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—— Abstract

The presence of obstacles has a significant impact on distance computation, motion-planning, and
visibility. These problems have been studied extensively in the planar setting, while our understanding
of these problems in 3- and higher-dimensional spaces is still rudimentary. In this paper, we study
the impact of different types of obstacles on the induced geodesic metric in 3-dimensional Euclidean
space. We say that a finite metric space (X,distx) is approzimately realizable by a collection T
of obstacles in R? if for any £ > 0 it can be embedded into (R*\|J., T, dist7) with worst-case
multiplicative distortion 1 + ¢, where dist7 denotes the geodesic distance in the free space induced
by 7. We focus on three key geometric properties of obstacles —convexity, disjointness, and fatness—
and examine how dropping each one of them affects the existence of such embeddings.

Our main result concerns dropping the fatness property: we demonstrate that any finite metric
space is realizable with 1 4+ & worst-case multiplicative distortion using a collection of convex and
pairwise disjoint obstacles in R?, even if the obstacles are congruent and equilateral triangles. Based
on the same construction, we can also show that if we require fatness but drop any of the other two
properties instead, then we can still approximately realize any finite metric space.

Our results have important implications on the approximability of TSP WITH OBSTACLES, a
natural variant of TSP introduced recently by Alkema et al. (ESA 2022). Specifically, we use the
recent results of Banerjee et al. on TSP in doubling spaces (FOCS 2024) and of Chew et al. on
distances among obstacles (Inf. Process. Lett. 2002) to show that TSP WITH OBSTACLES admits
a PTAS if the obstacles are convex, fat, and pairwise disjoint. If any of these three properties is
dropped, then our results, combined with the APX-hardness of METRIC TSP, demonstrate that TSP
WITH OBSTACLES is APX-hard.
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1 Introduction

Understanding navigation [3,10,20, 36, 37|, distance [5,23,28,38,40,41] and visibility [12,16,
27,29,33,35] problems among obstacles has been one of the well-motivated research directions
in computational geometry. Most of the work has focused on the planar setting, where the
metric could be the geodesic distance inside a simple polygon, or more generally in a polygon
with holes in the Euclidean plane. In the plane one can benefit from the fact that paths will
often cross, whereas in higher dimensions paths will typically stay disjoint. The additional
degree of freedom in 3- and higher-dimensional space makes the fundamental distance and
navigation problems among obstacles harder, and they have not been explored as thoroughly.

Fortunately, we can still get a useful metric structure for certain obstacles in d-dimensional
Euclidean space (henceforth denoted by R?). We say that a set 7 of obstacles is a-fat if for
cach obstacle object T' € T we have —=T)__ > o where rin(T) denotes the radius of the
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maximum inscribed ball of T, and 7c;reum (T') denotes the radius of the minimum enclosing
ball of T. We will think of « as a universal constant and talk about collections of fat objects.
For a set T of obstacles let Fr = R%\ Urer T denote the free space outside the obstacles.
We denote by disty(u,v) the geodesic distance between u, v € Fy, which is the infimum of
the length of piecewise linear curves in Fr containing v and v. Chew et al. [11] established
that for any set of convex, disjoint and fat obstacles in R? one can navigate around the
obstacles with constant overhead compared to the Euclidean distance. Their theorem implies
that (F7,dist7) has bounded doubling dimension, that is, for any > 0 and any x € Fy
the geodesic ball of center = and radius r can be covered by at most 2° geodesic balls of
radius r/2, for some constant 6. The minimum number § satisfying the above condition is the
doubling dimension. In Section 2 we establish an explicit bound on the doubling dimension
among pairwise disjoint convex a-fat obstacles in R%. Metrics of bounded doubling dimension
are well-studied generalizations of Euclidean spaces, and retain many useful properties of R¢.

A natural question is whether the conditions of fatness, convexity, and pairwise disjointness
are all needed for the doubling dimension bound. More generally, one wonders what finite
metric spaces can be realized if the condition of fatness, disjointness or convexity is dropped.
We say that a metric space (X, distx), is realizable with a set T of obstacles in R? if one can
embed (X, distx) isometrically into (Fr,dist7). An approzimate realization allows for an
embedding with a worst-case multiplicative distortion of (1 + ¢).

The starting point of our investigation is the following question. Let 3 denote the
disjunction of some subset of properties among (i) convex (ii) pairwise disjoint (iii) fat.

