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Abstract
The Subset Sum Ratio problem (SSR) asks, given a multiset A of positive integers, to find two
disjoint subsets of A such that the largest-to-smallest ratio of their sums is minimized. In this paper
we study the k-version of SSR, namely k-Subset Sum Ratio (k-SSR), which asks to minimize the
largest-to-smallest ratio of sums of k disjoint subsets of A. We develop an approximation scheme for
k-SSR running in O(n2k/εk−1) time, where n = |A| and ε is the error parameter. To the best of our
knowledge, this is the first FPTAS for k-SSR for fixed k > 2.

We also study the k-way Number Partitioning Ratio (k-PART) problem, which differs
from k-SSR in that the k subsets must constitute a partition of A; this problem in fact cor-
responds to the objective of minimizing the largest-to-smallest sum ratio in the family of Multiway
Number Partitioning problems. We present a more involved FPTAS for k-PART, also achieving
O(n2k/εk−1) time complexity. Notably, k-PART is also equivalent to the Minimum Envy-Ratio
problem with identical valuation functions, which has been studied in the context of fair division
of indivisible goods. Thus, for the case of identical valuations, our FPTAS represents a significant
improvement over the O(n4k2+1/ε2k2

) bound obtained by Nguyen and Rothe’s FPTAS [36] for
Minimum Envy-Ratio with general additive valuations.

Lastly, we propose a second FPTAS for k-SSR, which employs carefully designed calls to the first
one; the new scheme has a time complexity of Õ(n/ε3k−1), thus being much faster when n ≫ 1/ε.
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1 Introduction

The Subset Sum and Partition problems are fundamental in combinatorial optimization,
with numerous applications in fair resource allocation, cryptography and scheduling. The
Equal Subset Sum (ESS) problem [43] asks for two disjoint subsets of a given set with
equal sums, while its optimization counterpart, Subset Sum Ratio (SSR) [43, 4], asks
to minimize the ratio of sums of two disjoint subsets. These NP-hard problems arise in
bioinformatics [15, 14], game theory and economics [30, 18], and cryptography [44], among
others. A special case of ESS belongs to PPP [37], which is a subclass of TFNP, further
adding to the ongoing interest for these problems.

In this paper we consider variations involving multiple subsets, namely k-Subset Sum
Ratio (k-SSR) and k-way Number Partitioning Ratio (k-PART)2. In k-SSR, the goal
is to find k disjoint subsets such that the largest-to-smallest ratio of their sums is minimized,
while k-PART further requires these subsets to form a partition of the input. Since these
problems are NP-hard, we consider approximation algorithms. In particular, we present fully
polynomial-time approximation schemes (FPTASs) for both problems.

Our results apply, among others, to scheduling tasks across k processors (e.g. [39, 17, 22,
16]), as well as to fair division of indivisible goods, in particular the study of envy in discrete
settings (e.g. [30, 36, 28] and more recently [2, 41, 45]). Specifically, k-PART is equivalent to
the Minimum Envy-Ratio problem [30] with identical valuation functions, for which we
achieve a significant improvement over (more general) earlier work [36].

Related work

Since Bellman’s seminal work on Subset Sum [5], no major improvement had occurred until
a recent spike in interest culminated in various faster pseudo-polynomial algorithms [26, 7,
23, 12] and FPTASs [25, 20].

The ESS and SSR problems have seen recent advances, including FPTASs for SSR [35, 31,
1, 8] and an improved exact algorithm for ESS [33]. Notably, Bringmann [8] provided an SSR
FPTAS running in time O(n/ε0.9386), which is faster than known Subset Sum lower bounds.
He achieved this in part by considering two cases based on input density. If the input is
dense, a pigeonhole argument guarantees two subsets with sums within 1 + ε and removing
their intersection yields an approximate solution. If the input is sparse, keeping only the
polylog(1/ε) largest elements is proven to be sufficient for the approximation. Regarding
variations of (Equal) Subset Sum involving k ≥ 2 subsets, [3] extends the techniques
of [26, 7] to provide both deterministic and randomized pseudo-polynomial algorithms.

For Partition, advances include a number of (very) recent FPTASs [34, 9, 11], with
the latest work by Chen et al. [13] achieving an FPTAS running in time Õ(n + 1/ε), which
is near optimal under the Strong Exponential Time Hypothesis. In Multiway Number
Partitioning [6, 40, 27, 38], different objective functions define various approaches to
distributing elements among subsets, such as minimizing the maximum sum, maximizing the
minimum sum, minimizing the largest-to-smallest difference of sums, or minimizing the largest-
to-smallest ratio of sums. These objectives are not comparable: there are instances showing
that the corresponding optimal solutions differ; we discuss this in detail in Subsection 2.1,
along with applications of each variation.

2 This problem is usually referred to as “multiway”, but we call it “k-way” to emphasize that k is fixed.
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Bazgan et al. [4] provided the first FPTAS for SSR and demonstrated that Subset Sum
Difference does not admit an FPTAS, unless P = NP. Similar arguments that apply to
Partition have been further studied in [42]. Additionally, various related problems such as
3-Partition and Bin Packing are strongly NP-hard [19], implying that they do not admit
an FPTAS or a pseudo-polynomial time algorithm unless P = NP. However, these problems
involve a non-constant number of subsets. For our problems, we consider a fixed number k

of disjoint subsets. This restriction is quite natural in applications, as it is more likely to
distribute a great amount of items to a small number of agents.

Sahni presents an FPTAS for Multiway Number Partitioning in [39] that minimizes
the largest sum. However, this technique does not seem applicable to minimize the ratio.
In [30], Lipton et al. show a PTAS for Minimum Envy-Ratio with identical valuations
and non-constant number k of agents, while claiming the existence of an FPTAS when k is
constant. Furthermore, in [36] Nguyen and Rothe show an FPTAS running in O(n4k2+1/ε2k2)
time for the same problem with fixed k and general additive valuation functions.

Our contribution

In this paper, we present two FPTASs for k-SSR achieving running times3 of O(n2k/εk−1)
and Õ(n/ε3k−1), and an FPTAS for k-PART running in time O(n2k/εk−1). The latter
represents a considerable improvement when compared to the FPTAS of [36], which is the
best known bound for k-PART, although it concerns a more general setting. Note that the
largest-to-smallest ratio of sums is the only objective function considered in the literature
that both admits an FPTAS and is of interest to the study of envy. Our approach builds
upon methods established for SSR [35, 31, 8], while introducing novel strategies to address
the multi-subset setting and to comply with the partitioning constraint.

We present our first FPTAS for k-SSR in Section 3; to the best of our knowledge, this is
the first ever FPTAS for this problem. To this end, we define a restricted version of k-SSR,
for which we present a pseudo-polynomial time algorithm. Our approach relies on proving
that the optimal solution of the restricted problem satisfies certain properties, while carefully
handling edge cases involving large singleton sets.

Concerning k-PART, the partitioning constraint renders the application of our techniques
more involved; we overcome this in Section 4 by identifying a perfect restriction parameter
that ensures the existence of a well-behaved optimal solution. Interestingly, although this does
not yield a pseudo-polynomial time algorithm for the respective restricted case, combining
the aforementioned property with approximation techniques yields an FPTAS for k-PART.

Additionally, building on Bringmann’s work [8], we find that applying density arguments
to k-SSR encounters an obstacle in the dense case: obtaining k subsets with approximately
equal sums is unhelpful, since removing their intersection does not guarantee a feasible k-SSR
solution. We resolve this in Section 5 by restricting our density argument to singletons and
subsequently using our FPTAS from Section 3 as a subroutine on reduced instances.

2 Preliminaries

2.1 Objective functions for Multiway Number Partitioning
There are four objective functions commonly used for Multiway Number Partitioning,
each one having applications in different fields.

3 Õ hides polylog(1/ε) factors.
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1. Minimizing the largest sum. This is also known as makespan minimization and is used
for the Minimum Finish Time problem in the context of identical machine scheduling
[39, 22]. It is also used in problems related to bin packing [29].

2. Maximizing the smallest sum. This objective function has been studied in works related
to scheduling [17] and bin packing [29]. It has also been studied in works related to
the maximin share [21, 28, 10], which is a criterion for fair item allocation. Note that
algorithms for objective function (2) can be modified to work for (1) and vice versa [27].

3. Minimizing the difference between the largest and the smallest sum. This objective
function is less common, but it has been studied in works related to Multiway Number
Partitioning, such as [32, 27]. No FPTAS exists for this objective [4, 42].

4. Minimizing the ratio between the largest and the smallest sum (e.g. [3]). Although
this objective function is often overlooked in works regarding Multiway Number
Partitioning (e.g. [27, 40]), it has been studied in the field of fair division, in the form
of the Minimum Envy-Ratio problem [30, 36], as well as in the context of scheduling [16].

In this paper, we consider (4) as an objective function for k-way Number Partitioning.
Observe that all four objectives are equivalent when k = 2; this does not hold for k ≥ 3. This
is well known for the first three objectives [27], but, for the sake of completeness, we will
provide some counterexamples that prove that (4) is not equivalent to any of the other three,
for k ≥ 3.

It is easy to find counterexamples for the first two. Consider input {1, 2, 3, 10} for k = 3.
The partition ({1}, {2, 3}, {10}) minimizes the largest sum, but does not have optimal ratio.
Similarly, consider {5, 5, 5, 10} for k = 3. The partition ({5}, {5}, {5, 10}) maximizes the
smallest sum, but does not have optimal ratio.

Finally, consider input {16, 16, 18, 20, 24, 27, 29, 40} for k = 4. The following table
compares the solution that minimizes the difference with the solution that minimizes the
ratio.

Table 1 Comparison of Multiway Number Partitioning solutions.

