |B|
k , then we have j ≥ k. From Lemma 17, we get ψ(G′[B]) ≥ k and that

immediately implies ψ(G′) ≥ k, and we return a trivial YES instance.
Otherwise, we have |B1| ≥ |B|

k . So, we have an induced matching of size at least |B|
k in

G′.

If |B|
k ≥ k2, then we obtain an induced matching of size at least k2. Then applying

Lemma 25, we have ψ(G′) ≥ k. Hence, we return a trivial YES instance.
Otherwise, we have |B|

k < k2.

Now |B| ≥ k′ + 1 and |B|
k < k2 together imply

k′ ≤ k3 − 1 (3)

Using a binomial formula, we have the following.(
8d+ k′

k′

)
=

(
8d+ k′

8d

)
≤ (8d+ k′)8d (4)

From Equation (2) and Equation (4) we have

3n′

4k(k + 1) ≤
(

8d+ k′

k′

)
≤ (8d+ k′)8d

⇒ (8d+ k′) ≥ ( 3n′

4k(k + 1)) 1
8d

⇒ k′ ≥ ( 3n′

4k(k + 1)) 1
8d − 8d (5)
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From Equation (3) and Equation (5), we get

( 3n′

4k(k + 1)) 1
8d − 8d ≤ k′ < k3 − 1

n′ <
4k(k + 1)

3 (k3 + 8d− 1)8d

n′ = O(k24d+2) (6)

Hence Achromatic Number admits a kernel of size O(k24d+2) on d-degenerate graph. ◀

6 Conclusion

In this paper, we do a parameterized reunion with Achromatic Number, and design an
FPT algorithm with explicit running time on general graphs. We also study the problem with
respect to structural parameterizations. Our work leaves several intriguing open questions.
1. Does Achromatic Number admit a polynomial kernel on general graphs?
2. We showed that Achromatic Number/VC can be solved in 2O(ℓ2) · nO(1). We can

show the following lower bound on the running time of an algorithm for Achromatic
Number/VC.
▶ Theorem 30 (♠). Unless ETH fails, Achromatic Number/VC cannot be solved in
time 2o(ℓ) · nO(1), where ℓ is the size of the vertex cover.
A natural question is whether we could close the gap between the upper and the lower
bounds on the running time of Achromatic Number/VC.
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