» Question 1. Is it possible to (approzimately) realize the finite metric space (X, disty)
in R3 with obstacles of property B2

It is also worth exploring how various types of obstacles impact the algorithms and
complexity of some classic distance problems. The study of the shortest path problem among
a set of polygonal obstacles P goes back at least 50 years, to the work of Wangdahl et al. [41]
in 1974. Their approach to compute a shortest path between two points s,t (as well as
many later approaches; see for instance [5,38]) relied on running Dijkstra’s algorithm on
the visibility graph of the vertices of P together with s and ¢. Any such method has an
Q(n?) lower bound (where n is the number of vertices in P), due to the size of the visibility
graph. To achieve subquadratic running times, later algorithms shifted to the continuous
Dijkstra paradigm [23,28]. Finally, Wang presented an optimal O(nlogn)-time, O(n)-space
algorithm [40]. Data structures for two-point shortest path queries have also been studied
and, recently, De Berg et al. presented an O(n'%*¢)-space data structure with O(logn) query
time [14]. The shortest path problem among obstacles can be generalized to account for
movement through regions with different weights, a variation known as the weighted region
problem. The general problem admits a (1 + ¢)-approximation algorithm [30], while cases
with restricted region shapes or weights have also been considered [9,17]. While these are all
positive results, computing shortest paths among 3-dimensional obstacles is a much harder
problem. In fact, it is NP-hard [31]. On the other hand, the problem admits an FPTAS
[13,21].

It is also natural to consider classic geometric optimization problems in the presence of
obstacles. Recently, Alkema et al. [4] introduced a natural generalization of EUCLIDEAN TSP
called TSP WITH OBSTACLES. In TSP WITH OBSTACLES, we are given a set of n points to visit
and a collection T of obstacles of total complexity m to avoid. Our goal is to find the shortest
tour between a set of sites in the plane or some higher-dimensional space, while avoiding a
given set of obstacles. In [4] the authors studied a variant of TSP WITH OBSTACLES called
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TSP IN A SIMPLE POLYGON, where the sites lie in a simple polygon P, that is, the obstacle
that the salesman has to avoid is the complement of P. They gave an exact algorithm for
this problem, running in 20(V71987) 4 poly(n, m) time.

In this paper, we will demonstrate the algorithmic impact of various types of obstacles
via studying approximation algorithms and APX-hardness for TSP WITH OBSTACLES. In
particular, we consider the problem in R? for different kinds of obstacles. Again, let 3 denote
the disjunction of some subset of properties among (i) convex (ii) pairwise disjoint (iii) fat.

» Question 2. Is there a PTAS for TSP WITH OBSTACLES in R3 if the obstacles satisfy
property B¢

1.1 OQOur contribution

Our main contribution is the following theorem, which shows that all finite metric spaces are
approximately realizable with pairwise disjoint convex obstacles in R3.

» Theorem 3. Let ¢ € (0,1) and let (X,distx) be a metric space of size | X| =n and spread

ii:ﬁig’s;). Then there exists a collection T of O(n'"®°/e) pairwise

disjoint congruent equilateral triangular obstacles and an injection f : X — R? such that

O := maxgpcdex(

distx (a,b) < dist+(f(a), f(b)) < (1 +¢) - distx (a, b).
for all a,be X. The set of obstacles can be constructed in poly(n,®,1/c) time.

Let B denote the disjunction of some subset of properties among (i) convex (ii) pairwise
disjoint (iii) fat. The theorem directly answers Question 1 if the property 8 does not require
that objects are fat. We can use some ideas from this construction to give a complete answer
to Question 1 in case of approximate realizations: we can approximately realize any metric
space with fat pairwise disjoint obstacles (that are non necessarily convex) and with convex
fat obstacles that are not necessarily disjoint, see Theorem 15.

We note that our construction is quite generic and we get the same result with other
convex shapes that are constant-fat in R?, such as with unit disks or squares instead of
congruent equilateral triangles. Using Theorem 3 and Theorem 15 we can use TSP lower
bounds designed for general metric spaces to answer Question 2.

» Corollary 4. Let T be a collection of obstacles in R® with property B of total complexity
m = poly(|X|). Then TSP WITH OBSTACLES has a PTAS if P = “conver and pairwise
disjoint and fat”, and it is APX-hard for all other 3.

The PTAS is based on the fact that for 8 = “convex and pairwise disjoint and fat” the
free space outside the obstacles has bounded doubling dimension, see Section 2. We can also
efficiently compute approximate shortest paths using Har-Peled’s algorithm [21], and running

any of the known PTASes for TSP in doubling metrics [6,8] we get the desired algorithm.

The lower bound is based on realizing the metric space from the lower bound of Karpinski,
Lampis and Schmied [25] using obstacles. The construction in [25] has polynomial spread,
which allows us to apply Theorem 3. See Section 5 for a proof of Corollary 4.

