
BFS and Reverse Shortest Paths for Ball
Intersection Graphs in Three and Higher
Dimensions
Matthew J. Katz #

Department of Computer Science, Ben-Gurion University, Beer Sheva, Israel

Rachel Saban #

Department of Computer Science, Ben-Gurion University, Beer Sheva, Israel

Micha Sharir #

School of Computer Science and AI, Tel Aviv University, Israel

Abstract
Let B be a collection of n arbitrary balls in R3, and let G0(B) be their intersection graph. We
provide an algorithm for performing BFS on G0(B), which runs in O∗(n4/3) time, where the O∗(·)
notation hides subpolynomial factors. For r ≥ 0, let Gr(B) be the intersection graph of the set
Br = {B + r | B ∈ B}, where B + r is the ball concentric with B whose radius is larger by r than the
radius of B. We provide an efficient algorithm for the reverse shortest path (RSP) problem, where
we are given two designated balls Bs, Bt of B and a parameter 0 < λ < n, and seek the smallest
value r∗ for which Gr∗ (B) contains a path from Bs to Bt of at most λ edges. For the special case
of congruent balls (equivalently, for points in R3), the algorithm runs in O∗(n29/21) ≈ O∗(n1.381)
time. For the general case, the algorithm runs in O∗(n56/39) ≈ O∗(n1.436) time. We also extend the
technique to handle other measures of expansion and higher dimensions.
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1 Introduction

The reverse shortest path (RSP) problem has received considerable attention recently. In
general, we are given a set P of n geometric objects, and a parameter r ≥ 0. We define a
graph Gr(P ) on P , whose edges are all the pairs (u, v) that satisfy some property, given by a
predicate Π(u, v; r), which is monotone in r, meaning that if Π(u, v; r) holds then Π(u, v; r′)
holds for all r′ > r. That is, the graphs Gr(P ) are monotone increasing in r. We are given
two designated objects s, t ∈ P and a parameter 0 < λ < n, and wish to find the smallest
value r∗ for which Gr∗(P ) contains a path from s to t with at most λ edges.

Among the simplest examples is the case where P is a set of n points in the plane, and
Gr(P ) = {(u, v) | |uv| ≤ r}, under the Euclidean distance |uv|. This can also be interpreted
as the intersection graph of the disks of radius r/2 centered at the points of P (the so-called
unit-disk graph, with the unit being r/2). This case and many variants thereof are reviewed
later in the introduction.
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45:2 BFS and Reverse Shortest Paths for Ball Intersection Graphs

One generalization, studied here, is to the case of points in three dimensions. That is,
Gr(P ) in this case is the intersection graph of n congruent balls of radius r/2 centered at the
points of P . This is a special instance of the general problem studied in this work, where the
balls have arbitrary radii. That is, the input consists of a set B of n balls in R3 of arbitrary
radii, and r is a parameter that measures how the balls of B are expanded. The simplest
case is where we increase the radius of each ball by adding r to it. Let Gr(B) denote the
intersection graph of the expanded balls, so G0(B) is the intersection graph of the original
balls. Our technique also applies to any other well-behaved measure of expansion, e.g.,
multiplying each radius by r ≥ 1, but for conciseness we will mainly stick to the additive
measure of expansion, as just introduced, and discuss the general setup later in the paper.

A standard high-level approach to the RSP problem is to design a decision procedure
which, with r as input, determines whether Gr(B) contains a path from s to t of length at
most λ. If it does then r∗ ≤ r, and if not then r∗ > r. The decision procedure is typically
implemented using Breadth-First Search (BFS) on Gr(B). Once we have such a procedure,
we can use binary search on r to home in on the correct value of r∗.

There are two major problems with this approach. First, the cost of a naïve implementation
of BFS is linear in the number of edges of Gr(B), which can be Θ(n2) in the worst case.
Second, BFS appears not to be parallelizable, and thus it is not amenable to parametric
search, which is the standard technique for turning the decision procedure into an efficient
optimization procedure for solving the RSP problem. In this work we overcome these issues,
for the special case of ball-intersection graphs in R3 (and in higher dimensions), and obtain
efficient algorithms for solving the problem, albeit they are (not surprisingly) less efficient
than in the planar case.

Related work. Breadth-First Search (BFS) is recognized as one of the fundamental graph
algorithms. On general graphs G = (V, E), its running time is O(|V |+|E|), which is inefficient
when |E| is large. Its importance has led authors to seek families of graphs in which BFS can
be implemented more efficiently. In the geometric context, one such example is the family
of disk graphs in the plane. The vertices of a disk graph represent disks in the plane and
there exists an edge between two vertices if and only if the corresponding disks intersect.
Notice that the number of edges in a disk graph can be quadratic in n, the number of disks.
Nevertheless, for unit-disk graphs (where all the disks are congruent), Cabello and Jejčič [8]
presented an O(n log n) implementation of BFS, and subsequently Chan and Skrepetos [10]
presented an alternative O(n) implementation (after pre-sorting the points by their x- and
y-coordinates). For arbitrary disks, Klost [14] described an O(n log2 n) implementation of
BFS (see also [11, 12]).

