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—— Abstract

Let G = (V, E) be an undirected graph with n vertices and m edges, and let u = m/n. A distance
oracle is a data structure designed to answer approximate distance queries, with the goal of achieving
low stretch, efficient space usage, and fast query time. While much of the prior work focused on
distance oracles with constant query time, this paper presents a comprehensive study of distance
oracles with non-constant query time. We explore the tradeoffs between space, stretch, and query
time of distance oracles in various regimes. Specifically, we consider both weighted and unweighted
graphs in the regimes of stretch < 2 and stretch > 2. In addition, we demonstrate several applications
of our new distance oracles to the n-Pairs Shortest Paths (n-PSP) problem and the All Nodes
Shortest Cycles (ANSC) problem. Our main contributions are:

Weighted graphs: We present a new three-way trade-off between stretch, space, and query
time, offering a natural extension of the classical Thorup—Zwick distance oracle [STOC’01 and
JACM’05] to regimes with larger query time. Specifically, for any 0 < r < 1/2 and integer k > 1,
we construct a (2k(1—2r)—1)-stretch distance oracle with O(m+n'*/*) space and O(un") query
time. This construction provides an asymptotic improvement over the classical (2k — 1)-stretch
and O(nH'l/ k )-space tradeoff of Thorup and Zwick in sparse graphs, at the cost of increased
query time. We also improve upon a result of Dalirrooyfard et al. [FOCS’22], who presented a
(2k — 2)-stretch distance oracle with O(m +n'*1/*) space and O(un'/*) query time. In our oracle
we reduce the stretch from (2k — 2) to (2k — 5) while preserving the same space and query time.
Unweighted graphs: We present a (2k — 5,4 + 20pp)-approximation® distance oracle with
O(n**1/*) space and O(n/*) query time. This improves upon a (2k — 2, 2opp)-approximation
distance oracle of Dalirrooyfard et al. [FOCS’22] while maintaining the same space and query
time. We also present a distance oracle that given u,v € V returns an estimate J(u,v) <
d(u,v) + 2[d(u,v)/3] + 2, using O(n*/3+2¢) space and O(n'~3%) query time. To the best of our
knowledge, this is the first distance oracle that simultaneously achieves a multiplicative stretch
< 2, and a space complexity O(n*-*~%), for some a > 0.

Applications for n-PSP and ANSC: We present an O(ml_l/(k+1)n)—time algorithm for the
n-PSP problem, that for every input pair (s;,t;), where i € [n], returns an estimate ci(si,ti)
such that d(sq,t;) < d(si,t;) + 2[d(ss,t;)/2k]. By allowing a small additive error, this result
circumvents the conditional running time lower bound of (mzﬂ%r1 . nﬁ70(1>), established

by Dalirrooyfard et al. [FOCS’22] for achieving (1 + 1/k)-stretch. Additionally, we present an
O(mnlfl/ *)-time algorithm for the AN SC' problem that computes, for every u € V, an estimate
¢y such that &, < SC(u) 4+ 2[SC(u)/2(k — 1)], where SC(u) denotes the length of the shortest

cycle containing u. This improves upon the O(m272/kn1/k)-time algorithm of Dalirrooyfard et
al. [FOCS’22], while achieving the same approximation guarantee.

We obtain our results by developing several new techniques, among them are the borderline
vertices technique and the middle verter technique, which may be of independent interest.
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1 Introduction

Let G = (V, E) be an undirected graph with n = |V| vertices and m = |E| edges with non-
negative real edge weights, and let © = m/n be the average degree. The distance dg(u,v)
between u and v is the length of the shortest path? between u and v in G. An estimation
d(u,v) of d(u,v) is an a-stretch if d(u,v) < d(u,v) < a - d(u,v).

In their seminal work, Thorup and Zwick [36] presented a data structure for distance
approximations called a distance oracle. A distance oracle is a data structure with o(n?)
space (otherwise we can trivially store the distance matrix), that supports distance queries
between vertices. For any integer k > 1, they [36] showed that in O(kmn'/*) expected time,
it is possible to preprocess a weighted undirected graph and create a distance oracle of size
O(kn'*t'/%). For every u,v € V the query of the distance oracle returns a (2k — 1)-stretch
for d(u,v) in O(k) time. Different aspects of distance oracles, such as construction time,
query time, and stretch, have been studied since their introduction, more than two decades
ago. For more details see for example [10, 29, 38, 18, 19, 23, 25, 26, 21, 4, 3, 12, 13, 15].

Thorup and Zwick [36] employed Erdés’ girth conjecture® to establish a lower bound
on the space/stretch tradeoff for distance oracles. The conjecture asserts the existence of
graphs with Q(n't1/*) edges and girth > 2k + 2. Under this assumption, they proved that
any distance oracle with stretch t < 2k — 1 must use Q(n'*+/*) bits on some input, for all
k > 1. However, these lower bounds apply to graphs with m = Q(n'*/¥) edges.

This motivates studying the (2k — 1)-stretch/O(n'+1/F)-space tradeoff in sparser graphs,
where m = o(n'*t'/*). 4 This approach has been applied in two different stretch regimes.
Distance oracles with stretch > 2 (see, for example, [7, 6, 9, 33, 5, 25]) and distance oracles
with stretch < 2 (see, for example, [6, 8, 21, 28, 31]).

1.1 Distance oracles with stretch > 2

Our main result for stretch > 2 establishes a three-way tradeoff among the key parameters of
distance oracles: stretch, space, and query time. This new tradeoff improves upon previously
known results for specific values of stretch, space, and query time. We prove the following:

» Theorem 1. Let k> 5 and let 0 < ¢ < & — 1 be an integer. There is an O(m + n't1/F)
space distance oracle that given two query vertices u,v € V. computes in O(/mc/k)-time a
distance estimation d(u,v) that satisfies d(u,v) < d(u,v) < (2k — 1 — 4¢) - d(u,v). The
distance oracle is constructed in O(mn%) expected time.