Solution Sums Difference Ratio
{40}, {16, 16, 18}, {24, 27}, {29, 20} {40,50,51,49} 11 1.275
{40, 16}, {24, 20}, {16, 29}, {18, 27} {56,44,45,45} 12 1.27273

2.2 Notation and problem definitions
Let [n] = {1, . . . , n} for a positive integer n. We assume that the input A = {a1, . . . , an} of
our problems is sorted4, i.e. a1 ≤ . . . ≤ an.

▶ Definition 1 (Sum of a subset of indices). Given a multiset A = {a1, . . . , an} of positive
integers and a set of indices S ⊆ [n] we define:

Σ(S, A) =
∑
i∈S

ai

4 If the input is not sorted, an additional O(n log n) time would be required. This does not affect the
time complexity of any of our algorithms, assuming that Õ also hides polylog(n) factors.
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▶ Definition 2 (Max and Min of k subsets). Let A = {a1, . . . , an} be a multiset of positive
integers and S1, . . . , Sk be k disjoint subsets of [n]. We define the maximum and minimum
sums obtained by these sets on A as:

M(S1, . . . , Sk, A) = max
i∈[k]

Σ(Si, A) and m(S1, . . . , Sk, A) = min
i∈[k]

Σ(Si, A)

▶ Definition 3 (Largest-to-smallest ratio of k subsets). Let A = {a1, . . . , an} be a multiset of
positive integers and S1, . . . , Sk be k disjoint subsets of [n]. We define the largest-to-smallest
ratio of these k subsets on A as:

R(S1, . . . , Sk, A) =
{

M(S1,...,Sk,A)
m(S1,...,Sk,A) if m(S1, . . . , Sk, A) > 0
+∞ if m(S1, . . . , Sk, A) = 0

Throughout the paper, we refer to the largest-to-smallest ratio of k subsets simply as ratio.
We define the k-Subset Sum Ratio (k-SSR) problem as follows.

▶ Definition 4 (k-SSR). Given a multiset A = {a1, . . . , an} of positive integers, find k

disjoint subsets S1, . . . , Sk of [n], such that R(S1, . . . , Sk, A) is minimized.

▶ Observation 5. Only the maximum and minimum sums affect the ratio function. If the
remaining sets are altered without a sum becoming greater than the maximum or smaller
than the minimum, the ratio remains unaffected. Additionally, if the minimum sum increases
or the maximum sum decreases (while the other remains unchanged), the ratio decreases.

Note that multisets are allowed as input, since they are not a trivial case for k-SSR (in
contrast to regular SSR), unless there is a number with multiplicity k or more. Throughout
the paper, when referring to a solution S = (S1, . . . , Sk), we will use the simplified notations
R(S, A), M(S, A), m(S, A) to denote ratio, maximum and minimum sums respectively.

We similarly define the k-way Number Partitioning Ratio (k-PART) problem.

▶ Definition 6 (k-PART). Given a multiset A = {a1, . . . , an} of positive integers, find k

disjoint subsets S1, . . . , Sk of [n] with
⋃k

i=1 Si = [n], such that R(S1, . . . , Sk, A) is minimized.

3 An FPTAS for k-Subset Sum Ratio

We define a restricted version of k-SSR, called k-SSRR, in which the largest element5 of the
first set (S1) is forced to be the smallest among the maxima of all k sets and equal to a given
number p. This definition generalizes the Semi-Restricted Subset-Sums Ratio of [31].

▶ Definition 7 (k-SSRR). Given a sorted multiset A = {a1, . . . , an} of positive integers and
an integer p, 1 ≤ p ≤ n− k + 1, find k disjoint subsets S1, . . . , Sk of [n] with max(S1) = p

and max(Si) > p for 1 < i ≤ k, such that R(S1, . . . , Sk, A) is minimized.6

Most of this section is dedicated to producing an FPTAS for the restricted version k-SSRR,
which is subsequently used as a subroutine to obtain an FPTAS for k-SSR, by iterating over
all possible values of p. Similar reductions to a version with restricted largest elements have
been used in approximation schemes for Subset Sum Ratio [35, 31, 8]. In our paper, this
technique is used to guarantee that each set Si contains a sufficiently large element, which is
critical to ensure that the algorithm is an FPTAS.

5 Throughout the paper, the term element of a set refers to the index 1 ≤ i ≤ n instead of the value ai,
unless explicitly stated otherwise.

6 The case p > n − k + 1 would result in the instance having no feasible solution.

ISAAC 2025
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3.1 Properties of optimal solutions to k-SSRR instances
First, we want to guarantee that there is always an optimal solution to k-SSRR that satisfies
a few important properties. Recall that the input is sorted. Define Q =

∑p
i=1 ai and

q = max{i | ai ≤ Q}. Since Q = Σ([p], A) and S1 ⊆ [p], the following is immediate by Def. 2.

▶ Observation 8. For all feasible solutions (S1, . . . , Sk) to a k-SSRR instance (A, p)

m(S1, . . . , Sk, A) ≤ Σ(S1, A) ≤ Q.

Observations 5 and 8 are used in the proof of the following theorem to transform solutions
without increasing their ratio.

▶ Theorem 9. For any k-SSRR instance (A, p) there exists an optimal solution whose sets
satisfy the following:
1. For all sets Si containing only elements j with aj ≤ Q it holds that Σ(Si, A) < 2Q.
2. Every set containing an element j with aj > Q is a singleton.
3. The union of singleton sets {j} s.t. aj > Q is

⋃x
i=1{q + i}, where x ≥ 0 is the number of

these singleton sets.

Proof. Let S = (S1, . . . , Sk) be an arbitrary feasible solution. If it violates property 1,
i.e. there exists a set Si in S that only contains elements j with aj ≤ Q and has sum
Σ(Si, A) ≥ 2Q, we transform it as follows. For all j ∈ Si, we have

m(S, A) ≤ Σ(S1, A) ≤ Q ≤ Σ(Si \ {j}, A) < Σ(Si, A) ≤M(S, A).

Thus, if we remove an element j from Si, the ratio cannot increase. We remove the smallest
element from Si. As long as the solution still has a set Si violating property 1, we can apply
the same process repeatedly, until there are no more such sets. Since we are only removing
elements, no new sets violating property 1 may appear during this process. Note that the
largest element of every set remains intact, therefore the k-SSRR restrictions max(S1) = p

and max(Si) > p for 1 < i ≤ k are satisfied.
If the new solution S′ violates property 2, i.e. it contains a set Si with an element j s.t.

aj > Q and |Si| > 1, we apply the following transformation. It holds that

m(S′, A) ≤ Σ(S1, A) ≤ Q < Σ({j}, A) < Σ(Si, A) ≤M(S′, A).

As such, replacing set Si with set {j} will result in equal or smaller ratio. We repeat this for
every such set Si, thus yielding a solution in which every such set is a singleton. Note that
the derived solution is a feasible k-SSRR solution and it still satisfies property 1, since we
did not modify sets that contain only elements j with aj ≤ Q.

Finally, if the new solution S′′ violates property 3, i.e. it contains a singleton set {u} s.t.
au > Q and there is an unselected7 element v such that q < v < u, we do the following. It
holds that

m(S′′, A) ≤ Σ(S1, A) ≤ Q < Σ({v}, A) ≤ Σ({u}, A) ≤M(S′′, A).

Thus, selecting v instead of u does not increase the ratio. Repeating this for all u and v

satisfying the above mentioned property forces the union of these singleton sets to contain
the smallest indices possible, yielding a feasible solution that satisfies all three properties.

In conclusion, for any feasible solution we can find another one that satisfies all prop-
erties 1, 2, 3 and has equal or smaller ratio. Thus, applying this to an arbitrary optimal
solution proves the theorem. ◀

7 An element that is not in any set Si of the solution.
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3.2 A pseudo-polynomial time algorithm for k-SSRR

In this subsection we present an exact algorithm for k-SSRR, which runs in O(nQk−1) time
and returns an optimal solution satisfying the properties of Theorem 9. We present the
algorithm in two parts for simplicity. Algorithm 1 picks certain singleton sets with large
elements and calls Algorithm 2 to obtain candidate partial solutions for the remaining sets.
We next describe both algorithms in detail; we refer the reader to the full version of this
paper [24] for the respective pseudocode.

Algorithm 1 Exact_k-SSRR(A, p).

Input: A sorted multiset A = {a1, . . . , an}, ai ∈ Z+ and an integer p, 1 ≤ p ≤ n− k + 1.
Output: Disjoint subsets (S1, . . . , Sk) of [n] with max(S1) = p, max(Si) > p for 1 < i ≤ k,

minimizing R(S1, . . . , Sk, A).

Algorithm 1 iterates over all possible values for the number x of singleton sets {j}, with
aj > Q, specifically x ∈ {0, . . . , min{k − 1, n− q}}. To construct these x sets, it picks the
smallest elements of A that are greater than Q, in accordance to property 3 of Theorem 9.
For each x, Algorithm 1 then calls Algorithm 2 as a subroutine; the latter uses dynamic
programming (DP) to output partial solutions for A′ = {ai ∈ A | ai ≤ Q} and k′ = k − x.
Note that Algorithm 2 is only called in cases where p ≤ |A′|−k′ +1 = q−k +x+1; otherwise,
there is no feasible k-SSRR solution for that value of x (see Definition 7).

Algorithm 1 appends the x precalculated singletons to each partial solution returned
by Algorithm 2 and compares the ratio of each solution in order to find the best one. The
k-SSRR solution returned by Algorithm 1 is optimal, as will be shown in Theorem 12.

Algorithm 2 DP_k-SSRR(A, k, p).