The proximity graph of a set S of n segments in the plane, for a real parameter r ≥ 0,
is Gr(S) := (S, E), where E = {(e1, e2) | dist(e1, e2) ≤ r} and dist(e1, e2) is the Euclidean
distance between e1 and e2 (which is 0 if they intersect). Agarwal et al. [5] devised an
O∗(n4/3) implementation of BFS in Gr(S). (As in the abstract, the O∗(·) notation hides
subpolynomial factors.) For the special case where the segments in S are pairwise disjoint,
Agarwal et al. [4] have later provided an O(n log2 n) implementation.

The bottleneck path problem (also known as the minimax path problem) and its comple-
mentary problem, i.e., the widest path problem (or the maximum capacity problem), are
well-known problems in graph theory. In suitable contexts, the bottleneck path problem is
strongly related to the RSP problem: Given s and t, if π is a path from s to t of at most λ

edges with the minimum bottleneck r∗, then r∗ is the solution to the RSP problem with s, t,
λ as input, and vice versa.



M. J. Katz, R. Saban, and M. Sharir 45:3

Abu-Affash et al. [1] studied the problem of placing at most k Steiner points to minimize
the bottleneck of a path between two designated points in the plane, for a given integer
parameter k ≥ 0, and developed an O(n log2 n)-time algorithm for the problem.

The RSP problem for unit disks (as mentioned above) was studied by Wang and Zhao [16],
who proposed an O∗(n5/4)-time solution. An improved solution with running time O∗(n6/5),
using the shrink-and-bifurcate technique (briefly reviewed later; see [7]), was subsequently
presented by Kaplan et al. [11]. A very recent improvement of this technique by Chan
and Huang [9] yields an implementation with running time O∗(n8/7), which can be further
improved, for the case of unit-disk graphs, to O∗(n9/8) time. For arbitrary disks, Kaplan et
al. [11] obtained a solution with randomized expected time O∗(n5/4), which can be improved
to randomized expected time O∗(n6/5), using Chan and Huang’s technique [9].

The RSP problem was also studied for other objects, including wedges of some fixed angle,
which are viewed as directional antennas, and unit-height towers placed on a 1.5-dimensional
terrain. The former version was solved in O∗(n4/3) time by Agarwal et al. [5], and the latter
version was studied in Katz et al. [13] (see also [9]).

Our results. Our main contributions are efficient algorithms for the BFS and RSP problems
in ball-intersection graphs in three and higher dimensions. We first consider the problem
of efficient implementation of BFS, as a decision procedure for guiding the search for the
optimum r∗ in the RSP problem (and also an interesting problem in itself). In three
dimensions we can perform BFS on G0(B), for a set B of n (congruent or arbitrary) balls in
R3, in O∗(n4/3) time, and in d dimensions in O∗(n2e/(e+1)) time, where e = ⌊d/2⌋ + 1. As
these algorithms are not parallelizable (at least we do not know how to run them in small
parallel depth),1 we need to use a different approach. Such an approach, already mentioned
above, known as the shrink-and-bifurcate technique, has originally been developed in Ben
Avraham et al. [7] for computing a rather special case of Fréchet distances. But it has
recently found applications to the RSP problem in the plane [11]. Very recently, as already
mentioned, it has been dramatically improved by Chan and Huang [9].

Once a BFS procedure (serving as the decision procedure) is available, our technique
follows closely the improved technique in [9], which however requires certain nontrivial
modifications and enhancements to fit into higher-dimensional contexts. The technique
of [9] consists of two parts, a general-purpose part, and an additional enhancement which
improves the running time further for the special case of unit-disk graphs. We follow the
general-purpose part for arbitrary balls, and both parts for congruent balls.

In three dimensions, for the special case of congruent balls (equivalently, of a set of n

points in R3), we obtain an algorithm that runs in O∗(n29/21) randomized expected time.
For the case of balls of arbitrary radii, we obtain an algorithm that runs in O∗(n56/39)
randomized expected time. More generally, in d ≥ 3 dimensions, the algorithm for arbitrary
balls runs in

O∗
(

n
2(d+1)(3e+1)
(3d+4)(e+1)

)
randomized expected time, and, for the special case of congruent balls, the algorithm runs in
randomized expected time

O∗
(

n
g

2e/(e+1)+g
+ 2e

e+1
)

, where g = 2(d − e)
(e + 1)(3d + 1) .

1 This is a standard issue in BFS on any graph.

ISAAC 2025



45:4 BFS and Reverse Shortest Paths for Ball Intersection Graphs

2 BFS in ball-intersection graphs

Let B be a collection of n balls in R3, of arbitrary radii.2 We denote a ball with center c and
radius ρ as B(c, ρ). Let G0(B) be the intersection graph of B, i.e., the vertices of G0(B) are
the balls of B, and its edges consist of all the intersecting pairs of balls. The condition for
two balls B(c1, ρ1), B(c2, ρ2) to intersect is |c1c2| ≤ ρ1 + ρ2.

Let Bs be a start ball in B. Our goal is to run BFS on G0(B) starting from Bs. We follow
the standard approach, of constructing the layers of the BFS in order, starting from layer L0
that contains only Bs. Consider the step of passing from some layer Li to the next layer
Li+1. Let Ui denote the set of all balls that the BFS has not yet reached up to this step.
We then need to find, for each ball B = B(c, ρ) in Li, all the balls of Ui that it intersects.
Each such ball is added to Li+1 and is immediately deleted from Ui, to ensure that it is not
detected again by other balls of Li (or by balls in future layers). We continue in this way
until no more balls of Ui intersect any ball in Li. At this point Li+1 has been computed,
and we go on to construct the next layer. (For our decision procedure, executed on Gr(B),
we stop when either the target ball Bt has been reached or layer Lλ has been constructed,
whichever happens first. If Bt has been reached, we report success (i.e., r∗ ≤ r), otherwise
we report failure (i.e., r∗ > r).)