An interesting tradeoff that follows from Theorem 1 is a better space/stretch tradeoff than
the classical Thorup and Zwick [36] (2k — 1)-stretch / O(n'*'/*) space tradeoff, at a cost

of a larger query time. Specifically, by setting » = £, we get a (2k(1 — 2r) — 1)-stretch

2 We omit G when it is clear from the context.

3 The girth of a graph is the length of its shortest cycle.

4 We remark that a distance oracle in such graphs must use Q(m) space, because of similar arguments to
the lower bound of [36].
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distance oracle that uses O(m + n1+1/k) space, at the price of O(unr) query time. By setting
¢ =1 in Theorem 1, we improve upon a recent result of Dalirrooyfard, Jin, V. Williams, and
Wein [22]. They presented a (2k — 2)-stretch distance oracle that uses O(m + n't1/%) space
and O(un'/*) query time.’> We improve the stretch from (2k — 2) to (2k — 5) while using the
same space and query time.

To obtain Theorem 1, we develop a new technique called the borderline vertices technique.
Given u,v € V, the borderline vertices 7, and 7, are two vertices on the shortest path
between u and v that satisfy special properties that allow us to better exploit the structure
of the Thorup and Zwick distance oracle. Using the borderline vertices technique, we also
manage to achieve the following distance oracle, which improves upon the construction time
of Theorem 1 at the cost of increasing the stretch.

» Theorem 2. Let k>4 and let 0 < ¢ < £ — 1 be an integer. There is an O(m + n+1/k)
space distance oracle that given two query vertices u,v € V. computes in O(;mc/k)—time a
distance estimation d(u,v) that satisfies d(u,v) < d(u,v) < (2k — 4c¢) - d(u,v). The distance
oracle is constructed in O(mnikl) expected time.

Agarwal, Godfrey, and Har-Peled [9] considered also small stretches, and presented a 2-
stretch distance oracle that uses O(m + n3/2) space and has O(un'/?) query time, that is
constructed in O(mn'/?) time, and a 3-stretch distance oracle that uses O(m + n*/3) space
and has O(un'/?) query time, and is constructed in O(mn?/?) time. These results suggest
that the following general stretch/space/query time tradeoff may exist for every k.

» Problem 1. For which values of k it is possible to construct a k-stretch distance oracle
that uses O(m +n*+t1/*) space and has O(un'/*) query time.

Agarwal, Godfrey, and Har-Peled [9] solved Problem 1 for & = 2,3. By setting ¢ =1
in Theorem 2 and Theorem 1, respectively, we obtain a 4-stretch distance oracle that uses
O(m + n®/*) space and has O(un'/*) query time, and a 5-stretch distance oracle that uses
O(m + n%/5) space and has O(un'/®) query time. Thus, we solve Problem 1 for k = 4, 5.

In addition, using the borderline vertices technique we obtain (2k — 3)-stretch distance
oracle that uses O(m + n't/¥) space, has O(un'/*) query time, and is constructed in
O(mn'/*) time. For k = 3 this improves the construction time of [9] for a 3-stretch distance
oracle from O(mn??) to O(mn'/3). Our results for weighted graphs are summarized
in Table 2.

Next, we turn our focus to unweighted graphs. An estimation ci(u, v) of d(u,v) is an (a, f)-
approximation if d(u,v) < af(u,v) < ad(u,v) + 8. (a, B)-approximations were extensively
studied in the context of distance oracles, graph spanners, and emulators. (For more details
see for example [24, 37, 11, 17, 16, 30, 1, 2, 9, 7, 13]).

From the girth conjecture, it follows that in unweighted graphs, for every («, 3)-distance
oracle that uses O(nHl/ *) space, it must hold that a + 3 > 2k — 1. However, this inequality
must hold only for adjacent vertices. For non-adjacent vertex pairs, we prove the following
simple lower bound.

» Theorem 3. Assuming the Erdds girth conjecture, any distance oracle that uses o(nHl/k)
space must have an input graph G = (V, E) and two vertices u,v € V such that d(u,v) = 2
and d(u,v) > 2k + 2.

5 We remark that even more recently, Chechik, Hoch, and Lifshitz [20] presented a (2k — 3)-stretch n-PSP
algorithm, however, they did not present a new distance oracle.
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A spanner is a subgraph H C @ that approximates distances without supporting distance
queries. Baswana, Kavitha, Mehlhorn, and Pettie [11] and Parter [30] presented a k-spanner
for every u,v € V such that d(u,v) = 2, and matched the lower bound of Theorem 3 for
spanners. An interesting question is whether this lower bound can be matched by distance
oracles with efficient distance queries as well. Thus, we formulate the following problem.

» Problem 2. For which values of k it is possible to construct a distance oracle with
O(n*/*%) space that uses O(n'/*) query time, such that d(u,v) < d(u,v) < k - d(u,v), for
every u,v € V that satisfy d(u,v) = 2.

Agarwal, Godfrey, and Har-Peled [9] presented for unweighted graphs a (2, 1)-approximation
distance oracle that uses O(n%/2) space, has O(n'/?) query time, and is constructed in
O(mn'/?) time. They also presented a (3,2)-approximation distance oracle that uses O(n*/3)
space, has O(n'/3) query time, that is constructed in O(mn?/3) time.

By analyzing more carefully the (2, 1)-approximation distance oracle of [9] it is possible to
show that it is actually a (2, 1opp)-approximation® distance oracle, and therefore solves Prob-
lem 2 for k = 2.7 In the following two theorems, we show that it is possible to solve Prob-
lem 2 for k = 3 and k = 4 as well.

» Theorem 4. There is a O(n4/3) space distance oracle that given two query vertices u,v € V.
computes in O(n'/3)-time a distance estimation d(u,v) that satisfies d(u,v) < d(u,v) <
3d(u,v) + 20pp. The distance oracle is constructed in O(mn'/3) expected time.