1.2 Related work

Motion planning is a central problem in robotics, where the goal is to compute a collision-free
path for a set of moving objects (robots) in a space with obstacles. The complexity of the
problem depends significantly on the underlying environment and the degrees of freedom
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Figure 1 (i) The construction of Dumitrescu and Téth [15] for a wall in R? consisting of convex
obstacles. The shortest path from a to b must zigzag between the layers of segments. (ii) The view
of a flat wall from z = oo, with 4 shifts (iii) The flat wall construction viewed from a generic point.
The planes containing the four types of squares have slightly differing z-coordinates, and they are
sandwiched between the planes z = 0 and z = 0.05.

of the robots. The pioneering works of Schwartz and Sharir [36,37], and later Canny [10],
introduced the first general techniques for solving this problem in the plane. These algorithms
have a polynomial dependency on n, the combinatorial complexity of the obstacles, but
an exponential dependency on k, the degrees of freedom of the robots. For a detailed
discussion of these foundational works, refer to [19,20]. To highlight the problem’s inherent
difficulty, note that even in the restricted case of rectangular robots navigating a rectangular
environment, the problem is PSPACE-hard [24]. Recently, Agarwal [3] et al. presented an
FPTAS with a running time of O(n2e=?(") logn) for the case of two square robots moving
in a polygonal environment. This is the first known PTAS for two robots in such settings.

Focusing now on geodesic distance, many well-studied problems in the Euclidean setting
have been explored within polygonal domains under this metric. Notable examples include
geodesic convex hulls of points in polygonal domains [7,39], the 1- and 2-center problems
[32,34], and geodesic spanners [1].

Finally, Abam and Seraji [2] constructed an 8y/3-spanner of size O(n log® n) amid axis-
parallel boxes in R3, which is the only known geodesic spanner result in 3-dimensional space
with obstacles.

1.3 Overview of the proof of Theorem 3

Our approach to proving Theorem 3 is inspired by the work of Dumitrescu and Téth [15], who
studied a similar problem in the planar setting. They denote by o(P) the ratio between the
geodesic and the Euclidean diameter of a polygon P, and show that over all convex polygons
with h convex holes, the supremum of o(P) is between Q(h'/3) and O(h'/?). Crucially, their
construction includes building a “wall” of polynomially many short segments that lengthen
the geodesic diameter by a large factor, see Figure 1(i) for an illustration.

Our strategy to embed a metric space is as follows. We will define a custom closed surface
S embedded in R3, and map each point x; € X to some point f(z;) inside. We then place a
large collection of obstacles near the surface S (within distance 1/2) that ensures that any
geodesic that would connect the inside and outside of & must be very long, longer than the
maximum distance in (X, distx). This means that the minimum distance between a point
f(z;) and f(z;) must be realized by a geodesic that stays within S. By setting up S correctly,
we are able to give an upper and lower bound on the length of any geodesic connecting f(z;)
and f(z;) so that we can ensure distx (z;, z;) < distr(f(zi), f(z;)) < (1 +¢) - distx (z;, z;).
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Figure 2 The surface S for a 3-point metric space. The shortest geodesic from f(z;) to f(z;) is
forced to go through some tubes, consisting of two vertical and a horizontal cylinder. The length of
such a path can be adjusted by changing the length of the vertical cylinders.

Construction of the surface S. Before discussing our obstacle placement, we first describe
the construction of S and the embedding f. (Note that the main text will define the surface
S last.) First, without loss of generality we assume that the minimum distance in (X, distx)
is at least some large polynomial in n := | X|, as we can use a scaling on the final construction
to get the desired distance. The function f simply assigns the points x; to equally spaced
points along the z-axis. The surface S will contain a cube R; centered at each point f(x;).

For each pair ¢, j we realize the distance of distx (z;,x;) via a sequence of three tubes
(cylinders), where the first and third cylinder are vertical (parallel to the z-axis) and the
second is parallel to the z-axis, see Figure 2. The tubes connect a hole in the top of the
cube R; to a hole on the cube R;, and in order to realize the turns, we use two small cubes
with holes that connect the first and second as well as the second and third tube in the
sequence. Notice that the the length of the second horizontal tube is determined by f(x;)
and f(x;), thus in order to set the length of the cube sequence, we can vary the length of
the two vertical tubes. We place these tubes at different depths (y-coordinates) so that
they remain disjoint from each other. One can see that this leads to a good approximate
realization, however, this surface needs to be smoother (differentiable) in order to ease the
placement of obstacles. Thus S is defined using differentiable surface patches: we need a
rounded cube and a differentiable joint that allows the connection of a flat cube face with a
circular cylinder boundary.