To implement this algorithm efficiently, we therefore need a dynamic data structure for
storing U = Ui, the set of unreached balls, that supports (efficiently) the following two kinds
of operations.

Intersection detection queries: Given a query ball B, detect whether it intersects any ball
of U , and, if so, report such a ball.

Deletions: Delete a ball B from U .

An intersection query with a ball B(c0, ρ0) can be rephrased as a range emptiness
detection query. For this, we map each ball B = B(c, ρ) = B((xc, yc, zc), ρ) of U to the point
B̂ = (xc, yc, zc, ρ) in R4, and map each ball B0 = B(c0, ρ0) = B((xc0 , yc0 , zc0), ρ0) of Li to
the range

σB0 = {(x, y, z, ρ) ∈ R4 | (x − xc0)2 + (y − yc0)2 + (z − zc0)2 ≤ (ρ + ρ0)2}.

Then a ball B intersects B0 iff B̂ ∈ σB0 .
Using a standard lifting transform, we further map each point B̂ = (xc, yc, zc, ρ) to the

point B∗ = (xc, yc, zc, ρ, x2
c + y2

c + z2
c − ρ2) in R5. Each range σB0 is lifted to the halfspace

hB0 := x5 ≤ 2xc0x + 2yc0y + 2zc0z + 2ρ0ρ + (ρ2
0 − x2

c0
− y2

c0
− z2

c0
).

As is easily checked, B̂ ∈ σB0 iff B∗ lies in hB0 .
In other words, in the transformed problem we have a set B∗ = {B∗ | B ∈ B} of n

points in R5, which we want to process into a dynamic data structure (under deletions) for
answering halfspace range emptiness queries. The algorithm of Agarwal and Matoušek [6]
provides such a structure. Specifically, for any given parameter n ≤ s ≤ n2, the structure
can be constructed to have size O∗(s), an initial version of it can be constructed in O∗(s)
time, each query takes O∗(n/s1/2) time, and each deletion takes amortized O∗(s/n) time.
Choosing s = n4/3, we obtain a data structure of size O∗(n4/3), so that each operation (query
or deletion) on the structure takes O∗(n1/3) time.

2 The case of congruent balls does not lead to an improved BFS implementation, although the algorithm
becomes considerably simpler; see a discussion at the end of the section.



M. J. Katz, R. Saban, and M. Sharir 45:5

The number of operations is O(n), since each query either detects a new intersecting ball,
which is promptly removed from U , or is the last query performed with a ball, and each ball
becomes a query only at the layer it belongs to. We conclude that the overall running time
of the BFS is O∗(n4/3), because the cost of maintaining and searching in the data structure
dominates the cost of the other steps of the BFS. We thus obtain:

▶ Theorem 1. BFS on the ball intersection graph of a set of n balls in R3 can be performed
in O∗(n4/3) time.

The case of congruent balls. We first state the following theorem, whose results will be
useful for handling congruent balls. Its proof is an easy consequence of the analysis in [6, 15],
applied to the lifted points and halfspaces in R5, as above.

▶ Theorem 2. (a) Given two sets P , Q of m and n points, respectively, in three dimensions,
and a prameter r > 0, we can determine, for each p ∈ P whether there exists a point q ∈ Q

such that |pq| ≤ r, in overall time

O∗
(

m2/3n2/3 + m + n
)

.

(b) Given two sets P , Q, as above, we can compute, for each p ∈ P , the nearest neighbor of

p in Q, in overall time

O∗
(

m2/3n2/3 + m + n
)

.

(Note that (b) subsumes (a), but the algorithm in (a) is simpler, so we state it separately.)

When the balls of B are congruent, say all of radius r, we do not need the above dynamic
(and rather involved) structure. Instead, we follow the approach in the planar setup of
unit-disk graphs [8, 10]. That is, we form a grid of cell size r/2, and distribute the ball
centers among its cells. When we perform the step of passing from Li to Li+1, we process
each active grid cell, i.e., a cell that contains centers of balls in Li. For each such cell τ , all
unreached balls with centers in τ are immediately placed in Li+1. Then, for each cell τ ′ in a
suitable punctured constant-size neighborhood of τ (only such cells, and τ itself, can contain
centers of balls in Ui that can be reached, in one step, from balls with centers in τ), we take
the set Ui(τ ′) of unreached balls with centers in τ ′ and test each such ball B whether its
center lies within distance r from the center of some ball in Li(τ), the set of balls of Li with
centers in τ . Theorem 2(a) implies that this reverse search can be implemented in time

O∗
(

|Ui(τ ′)|2/3|Li(τ)|2/3 + |Ui(τ ′)| + |Li(τ)|
)

.

The remaining straightforward implementation details, and the analysis of correctness and
performance of the structure, as given in [8, 10, 11], carry over to the three-dimensional case,
and imply that the overall cost of this implementation of the BFS is O∗(n4/3) time.