» Theorem 5. There is a O(n5/4) space distance oracle that given two query vertices u,v € V.
computes in O(n'/*)-time a distance estimation d(u,v) that satisfies d(u,v) < d(u,v) <
4d(u,v) + 3opp. The distance oracle is constructed in O(mn'/?) expected time.

In Theorem 4 we improve the distance oracle of [9] from more than a decade ago.
In particular we improve the construction time from O(mn?/3) to O(mn'/?), and the
approximation from (3,2) to (3,20pp). Dalirrooyfard, Jin, V. Williams, and Wein [22]
presented a (2k — 2, 20pp)-stretch distance oracle that uses O(n'*t1/¥) space and O(n'/*)
query time. By setting k = 4 in the (2k — 2, 2,pp)-stretch distance oracle of [22] they obtain a
(6, 20pp)-stretch distance oracle. In Theorem 5 we improve the approximation from (6,20pp)
to (4, 30pp) while maintaining the same space and query time.

To obtain our new distance oracles for unweighted graphs, presented in Theorem 4
and Theorem 5, we develop a new technique for using the middle vertex in the path, called the
middle vertex technique. Let u,v € V, the middle vertex 7 is a vertex on the shortest path
between u and v that satisfies d(u, 7) = d(u,v)/2 + 0.50pp and d(v, 7) = d(u,v)/2 — 0.50pp-
As with the borderline vertices technique for sparse weighted graphs, the middle vertex
technique enables us to better exploit the structure of the distance oracles of Thorup and
Zwick in dense unweighted graphs.

By combining the middle vertex technique with the borderline vertices technique, we
manage to achieve two more distance oracles for dense unweighted graphs. The first distance
oracle improves the approximation of the distance oracle of Theorem 5 from (4, 30pp) to
(3,2 + 20pp) at the cost of increasing the query time to O(n'/2).

5 Zoop is defined as z - lopp, where lopp is d(u,v) mod 2

" In their work, the additive error comes from the fact that if B(u) N B(v) = @ then min(h(w), h(v)
d(u,v)/2+ 1. However, this can be improved by showing that if B(u) N B(v) = @ then min(h(u), h(v)
d(u,v)/2 + lopp.
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» Theorem 6. There is a O(n5/4) space distance oracle that given two query vertices u,v € V.
computes in O(n'/?)-time a distance estimation d(u,v) that satisfies d(u,v) < d(u,v) <
3d(u,v) + 2 4 20pp. The distance oracle is constructed in O(mn'/?) expected time.

The second distance oracle improves the (2k — 2, 2,pp)-approximation of [22] to (2k —
5,4 + 20pp )-approximation, while using the same space and query time.

» Theorem 7. Let k > 5. There is an O(n*t'/*) space distance oracle that given two
query vertices u,v € V. computes in O(n'/*)-time a distance estimation d(u,v) that satisfies
d(u,v) < d(u,v) < (2k — 5)d(u,v) + 4+ 20pp. The distance oracle is constructed in O(mn?¥)
expected time.

Our results for unweighted graphs are summarized in Table 1.

1.2 Distance oracles with stretch < 2

For distance oracles with stretch < 2 in weighted graphs, we present the following new three-
way tradeoff between: stretch, space, and query time. We prove:

» Theorem 8. Let 0 < ¢ < 1/3 be a real constant. There is a O(m + n?>=2¢)-space distance
oracle that given two query vertices u,v € V computes in O(u'n'®)-time a distance estimation
d(u,v) that satisfies d(u,v) < d(u,v) < (14 2/t)d(u,v). The distance oracle is constructed
in O(mn'=¢) time.

Using this tradeoff, we obtain the first distance oracle with stretch < 2, sublinear query
time, and O(m + n'®=?) space, for a > 0. In particular, by setting t = 3 and ¢ = 1/3 — &,
we obtain a 5/3-stretch distance oracle with O(m + n*/3+2¢)-space and O(u*n'~ 35) -query

time. For comparison, Agarwal [6] presented a distance oracle with stretch 1 4+ using

t+0 50
O(m 4 n27°) space and O(p'n(*+1¢) query time. Setting t = 1 and ¢ = 1/2 — ¢ in the
construction of [6] yields a 5/3-stretch oracle with O(m +n'5¢)-space and O(un®°—<)-query
time. (See Table 2.)

For unweighted graphs, we present two new tradeoffs. The first improves upon the tradeoff
of the distance oracle of Bilo, Chechik, Choudhary, Cohen, Friedrich, and Schirneck [13],
while preserving the same space and query time. Specifically, they presented a distance
oracle for unweighted graphs that uses O(n2_0) space, has O(ntc) query time, and returns

an estimate d(u,v) < (1+ 1/t)d(u,v) + 2. In the following theorem, we slightly improve the
stretch bound to d(u, v) < d(u,v) +2 {d(u ,v)

—‘ while using the same space and query time.

» Theorem 9. Let t > 1 be an integer and let 0 < ¢ < 1/2 be a real constant. There is a
O(n?=¢)-space distance oracle that given two query vertices u,v € V. computes in O(n°?)-

time a distance estimation d(u,v) that satisfies d(u,v) < d(u,v) < d(u,v) + 2“(“ U)—‘. The

distance oracle is constructed in O(mn'~°) time.

Next, by adapting methods of Theorem 8 to unweighted graphs, we obtain another tradeoff
that uses less space than the tradeoff of Theorem 9 at the cost of a larger query time. We
prove:

» Theorem 10. Lett > 1. Let 0 < ¢ < 1/3 be a real constant. There is a O(n>~2¢)-space
distance oracle that given two query vertices u,v € V. computes in O(ntc)—time a distance
estimation d(u,v) that satisfies d(u,v) < d(u,v) < d(u,v) + 2[d(u,v)/t] + 2. The distance
oracle is constructed in O(mn'~°) time.

43:5
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Table 1 Distance oracles in unweighted graphs. zopp is - (d(u,v) mod 2).