A flat wall example. Let us consider an example of a simple placement of convex objects
that increases the geodesic distance between the half-space z < 0 and the half-space z > 1
to significantly more than 1. We call this construction a flat wall. In this construction we
use squares rather than triangles. Let S; be the set of axis-parallel squares of side length
0.99 centered at the points (a,b,0.01) for a,b € Z in the z = 0.01 plane. Repeat the same
construction 3 more times at heights z = 0.02,0.03,0.04 by translating S; with the vectors
(1/2,0,0.01),(1/2,1/2,0.02), (0,1/2,0.03), to get the sets S, S3, and Sy, respectively. See
Figure 1(ii) and (iii). Consider a geodesic connecting the planes z = 0 and z = 0.05: its
intersection point p with z = 0 will be within £ -distance 0.25 to the center of some square in
one of the four shifts, and thus it will need to have length at least 0.24 to reach the boundary
of this square before it can get to z = 0.05. Using further copies of these squares shifted to
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(i)

Figure 3 (i) A joint patch with its corresponding net. (ii) A quarter-cylinder patch with its
corresponding net. (iii) A spherical triangle patch with its corresponding net.

different height ranges can increase the lower bound of 0.24 as necessary. By making more
layers that are packed more densely we can achieve any separation between the halfspaces
z<0and z > 1.

While the above construction is quite intuitive, we need a more careful approach to make
a similar separation near an embedded closed surface. One can see that the flat construction
cannot be adapted to a surface with sharp edges, so we will need to use a smoother closed
surface. Even then, we will not be able to place layers of convex objects arbitrarily close
together, as convex 2-dimensional shapes will not stay inside a curved surface. The challenge
is to keep our objects in different layers disjoint, while creating a strong separation.

Curved wall construction via placing triangle layers. The surface S that we define has the
crucial property that it has offset surfaces (often called parallel surfaces) that are well-defined
and differentiable for any distance offset § € [—1/2,1/2] from S. The offset surface at distance
J is denoted by S(9). Since S(9) is a closed surface, we are able to talk about the inside and
outside of S§(¢), and we can also define the region between two offsets S(J) and S(¢") when
0 < ¢'. In our construction, the offset § will have a role similar to the z-coordinate in the
flat wall construction above: we will place triangles tangent to S(d) at some given collection
of points. Using a large collection of different offsets, we can ensure the required separation
between the inside of S(—1/2) and the outside of S(1/2).

We need a handful of geometric properties from S(4) to ensure that we can place our
obstacles near it. The most important property is to limit their curvature! in some sense. We
require that at any point p on S(§) there exist two balls of radius at least 1/2 whose unique
intersection point with S(J) and with each other is p. This helps to ensure that a small
2-dimensional convex shape of diameter p « 1 tangent to S(d) at p stays within distance
O(u?) of 8(6). In particular, a small triangle will stay between the surfaces S(d — u?) and
S(6 + p?), and thus triangles of the same size tangent to S(J — 2u?) and S(& + 2u?) will
remain disjoint from this triangle.

Finally, we must place the triangles in neighboring layers with “shifts” to ensure that a
constant number of consecutive triangular layers of side-length u triangles creates a separation
of at least (). Here translation is not an option, so we define an (a, b)-net, a weaker version
of an e-net (in the metric space sense). For two points u,v € R® we will denote by uv the

L While our results could be presented with a more general differential geometric toolbox, the need
to construct these (a,b)-nets prompted us to use specific surface patches that are easy to handle
algorithmically. One could adapt our techniques to more general smooth embedded surfaces. As a
trade-off our surfaces are not smooth (not even twice differentiable) at the shared boundary of our
surface patches. We have also used the Euclidean distance function rather than measuring distances
within these surfaces to make our construction more elementary and explicit.



S. Kisfaludi-Bak and L. Theocharous

line segment between u and v, and by |uv| the length of uv. An (a,b)-net of a surface S
embedded in R? is a point set N — S where the pairwise distance of points in IV is at least a,
and for any point ¢ € S there is a p € N such that |pg| < b.

We can show that the offsets of the net points provide a weaker but still useful net in

the offset surfaces: a “shared” (€(¢),O(¢))-net can be constructed for the surfaces S(9).

Here, “shared” means that we first find a (¢, O(¢))-net on S; sliding every net point along its
surface normal gives, on each surface S(9), an (£2(¢), O(¢))-net. These net points are then
partitioned into constantly many classes, where the distances within points in each class C
are large enough so that equilateral triangles of side length u = ©(¢) tangent to S(§) at each
point of C' will remain disjoint; i.e., these triangles would correspond to a single square set S7
from our flat wall example. Using all of these partition classes in different offsets S(§ + i¢)
ensures a separation of (¢) for geodesics passing between these layers, as seen with the four
shifts of squares in our flat wall example. In our construction we must set ¢ small enough to
be able to accommodate several iterations of the above construction between S(—1/2) and
8(1/2), but large enough to get the desired length lower bound for any geodesic going from
the inside of S(—1/2) to the outside of §(1/2). This concludes the generic construction of
the curved wall, as well as the overview of the ideas behind Theorem 3.