Input: A sorted multiset A = {a1, . . . , aq}, ai ∈ Z+, an integer k ≥ 1 and an integer
p, 1 ≤ p ≤ q − k + 1, with the restriction aq ≤

∑p
i=1 ai.

Output: A set solutions containing tuples of k disjoint subsets (S1, . . . , Sk) of [q], with
max(S1) = p, max(Si) > p for 1 < i ≤ k.

Algorithm 2 draws from techniques of [31] and [35], while employing a more involved
DP formulation to address the multi-subset setting. A DP table T is used to systematically
construct partial solution sets, while ensuring that the constraints of k-SSRR are satisfied.

Each cell of the DP table stores a tuple (S1, . . . , Sk, sum1), where Sj (1 ≤ j ≤ k) are
the sets associated with said cell and sum1 = Σ(S1, A). The coordinates of a cell Ti[D][V ]
consist of the following components:
1. An index i, indicating the number of elements examined so far.
2. A difference vector D = [d2, d3, . . . , dk] (sorted in nondecreasing order) that encodes the

differences between the sum of S1 and the sums of the other sets, i.e. dj = Σ(S1, A)−
Σ(Sj , A).

3. A Boolean validity vector V = [v2, v3, . . . , vk], where each vj is true iff max(Sj) > p.

The differences are used as coordinates in the DP table instead of the sums of the sets,
in order to decrease the complexity of the algorithm by an order of Q (see Lemma 13). We
also introduce V as a coordinate, which is crucial to ensure optimality without increasing
the complexity of the algorithm; essentially, the ratio of two tuples can be compared only if
all of their validity Booleans are equal (see Lemma 10).

ISAAC 2025



44:8 FPTASs for k-SSR and k-PART

We now describe the DP process in a bottom-up manner. All cells Ti[D][V ] are initialized
to empty tuples, except the cell T0[ap, . . . , ap][false, . . . , false], which is initialized to
({p}, ∅, . . . , ∅, ap), thus forcing p to be contained in S1. Every element i ∈ [q] is processed
in increasing order. Assuming row Ti−1 contains tuples constructed by using elements up
to i− 1 (along with p, which is always in S1), the next row Ti is filled as follows. For each
non-empty tuple C = (S1, . . . , Sk, sum1) contained in some cell Ti−1[D][V ], D = [d2, . . . , dk],
V = [v2, . . . , vk], we sequentially consider the cases below:

Element i is not added to any set of C. In this case, C is copied into Ti[D][V ].
Element i is added to S1 (only if i < p). This produces a new tuple C ′ = (S1 ∪
{i}, . . . , Sk, sum1 + ai) to be inserted into Ti[D′][V ], where D′ = [d′

2, . . . , d′
k] is the

appropriately updated difference vector, i.e. d′
j = dj + ai, 1 < j ≤ k.

Element i ̸= p is added to each set Sj (1 < j ≤ k), one at a time. This produces a new
tuple (S1, . . . , Sj ∪{i}, . . . , Sk, sum1), a difference vector [d′

2, . . . , d′
k] and a validity vector

[v′
2, . . . , v′

k]. Specifically, v′
j is set to true if i > p and d′

j is set to dj − ai, while v′
u = vu

and d′
u = du for all u ̸= j. This difference vector is then sorted in nondecreasing order,

while the sets and the validity vector are rearranged accordingly, thus producing a tuple
C ′ and vectors D′, V ′. The tuple C ′ is then inserted into Ti[D′][V ′].

Algorithm 2 prevents the new tuple from being inserted into a cell in the following cases:
1. The cell already contains another tuple with equal or larger sum1 (see Lemma 10).
2. The updated vector D′ contains a difference smaller than or equal to −2Q. Such a tuple

can be ignored, due to property 1 of Theorem 9.

In the end, Algorithm 2 returns all non-empty tuples contained in cells
Tq[D][true,. . . ,true] (for all D), thus ensuring that every partial solution returned to
Algorithm 1 complies with the k-SSRR restrictions. This concludes the description of
Algorithm 2.

We say that a conflict occurs when a tuple is to be stored in a cell Ti[D][V ] which is
already occupied by another (non-empty) tuple. Note that conflicting tuples must have the
same difference and validity vectors and only use elements up to i. Since the DP process must
minimize the overall ratio, including potential singletons not participating in said process,
conflict resolution becomes more involved for k > 2.

▶ Lemma 10 (Conflict resolution). Let C1 = (S1, . . . , Sk, sum1) and C2 = (S′
1, . . . , S′

k, sum′
1)

be two tuples that result in a conflict in a cell Ti[D][V ] of the DP table of Algorithm 2, such
that sum1 < sum′

1. No optimal k-SSRR solution may use8 C1.

Proof. Let S be a k-SSRR solution. Split S in two: Ssmall, containing the k′ sets returned by
Algorithm 2, and Slarge, containing the singletons {j} s.t. aj > Q. Assume Ssmall uses C1.

By assumption, C1 and C2 have identical D and V vectors and their sets involve only
elements from [i]. This implies that any combination of elements larger than i that can later
be added to sets of C1 to construct a partial9 solution with vectors D′, V ′ can also be added
to the corresponding sets of C2 to construct a partial solution with the same vectors D′, V ′.
Let S′

small be the partial solution obtained by using C2 instead of C1 and adding the same
combination of elements that would have been used to obtain Ssmall from C1. Consider the
solution S′ that is obtained by appending Slarge to S′

small. Note that Ssmall and S′
small have

the same validity vector, hence S′ is also a feasible k-SSRR solution.

8 In our dynamic programming framework, we say that a solution S uses a tuple C = (S1, . . . , Sk, sum1)
if C appears in an intermediate step of the construction of S.

9 We denote as partial a solution for which Slarge will be appended to obtain a feasible k-SSRR solution.
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Let Ms, ms be the maximum and minimum sum of Ssmall respectively and M ′
s, m′

s those
of S′

small. Since sum1 < sum′
1 and the difference vector D is the same for both solutions, it

follows that Ms < M ′
s, ms < m′

s and Ms −ms = M ′
s −m′

s. From these, we obtain

Ms

ms
>

M ′
s

m′
s

. (1)

Let {t} ∈ Slarge be the singleton set with the largest element. For all {i} ∈ Slarge such
that i ̸= t, we have

ms ≤ Σ(S1, A) ≤ Q < Σ({i}, A) ≤ Σ({t}, A).

This implies that {i} (i ̸= t) does not affect the ratio and {t} only affects the ratio if at > Ms.
Thus, all the sets in Slarge can be ignored when calculating R(S, A), except for {t} if at > Ms.
The same holds for R(S′, A) and M ′

s. Consider three cases:
1. Ms < M ′

s < at. In this case, R(S, A) = at/ms and R(S′, A) = at/m′
s. Since ms < m′

s:
R(S, A) > R(S′, A).

2. Ms < at ≤ M ′
s. In this case, R(S, A) = at/ms > Ms/ms and R(S′, A) = M ′

s/m′
s. By

inequality (1): R(S, A) > R(S′, A).
3. at ≤ Ms < M ′

s. In this case, R(S, A) = Ms/ms and R(S′, A) = M ′
s/m′

s. By inequality
(1): R(S, A) > R(S′, A).

In all cases R(S, A) > R(S′, A), therefore S cannot be optimal. ◀

▶ Lemma 11 (Feasibility). Every k-tuple of sets considered by Algorithm 1 is a feasible
k-SSRR solution.

Proof. The x singletons constructed by Algorithm 1 are disjoint and contain elements larger
than q. In Algorithm 2, every element i ≤ q is processed in increasing order and added to at
most one set at a time. As such, all sets are disjoint. Note that p is contained in S1 and S1
cannot receive a larger element. Recall that vi is set to true when Si receives an element
j > p and Algorithm 2 only returns solutions with V = [true, . . . , true]. Thus, all k-SSRR
restrictions regarding the largest element of each set are satisfied. ◀

The proof of the following theorem uses Lemmas 10 and 11. The main idea is to show that
Algorithm 1 considers and therefore finds the optimal solution whose existence is guaranteed
by Theorem 9.

▶ Theorem 12 (Optimality). Algorithm 1 returns an optimal solution for k-SSRR.

Proof. Lemma 11 guarantees that Algorithm 1 returns a feasible k-SSRR solution, so we only
need to prove that its ratio is optimal. Let S∗ be the optimal k-SSRR solution guaranteed
by Theorem 9. We split S∗ in two: S∗

large, which contains the singleton sets {j} s.t. aj > Q,
and S∗

small, which contains the rest of the sets. Note that the number x of these singletons is
bounded by k−1 or by the amount of sufficiently large elements, i.e. n−q. Thus, Algorithm 1
considers every Slarge that satisfies properties 2 and 3 of Theorem 9, including S∗

large.
Recall that Algorithm 1 uses Algorithm 2 as a subroutine in order to obtain candidate

partial solutions, to which S∗
large will be appended. We would like S∗

small to be contained in
the solutions returned by Algorithm 2.

Algorithm 2 prunes a solution if a difference dj would become lower than or equal to −2Q.
Any Ssmall satisfying property 1 of Theorem 9 will not be affected by this. This includes
S∗

small.
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When there is a conflict in a cell Ti[D][V ] between two tuples with different sum1 values,
S∗

small cannot use the one with smaller sum1 (by Lemma 10), since S∗ is a optimal. When
there is a conflict in a cell Ti[D][V ] between two tuples C1, C2 with equal sum1 values,
observe that both tuples have exactly the same sums (but different sets), use only elements
up to i and have the same validity vector. This implies that any combination of elements
greater than i that can later be added to sets of C1 can also be added to the same sets of C2
and vice versa. Thus, any combination of sums that can be reached through C1 can also be
reached through C2 and vice versa. This means that if one of these tuples leads to S∗

small,
the other one leads to another partial solution S∗∗

small, which has exactly the same sums as
S∗

small. Appending S∗
large to S∗∗

small yields a solution with the same sums as S∗, i.e. another
optimal solution.