’ Space ‘ Time ‘ Old Approximation ‘ New Approximation ‘
O(kn' V&Y | OMmM*) | (2k —2,2000) [22] | (2k — 5,4 + 20pp) (Th7)
O(n*/?) Oo(n'’*) (3,2) [7] (3, 20m0) (Th4)
O(n°'*) D(n'/*) (6, 2000) [22] (4,300p) (Th5)
D(n**) D(n''?) - (3,2 + 200n) (Th6)
O (n?) ) (n''?) (8, 200p) [22] (5,4 + 2omp)
O(n*~°) O(n'® §+6/t+2[13] § +2[5/2t] (Th9)
On*?t<) | O(n*~%) 1.56 + 2 [13] 8 +2[5/4] (Th9)
O(n?=%9 O(n'® - § +2[6/t] +2 (Th10)
On*/3+2¢) | O(n'~3) - 5 +2[8/3] + 2 (Th10)

In particular, using Theorem 10 we obtain the first distance oracle with o(n!>~%)-space, for

a > 0, that achieves a multiplicative error strictly better than 2. Specifically, by setting
t=3and c=1/3 — ¢, we get a distance oracle with O(n*/3+2¢) space and O(n'~3¢) query
time. These results are summarized in Table 1.

1.3 Applications for n-PSP and ANSC

Recently, Dalirrooyfard, Jin, V. Williams, and Wein [22] (followed by Chechik, Hoch and
Lifshitz [20]) studied two fundamental problems in graphs, the n-pairs shortest paths (n-
PSP) problem and the all-nodes shortest cycles (ANSC) problem. The n-PSP problem is
defined as follows. Given a set of vertex pairs (s;,t;), for 1 < i < O(n), compute the distance
d(s;,t;). The ANSC problem is defined as follows. Compute the length of the shortest
simple cycle that contains v, for every v € V.

A straightforward approach for solving the n-PSP problem is to first construct a distance
oracle and then query it for every pair in the input set. The total runtime of this approach
is the sum of the construction time and n times the query time of the distance oracle. While
this method naturally yields an n-PSP algorithm, a distance oracle must satisfy additional
requirements that an n-PSP algorithm does not. In particular, a distance oracle must use
limited space and support queries between any of the £2(n?) pairs of vertices.

Using our new distance oracles, we obtain improved time/stretch tradeoffs for both the
n-PSP problem and the AN SC-problem, improving some of the results of [22, 20].

In [22], a lower bound based on the combinatorial 4k clique hypothesis for the n-PSP
problem is presented. They showed that Q(m 2= . nﬁl*o(l)) time is required to achieve
(14 1/k — ¢) stretch. As mentioned in [22] using the (1 + 1/k) dlstance oracle of [6] it
is possible to solve n-PSP with (1 + 1/k)-stretch in O(m? —FT nk+1) time, which almost
matches the lower bound of [22]. In this paper, we show that it is possible to significantly
improve the running time of [6] and to bypass the lower bound of [22] at the cost of a
small additive error (of up to 2). We obtain an O(mlfﬁrln) time algorithm that returns

d(si t;) < d(sit;) +2 [‘1(527;)—‘ < (1+1/k)d(u,v) + 2, as presented in the following theorem.

» Theorem 11. Let k > 2. Given an unweighted graph G and vertex pairs (s;,t;) for
1 <4< O(n), there is an algorithm for n — PSP that computes an estimation d(s;,t;) such

that d(Si,ti) § CZ(SZ,tZ) S d(Si,ti) + 2’7(1(8“ —‘ mn O( k}rl n) time.

In [22] they presented an O(m +n?/*) time n-PSP algorithm that returns (2k —2)(2k — 1)-
stretch. In the following theorem we improve the stretch from (2k—1)(2k—2) to (2k—1)(2k—3)
while using the same running time.
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» Theorem 12. Let k > 3. Given a weighted graph G and vertex pairs (s;,t;) for 1 <i <
O(n), there is an algorithm for n — PSP that computes an estimation d(s;,t;) such that
d(ss,t;) < d(si,t;) < (2k — 1)(2k — 3) in O(m + n*/*) time.

For the AN SC problem, [22] presented an O(m?~2/¥n'/*) running time algorithm that

for every u € V returns estimate é(u) such that &, < SC(u) + 2 [25(%7@1))—‘, where SC(u) is
the length of the shortest simple cycle that contains w. In the following theorem, we improve

the running time from O(m?~2/knl/*) of [22] to O(mn'~+).

» Theorem 13. Given an undirected unweighted graph G, let k be a positive integer. There
is a randomized algorithm for ANSC' that computes for every u € V' an estimation &, such

that SC(u) < &, <1+ 2[ f(ggm in O(mni=+)-time.

In addition, we present the first, to the best of our knowledge, stretch < 2 algorithm for the
ANSC problem in weighted graphs. Specifically, we present an O(m?~'/*) time algorithm
for weighted graphs that for every u € V' returns an estimate ¢ such that ¢, <1+ ﬁS C(u),
as presented in the following theorem.

» Theorem 14. Given an undirected weighted graph G, let k be a positive integer. There
is a randomized algorithm for ANSC' that computes for every u € V' an estimation ¢, such
that SC(u) < &, < (14 25)SC(u) in O(m?~F)-time.

Our results for the ANSC problem are summarized in Table 4.

The rest of this paper is organized as follows. In the next section, we present some
necessary preliminaries. In Section 3 we present a technical overview of our main techniques
and some of our new distance oracles. In the full version [27] of the paper, we present the
full proofs of our techniques, distance oracles, applications, and lower bound.

2 Preliminaries

In this section, we present several definitions and existing tools that we use to develop our new
techniques and ideas which we then apply in order to obtain new distance oracles. Let G =
(V, E) be an undirected graph with n = |V| vertices and m = |F| edges. Throughout the paper,
we consider both unweighted graphs and weighted graphs with non-negative real edge weights.