2 Doubling dimension among convex fat disjoint obstacles

We denote by B(p,r) the Euclidean ball of radius 7 centered at p € RY, and by B (p,r) the
geodesic ball of radius r centered at p € Fr.

We recall the following key result by Chew et al. [11] on convex fat objects. Based on
this, we will subsequently show that the free space induced by a set of convex,fat and disjoint
obstacles in R? has bounded doubling dimension, under the shortest-path metric.

» Lemma 5. Let T be a set of convex, a-fat and disjoint obstacles in R®. Then, for any

u,v € Fy, we have that dist7(u,v) < B - |uv|, where 8 is a constant depending on d and «
defined as follows:

1+ ford=2,

_ T

ﬂ_
1+¥, ford = 3.

Since a set T of convex, fat and disjoint obstacles distorts distances by a constant factor,
it follows that the doubling dimension of (F7,dists) will be bounded; we provide a proof for
completeness.

» Lemma 6. Let T be a set of convex, a-fat and disjoint obstacles in RY. Then the metric
space (Fr,disty) has doubling dimension O(d(dlogd + log(1/a))).

Proof. Let By (p,r) be a geodesic ball centered at p € Fr. Note that By (p,r) < B(p,r). We
will construct a covering of By (p,r) by geodesic balls of radius r/2. Towards that, we cover
B(p,r) by ¢4 Euclidean balls of radius r/2, where log(cq) = O(d) is the doubling dimension
of R? [22, Ch. 10]. Repeating this process recursively log(23) + 1 times, the ball B(p,r)
is covered by c&og(w)ﬂ Euclidean balls of radius 7/(2'°8%+1) = r/(48). Let B denote the
resulting collection of Euclidean balls. Since By (p,r) € B(p, ), this collection also covers
Br (pﬂ T’).

We transform B into a collection B of geodesic balls in (F7, dist) of radius r/2, such that
the union of these geodesic balls covers By (p,r). For each Euclidean ball B(q,r/(40)) € B,
we handle the following cases:
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1. If B(q,r/(48)) n Fr = &, then we ignore B(q,r/(43)) in the cover.
2. If B(q,r/(4B)) n Fr # &, let 0o € B(q,7/(48)) n Fr. Include the geodesic ball
Br(o,7/2) in Br. To verify coverage, note that if s € B(q,r/(483)) n Fr, then:

jos| <
0s| < —,
26
By Lemma 5, the geodesic distance between o and s satisfies:
r r
dist <p- <pB - —=-.
istr(0,8) < B+ |os| < B 2~ 2

Hence, s € Br(o,7/2), and B(q,7/(48)) n Fr < By(o0,1/2).

Each ball in By has radius r/2, and the union of these geodesic balls covers By (p,r). The
log(28)+1

total number of geodesic balls in By is at most ¢, . Therefore, the doubling dimension
of (Fr,disty) is given by
log(c5CAHY) — (1og(28) + 1) - log(cq) = O(d(dlog d + log(1/a))). <

3 Realizing metric spaces with convex disjoint obstacles

This section contains the main result of our paper. We show that by using only convex and
disjoint obstacles in R3, it is possible to realize any metric space approximately.

3.1 Surface patches

We will consider surfaces embedded in R? that are differentiable (i.e., have well-defined
normals at each point) described by differentiable surface patches. More precisely, our surface
S will consist of the following types of surface patches:

Axis-parallel squares of side length at least 1 with 0 or more disjoint circular holes of

radius 2, such that each hole is at distance at least 2 from the square, and the hole centers

have pairwise distance at least 6. We will refer to such a patch as a square patch.

Sections of a sphere of radius 1 cut out by axis-parallel planes through the center of

the sphere. These sections correspond to octants of spheres and will be referred to as

spherical triangle patches.

Cylinders of axis length at least 1 and radius 1, or their sections of angle 7/2 around

their axes, where the cylinder axis is parallel to some coordinate axis. We will refer to

such a patch as a cylinder patch and a quarter-cylinder patch, respectively.