It follows directly from the description of Algorithm 2 that it constructs every possible
combination of disjoint sets S1, . . . , Sk−x with max(S1) = p, apart from the ones pruned as
explained in the previous paragraphs.

Therefore, the partial solutions returned by Algorithm 2 contain S∗
small or another partial

solution with the same sums, which also leads to an optimal solution when appended with
S∗

large. In either case, Algorithm 1 will find an optimal solution when iterating to find the
best ratio. ◀

▶ Lemma 13 (Complexity). Algorithm 1 runs in time O(nQk−1).

Proof. Algorithm 1 calls Algorithm 2 once for each value of x in {0, . . . , min{k − 1, n− q}},
where x is the number of singleton sets {j} s.t. aj > Q. For a fixed x, Algorithm 2 is applied
to an instance with k′ = k − x sets and q = O(n) elements.

Due to the pruning done in Algorithm 2, it holds that ∀j ∈ {2, . . . , k′}: −2Q < dj ≤ Q,
where the second inequality holds because Σ(S1, A) ≤ Q. Since the algorithm stores D in
non-decreasing order (i.e., d2 ≤ d3 ≤ · · · ≤ dk′), there are O((3Q)k′−1/(k′ − 1)!) distinct
difference vectors. Taking into account the validity vector V and all Ti’s, we obtain the
following bound for the amount of DP cells: O(n(6Q)k′−1/(k′ − 1)!).

For constant k, this bound becomes O(nQk′−1). Note that all operations of Algorithm 2
on DP cells (such as sorting the difference vector after adding an element) run in time
O(k′), so the time complexity of Algorithm 2 is O(nQk′−1) = O(nQk−x−1). Hence, the time
complexity of Algorithm 1 is bounded by:

k−1∑
x=0

nQk−x−1 = O(nQk−1) ◀

3.3 FPTASs for k-SSRR and k-SSR

By Theorem 12 and Lemma 13, Algorithm 1 solves k-SSRR in pseudo-polynomial time.
To obtain an FPTAS for k-SSRR, we scale (and round down) the input set by a factor
δ = ε·ap

3·n (cf. [31, 35]).
This leads to Algorithm 3, which calls Algorithm 1 in order to find an optimal solution

for the rounded input Ar, yielding a (1 + ε)-approximation of the (largest-to-smallest) ratio
of an optimal solution (S∗

1 , . . . , S∗
k) of the original k-SSRR instance.
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Algorithm 3 FPTAS_k-SSRR(A, p, ε).

Input: A sorted multiset A = {a1, . . . , an}, ai ∈ Z+, an integer p such that 1 ≤ p ≤ n−k +1
and an error parameter ε ∈ (0, 1).

Output: Disjoint subsets (S1, . . . , Sk) of [n] with max(S1) = p, max(Si) > p for 1 < i ≤ k

and R(S1, . . . , Sk, A) ≤ (1 + ε) · R(S∗
1 , . . . , S∗

k , A).
1: δ ← ε·ap

3·n , Ar ← ∅
2: for i← 1, . . . , n do ar

i ← ⌊ai

δ ⌋, Ar ← Ar ∪ {ar
i }

3: (S1, . . . , Sk)← Exact_k-SSRR(Ar, p) ▷ Call Alg. 1 for rounded instance
4: return S1, . . . Sk

▶ Theorem 14 (k-SSRR approximation). Let (S1, . . . , Sk) be the sets returned by Algorithm 3
for a k-SSRR instance (A = {a1, . . . , an}, p) with error parameter ε. Let (S∗

1 , . . . , S∗
k) be an

optimal solution for the same k-SSRR instance. Then:

R(S1, . . . , Sk, A) ≤ (1 + ε) · R(S∗
1 , . . . , S∗

k , A)

The proof of Theorem 14 closely follows the proofs presented in section 5 of [31]. We include
the proof in the full version of this paper [24].

By Lemma 13, Algorithm 3 solves k-SSRR in O(nQk−1) (where Q =
∑p

i=1 ar
i ). Since we

scaled the input by δ, the values of Q are bounded as follows:

Qk−1 =
(

p∑
i=1

ar
i

)k−1

≤
(
n · ar

p

)k−1 ≤
(n · ap

δ

)k−1
=
(

3 · n2

ε

)k−1

= 3k−1 · n2k−2

εk−1

Therefore, Algorithm 3 runs in time O(n2k−1/εk−1). To obtain an FPTAS for the (unrestric-
ted) k-SSR problem, we run Algorithm 3 once for each possible value of p (1 ≤ p ≤ n−k + 1)
and pick the solution with the best ratio. Thus, we obtain the main theorem of this section.

▶ Theorem 15. There is an FPTAS for k-SSR that runs in O(n2k/εk−1) time.

4 An FPTAS for k-way Number Partitioning Ratio

In this section we present an FPTAS for k-way Number Partitioning Ratio (k-PART)
by extending and refining the techniques of Section 3. Recall that in the case of k-PART,
every element needs to be assigned to a set. We define the following restricted version of
k-PART, which is analogous to k-SSRR.

▶ Definition 16 (k-PARTR). Given a sorted multiset A = {a1, . . . , an} of positive integers
and an integer p, 1 ≤ p ≤ n−k+1, find k disjoint subsets S1, . . . , Sk of [n] with

⋃k
i=1 Si = [n],

max(S1) = p and max(Si) > p for 1 < i ≤ k, such that R(S1, . . . , Sk, A) is minimized.

The main challenge in expanding our technique to k-PART stems from the fact that
there exist instances (A, p) of k-PARTR where all optimal solutions violate one or more of
the properties of Theorem 9. This is a problem, since the time complexity of our k-SSRR
algorithm relies heavily on Theorem 9.

We overcome this by showing that there exists a p∗ such that the corresponding optimal
solution S∗ to (A, p∗) is well-behaved (see Theorem 18). It suffices to guarantee that for p∗,
the algorithm will consider S∗ (or another equivalent solution) as a candidate solution for
the rounded k-PARTR instance. Note that since S∗ is not guaranteed to be optimal for the
rounded k-PARTR instance, we obtain neither an exact algorithm nor an FPTAS for the
restricted problem k-PARTR.
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4.1 Properties of k-PARTR instances
▶ Definition 17 (Perfect p). Let A = {a1, . . . , an} be the input to the k-PART problem. We
call a number p : 1 ≤ p ≤ n− k + 1 perfect for A if the optimal solution(s) for the k-PARTR
instance (A, p) have the same (largest-to-smallest) ratio as the optimal solution(s) for the
k-PART instance A.

We define Q =
∑p

i=1 ai and q = max{i | ai ≤ Q}, in the same manner as we did for
k-SSRR. The next theorem is analogous to Theorem 9, with a key difference: its properties
are only guaranteed for some perfect p. Its proof uses arguments similar in spirit to the
proof of Theorem 9. Special attention is required since elements that violate a property are
reassigned to other sets rather than being removed entirely from the solution. This may
cause some k-PARTR restriction to be violated, thus rendering the proof significantly more
involved.

▶ Theorem 18. Given a k-PART instance A, there exists a perfect p for A, for which there
is an optimal solution for the k-PARTR instance (A, p) satisfying the following properties:
1. For all sets Si containing only elements j ≤ q it holds that Σ(Si, A) < 2Q.
2. All elements j > q are contained in singleton sets.

Proof. For some arbitrary value of p, let S = (S1, . . . , Sk) be an arbitrary feasible solution
for the k-PARTR instance (A, p). If S breaks property 2, i.e. there exists a set Si in S with
|Si| > 1 containing an element j > q, we do the following. Let Sm be a set with minimum
sum10 and u the smallest element of Si. The following inequalities hold.

m(S, A) = Σ(Sm, A) ≤ Q < Σ(Si \ {u}, A)

Σ(Sm ∪ {u}, A) ≤ Q + au < Σ(Si, A) ≤M(S, A)

From these we can infer that, by moving u from Si to Sm, the minimum sum cannot decrease
and the maximum cannot increase. Thus, we move u as described, yielding a solution S′

with R(S′, A) ≤ R(S, A). However, it might be the case that Sm is S1 and adding u to it
breaks the restrictions of k-PARTR, so S′ might not be a feasible solution for (A, p). For the
new solution S′, define p′ as the minimum among the maxima of its k sets and call S1 the
set that contains p′. Note that S′ is a feasible solution for the k-PARTR instance (A, p′).

If S′ still breaks property 2 for Q′ =
∑p′

i=1 ai and q′ = max{i | ai ≤ Q′}, apply the same
process. By doing this repeatedly, p cannot decrease and the ratio of the solution cannot
increase. Note that p cannot exceed n − k + 1 with this process, so at some point p will
stop increasing. Let pf be this final value and define Qf , qf accordingly for pf . Repeating
the process will at some point yield a solution that satisfies property 2 for the k-PARTR
instance (A, pf ).