Let u,v € V. The distance d(u, v) between u and v is the length of a shortest path between
uw and v. Let P(u,v) be the shortest path between u and v. Let N(u) be the vertices that
are neighbors of u and let deg(u) = |N(u)| be the degree of u. Let X C V. Let N(X) be the
vertices that are neighbors of some vertex v € X, i.e, N(X)={w e V|dz € X : (w,z) € E}.
The distance d(u, X) between u and X is the distance between u and the closest vertex to
u from X, that is, d(u, X) = mingex (d(u,x)). Let p(u, X) = argminge x (d(u, z)) (ties are
broken in favor of the vertex with a smaller identifier).

Next, we define bunches and clusters as in [36]. Let v € V and let X,Y C V. Let
B(u,X,Y)={ve X |d(u,v) <d(u,Y)} be the bunch of v with respect to X and Y. Let
Cu,Y)={veV|du,v) <dvY)} be the cluster of u with respect to Y.

The starting point in many algorithms and data structures for distance approximation,
and in particular in Thorup and Zwick[36]’s distance oracles, is a hierarchy of vertex sets
Ao, Ay, ..., Ay, where Ag =V, A, =0 and for 0<i<k—1, Ajy1 C A; and |A;] = n'~V/F,
For every u € V, let p;(u) = p(u, A;) and let h;(u) = d(u, A;). Using this hierarchy, Thorup
and Zwick defined k bunches for every vertex u € V as follows: For every 0 < ¢ < k — 1,
the bunch B;(u) is defined as B;(u) = B(u, A;, A;+1). They also defined a cluster for every
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Algorithm 1 Intersection(u,w,U, W).

1 if UNW # () then
2 L return mingcynw d' (u, ) + d'(z, w);

3 return oo;

vertex w € A; \ A;41 as follows: C(w) = C(w, A;+1). Throughout the paper when we save
Bi(u), for every u € Vand 0 < i < k—1 (or C(u) = C(u, Aj+1), for every u € A; \ Aiy1), we
mean that we can check whether z € B;(u) (or € C(u)) in constant time and if x € B;(u)
(or z € C(u)) we can retrieve d(u,x) in constant time as well.

The simplest instance of this hierarchy is when k& = 2 and the hierarchy is composed of
the sets Ag, A1, Ag, where Ag =V, Ay C V, and A3 = (). Throughout this paper, in such a
case, we will omit subscripts and will refer to A; simply as A. Moreover, since in this case
Bo(u) = B(u,V, A) and By(u) = B(u, A,0) = A, for every u € V, we use B(u) to denote
By(u) and A to denote Bj(u) and since we have only po(u) and p;(u), where po(u) is u, we
use p(u) to denote py(u) and h(u) to denote hy(u).

Thorup and Zwick [36] construct the sets Aj,..., Ax_1, by adding to A;;1, where
i € [0,k — 2], every vertex of A;, independently at random with probability p. Constructing
the sets in such a way allows Thorup and Zwick [36] to prove the following;:

» Lemma 15 ([36]). Given an integer parameter k > 2, we can compute in O(n) time sets
Ay, .., Ag_q, such that |A;| = O(n*=/F) for every i € [1,k — 1] with high probability, and
for every i € [0,k — 1] the size of B;(u) is O(n'/*), with high probability (w.h.p). The cost
of computing B;(u), for every w € V, is O(mn'/*) expected time.

» Lemma 16 ([35]). Given a parameter p, we can compute a set A of size O(np) in
O(mp~1) expected time such that, |C(w,A)| = O(1/p), for every vertex w € V \ A, and
|B(v,V,A)| = O(1/p) for everyv € V.

We remark that both Lemma 15 and Lemma 16 have also slower deterministic construc-
tions [34, 35].

Next, we present procedure Intersection. The input to Intersection is two vertices
u,w € V and two sets U,W C V, such that, u € U and w € W. For every v’ € U and
every w' € W, we assume that distance estimations d’(u,v’) and d'(w,w") are known. The
output of Intersection is mingeynw d'(u, x) + d'(w,x), if UNW # 0 and oo, otherwise.
(See Algorithm 1.) In most of our uses of Intersection we have d'(u,u’) = d(u,u’) and
d'(w,w") = d(w,w"). When this is not the case, we explicitly describe d’ and its relation to
d. The following lemma regarding the running time of Intersection is straightforward.

» Lemma 17. Intersection(u,w,U, W) runs in O(min(|U|, |W])).

Proof. Assume, without loss of generality (wlog), that |[U| > |W|. By checking for every
vertex y € W in O(1) time whether y € U we compute U N W. For each vertex x € U N W,
we compute in O(1) time the value d'(u,z) + d'(z,w). Thus, the total running time is
min(|U[, [W]) - O(1) = O(min(|U|, |W)), as required. <

The following property of Intersection(u,w, U, W) is the main feature of Intersection,

and will be used throughout the paper.

» Property 18. Let P = P(u,w). If PN(UNW) # 0, and there exists x € PN(UNW) such
that d'(u,z) = d(u,x) and d'(x,v) = d(x,v) then Intersection(u,w,U, W) returns d(u,w).
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Algorithm 2 TZQuery(u,v).

1 for i € [k] do
2 if p;_1(u) € B;(v) then return h;_1(u) + d(pi—1(u),v);
3 | (wv) < (v,u)

Let TZQuery be the query of the distance oracle presented by Thorup and Zwick [36].
We let MTZQuery(u, v) be min(TZQuery(u, v), TZQuery(v,u)). Pseudocode for TZQuery exists
in Algorithm 2.

The following lemma appears explicitly in [36] regarding the correctness and running
time of MTZQuery.

» Lemma 19 ([36]). The running time of MTZQuery is O(k) and it holds that
MTZQuery(u,v) < (2k — 1)d(u,v)
The next lemma follows from [36], and we prove it here for completeness.