Joints, which are defined as a surface of revolution obtained by rotating the quarter

circular arc {(z,y) | 22 + y* = 1,2 > 0,y > 0} around the axis z = 2. We only allow

rotations where the axis of revolution is parallel to some coordinate axis. We will refer to

such a patch as a joint patch.
Notice in particular that a joint patch can be used to connect a circular hole of a square
patch to a cylinder patch, and the quarter cylinder and spherical triangle patches can be
used to “round” an axis parallel cube, i.e., to get the boundary of C'® B;, where C' is an
axis-parallel cube and B; is a ball of radius 1, and @ denotes the Minkowski sum.

We say that a surface S is a patchwork if it is a closed differentiable surface that is the
union of some patches of the above types.

Let S be a patchwork, and let n : S — S? denote its normal bundle. For a fixed
d € (—1/2,1/2) we define the offset surface of S at distance §, denoted by S(9), as S(§) :=
{p +dn(p) | p € S}. Because of the restriction of |§| < 1/2 we have that S(J) is also a
differentiable surface, and in fact it consists of patches of the following types, which we will
call d-patches:
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Figure 4 The plane containing a touching segment pg and the normal of §(§) at p. The segment
pq will remain very close to S(9).

Square patches (with or without holes of radius 2).

Sections of a sphere of radius 1 + d cut out by axis-parallel planes through the center of
the sphere.

Cylinders of radius 1 + ¢ or their sections of angle 7/2 around their axes, where the axis
is parallel to some coordinate plane.

Joints, which are obtained by rotating the quarter circular arc {(z,y) | 2? + y? =
(1 —-6)%,2 > 0,y = 0} around the axis # = 2; again we only allow rotations where the
axis of revolution is parallel to some coordinate axis.

We note that when S(¢) is a bounded closed surface of the above type (i.e., it is finite
and has no boundary), R3\S(4) consists of two disjoint connected components, one of which

is bounded, called the inside of S(J), and the other is unbounded, called the outside of S(6).

Moreover, when ¢ < ¢’, then S(9) is contained in the inside of §(¢’), and the set of points
between S(§) and S(4’) are those that are outside S(d) and inside S(&").

We call a differentiable surface S r-touchable? if for any p € S and any ball B of radius
r tangent to S at p we have that B intersects S only at p. We say that a patchwork is a
1-patchwork if it is 1-touchable. Note that if S is a 1-patchwork then the offsets S(J) of S
are r-touchable for any » < 1 — |§|. In particular, since we will always have |§| < 1/2, all
offsets S(9) will be 1/2-touchable.

» Lemma 7. Let S(6) be an offset of a 1-patchwork surface S. Let Hy, be the plane tangent
to S(8) at p and let € be such that |§| < &+ — 2. Then, for any q € H, where |pq| < & we
have that q lies between S(&6 — 2¢2) and S(§ + 2¢2).

Proof. Note that due to the condition |§| < 2 — 22, the offset surfaces S(6 — 2¢?) and

S(8 + 2¢%) are well-defined. Moreover, we have that 1 —2¢% > 0, or equivalently that ¢ < 1.

For the following refer to Figure 4. Consider the tangent balls B;, By of radius % that
touch §(8) at p and consider the line ¢ through ¢ parallel to n(p). Since |[pg| = € < 3, the
line ¢ intersects B;. Let ¢; denote the point closest to ¢ in By n £. Similarly, ¢ will also
intersect By and let go denote the point closest to ¢ in Bs n £. Because S(§) is 1/2-touchable,
we have that the interiors of By and Bs cannot both be inside or both be outside S(§), thus
q1ge intersects S(§). In particular, g1q or gaq has to intersect S(9); we assume without loss
of generality that ¢;¢ intersects S(d) at a point ¢*. Since |g¢*| < |g1¢], it suffices to show

that |q1q| < 2€2.

2 On a smooth surface this would correspond to bounding the principal curvature in the interval [—1/r, 1/r].
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Let o denote the center of By and choose g3 in the extension of ¢1¢q towards q1, such that
lgsq| = 3. Then in the right triangle Aogigs we have: |pg|* + (3 — |(]1q|)2 = (%)2, which

gives: |qig| = 3 — 1/ (%)2 — |pg|?. (The other root of the equation would lead to |q1q| > 1/2,
but this is not possible as ¢1¢ is shorter than the radius of B;.) Thus:

lnal = % ' (1 —vi- (2|pq|>2> < % (1= (1= (2lpg)?)) = 2|pg|* < 2¢?

where in the second inequality above, we have used that v/1 — 22 > 1 — 22, for x € [0,1]. <

3.2 Nets, offsets, triangle layers

For the remainder of this section let S be a 1-patchwork surface, and let |§] < 1/2. Due to
space limit, we provide proofs for the more interesting claims. For the rest of the proofs, refer
to the full version of our paper [26]. We start with two technical lemmas that construct nets.