3 Reverse shortest paths in unit-ball graphs in three dimensions

We can now solve the corresponding optimization problem, which is the reverse shortest
path (RSP) problem, or, as it is also called, the bounded-hop bottleneck path problem, for
unit-ball graphs in R3: Given a set P of n points in R3, two designated points s, t ∈ P , and a
parameter 0 < λ < n, find the minimum value r∗ of r for which the associated graph Gr∗(P )
contains a path from s to t of at most λ edges.

ISAAC 2025
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We can solve the RSP problem using the aforementioned shrink-and-bifurcate technique
[7, 9, 11]. We begin with a brief overview of the technique. It applies in more general setups,
but let us restrict it to our setup of unit-ball graphs (and later also to intersection graphs of
arbitrary balls, although the description below assumes that the balls are congruent). The
shrinking stage constructs an interval I that contains r∗ and at most L other critical values of
r, each of which is the distance between two centers, where L is a prespecified parameter. It
does so, in the improved approach of [9], by running a distance selection algorithm on various
pairs of random samples of B (that is, on the sets of centers of the balls in the samples).

The distance selection algorithm, on which the shrinking procedure is based, takes,
ignoring the shrinking aspect, O∗(n3/2) time. More generally, it takes O∗(m3/4n3/4 + m + n)
time for selecting distances between two sets of m and n points, respectively, which is the
setup that arises when applying the technique of [9]. Using (a suitable adaptation to three
dimensions of) the shrinking mechanism of Chan and Huang [9], the construction of the
desired interval I can be performed in expected O∗(n3/2/L3/4) time.

This is followed by a bifurcation stage, in which we simulate the decision procedure (in
our setup, the BFS procedure of the preceding section). When we reach a comparison, we
resolve it right away if the critical value r that it induces lies outside I. If however r lies in I,
we bifurcate, exploring both outcomes r∗ ≤ r and r∗ > r. When we have either accumulated
enough unresolved comparisons, or moved forward at least some number of steps in the
simulation, along each path in the bifurcation tree, we stop and resolve all comparisons using
binary search, guided by the (unsimulated) decision procedure. This shrinks I further, and
we start a new phase of bifurcating simulation. As shown in [7, 11], with a suitable choice of
parameters, the overall cost of the bifurcation is O∗(L1/2D(n)), where D(n) = O∗(n4/3) is
the cost of the decision procedure (i.e., of the BFS).

Hence the overall cost of the RSP algorithm is O∗(n3/2/L3/4 + L1/2n4/3). We choose L

to balance these terms, that is, L = n2/15, and then the running time is O∗(n7/5). That is,
we have our initial, albeit weaker, result:

▶ Theorem 3. For a set P of n points in R3, two designated points s, t ∈ P , and an integer
parameter 0 < λ < n, we can find the minimum radius r∗ for which the associated graph
Gr∗(P ) contains a path from s to t of at most λ edges, in O∗(n7/5) time.

3.1 An improved solution

To obtain a faster algorithm, we follow the high-level approach of the second improvement
in [9], with many nontrivial adjustments that cater to the three-dimensional nature of the
problem. We follow the same setup as in the second implementation of the BFS algorithm.
However, for technical reasons that will become clear later on, we first perform the following
steps, having to do with the cell size of the grid. We first note that the precise size of the cells
(which we have set to r/2 in the BFS algorithm) is not very important, as long as it is smaller
than r/

√
3 (but not much smaller), so that the propagation within a cell is immediate. We

can therefore proceed as follows. Note that, by the nature of the RSP problem, r∗ must be
between |st|/2 and |st|/(2n) (or, more precisely, |st|/(2λ)). We therefore run binary search
through this interval, using any of the BFS decision procedures of Section 2 to guide the
search, and in O(log n) steps we locate r∗ within a range [r1, (1 + ε)r1], for some suitable
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small ε > 0. We then set r to be3 r1/2, and keep this size throughout the simulation. See
below how this is used in the algorithm. We emphasize that this step precedes the actual
simulation, as well as the step of distributing the points of P in the grid cells.

We introduce a new threshold parameter ∆ ≪ n, whose concrete value will be set later,
and classify each nonempty grid cell as either heavy, if it contains at least ∆ points of P , or
light, otherwise. The number of heavy cells is at most k := n/∆. We now compress each
heavy cell τ into a single (symbolic) “heavy” point pτ , and obtain a new compressed version
of Gr(P ), which we denote as Hr(P̂ ), where P̂ consists of all the points in the light cells and
of all the representative heavy points pτ . The distance between any pair p, q of points in
light cells remains the same, namely |pq|. The distance between a heavy point pτ and a light
point q (a point in a light cell) is dist(q, Pτ ) = minp∈τ |qp|. Finally, the distance between
two heavy points pτ , pτ ′ is the distance determined by the bichromatic closest pair (BCP) in
Pτ × Pτ ′ .