» Lemma 20. Let cz(u,v) be MTZQuery(u,v). For every integer 1 < i < k, one of the
following holds.

min(h;(u), h;(v)) < min(h;—1(u), hi—1(v)) + d(u,v)

d(u,v) < 2min(hi_y(u), hi—1(v)) + d(u, v)

Proof. Wlog, assume that h;_1(u) < h;—1(v). We divide the proof into two cases. The
case that p;_1(u) € B;(v) and the case that p;_1(u) ¢ B;(v). Consider the case that
pi—1(u) € B;(v). In this case the value of d(p;—1(u),v) is saved in the distance oracle. From
the triangle inequality it follows that d(p;—1(u),v) < h;—1(u) + d(u,v). Therefore, we have
that d(u,v) < hi_1(u) 4+ d(pi—1(u),v) < 2h;_1(u) + d(u,v). Since h;_y(u) < h;i_1(v) we get
that d(u,v) < 2min(hi_1 (), hi—1(v)) + d(u,v), as required.

Consider now the case that p;_1(u) ¢ B;(v). From the definition of B;(v) it follows that
hi(v) < d(v,pi—1(u)) < d(u,v) + hj—1(u). Since h;—1(u) < h;—1(v), we get that h;(v) <
min(h;—1(u), hi—1(v)) + d(u,v), and thus min(h;(u), h;(v)) < min(h;—1(w), hi—1(v)) + d(u, v),
as required. <

The following property follows by applying Lemma 20 inductively.

» Property 21. Let 1 < i <k be an integer, and let 1 < j < i. Then either:

min(h;(u), h;(v)) < min(h;—1(u), hi—1(v)) + d(u,v)

d(u,v) < 2min(hj(u), hj(v)) + (i — 5)d(u,v)
We remark that all our distance oracles return an estimation that is the length of a path in
G and therefore d(u,v) < d(u,v).

3 Technical overview

In the classic distance oracle of Thorup and Zwick [36], it is possible to bound h;(u) with
d(u,v) + hi—1(v), for every 1 <i < k — 1. The key to improving the (2k — 1)-stretch of the
distance oracle lies in tightening the bound on h;(u). Previous work (see, for example, [9, 32,
5, 8, 6]) improved the bound on hq(u) from d(u,v) to d(u,v)/2 by exploiting the following
structural property of By(+): if P(u,v) € Bo(u) U By(v), then hy(u) 4+ hi(v) < d(u,v) + lopp.
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In this paper, we develop two new techniques that exploit structural properties of C(-) to
construct a distance oracle with improved stretch guarantees. These techniques enable us
to bound not only hq(u) by d(u,v)/2, but also hs(u) by d(u,v), thereby improving overall
stretch. We begin by presenting the borderline vertices technique, which applies to both
weighted and unweighted graphs.

3.1 The borderline vertices technique

Let C*(u) = C(u)UN(C(u)) be an augmented cluster. Roughly speaking, using the borderline
vertices technique we show that if P(u,v) € C*(u, Ac) N C*(v, A.) then

max(het1(uw), het1(v)) < d(u,v). In particular, by setting ¢ = 1 we get an improvement over
the result of [9], showing not only that hq(u) < d(u,v)/2 but also that ha(u) < d(u,v).

Let P = P(u,v) be a shortest path between v and v. The borderline vertex 7, (P) of
C*(u) in P is the farthest vertex from u in C*(u) N P. Similarly, the borderline vertex 7,(P)
of C*(u) in P is the farthest vertex from v in C*(v) N P. Obviously, a distance oracle cannot
store 7, (P) for every shortest path P, as this would require ©(n?) space. We overcome this
limitation by using O(x - |C(u)|) query time to iterate over all vertices in the augmented
cluster C*(u), and in particular 7, = 7, (P).

To obtain our improved bound on hq(v), we analyze two different cases regarding pi (7).
The case that p;(7,) € Bi(v) and the case that pi(7,) ¢ Bi(v). If p1(7,) € Bi(v), then the
query algorithm can return as an estimation J(u, v) =u— 7y = p1(7y) = v, where x — y —
z = wisd(z,y)+d(y, z)+d(z,w). In this case, since 7, ¢ C(u, A1) (as it is the farthest vertex
from u in C*(u)) we get that hy(7y) < d(u,7,) < d(u,v), and therefore d(u,v) < 3d(u,v).

Otherwise, if pi(7,) ¢ Bi(v) then ha(v) < d(v,pi(7)) < d(v,7y) + hi(7,). Since
hi(1y) < d(u,7,) we get that ho(v) < d(v,7,) + d(u, 7)) = d(u,v), as wanted. (See Figure 1).
Using symmetric arguments for 7, we can also get that ho(u) < d(u,v).

In unweighted graphs, we can avoid the p factor from the query time at the cost of bounding
ha(u) and ho(v) by d(u, v)+2 rather than d(u,v). The difference is that we let 7/,(P) be defined
as the farthest vertex from v in C(u) N P (unlike 7, (P) which considers C*(u) N P). Next, we
provide an overview of our main three-way tradeoff that uses the borderline vertices technique.

3.2 (2k — 1 — 4c)-stretch distance oracle

Let 0 < ¢ < k/2—1 be an integer, let V = Ag, Ae, Acy1, . .., A = 0, such that |A;| = n' /%,
The storage of the distance oracle saves: the graph G, d(s1, s2), for every s1 € A.q1,82 €
Ag—c—2 and B(u) = Ujetou[e.x]} Bi(u) for every u € V. Where By(u) = B(u,V, A.).

The query works as follows. First, we set d(u,v) to
Intersection(u,v,C*(u, A.),C*(v, A.)). Then, we iterate over every v’ € C*(u, A.) (to
iterate over 7,), and update d(u, v) be min(d(u, v), d(u, u') + MTZQuery(v/, v)). Similarly, for
every v/ € C*(v, A.) we update d(u, v) to min(d(u, v), d(v,v') +MTZQuery(v', u)). Finally, the
algorithm returns min(a?(u7 0),% = Pet1(U) = Pr—c—2(v) = VU = pr_c—2(u) = pet1(v) =
v).