Let S′′ be the feasible solution for the k-PARTR instance (A, pf ), derived from the process
described in the previous paragraphs. S′′ satisfies property 2 for values Qf , qf . If S′′ breaks
property 1, i.e. it contains a set Si consisting only of elements j ≤ qf and having sum
Σ(Si, A) ≥ 2Qf , we apply the following transformation. Let Sm be a set with minimum sum.
Take the smallest element j from Si and move it to Sm. Observe that aj ≤ Qf . Hence, the
following inequalities hold.

m(S′′, A) = Σ(Sm, A) ≤ Qf ≤ Σ(Si \ {j}, A)

Σ(Sm ∪ {j}, A) ≤ 2Qf ≤ Σ(Si, A) ≤M(S′′, A)

10 There could be multiple sets with the same (minimum) sum.
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From these we can infer that, by moving j from Si to Sm, the minimum sum cannot decrease
and the maximum cannot increase. We repeatedly apply this process until we end up with a
solution satisfying property 1, just like we did in the previous paragraphs for property 2,
since the same arguments hold regarding the increment of p and the ratio not increasing.
Furthermore, this transformation preserves property 2, as p cannot decrease through this
process and we only add elements to the set with the smallest sum (which cannot be a set
containing an element j > q).

In conclusion, for any feasible solution for a k-PARTR instance (A, p) that violates some
property, we can find a feasible solution for another k-PARTR instance (A, pnew) that satisfies
both properties and has equal or smaller ratio. Suppose we apply this to an optimal solution
for a k-PARTR instance (A, p), with p being perfect11 for the k-PART instance A. Since the
ratio of the solution does not increase throughout the constructions described in this proof,
any new p′ obtained by the constructions must also be perfect and the solution obtained
must be optimal for (A, p′). ◀

Let p∗ be one of the perfect elements guaranteed to exist by Theorem 18 for A and S∗ be
a respective optimal solution for (A, p∗) satisfying properties 1 and 2. The following lemmas
indicate that we can prune certain values of p, without missing S∗. We define x = n − q.
Intuitively, for (A, p∗), x is the number of large elements that must be contained in singleton
sets in S∗, according to Theorem 18.

▶ Lemma 19. If for a k-PARTR instance (A, p) we have x > k − 1, then p ̸= p∗.

Proof. Since S1 cannot contain elements j > q, there are k − 1 sets that can contain such
elements. The number of these elements is x. If x > k − 1, by the pigeonhole principle,
every feasible solution contains a set with two or more of these elements. This contradicts
property 2 of Theorem 18, therefore p ̸= p∗. ◀

▶ Lemma 20. If for a k-PARTR instance (A, p) we have x = k − 1 and p < q, then p ̸= p∗.

Proof. Because p < q, S1 cannot contain q. Thus, there are at least x + 1 = k elements
that cannot be contained in S1, with k − 1 of them being greater than q. By the pigeonhole
principle, every feasible solution contains a set with two or more elements, one of which is
greater than q. This contradicts property 2 of Theorem 18, therefore p ̸= p∗. ◀

4.2 Obtaining an FPTAS for k-PART

We now present the main algorithm for k-PART. Its design is analogous to that of Algorithms
1 and 3, with two important differences:
1. There is no iteration for different amounts of singletons with elements j > q. Instead, we

prune some values of p according to Lemmas 19 and 20 and fix x singletons for the rest.
2. In contrast to k-SSRR, we do not necessarily obtain the optimal solution to each rounded

k-PARTR instance (Ar, p). Interestingly, we will later prove that the obtained solution is
sufficient for the algorithm to be an FPTAS for k-PART.

11 Such a p always exists, by definition.
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Algorithm 4 FPTAS_k-PART(A, ε).

Input: A sorted multiset A = {a1, . . . , an}, ai ∈ Z+ and an error parameter ε ∈ (0, 1).
Output: Disjoint subsets (S1, . . . , Sk) of [n], such that

⋃k
i=1 Si = [n] and their ratio satisfies

R(S1, . . . , Sk, A) ≤ (1 + ε)R(S∗
1 , . . . , S∗

k , A).
for p← 1, . . . , n− k + 1 do

best_ratio[p]←∞, best_solution[p]← (∅, . . . , ∅)
for p← 1, . . . , n− k + 1 do

Q←
∑p

i=1 ai, q ← max{i | ai ≤ Q}, x← n− q

if x > k − 1 ∨ (x = k − 1 ∧ p < q) then ▷ Lemmas 19 and 20
continue to next p

for y ← 1, . . . , x do Sk−x+y ← {q + y} ▷ x singletons
δ ← ε·ap

3·n , Ar ← ∅, k′ ← k − x

for i← 1, . . . , n do ar
i ← ⌊ai

δ ⌋, Ar ← Ar ∪ {ar
i }

A′
r ← {ar

1, . . . , ar
q} ▷ q items for DP

DP_solutions← DP_k-PARTR(A′
r, k′, p, Q/δ)

for all (S1, . . . , Sk′) in DP_solutions do
current_ratio← R(S1, . . . , Sk, Ar) ▷ k-PARTR solution
if current_ratio < best_ratio[p] then

best_solution[p]← (S1, . . . , Sk) ▷ Best solution for each Ar

best_ratio[p]← current_ratio ▷ and its ratio
final_ratio←∞, final_solution← 0
for p← 1, . . . , n− k + 1 do ▷ Iterate for all p to find best sol. for A

current_ratio← R(best_solution[p], A)
if current_ratio < final_ratio then

final_solution← best_solution[p]
final_ratio← current_ratio

return final_solution

Algorithm 4 calls a dynamic programming subroutine for each value of p, in or-
der to find candidate partial solutions for elements j ≤ q. This DP subroutine,
DP_k-PARTR(A′

r, k′, p, Q), is a direct extension of Algorithm 2, with the following three
differences.

1. The case of an element not being added to any set is skipped.
2. When a conflict occurs in a DP cell Ti[D][V ], we do not use sum1 to resolve it. For

k-PARTR every element is included in some set, thus conflicts can only occur between
tuples with identical sums. Hence, it does not matter which tuple is preferred (as proven
in Theorem 12 for conflicts with equal sums) and there is no need to ever consider sum1.

3. The bound for pruning large negative differences is chosen as −2Q/δ, where Q =
∑p

i=1 ai

is calculated using the initial values ai instead of the scaled and rounded values ar
i . This

is necessary to avoid pruning edge case solutions. We will expand on this in Lemma 22.

The respective pseudocode is included in the full version of this work [24]. We now present
the following lemma, whose proof is essentially identical to that of Lemma 11.

▶ Lemma 21 (Feasibility). Every k-tuple of sets whose R(S1, . . . , Sk, Ar) value is considered
by Algorithm 4 is a feasible solution for the k-PARTR instance (Ar, p).

Recall that we defined p∗ and S∗ as a perfect p and a respective optimal solution for
(A, p∗) whose existence is guaranteed by Theorem 18.
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▶ Lemma 22 (Near-optimality). When Algorithm 4 iterates to compare the ratio of solutions
for the k-PARTR instance (Ar, p∗), it will consider either S∗ or another solution S =
(S1, . . . , Sk) with Σ(Si, Ar) = Σ(S∗

i , Ar), ∀i ∈ [k].

Proof. According to Lemmas 19 and 20, we cannot have x > k−1 or x = k−1 and p < q for
p = p∗. The singleton sets enforced by Algorithm 4 are exactly the singleton sets contained
in S∗, according to property 2 of Theorem 18.

Recall that a solution in the DP subroutine is pruned if it has some difference dj ≤ −2Q/δ.
By property 1 of Theorem 18, it holds that Σ(S∗

i , A) < 2Q, ∀i ∈ [k − x]. Since Ar contains
elements scaled by δ and rounded down, we infer that ∀i ∈ [k − x]

Σ(S∗
i , Ar) ≤ Σ(S∗

i , A)/δ < 2Q/δ.

This implies that for S∗, there will be no dj ≤ −2Q/δ (at any point in its dynamic
programming construction).

As already explained, DP conflicts for k-PARTR occur only between tuples with identical
sums. Recall that two conflicting tuples have the same vectors D, V and only use elements
up to some element i, so any combination of elements that can be added to sets of one tuple
can also be added to the respective sets of the other tuple. This is explained in more detail
in the proof of Theorem 12. We infer that it is possible for S∗ to be overwritten by another
solution S = (S1, . . . , Sk) with Σ(Si, Ar) = Σ(S∗

i , Ar), ∀i ∈ [k].
The DP subroutine constructs every possible combination of disjoint sets S1, . . . , Sk−x

with max(S1) = p and
⋃k

i=1 Si = [q], apart from the ones pruned by the cases mentioned in
the previous paragraph. Thus, the lemma follows. ◀

▶ Theorem 23. Algorithm 4 is an FPTAS for k-PART that runs in time O(n2k/εk−1).

Proof. We rely upon the observation that the proof of Theorem 14 does not necessarily
require an optimal solution for the rounded k-SSRR instance Ar; it suffices for the algorithm
to consider a k-SSRR solution S with R(S, Ar) ≤ R(Sopt, Ar), where Sopt is an optimal
solution for the k-SSR instance A (prior to rounding).

First, consider the case p ̸= p∗. If the conditions of Lemma 19 or 20 are met, this p will
be skipped. Otherwise, a k-tuple of sets will be found, which is a feasible solution for the
k-PARTR instance (Ar, p), according to Lemma 21.

Second, consider the case p = p∗. By Lemma 22, Algorithm 4 will consider S∗ or
another solution S with R(S, Ar) = R(S∗, Ar) as a solution for the instance (Ar, p∗).
Therefore, for the solution Salg found by the algorithm in this iteration, it holds that
R(Salg, Ar) ≤ R(S∗, Ar). With the aforementioned observation, the proof of the following
inequality is identical to the proof of Theorem 14.

R(Salg, A) ≤ (1 + ε)R(S∗, A)

Taking into account both cases, the final solution returned by the algorithm is a feasible
k-PART solution for A and has ratio smaller than or equal to that of the solution found in
the p∗-th iteration. It follows that Algorithm 4 is a (1 + ε)-approximation for k-PART.