Running BFS on Hr(P̂ ) is performed similarly to the previous implementation. A single
propagation step, at some iteration i, involving two adjacent cells τ , τ ′, is executed depending
on whether one of τ , τ ′, or both, are heavy. If both cells are light, we proceed as before,
incurring the cost

O∗
(

|Ui(τ ′)|2/3|Li(τ)|2/3 + |Ui(τ ′)| + |Li(τ)|
)

; (1)

see Theorem 2(a). When τ is light and τ ′ is heavy, Ui(τ ′) (if nonempty) is the singleton
representative point pτ ′ , and by running the all-nearest-neighbor procedure (Theorem 2(b))
on Li(τ) and Pτ ′ , we can determine whether this step should place pτ ′ in Li+1. The cost is
then

O∗
(

|Pτ ′ |2/3|Li(τ)|2/3 + |Pτ ′ | + |Li(τ)|
)

. (2)

A similar procedure is applied when τ is heavy and τ ′ is light. In this case each point of
Ui(τ ′) searches for a near neighbor in Pτ , and the cost is

O∗
(

|Ui(τ ′)|2/3|Pτ |2/3 + |Ui(τ ′)| + |Pτ |
)

. (3)

Finally, when both cells are heavy we need to compute the distance of the BCP in Pτ × Pτ ′ .
This step is handled differently because its naïve implementation is too expensive, because it
does not exploit the smaller parameter ∆; see shortly below.

We sum the bounds in (1), (2) and (3), over all iterations i and pairs τ , τ ′ of adjacent
cells that are active at the corresponding iteration, when both τ and τ ′ are light (eq. (1)),
when τ is light and τ ′ is heavy (3), and when τ is heavy and τ ′ is light (2). Note that in
each of the bounds (1)–(3), at least one of the sets (Li(τ) and / or Ui(τ ′)) is from a light
cell, so its size is at most ∆.

Applying Hölder’s inequality, one can show that the sums of the bounds in (1), (2) and
(3) are all O∗(n∆1/3). For example, summing the bound in (1) over all iterations i and active
pairs τ, τ ′ of neighboring cells, and using the facts that (i) |Li(τ)| ≤ ∆, and (ii) each cell is
active, or a neighbor of an active cell, at only O(1) iterations, in each of these bounds, we get

3 Note that this choice might force us to change the definition of the neighborhood of a cell to potentially
contain more cells, but still only a constant number thereof.

ISAAC 2025
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O∗

∑
i

∑
τ,τ ′

(
|Ui(τ ′)|2/3|Li(τ)|2/3 + |Ui(τ ′)| + |Li(τ)|

)
= O∗

∆1/3
∑

i

∑
τ,τ ′

|Ui(τ ′)|2/3|Li(τ)|1/3

+ O∗(n)

= O∗

∆1/3

∑
i

∑
τ,τ ′

|Ui(τ ′)|

2/3∑
i

∑
τ,τ ′

|Li(τ)|

1/3
+ O∗(n) = O∗(n∆1/3),

and similarly for the sums of the bounds in (2) and (3).
It remains to handle the case where both τ and τ ′ are heavy. Here we need to compute

the distance of the BCP in Pτ × Pτ ′ , over all adjacent heavy pairs (i.e., pairs where both τ

and τ ′ are heavy). As above, this can be done in a total of O∗(n4/3) time. Since it does not
depend on ∆, this cost turns out to be too expensive to pay during the simulation of the
procedure. To bypass this issue, we note that, once we have fixed the cell-size r1/2 of the
grid (as we did, ahead of the simulation), this step is independent of r or r∗, and can too
be performed ahead of the simulation. We thus compute the BCPs for all pairs of adjacent
heavy cells, once and for all. The overall cost, of both the binary search to fix the cell-size of
the grid and the BCP computations, is easily seen to be O∗(n4/3). In addition, after having
computed all the heavy BCP distances, we run an additional binary search through them, to
ensure that the interval with which we start the shrink-and-bifurcate procedure does not
contain any heavy BCP distance in its interior.

All these considerations imply that we can run BFS on the compressed graph Hr(P̂ ) in
time O∗(n∆1/3), after an initial phase that takes O∗(n4/3) time, which we will execute only
once, outside (and preceding) the actual simulation during the search for r∗.

We now run this simulation of the BFS on Hr∗(P̂ ), using the shrink-and-bifurcate
paradigm, as in [9] and as briefly reviewed above. As before, the shrinking procedure is based
on distance selection in R3, but we apply it separately to each pair of adjacent grid cells, at
least one of which is light. (This is justified as in [9], because r∗ must arise as a distance
within such a pair, unless it is the BCP distance of some heavy pair, which will have been
detected during the preliminary stage.) Arguing as in [9], and adapting the setup to R3, the
cost of the shrinking stage is O∗(n∆1/2/L3/4).

The subsequent bifurcation procedure runs, as before, in time O∗(L1/2D(n)), where
D(n) is the cost of the decision procedure. Ignoring the cost of the preliminary part, which
stays outside the simulation, we have D(n) = O∗(n∆1/3). Hence the overall cost of the
shrink-and-bifurcate procedure, adding back the preliminary cost as a one-time cost, is

O∗(n∆1/2/L3/4 + L1/2n∆1/3 + n4/3). (4)

Of course, so far we have only simulated the BFS on the compressed graph Hr∗(P̂ ), so
the output value r∗ is still not the correct value. Denoting it by r∗

1 , it is the smallest value of
r for which Hr(P̂ ) has a path of at most λ edges between s and t. As argued in [9], denoting
by dH(s, p) the graph distance between s and a point p in Hr∗

1
(P̂ ), and by dG(s, p) the graph

distance between s and p in Gr∗(P ), we have, for each p,

dG(s, p) − k ≤ dH(s, p) ≤ dG(s, p), (5)

where k = n/∆. With some care. this also covers the cases where s and / or t lie in heavy
cells.
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Recovering r∗