It is straightforward to see that the space is O(m + n'*t1/%) and that the query takes
O(u|C(u, A)|) = O(un</*) time. The main technical contribution is in proving that d(u, v) <
(2k — 4c — 1) - d(u,v). To prove it, we use the borderline vertices technique. Since that
Tu € C*(u, A.), when the algorithm iterates over C*(u, A.), there is an iteration in which
u' = 7,. In this iteration we guarantee that d(u,v) < d(u,7,) + MTZQuery(r,,v). Since 7, is
a borderline vertex, we either have that d(u,v) < u — 7, — pe(74) = v < 3d(u,v), and the
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< d(u,v)

Figure 1 p1(74) ¢ Bi1(v).

estimation guarantee holds, or that h.i1(v) < d(u,v). Similarly, since 7, € C*(v, A.) and
we iterate over C*(u, A.), there is an iteration in which v" = 7,. In this iteration, either a
short path is found (v — 7, = pc(74) = u), or we have that heq(u) < d(u,v).

From the properties of MTZQuery, for every ¢+ 1 < i < k, either a short path is found or
hi(u) < d(u,v) + hi—1(v). Since heq1(u) < d(u,v) and heyq(v) < d(u,v), it follows that

hi—c—2(u) < max(het1(w), het1(v)) + (K — 2¢ — 3)d(u,v) < (k — 2¢ — 2)d(u,v).

In the query procedure, we have that cf(u, V) U= prc—a(tt) = Per1(v) = v < 2hp_co(u)+
d(u,v) + 2hcy1(v). Thus:

d(u,v) < 2(k — 2¢ — 2)d(u, v) + d(u, v) 4 2d(u,v) = (2k — 4¢ — 1)d(u, v),

as required.

3.3 The middle vertex technique

For unweighted graphs, we develop the middle vertex technique that allows us to bound
either hg(u) or he(v) by d(u,v)/2 + lopp, improving the previous 3d(u,v)/2 4+ lopp bound
from [22]. Roughly speaking, using the middle vertex technique technique we show that if
P(u,v) € C(u, A1) N C(v, A1) then min(ha(u), he(v)) < d(u,v) + lopp. The middle vertex
technique requires O(nl/ k) query time, matching the query time of the unweighted borderline
technique. However, by using the middle vertex technique we reduce the additive error from
2 to lopp in the bound of min(hg(u), he(v)).

For the sake of simplicity, let Ag, A1, As, A3 be a vertex hierarchy, where Ag =V, A3 = ()
and let d(u,v) = § be even. Let 7 be the middle vertex on P(u,v). That is, d(u,7) =
d(r,v) = &/2 (6/2 is an integer since 0 is even). The middle vertex 7 has the following useful
property. If hy(7) > 6/2 then u,v € By(7). The problem is that 7 is unknown. However, the
case that u,v € By(7) is equivalent to the case that 7 € C(u) N C(v). We use the O(n'/¥)
query time to compute for every w € C(u) N C(v) the value of d(u,w) + d(w,v). Therefore,
even without knowing 7, in this case we have that d(u,v) = d. (See Figure 2(a).)

If hi(1) < §/2 then d(u,pi(7)) < d(u,7) + h1(7) < 6 and d(v,p1(7)) < 6. If pi(7) €
Bi(u) N By (v), we exploit, again, the O(n'/*) query time to compute for every w € By (u) N
B (v) the value d(u, w)+d(w,v). Therefore, even without knowing p; (7) the query algorithm
returns d(u, v) < d(u, p1 (7)) 4 d(v, p1(7)) < 28. (See Figure 2(b).) If py (1) ¢ By (u) N By (v)
then without loss of generality pi(7) ¢ Bi(u) and therefore ho(u) < d(u,pi(7)) < 0.
(See Figure 2(c).)
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Figure 2 (a) 7 € C(u) N C(v). (b) pi(7) € Bi(u) N B1(v). (c) pi1(7) ¢ Bi(u) N B1(v). In the
figure p1(7) ¢ Bi(v).

Our distance oracles for unweighted graphs use the middle vertex technique. When
combined with the unweighted borderline vertices technique, this enables the construction of
two additional oracles.

3.4 Distance oracles with stretch < 2

Let A C V be a set of size O(n!=), let u,v € V, let § = d(u,v) and let P = P(u,v). Let
¢t > 0 be an integer. Let S¢(u) =U,es, ) B(w), where So(u) = {u}. Let d; be a distance
function induced by S; (for the exact definition of d;. Let u = ug (resp. v = vp). For every
1<i<t, let u; € B(ui—1) (resp. v; € B(v;_1)) be the farthest vertex in P from u (resp. v).
(See Figure 3 for an illustration.) Let Pi(u) = P(u,u;). By the definition of S;(u) we have
that P;(u) C S¢(u). We prove the following two properties:

If Py(u) N Py(v) # 0 then di(u,w) + di(v,w) = § for some w € Pi(u) N P(v). (See

Figure 3(b).)

If P;(u) N P;(v) =0 then Z:;é h(u;) + h(v;) < 6+ 2t — 1. (See Figure 3(a).)

Next, we overview the distance oracle that uses these properties. The distance oracles
stores the graph G and d(z,y), for every (z,y) € A x V, at the cost of O(|V| - |A]) =
O(m + n?7¢) space. In the query of the distance oracle, we compute S;(u) and S;(v).
To address the case that P,(u) N P,(v) # 0 we compute for every w € Sy(u) N Sy (v) in
O(min(|S¢(u)[, |St(v)])) time the value d¢(u,w) + d¢(v,w). In such a case, from the first
property we have d;(u,w) + d¢(v, w) = ¢, for some w.