We now analyze the complexity of the algorithm. The DP subroutine runs in time
O(n(Q/δ)k−1), by the same reasoning as in the proof of Lemma 13 for x = 0 (which is the
worst case). Taking into account the iteration for all possible values of p and using a bound
for Q/δ just like we did for k-SSR, we infer that Algorithm 4 runs in O(n2k/εk−1). ◀
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5 An FPTAS for k-SSR with linear dependence on n

In this section, we provide an alternative FPTAS for k-SSR, using techniques inspired from
[8] to reduce the problem to smaller instances. We then use the k-SSR FPTAS of Section 3
to solve them.

We define an alternative restricted version of k-SSR, called k-SSRL, in which the solution
is forced to contain the largest element of the input. This definition is based on the SSRL
problem defined in [8].

▶ Definition 24 (k-SSRL). Given a sorted multiset A = {a1, . . . , an} of positive integers, find
k disjoint subsets S1, . . . , Sk of [n] with n ∈

⋃k
i=1 Si, such that R(S1, . . . , Sk, A) is minimized.

Let A = {a1, . . . , an} be a sorted multiset of n positive integers. We denote by A[l, r]
the subset of A consisting of all items ai, such that l ≤ i ≤ r. We also use the notation
sum(A) =

∑
a∈A a.

For a multiset A = {a1, . . . , an}, we denote the optimal ratio of the k-SSR instance A

as OPT(A) and the optimal ratio of the k-SSRL instance A as OPTL(A). By definition, it
holds that 1 ≤ OPT(A) ≤ OPTL(A).

▶ Lemma 25. Let A = {a1, . . . , an} be a sorted multiset of positive integers. It holds that

OPT(A) = min
k≤j≤n

OPTL (A[1, j]) .

Proof. Let t ∈ {k, . . . , n} be the maximum element12 contained in some optimal solution S

of the k-SSR instance A. By Definition 24, S is a feasible solution for the k-SSRL instance
A[1, t]. This implies OPT(A) ≥ mink≤j≤n OPTL (A[1, j]).

Note that any feasible solution for a k-SSRL instance A[1, j] (for any j ∈ {k, . . . , n})
is a feasible solution for the k-SSR instance A. Thus, it also holds that OPT(A) ≤
mink≤j≤n OPTL (A[1, j]). ◀

Lemma 26 provides the key structural insight of our algorithm. Intuitively, the fact
that a k-SSRL solution contains the largest element allows us to consider only the largest
O
(
(1/ε) ln(1/ε)

)
elements for each k-SSRL instance A[1, j], in order to obtain a (1 + ε)-

approximation of the optimal k-SSR solution.

▶ Lemma 26 (Largest elements). For any sorted multiset A = {a1, . . . , an} of positive integers
and any ε ∈ (0, 1), the following holds:

OPT(A) ≤ min
k≤j≤n

OPTL
(
A
[
j − C + 1, j

])
≤ (1 + ε)OPT(A), (2)

where C = (c + 1)(k − 1) and c = 1 +
⌈(

1 + 1
ε

)
ln 2(k−1)

ε2

⌉
.

Proof. Since A
[
j − C + 1, j

]
is a subset of A and k-SSRL is (by definition) a restricted

version of k-SSR, it follows directly that

OPT(A) ≤ OPT
(
A
[
j − C + 1, j

])
≤ OPTL

(
A
[
j − C + 1, j

])
.

Note that the above is true for any j ∈ [n], therefore it is also true for the minimum. Thus,
the first inequality of (2) holds. As for the second inequality of (2), we distinguish between
two cases.

12 If t < k, all feasible solutions for both problems have infinite ratio.
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Case 1 (Dense case): There exists some v ∈ {k, . . . , n} s.t. av ≤ (1 + ε)av−k+1. Since
C ≥ k, by setting Si = {v − k + i} for each i ∈ [k], we obtain

min
k≤j≤n

OPTL(A[j − C + 1, j]) ≤ OPTL(A[v − C + 1, v]) ≤ (1 + ε) ≤ (1 + ε)OPT(A).

Case 2 (Sparse case): For all v ∈ {k, . . . , n} it holds that av > (1 + ε)av−k+1. By
repeatedly applying this inequality, it follows that for all v ∈ {k, . . . , n} and all i ≥ 1 such
that v − i(k − 1) ≥ 1,

av−i(k−1) < (1 + ε)−iav. (3)

Thus, for all such v, i it holds that

sum
(

A
[
v − (i + 1)(k − 1) + 1, v − i(k − 1)

])
≤ (k − 1)av−i(k−1)

< (k − 1)(1 + ε)−iav. [by Ineq. (3)] (4)

Consider the set A
[
1, v − c(k − 1)

]
. Splitting this set into subsets of size (at most) k − 1

and using (4) for each of them yields

sum
(

A
[
1, v − c(k − 1)

])
≤ (k − 1)

∞∑
i=0

(1 + ε)−(c+i)av = (k − 1)av

ε(1 + ε)c−1 , (5)

where the last step is calculated as the sum of a geometric series. Note that (5) holds even if
v− c(k− 1) < 1, since then it would be sum

(
A
[
1, v− c(k− 1)

])
= 0. Substituting c into (5)

and using (1 + ε)1+1/ε > e yields

sum
(

A
[
1, v − c(k − 1)

])
<

ε

2 · av.

For any k ≤ j ≤ n, we choose v = j − k + 1 to obtain

sum
(

A
[
1, j − C

])
<

ε

2 · aj−k+1. (6)

Intuitively, inequality (6) is a bound for the sum of the j − C smallest elements of A.
This inequality will be used to obtain a (1 + ε)-approximation by removing these elements
from an optimal k-SSRL solution.

Let S = (S1, . . . , Sk) be an optimal solution for the k-SSRL instance Aj = A[1, j]. We
define

SM = arg max
Si∈S

Σ(Si, Aj) and Sm = arg min
Si∈S

Σ(Si, Aj).

Now consider the k-SSRL instance A′
j = A

[
j − C + 1, j

]
(i.e. A′

j contains the C largest
elements of Aj). For each Si ∈ S, we define S′

i = Si ∩ [j − C + 1, j], i.e. the subset of Si

that contains elements i such that ai ∈ A′
j . We also define the respective k-tuple of sets,

S′ = (S′
1, . . . , S′

k), and the following sets,

SM = arg max
Si∈S

Σ(S′
i, A′

j) and Sµ = arg min
Si∈S

Σ(S′
i, A′

j).

Observe that, by the above definitions, S′
M is a set with maximum sum among all sets in S′

and S′
µ is a set with minimum sum among all sets in S′. By (6), for all i ∈ [k] it holds that

Σ(Si, Aj)− Σ(S′
i, A′

j) ≤ sum
(

A
[
1, j − C

])
<

ε

2 · aj−k+1.
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Therefore, we obtain

Σ(S′
i, A′

j) ≤ Σ(Si, Aj) ≤ Σ(S′
i, A′

j) + (ε/2) · aj−k+1, ∀i ∈ [k]. (7)

We now obtain a bound for the ratio R(S′, A′
j) as follows.

R(S′, A′
j) =

Σ
(
S′

M, A′
j

)
Σ
(
S′

µ, A′
j

) ≤ Σ (SM, Aj)
Σ (Sµ, Aj)− ε

2 · aj−k+1
[by Ineq. (7)]

≤ Σ (SM , Aj)
Σ (Sm, Aj)− ε

2 · aj−k+1
. (8)

Recall that j ∈
⋃k

i=1 Si (by Definition 24), which implies that Σ(SM , Aj) ≥ aj . Let
Ss = {Ss

1 , . . . , Ss
k} be a solution consisting of k singleton sets that contain the k largest

elements of Aj , i.e. Ss
i = {j − i + 1}, ∀i ∈ [k]. Since Ss is a feasible solution for k-SSRL

with ratio aj/aj−k+1, it holds that R(S, Aj) = Σ(SM , Aj)/Σ(Sm, Aj) ≤ aj/aj−k+1. Thus,
we have

Σ(Sm, Aj) ≥ Σ(SM , Aj) · aj−k+1

aj
≥ aj−k+1.

Combining this with (8), we obtain

R(S′, A′
j) ≤ Σ(SM , Aj)

Σ(Sm, Aj)
(
1− ε

2
) = 2

2− ε
· R(S, Aj).

Assuming ε ∈ (0, 1), this becomes R(S′, A′
j) ≤ (1 + ε)R(S, Aj). Note that some set S′

i

contains j, so S′ is a feasible solution for the k-SSRL instance A′
j , therefore

OPTL(A′
j) ≤ R(S′, A′

j) ≤ (1 + ε)R(S, Aj) = (1 + ε)OPTL(Aj).

By the definitions of Aj , A′
j , we have the following for all j ∈ {k, . . . , n}:

OPTL
(
A
[
j − C + 1, j

])
≤ (1 + ε)OPTL(A[1, j]).

Taking the minimum over all j ∈ {k, . . . , n} and using Lemma 25, we have

min
k≤j≤n

OPTL
(
A
[
j − C + 1, j

])
≤ (1 + ε)OPT(A). ◀

▶ Lemma 27 (Reduction). If there is a (1 + ε)-approximation algorithm for k-SSRL running
in time TL(n, ε), then there is a (1 + ε)-approximation algorithm for k-SSR running in time

O

(
nTL

(
9k

ε
ln k

ε
,

ε

3

))
.

Proof. Let A be a multiset of n positive integers a1 ≤ . . . ≤ an. For each j ∈ {k, . . . , n},
consider A′

j = A
[
j − C + 1, j

]
, where

C = (c + 1)(k − 1) and c = 1 +
⌈(

1 + 1
ε

)
ln 2(k − 1)

ε2

⌉
.