As in [9], to find the true value r∗, we use dynamic programming, following the high-level
approach of [9]. For the sake of completeness, we repeat here some details of this technique,
adapted to our setup. We first comment that it is easy to solve the RSP problem using
dynamic programming, without using the preceding machinery at all. To do so, let Di(p),
for p ∈ P , denote the smallest bottleneck value of a path from s to p consisting of at most
i edges. Initially, D0(s) = 0 and D0(p) = +∞ for any p ̸= s. Then we have, for i ≥ 1 and
p ∈ P ,

Di(p) = min
q∈P

max {Di−1(q), |qp|} . (6)

If Dλ(t) < +∞ then Dλ(t) = r∗, which follows easily from (6). The problem with this
approach is that the number of times the step (6) is applied is Θ(n2) (it is actually O(nλ), for
the number of points n and the number of iterations λ to reach, or not to reach, t). Moreover,
without any efficient implementation of the steps (6), the overall cost can be Θ(n3).

In our setup, though, we can reduce the number of dynamic programming steps to O(nk).
Indeed, write Pi = {p ∈ P | i − k ≤ dH(p) ≤ i}. As each point participates in k + 1 sets Pi,
we have

∑
i |Pi| = O(nk).

As in [9], we exploit this property by replacing the function D by another function D̂,
defined by the following modified iterative process. For each p ∈ Pi put

D̂i(p) = min
q∈Pi−1

max
{

D̂i−1(q), |qp|
}

, (7)

and D̂0(s) = 0 and D̂0(p) = +∞ for all p ̸= s. As shown in [9], we also have D̂λ(t) = r∗.
(This argument is fully general and discrete, and does not depend on any geometric feature
of the problem, except for the inequalities (5). In particular, it does not depend on the
dimension.)

The number of steps in this modified dynamic programming process is thus O(nk). To
make these steps (relatively) efficient, we follow a variant of the technique in [9, Lemma 8],
adapted to three dimensions. Briefly, the input is a set Q of n points in R3, so that each
point q ∈ Q carries a positive weight wq (the weight wq will be set to D̂i−1(q) at the i-th
iteration), and we have a set P of m queries, where each query point p seeks the point q ∈ Q

that minimizes max{wq, |qp|}. The algorithm in [9, Lemma 8] is based on Voronoi diagrams,
which works well in the plane, but is not efficient in three dimensions. We use the following
modified approach. As in [9], we store the points of Q at the leaves of a balanced binary
tree T , sorted in increasing order of their weights. Each node v of T processes the set Qv of
those points of Q that are stored at the subtree rooted at v. Each query point p follows a
path in T . When p reaches a node v, with a left child vL and a right child vR, it finds its
(standard) nearest neighbor qL in QvL

. If |pqL| ≤ wqL
we recurse in vL, and if |pqL| > wqL

we recurse in vR. See [9] for details and justification of this rule.
Instead of using Voronoi diagrams, as in [9], we use the algorithm in Theorem 2(b). To

do so, we run all the queries in parallel, proceeding level by level. When we reach a node v,
we have available the set Pv of all the queries whose paths through T reach v. Using the
algorithm in Theorem 2(b), we find, for each p ∈ Pv, its nearest neighbor in QvL

, in overall
time

O∗
(

|Pv|2/3|QvL
|2/3 + |Pv| + |QvL

|
)

.
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This allows us, by our search rule, to assign each p ∈ Pv either to vL or to vR, as appropriate.
Carrying out this process at each node of the current level, we obtain, for each node w of the
next level, the set Pw of query points that want to access w (actually, wL). We continue in
this recursive manner until we reach the leaves. The cost at a leaf v is O(1 + |Pv|). Summing
over all nodes of T , bearing in mind that∑

v

|Pv| = O(m log n) and
∑

v

|QvL
| = O(n log n),

the overall cost is easily seen to be O∗ (|P |2/3|Q|2/3 + |P | + |Q|
)
.

We now apply this procedure at each iteration i of the dynamic programming, where
the input set is Pi−1, the query set is Pi, and the weight of each input point q is D̂i−1(q).
Clearly, the output of this procedure, with this input, implements the iterative process in
(7). The cost of iteration i is therefore

O∗
(

|Pi|2/3|Pi−1|2/3 + |Pi| + |Pi−1|
)

.

Since each |Pi| is at most n, and
∑

i |Pi| = O(nk), the overall cost of the dynamic program
is (using Hölder’s inequality)

O∗

(∑
i

(
|Pi|2/3|Pi−1|2/3 + |Pi| + |Pi−1|

))

= n1/3O∗

(∑
i

(
|Pi|1/3|Pi−1|2/3

))
+ O∗

(∑
i

(|Pi| + |Pi−1|)
)

= O∗
(

n1/3(nk)1/3(nk)2/3 + nk
)

= O∗(n4/3k) = O∗
(

n7/3

∆

)
. (8)

Altogether, the cost of the full algorithm is therefore

O∗
(

n∆1/2

L3/4 + L1/2n∆1/3 + n4/3 + n7/3

∆

)
= O∗

(
n∆1/2

L3/4 + L1/2n∆1/3 + n7/3

∆

)
. (9)

We first balance the first two terms, choosing L5/4 = ∆1/6, or L = ∆2/15, and then the
bound becomes

O∗
(

n∆2/5 + n7/3

∆

)
.