» Lemma 8. For any ¢ < 1/8, we can compute a (¢,8()-net of size O(area(S)/¢?) on S in
O(area(S)/¢?) time.

» Lemma 9. Let ( < 1/8 and let N < S be the (¢,8C)-net of S constructed above. Then,
for any § € (—1/2,1/2), we have that Ns := {p + én(p)|p € N} is a ({/2,12¢)-net of S(9).

» Lemma 10. Let Ns be a ((/2,12¢)-net of S(9) for each |6| < 1/2 constructed above. Then
for any fized 6, any 1 <t < 1/(4¢) and any p € N5 we have that the ball B(p,t() contains at
most O(t?) points of Ns. Moreover, for any t we can partition Ns into O(t?) point sets N,
such that the pairwise distance of points within Ns; is at least t(.

Proof. First note that ¢ - ¢ < 1/4. Moreover, any cylinder patch of §(¢), has distance at
least 1/2 from any square patch of S(0). Therefore, B(p,t- () cannot intersect both a square
and a cylinder patch at the same time. Recall that any two holes on a square patch have
pairwise distance at least 6 and are also at distance at least 2 from the boundary of the
square patch. Therefore, B(p,t - () cannot intersect both a quarter-cylinder patch and a
joint or a cylinder patch at the same time. The highest number of distinct surface patches
B(p,t- () can intersect is 7, which may happen when it intersects a spherical triangle patch
and the three quarter-cylinder patches around it and the three square patches around it.
Since it can intersect at most a constant number of distinct patches, it suffices to show that
it can contain at most O(¢?) points of Ns from each different type of surface patch.

To that end, let P denote a patch which is not a square patch and not a spherical triangle
patch. For the remaining types of patches, the constructed net is taken as a point set of
the form I(A, B), where elements in A and B are quarter-circular arcs, line segments or
circles. In all cases, we have argued already that any two elements in A have distance at
least (/2 (since now Ny is a (¢/2,12¢)-net) and any two elements in B have also distance at
least (/2. Therefore, from any point p € P and within distance ¢ - {, we can reach at most 2t
elements of A and 2t elements of B. Therefore we can reach at most 4¢% net points of P.
On a spherical triangle patch, the arcs of A again have pairwise distance at least {/2, so we
can reach at most O(t) arcs, and on each arc we can reach at most O(t) points as on each
quarter-circular arc the distance between consecutive points is at least /2.

For a square patch, the process of construction was slightly different due to the existence
of the holes. Using the same argumentation as above, we can deduce that B(p,t - () can
contain at most 4t net points from the initially placed grid. Moreover, B(p,t-() can intersect
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at most one hole. Note that a single hole contains O(1/¢) net points and since ¢ < 1/(2¢), it
contains at most O(t) net points. Therefore, B(p,t - () can contain at most 5t2 net points of
a square patch.

Since we argued that B(p,t - () can intersect at most 7 distinct surface patches, we have
that it can contain at most 7 - 5t2 = 35t2 points of Nj.

For the second part of the lemma create b = [35t2 + 1] partition classes N5 1, Ns.2, ..., N5
and greedily place points in these classes: we place each point p € N in the available class of
smallest index (that is, a class of minimum index not already containing any point ¢ such
that |pg| < t - (). Note that in this way, there will always be a class which is available, since
for any point there are at most 35¢2 points that cannot be in the same class with it. |

» Lemma 11. There exists a constant v such that for any ¢ < 1/(2v) and —1/2 < § <
1/2 —v(? there is collection T of O(area(S)/¢?) congruent equilateral triangles of side length
O(C) that satisfy the following properties:

(i) each triangle in T is located between S(8) and S(& + v(¢?)

(i) the triangles in T are pairwise disjoint, and

(iii) the geodesic distance from any point of S(8) to any point of S(6 + v(?) is at least 4C.

Proof. By applying Lemma 8 and Lemma 9 for we obtain a ({/2,12()-net Ns of S(§) of

size O(area(S)/¢?). We set t = 48(1 + +/3), and choose v large enough such that ¢ < 1/(4t).

Then, by Lemma 10, we can partition Nj into b = |35t2 + 1| classes (Ns;)%_;, where points
within each class Ns; have pairwise distance at least ¢ - { = 48(1 + v/3)z. We will now place
each class Nj; on a different offset S(d;), defined as follows. We start by setting v = 4b + 1
and define 6; := § + 44 - (2, for i = 1,2,..,b. From now on, we consider the points of each
class Nj,; on the surface S(¢;) defined as above.