To address the case that P;(u) N P;(v) = () we compute d(u, p(w)) + d(p(w),v) for every
w € S¢(u) U Si(v). Let w € U:;é {u;,v;} be the vertex with minimal h(w) value. Using the
bound Zf;é h(u;)+h(v;) < d(u,v)+2t—1, we can show that h(w) < |(d(u,v)+2t—1)/2t] =
[d(u,v)/2t] and get that d(u,p(w)) + d(p(w),v) <&+ 2[6/2t].

Next, we reduce the space from O(n?=¢) to O(n?~%¢) by saving d(z,y), for every (x,y) €
A x A instead of saving d(z,y), for every (z,y) € Ax V.

This information prevents us from using paths of the form u ~» p(w) ~ v. We can
still use paths of the form u ~» u; ~» p(u;) ~» p(v;) ~» v; ~ v. However, since we do not
know the vertices u; and v; we need to consider all vertex pairs in S;_q(u) x S;—1(v). This
increases the query time from O(n'¢) to O(n?*=Y¢). To avoid O(n?*=1¢) query time, we
show that it suffices to consider only vertex pairs in S;(u) X St—1—;(v), where 0 <i <t —1
in O(tn(*=1¢)-time, and still get the same approximation without iterating over all vertex
pairs in S;_1(u) X Si_1(v).
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Figure 3 (a) Pi(u) N Py(v) = 0. The blue interval between u; (v;) and p(u;) (p(v;)), where
i € {0,1,2}, is bounded by the red interval between wu; (v;) and ui+1 (vi+1) plus 1. The orange
interval plus 1 bounds h(us) + h(vs). (b) Ps(u) N Ps(v) = {z}.

We define the set Q = {{u;,v4——1) | 0 < i <t —1}. Let ¢ = (qu, qv) € Q be the vertex
pair with minimal h(g,) + h(g,) value. We prove that h(q,)+h(g,) < |(d(u,v)+2t—1)/t] =
[d(u,v)/t] + 1. While iterating over the pairs of S;(u) x S;_1_;(v), we encounter ¢, and
get that d(u,v) < & 4+ 2[6/t] + 2. Thus, with O(n2~2¢) space and O(n'®) query time we
get an estimation d(u,v) < & + 2[6/t] + 2. By setting ¢ = 1/3 — ¢ and ¢t = 2,3 we get
two new distance oracles, one with O(n*/3+2¢) space and O(n?/3-2¢) query, and estimation
d(u,v) <6+ 2[6/2] 4+ 2 < 26 + 4, and another with O(n*/3+2¢) space and O(n!~3) query,
and estimation d(u,v) < &+ 2[6/3] +2 < 25+4.

We also consider weighted graphs with non-negative real edge weights. Agarwal, Godfrey
and Har-Peled [7] defined B*(u) to be B(u) U N(B(u)). We revise the definition of S; to be
Uwes, 1 (u) B*(w). This new definition allows us to extend the previous results to weighted
graphs. The distance oracles obtained using this approach are presented in the full version[27].

We remark that the usage of the sets S;(u) and S;(v) in the query algorithm is similar to
the usage of the graph H in the work of [14]. However, in our analysis of the unweighted
case, we achieve a slightly better distance approximation. In addition, we introduce a new
approach to obtain a distance estimation using two vertices from A that are close to P(u,v)
rather than a single vertex from A, as in [14].
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A  Tables of our distance oracles

A.1 Weighted graphs with stretch > 2

Table 2 Distance oracles in weighted graphs.

’ Construction ‘ Space ‘ Time ‘ Stretch ‘ Ref. ‘ Comments ‘
O(mn'/*) O(n'*1/k) o(1) 2%k —1 [36]
O(mn>/*) D(m + ntt/E) D (unc/*) 2k —1—4c Thl 1<ec<k/2
O(mn®/'*) D(m + ntt1/k) O(un") 2k(1—2r)—1 Thl c/k=r<1/2
O(mn'/*) D(m +n*E)y | O(un'/*) 2k — 2 [22] k>3
O(mn*/*) D(m 4+ n'TVEY | O(unt/*) 2k — 3 Th15[27] k>3
O(mn2/*) D(m + ntT/k) O(un*'*) 2k — 4 Th2 k>4
O(mn>/*) D(m + nttk) O(unt/*) 2k —5 Thl k>5
O(mn?'?) O(m 4 n*/?) O(un'’?) 3 [7]
O(mn*/?) O(m 4 n*/?) O(un*’?) 3 Th15[27]
O(mn'/?) O(m +n°/*) O(unt’*) 4 Th2
O(mn®/®) O(m + n%/?) O(un*/?) 5 Thl
O(mn'~°) O(m +n?~°) O(u'n') 141/t [6] c<1/2
O(mn'~°) O(m+n?7°) | O(utnV) | 141/(t+0.5) [6] c<1/2
O(mn'~°) O(m + n?*=%°) O(utnt®) 142/t Th8 c<1/3
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A.2 n-PSP and AN SC results

Table 3 nPSP in weighted graphs unless stated otherwise. ¢ = d(u,v).

’ Time ‘ Approximation ‘ Ref. ‘ Comment
O(m + n'+2/k) (2k — 1)(2k — 2)0 + 4k — 2 [22] Unweighted, k > 2
O(m + n'+2/k) (2k — 1)(2k — 3)6 Theorem 12 E>2

Q(m? FprT W) (1+1/k)s [22]
O(m> Fip®) (1+1/k)S [6]°
O(mlf%ﬂn) 0+ 2[6/2k] Theorem 11 | Unweighted, k > 2

Table 4 ANSC algorithm improvements in undirected graphs. SC(u) is the shortest cycle for u.

’ Time ‘ Approximation ‘ Ref. ‘ Comment
D(m*= kY 1 SC(u) + 2[SC(u)/2(k — 1)] [22] Unweighted, k > 2
O(mn'=1/*) SC(u) 4+ 2[SC(u)/2(k —1)] | Theorem 13 | Unweighted, k > 2
O(m> %) (14 £5)SC(u) Theorem 14 | Weighted, k > 2

8 This result is obtained by constructing the distance oracle of Agarwal [6] and querying it n times.
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