We now choose ∆ to balance these terms, that is ∆ = n20/21, and the cost of the algorithm
is therefore O∗(n29/21). That is, we have

▶ Theorem 4. Let P be a set of n points in R3, let s and t be two designated points, and let
0 < λ < n be a given parameter. Then we can find the smallest value r∗ for which Gr∗(P )
contains a path between s and t that consists of at most λ edges, in O∗(n29/21) = O∗(n1.381)
time.

3.2 Higher dimensions
The algorithm given above can be generalized to points in Rd, for any dimension d ≥ 4. The
geometric components in the algorithm are (i) constructing the grid, (ii) distance selection
and the corresponding interval shrinking procedure, (iii) an efficient algorithm for the all-
near-neighbor problem, (iv) an efficient algorithm for the all-nearest-neighbor problem, and,
as a special case, (v) an efficient algorithm for the BCP problem.
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The grid construction can trivially be extended to any fixed dimension. Distance selection
in Rd takes O∗(n2d/(d+1)) time (see, e.g., [3, Appendix]). The bipartite version, where
we want to select distances between two given sets of m and n points, respectively, takes
O∗(md/(d+1)nd/(d+1) + m + n) time, and the corresponding interval shrinking procedure,
implemented using the technique of [9], takes O∗(md/(d+1)nd/(d+1)/Ld/(d+1)) expected time,
as long as m and n do not deviate significantly from one another. Agarwal and Matoušek [6]
present an algorithm that solves problems (iii)–(v) for a pair of sets of respective sizes m and
n, in Rd in time O∗ (me/(e+1)ne/(e+1) + m + n

)
, where e = ⌊d/2⌋ + 1. (Recall that these

problems are mapped, via the lifting transform given in Section 2, to dynamic halfspace
range emptiness queries in d + 2 dimensions, which explains the value of e; see [6].)

Substituting these components into the algorithm, with parameters L and ∆, the running
time becomes

O∗
(

n∆(d−1)/(d+1)

Ld/(d+1) + L1/2n∆(e−1)/(e+1) + n2e/(e+1) + n(3e+1)/(e+1)

∆

)
,

where, as above, the third term is dominated by the fourth. We balance the terms in this
bound, first by choosing L as a function of ∆, and then by choosing ∆ as a function of n.
As the exponents become rather messy, we simplify them somewhat by introducing another
parameter g = 2(d−e)

(e+1)(3d+1) . Straightforward, albeit rather tedious, calculations then yield

L = ∆2g and ∆ = n
2e/(e+1)

2e/(e+1)+g ,

and the bound then becomes

O∗
(

n
g

2e/(e+1)+g
+ 2e

e+1
)

.

As a sanity check, we verify that in R3, where d = 3, e = 2, and g = 1/15, the bound is
indeed O∗(n29/21). In conclusion, we have

▶ Theorem 5. Let P be a set of n points in Rd, for d ≥ 3, let s and t be two designated
points, and let 0 < λ < n be a given parameter. Then we can find the smallest value
r∗ for which Gr∗(P ) contains a path between s and t that consists of at most λ edges, in
O∗
(

n
g

2e/(e+1)+g
+ 2e

e+1
)

randomized expected time, where e = ⌊d/2⌋ + 1 and g = 2(d−e)
(e+1)(3d+1) .

As an additional example, in the case d = 4, with e = 3 and g = 1/26, the algorithm runs in
O∗(n61/40) = O∗(n1.525) randomized expected time.

4 Reverse shortest paths in ball-intersection graphs in R3

As before, we use the shrink-and-bifurcate paradigm (see [7, 9, 11]). As we recall, the
shrinking stage receives a number L ≪ n as input, and constructs an interval I that contains
r∗ and at most L other critical values of r. For arbitrary balls, the problem is represented
in R4, where a ball with center c and radius ρ is mapped to the point (c, ρ). A value r

is critical if two expanded balls Br(c1, ρ1) = B(c1, ρ1 + r) and Br(c2, ρ2) = B(c2, ρ2 + r)
become externally tangent to each other, namely when

|c1c2| = (ρ1 + r) + (ρ2 + r), or r = 1
2 (|c1c2| − ρ1 − ρ2) .

The improved shrinking procedure of [9] performs “distance selection” on various random
samples from B, where the selection has to find the k-th smallest critical value between pairs
of balls in the cartesian product of the samples, for some given k. This selection process
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is obtained in turn from a procedure that counts the number of critical values that are
smaller than or equal to some given r0. To do so, we rephrase the problem as an offline range
searching problem, in which each ball B = B(c1, ρ1) is mapped to the point (c1, ρ1) in R4,
and also to the range4

σr(B) = {(c, ρ) ∈ R4 | |cc1| − ρ ≤ 2r + ρ1}.

Each point has four degrees of freedom, and, for r fixed, so does each range. Using known
results on semi-algebraic range searching (see [2] and [3, Appendix]), the cost of this procedure
is O∗(n8/5). In fact, running this “distance selection” procedure in a bipartite setting (which
is the setting that arises when applying the technique of [9]), where we want to select critical
values determined between pairs of balls in a pair of samples, consisting of m and n balls,
respectively, the cost is O∗(m4/5n4/5 + m + n). Plugging this into the machinery of [9], the
cost of the shrinking stage is O∗(n8/5/L4/5).