Using the given (1 + ε)-approximation algorithm for each of the k-SSRL instances A′
j , we

receive a k-tuple of sets Sj = (Sj
1, . . . , Sj

k) for which R
(
Sj , A′

j

)
≤ (1 + ε)OPTL

(
A′

j

)
. Thus,

min
k≤j≤n

R
(
Sj , A′

j

)
≤ (1 + ε) min

k≤j≤n
OPTL

(
A′

j

)
≤ (1 + ε)2OPT(A). [by Lemma 26]
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For all j ∈ {k, . . . , n}, the set A′
j contains at most C elements, with

C = (k − 1)
(

2 +
⌈(

1 + 1
ε

)
ln 2(k − 1)

ε2

⌉)
< 3k + k

(
1 + 1

ε

)
ln 2k

ε2 <
9k

ε
ln k

ε
,

assuming k ≥ 2 and ε ∈ (0, 1). As such, we have to run the given algorithm on O(n) k-SSRL
instances of size bounded by (9k/ε) ln(k/ε) in order to obtain a (1 + ε)2-approximation
for OPT(A). For all ε ∈ (0, 1) it holds that (1 + ε)2 ≤ 1 + 3ε. Therefore, by setting the
error parameter to ε/3 instead of ε in the approximation algorithm for k-SSRL, we obtain a
(1 + ε)-approximation for OPT(A) running in time

O

(
nTL

(
9k

ε
ln k

ε
,

ε

3

))
. ◀

We now present the main theorem of this section, which follows by using the FPTAS of
Theorem 15 as the (1 + ε)-approximation algorithm for k-SSRL in Lemma 27.

▶ Theorem 28. There is an FPTAS for k-SSR that runs in Õ(n/ε3k−1) time, where Õ hides
polylog(1/ε) factors.

Proof. Let A be a k-SSR instance. Suppose we use our k-SSR FPTAS running in time
TL(n, ε) = O(n2k/εk−1) (see Theorem 15) as a subroutine to solve the k-SSRL instances
A′

j = A
[
j − C + 1, j

]
, k ≤ j ≤ n. This subroutine serves as a (1 + ε)-approximation for

k-SSRL, since for the solution Sj = (Sj
1, . . . , Sj

k) returned it holds that

R
(
Sj , A′

j

)
≤ (1 + ε)OPT(A′

j) ≤ (1 + ε)OPTL(A′
j).

Note that this subroutine does not take into account the k-SSRL restriction j ∈
⋃k

i=1 Sj
i ,

therefore it might return an invalid k-SSRL solution for A′
j . However, all solutions returned

are feasible for the (unrestricted) k-SSR instance A, therefore the solution which yields
mink≤j≤nR

(
Sj , A′

j

)
is a feasible one. As such, by Lemma 27 we obtain another FPTAS for

k-SSR running in time

O

(
nTL

(
9k

ε
ln k

ε
,

ε

3

))
= Õ

( n

ε3k−1

)
. ◀

References
1 Giannis Alonistiotis, Antonis Antonopoulos, Nikolaos Melissinos, Aris Pagourtzis, Stavros

Petsalakis, and Manolis Vasilakis. Approximating subset sum ratio via partition computations.
Acta Informatica, 61(2):101–113, 2024. doi:10.1007/S00236-023-00451-7.

2 Georgios Amanatidis, Aris Filos-Ratsikas, and Alkmini Sgouritsa. Pushing the frontier on
approximate EFX allocations. In Proceedings of the 25th ACM Conference on Economics and
Computation, EC ’24, pages 1268–1286, New York, NY, USA, 2024. Association for Computing
Machinery. doi:10.1145/3670865.3673582.

3 Antonis Antonopoulos, Aris Pagourtzis, Stavros Petsalakis, and Manolis Vasilakis. Faster
algorithms for k-subset sum and variations. J. Comb. Optim., 45(1):24, 2023. doi:10.1007/
S10878-022-00928-0.

4 Cristina Bazgan, Miklos Santha, and Zsolt Tuza. Efficient approximation algorithms for
the SUBSET-SUMS EQUALITY problem. J. Comput. Syst. Sci., 64(2):160–170, 2002.
doi:10.1006/JCSS.2001.1784.

5 Richard E. Bellman. Dynamic programming. Princeton University Press, Princeton, NJ, 1957.

ISAAC 2025

https://doi.org/10.1007/S00236-023-00451-7
https://doi.org/10.1145/3670865.3673582
https://doi.org/10.1007/S10878-022-00928-0
https://doi.org/10.1007/S10878-022-00928-0
https://doi.org/10.1006/JCSS.2001.1784


44:20 FPTASs for k-SSR and k-PART

6 Samuel Bismuth, Vladislav Makarov, Erel Segal-Halevi, and Dana Shapira. Partitioning
problems with splittings and interval targets. In Julián Mestre and Anthony Wirth, editors,
35th International Symposium on Algorithms and Computation, ISAAC 2024, December
8-11, 2024, Sydney, Australia, volume 322 of LIPIcs, pages 12:1–12:15. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2024. doi:10.4230/LIPICS.ISAAC.2024.12.

7 Karl Bringmann. A near-linear pseudopolynomial time algorithm for subset sum. In Philip N.
Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 1073–1084.
SIAM, 2017. doi:10.1137/1.9781611974782.69.

8 Karl Bringmann. Approximating subset sum ratio faster than subset sum. In Proceedings of
the 2024 ACM-SIAM Symposium on Discrete Algorithms, SODA 2024, Alexandria, VA, USA,
January 7-10, 2024, pages 1260–1277. SIAM, 2024. doi:10.1137/1.9781611977912.50.

9 Karl Bringmann and Vasileios Nakos. A fine-grained perspective on approximating subset sum
and partition. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 1797–1815.
SIAM, 2021. doi:10.1137/1.9781611976465.108.

10 Eric Budish. The combinatorial assignment problem: approximate competitive equilibrium
from equal incomes. In Moshe Dror and Greys Sosic, editors, Proceedings of the Behavioral
and Quantitative Game Theory - Conference on Future Directions, BQGT ’10, Newport Beach,
California, USA, May 14-16, 2010, page 74:1. ACM, 2010. doi:10.1145/1807406.1807480.

11 Lin Chen, Jiayi Lian, Yuchen Mao, and Guochuan Zhang. Approximating partition in near-
linear time. In Proceedings of the 56th Annual ACM Symposium on Theory of Computing,
STOC 2024, pages 307–318, New York, NY, USA, 2024. Association for Computing Machinery.
doi:10.1145/3618260.3649727.

12 Lin Chen, Jiayi Lian, Yuchen Mao, and Guochuan Zhang. An improved pseudopolynomial
time algorithm for subset sum. In 65th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2024, Chicago, IL, USA, October 27-30, 2024, pages 2202–2216. IEEE, 2024.
doi:10.1109/FOCS61266.2024.00129.

13 Lin Chen, Jiayi Lian, Yuchen Mao, and Guochuan Zhang. A note on deterministic FPTAS for
partition, 2025. doi:10.48550/arXiv.2501.12848.

14 Mark Cieliebak and Stephan J. Eidenbenz. Measurement errors make the partial digest
problem NP-hard. In Martin Farach-Colton, editor, LATIN 2004: Theoretical Informatics,
6th Latin American Symposium, Buenos Aires, Argentina, April 5-8, 2004, Proceedings,
volume 2976 of Lecture Notes in Computer Science, pages 379–390. Springer, 2004. doi:
10.1007/978-3-540-24698-5_42.

15 Mark Cieliebak, Stephan J. Eidenbenz, and Paolo Penna. Noisy data make the partial
digest problem NP-hard. In Gary Benson and Roderic D. M. Page, editors, Algorithms in
Bioinformatics, Third International Workshop, WABI 2003, Budapest, Hungary, September
15-20, 2003, Proceedings, volume 2812 of Lecture Notes in Computer Science, pages 111–123.
Springer, 2003. doi:10.1007/978-3-540-39763-2_9.

16 Ed Coffman and Michael Langston. A performance guarantee for the greedy set-partitioning
algorithm. Acta Informatica, 21:409–415, November 1984. doi:10.1007/BF00264618.

17 Bryan Deuermeyer, Donald Friesen, and Michael Langston. Scheduling to maximize the
minimum processor finish time in a multiprocessor system. SIAM Journal on Algebraic and
Discrete Methods, 3, June 1982. doi:10.1137/0603019.

18 Paul Duetting, Michal Feldman, and Yarden Rashti. Succinct ambiguous contracts, 2025.
doi:10.48550/arXiv.2503.02592.

19 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

20 George Gens and Eugene Levner. A fast approximation algorithm for the subset-sum problem.
INFOR: Information Systems and Operational Research, 32(3):143–148, 1994. doi:10.1080/
03155986.1994.11732245.

https://doi.org/10.4230/LIPICS.ISAAC.2024.12
https://doi.org/10.1137/1.9781611974782.69
https://doi.org/10.1137/1.9781611977912.50
https://doi.org/10.1137/1.9781611976465.108
https://doi.org/10.1145/1807406.1807480
https://doi.org/10.1145/3618260.3649727
https://doi.org/10.1109/FOCS61266.2024.00129
https://doi.org/10.48550/arXiv.2501.12848
https://doi.org/10.1007/978-3-540-24698-5_42
https://doi.org/10.1007/978-3-540-24698-5_42
https://doi.org/10.1007/978-3-540-39763-2_9
https://doi.org/10.1007/BF00264618
https://doi.org/10.1137/0603019
https://doi.org/10.48550/arXiv.2503.02592
https://doi.org/10.1080/03155986.1994.11732245
https://doi.org/10.1080/03155986.1994.11732245


S. Kanellopoulos et al. 44:21

21 Theodore P. Hill. Partitioning General Probability Measures. The Annals of Probability,
15(2):804–813, 1987. doi:10.1214/aop/1176992173.