The cost of the bifurcation stage, as in all the previous applications, is O∗(L1/2D(n)),
where D(n) is a bound on the running time of the decision procedure, which is our BFS
algorithm on Gr(B) = G0(Br), so D(n) = O∗(n4/3). Hence the overall cost of the procedure
is

O∗
(

n8/5

L4/5 + L1/2n4/3
)

.

We optimize this bound by choosing L13/10 = n4/15, or L = n8/39, and then the running
time becomes O∗(n56/39). That is, we have:

▶ Theorem 6. The reverse shortest path problem on the ball-intersection graph of a set of n

balls in R3 can be solved in O∗(n56/39) ≈ O∗(n1.436) time.

4.1 Higher dimensions
Here too, the machinery developed in Section 2 and the preceding part of Section 4 can be
extended to any higher dimension d.

Breadth-First Search. We proceed as in the previous algorithm. The lifting transform used
in the BFS implementation maps each ball B0 = B(c0, ρ0) to the point B∗ = (c0, ρ0, |c0|2 −ρ2

0)
in Rd+2, and also to the halfspace

hB0 : xd+2 ≤ 2c0 · c + 2ρ0ρ + ρ2
0 − |c0|2

in Rd+2. The dynamic halfspace range reporting structure of [6] yields, for any parameter
n ≤ s ≤ ne, where e = ⌊(d + 2)/2⌋ = ⌊d/2⌋ + 1, a dynamic data structure of size O∗(s),
with initial construction cost O∗(s), so that each query takes O∗(n/s1/e) time, and each
deletion takes O∗(s/n) amortized time. Choosing s = n2e/(e+1), the size (and construction
cost) becomes O∗(s) = O∗(n2e/(e+1)), and each operation takes O∗(n(e−1)/(e+1)) time, for a
total of O∗(n2e/(e+1)) time. Since this dominates the running time of the BFS, we obtain:

▶ Theorem 7. BFS on the ball intersection graph of a set of n balls in Rd can be performed
in O∗(n2e/(e+1)) randomized expected time, where e = ⌊d/2⌋ + 1.

4 Here the lifting transform to a halfspace in R5 does not seem to lead to a more efficient procedure.
Technically, this is because the lifted problem to R5 now has to deal with halfspace range counting,
whose performance is actually worse than the corresponding problem (involving semi-algebraic ranges
instead of halfspaces) in R4.



M. J. Katz, R. Saban, and M. Sharir 45:13

Reverse Shortest Paths. Here the selection procedure, rephrased as an offline semi-algebraic
range searching problem, involves points and ranges, each point and range with d + 1 degrees
of freedom. Hence the running time of this procedure, in the bipartite setting of sets of m

and n (ball-representing) points, respectively, is (again, see [3, Appendix])

O∗
(

m(d+1)/(d+2)n(d+1)/(d+2) + m + n
)

.

This implies, as in [9], that the cost of the interval shrinking procedure is

O∗
(

n2(d+1)/(d+2)/L(d+1)/(d+2)
)

.

As in all its implementations, the bifurcation procedure runs in time

O∗
(

L1/2D(n)
)

= O∗
(

L1/2n2e/(e+1)
)

.

The overall running time is thus

O∗
(

n2(d+1)/(d+2)/L(d+1)/(d+2) + L1/2n2e/(e+1)
)

.

Optimizing the value of L, we choose

L
1
2 + d+1

d+2 = n
2(d+1)

d+2 − 2e
e+1 , or L = n

4(d−e+1)
(3d+4)(e+1) ,

and the overall running time of the algorithm is

O∗
(

n
2(d+1)(3e+1)
(3d+4)(e+1)

)
.

(We verify that, for d = 3 and e = 2, this bound is indeed O∗(n56/39).) That is, we have:

▶ Theorem 8. The reverse shortest path problem on the ball intersection graph of a set of n

balls in Rd can be solved in O∗
(

n
2(d+1)(3e+1)
(3d+4)(e+1)

)
time, where e = ⌊d/2⌋ + 1.

(We remind the reader that the second improvement in [9] is not applicable here, when the
balls do not have the same radius.)

For example, in d = 4 dimensions, with e = 3, the algorithm runs in O∗(n25/16) =
O∗(n1.5625) time.

5 Further extensions

Other measures of expansion. The RSP technique can easily be applied to other well-
behaved measures of expansion of the balls. For example, consider, in three dimensions,
the case where, for r ≥ 1, each ball B(c, ρ) is expanded to the ball B(c, rρ) (all radii are
multiplied by r). Now r is a critical value iff a pair B(c1, rρ1), B(c2, rρ2) of balls become
externally tangent to each other, that is,

|c1c2| = r(ρ1 + ρ2), or r = |c1c2|
ρ1 + ρ2

Hence, in the selection procedure, we map each ball B0 = B(c0, ρ0) to the range

σB0 = {(c, ρ) ∈ R4 | |cc0| = r(ρ + ρ0)}.
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Since these ranges are also semi-algebraic regions of constant complexity with four degrees of
freedom, the same previously used offline semi-algebraic range searching machinery (on a
different kind of ranges) can be applied here too, with the same asymptotic running time
bound. The remainder of the procedure is carried out as before. Any other expansion rule can
also be handled in this manner, as long as the corresponding ranges σB0 are semi-algebraic
of constant complexity (with four degrees of freedom).

The same observations hold in any larger dimension d.
In conclusion, Theorems 4, 5, 6 and 8 continue to hold for any well-behaved measure of

expansion.
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