22 Dorit S. Hochbaum and David B. Shmoys. Using dual approximation algorithms for scheduling
problems theoretical and practical results. J. ACM, 34(1):144–162, January 1987. doi:
10.1145/7531.7535.

23 Ce Jin and Hongxun Wu. A simple near-linear pseudopolynomial time randomized algorithm
for subset sum. In Jeremy T. Fineman and Michael Mitzenmacher, editors, 2nd Symposium
on Simplicity in Algorithms, SOSA 2019, January 8-9, 2019, San Diego, CA, USA, volume 69
of OASIcs, pages 17:1–17:6. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:
10.4230/OASICS.SOSA.2019.17.

24 Sotiris Kanellopoulos, Giorgos Mitropoulos, Antonis Antonopoulos, Nikos Leonardos, Aris
Pagourtzis, Christos Pergaminelis, Stavros Petsalakis, and Kanellos Tsitouras. Approximation
schemes for k-subset sum ratio and k-way number partitioning ratio, 2025. doi:10.48550/
arXiv.2503.18241.

25 Hans Kellerer, Renata Mansini, Ulrich Pferschy, and Maria Grazia Speranza. An efficient
fully polynomial approximation scheme for the subset-sum problem. J. Comput. Syst. Sci.,
66(2):349–370, 2003. doi:10.1016/S0022-0000(03)00006-0.

26 Konstantinos Koiliaris and Chao Xu. Faster pseudopolynomial time algorithms for subset sum.
ACM Trans. Algorithms, 15(3):40:1–40:20, 2019. doi:10.1145/3329863.

27 Richard E. Korf. Objective functions for multi-way number partitioning. In Ariel Felner and
Nathan R. Sturtevant, editors, Proceedings of the Third Annual Symposium on Combinatorial
Search, SOCS 2010, Stone Mountain, Atlanta, Georgia, USA, July 8-10, 2010, pages 71–72.
AAAI Press, 2010. doi:10.1609/SOCS.V1I1.18172.

28 David Kurokawa, Ariel D. Procaccia, and Junxing Wang. Fair enough: Guaranteeing approx-
imate maximin shares. J. ACM, 65(2):8:1–8:27, 2018. doi:10.1145/3140756.

29 Joseph Y-T. Leung. Bin packing with restricted piece sizes. Information Processing Letters,
31(3):145–149, 1989. doi:10.1016/0020-0190(89)90223-8.

30 Richard J. Lipton, Evangelos Markakis, Elchanan Mossel, and Amin Saberi. On approximately
fair allocations of indivisible goods. In Jack S. Breese, Joan Feigenbaum, and Margo I. Seltzer,
editors, Proceedings 5th ACM Conference on Electronic Commerce (EC-2004), New York, NY,
USA, May 17-20, 2004, pages 125–131. ACM, 2004. doi:10.1145/988772.988792.

31 Nikolaos Melissinos and Aris Pagourtzis. A faster FPTAS for the subset-sums ratio prob-
lem. In Lusheng Wang and Daming Zhu, editors, Computing and Combinatorics - 24th
International Conference, COCOON 2018, Qing Dao, China, July 2-4, 2018, Proceed-
ings, volume 10976 of Lecture Notes in Computer Science, pages 602–614. Springer, 2018.
doi:10.1007/978-3-319-94776-1_50.

32 Stephan Mertens. The easiest hard problem: Number partitioning. In Allon G. Percus, Gabriel
Istrate, and Cristopher Moore, editors, Computational Complexity and Statistical Physics,
Santa Fe Institute Studies in the Sciences of Complexity, pages 125–140. Oxford University
Press, 2006.

33 Marcin Mucha, Jesper Nederlof, Jakub Pawlewicz, and Karol Wegrzycki. Equal-subset-sum
faster than the meet-in-the-middle. In Michael A. Bender, Ola Svensson, and Grzegorz Herman,
editors, 27th Annual European Symposium on Algorithms, ESA 2019, September 9-11, 2019,
Munich/Garching, Germany, volume 144 of LIPIcs, pages 73:1–73:16. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPICS.ESA.2019.73.

34 Marcin Mucha, Karol Wegrzycki, and Michal Wlodarczyk. A subquadratic approximation
scheme for partition. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA,
January 6-9, 2019, pages 70–88. SIAM, 2019. doi:10.1137/1.9781611975482.5.

35 Danupon Nanongkai. Simple FPTAS for the subset-sums ratio problem. Inf. Process. Lett.,
113(19-21):750–753, 2013. doi:10.1016/J.IPL.2013.07.009.

ISAAC 2025

https://doi.org/10.1214/aop/1176992173
https://doi.org/10.1145/7531.7535
https://doi.org/10.1145/7531.7535
https://doi.org/10.4230/OASICS.SOSA.2019.17
https://doi.org/10.4230/OASICS.SOSA.2019.17
https://doi.org/10.48550/arXiv.2503.18241
https://doi.org/10.48550/arXiv.2503.18241
https://doi.org/10.1016/S0022-0000(03)00006-0
https://doi.org/10.1145/3329863
https://doi.org/10.1609/SOCS.V1I1.18172
https://doi.org/10.1145/3140756
https://doi.org/10.1016/0020-0190(89)90223-8
https://doi.org/10.1145/988772.988792
https://doi.org/10.1007/978-3-319-94776-1_50
https://doi.org/10.4230/LIPICS.ESA.2019.73
https://doi.org/10.1137/1.9781611975482.5
https://doi.org/10.1016/J.IPL.2013.07.009


44:22 FPTASs for k-SSR and k-PART

36 Trung Thanh Nguyen and Jörg Rothe. Minimizing envy and maximizing average nash
social welfare in the allocation of indivisible goods. Discret. Appl. Math., 179:54–68, 2014.
doi:10.1016/J.DAM.2014.09.010.

37 Christos H. Papadimitriou. On the complexity of the parity argument and other inefficient
proofs of existence. J. Comput. Syst. Sci., 48(3):498–532, 1994. doi:10.1016/S0022-0000(05)
80063-7.

38 Diego Recalde, Daniel Severín, Ramiro Torres, and Polo Vaca. An exact approach for the
balanced k-way partitioning problem with weight constraints and its application to sports
team realignment. J. Comb. Optim., 36(3):916–936, 2018. doi:10.1007/S10878-018-0254-1.

39 Sartaj Sahni. Algorithms for scheduling independent tasks. J. ACM, 23(1):116–127, 1976.
doi:10.1145/321921.321934.

40 Ethan L. Schreiber, Richard E. Korf, and Michael D. Moffitt. Optimal multi-way number
partitioning. J. ACM, 65(4):24:1–24:61, 2018. doi:10.1145/3184400.

41 Max Springer, Mohammad Taghi Hajiaghayi, and Hadi Yami. Almost envy-free allocations
of indivisible goods or chores with entitlements. In Proceedings of the Thirty-Eighth AAAI
Conference on Artificial Intelligence and Thirty-Sixth Conference on Innovative Applications
of Artificial Intelligence and Fourteenth Symposium on Educational Advances in Artificial
Intelligence, AAAI’24/IAAI’24/EAAI’24. AAAI Press, 2024. doi:10.1609/aaai.v38i9.28851.

42 Gerhard J. Woeginger. When does a dynamic programming formulation guarantee the
existence of a fully polynomial time approximation scheme (FPTAS)? INFORMS J. Comput.,
12(1):57–74, 2000. doi:10.1287/IJOC.12.1.57.11901.

43 Gerhard J. Woeginger and Zhongliang Yu. On the equal-subset-sum problem. Inf. Process.
Lett., 42(6):299–302, 1992. doi:10.1016/0020-0190(92)90226-L.

44 Yair Zadok, Nadav Voloch, Noa Voloch-Bloch, and Maor Meir Hajaj. Multiple subset problem
as an encryption scheme for communication. CoRR, abs/2401.09221, 2024. doi:10.48550/
arXiv.2401.09221.

45 Houyu Zhou, Tianze Wei, Biaoshuai Tao, and Minming Li. Fair allocation of items in multiple
regions. In Proceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence and
Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence and Fourteenth
Symposium on Educational Advances in Artificial Intelligence, AAAI’24/IAAI’24/EAAI’24.
AAAI Press, 2024. doi:10.1609/aaai.v38i9.28861.

https://doi.org/10.1016/J.DAM.2014.09.010
https://doi.org/10.1016/S0022-0000(05)80063-7
https://doi.org/10.1016/S0022-0000(05)80063-7
https://doi.org/10.1007/S10878-018-0254-1
https://doi.org/10.1145/321921.321934
https://doi.org/10.1145/3184400
https://doi.org/10.1609/aaai.v38i9.28851
https://doi.org/10.1287/IJOC.12.1.57.11901
https://doi.org/10.1016/0020-0190(92)90226-L
https://doi.org/10.48550/arXiv.2401.09221
https://doi.org/10.48550/arXiv.2401.09221
https://doi.org/10.1609/aaai.v38i9.28861

	1 Introduction
	2 Preliminaries
	2.1 Objective functions for Multiway Number Partitioning
	2.2 Notation and problem definitions

	3 An FPTAS for k-Subset Sum Ratio
	3.1 Properties of optimal solutions to k-SSRR instances
	3.2 A pseudo-polynomial time algorithm for k-SSRR
	3.3 FPTASs for k-SSRR and k-SSR

	4 An FPTAS for k-way Number Partitioning Ratio
	4.1 Properties of k-PARTR instances
	4.2 Obtaining an FPTAS for k-PART

	5 An FPTAS for k-SSR with linear dependence on n