The above definition ensures §; < § + 4b(? < § + v(? < 1/2. Thus, the offsets S(J;) are
well-defined. Furthermore, we also have the following:

Forl1<i< b, we have that 51 — 2<2 < 51 < 51’ + 2(2 < 5,’4_1. (1)

For 1 <i < band pe N, let T}, denote the equilateral triangle of side length 48+/3¢
centered at p, which lies on the tangent plane H, at p. Let T; = {T, : p € Nj,} and
T = U?=1 T;. We now argue that 7 satisfies the three properties of the Lemmas:

(i) This holds trivially since § +4¢? < §; < § + 4b? < § + v (2.

(i) Lemma 7 together with (1), ensure that any two triangles in 7 that belong to different
offsets are disjoint. Next, we argue that any two triangles T),,T, € 7; are disjoint. From
Lemma 10 we know that |pg| > 48(1 + 1/3)¢ > 96¢. Since each of our triangles has
circumradius 48¢, it follows that 7}, T, cannot intersect.

(iii) Refer to Section 3.2 for an illustration. Let p € S(6) and ¢ € S(d + v¢?) and consider
a shortest geodesic path 7(p,q). We want to show that dist7(p,q) = ¢ ¢ for some
constant ¢. Let u be a point in 7(p, ¢) N S(d1) and consider the segment s between the
points u — n(u) and u + n(u). We consider the following two cases:

Case I: There exists v € w(p,q), such that distgs(v,s) = 4C.

Then 7 has the desired length.

Case II: 7(p,q) is contained in the cylinder with azis s and radius 4¢

Let C(ab, x) denote the cylinder of axis ab and radius z. We will show that there
exists T € T which cuts the cylinder C(s,4() in such a way that the top and bottom
disk of the cylinder are completely contained in different sides of the cut. Since
m(p,q) connects these disks and it is disjoint from all triangles T € T, this will give
a contradiction.
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5(1) 7(p,q)

Figure 5 Illustration for the proof of Lemma 11 (side view). The geodesic 7(p, ¢) is shown in
grey. Note that the cylinder around s is cut by one of the red triangles, therefore 7 (p, ¢) needs to
exit the cylinder.

By the properties of Ns, we know that there exists a surface §(0;), such that s nS(0;)
is within distance 12¢ from a point w € N; ;. We will argue that Tj, is the required
triangle. Towards that, let s; = s n §(0;) and recall that T, has inradius 24¢
and denote by D the incircle of T,,. Observe that C(s;_1s;+1,4¢) < B(w,24¢). By
Lemma 7, we know that Ty, is between S(;—1) and S(d;41). Since D splits B(w, 24¢)
in two pieces where s;_1 and s;,1 are in different parts, we get that D has to cut
C(si—18i+1,4¢). We conclude that indeed T,, cuts C(s,4(¢) in the described manner,
which is a contradiction. |

By iterating the construction of Lemma 11 we get our curved wall separation theorem.

» Theorem 12 (Polynomial separation). Let S be a 1-patchwork surface. Then for any o > 1
there is a collection of O(c*area(S)) pairwise disjoint congruent equilateral triangle obstacles
between S(—1/2) and S(1/2), such that the geodesic distance from any point of S(—1/2) to
any point of S(1/2) is at least o.

3.3 The construction and the proof of Theorem 3

Recall that (X, distx) is the metric space whose distances we want to realize, with |X| =n
and spread ® = max, p.c,de X(iiztiim)’ and € > 0 denotes an accuracy parameter. We can
assume that the minimum distance of any two points in X is 41n3/e, as in general we can
scale the whole construction so that the minimum geodesic distance exactly matches the
minimum distance in X. We construct a 1-patchwork surface S together with an injection
f: X — R3 as follows.

For each point z; € X, 1 <i < n, let f(x;) = (40n? - 4,0, —10n?). Let C; denote the cube
centered at f(z;) of side-length 20n? — 2. We define the rounded cube R; = C; @ By, where
B denotes the ball of radius 1. Note that each rounded cube R; has size 20n?, where we
define the size of a rounded cube to be the side-length of its bounding box. Then the top
square patch of each R; lies on the plane z = 0, has side length 20n? — 2 and is centered at
the point (40n? -14,0,0). For each pair (i,5) where i < j, we model the distance between x;
and z; as follows. We start by placing two holes H; ;, H;; on the top square patch of R;
and R; respectively, such that:
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Figure 6 A tube consisting of three cylinders and a turn that connects the rounded cubes R;
and R;. We will set lvers(7,7) to ensure that the length of the tube corresponds to the distance
dist x (a:i, J}j).

H; ; has radius 2 and center (40n? - i, —10n? + 10(n — 1) - i + 105 — 10,0), and
H;; has radius 2 and center (40n? - j, —10n% + 10(n — 1) - i + 105 — 10,0).
Observe that the centers of any two holes H; ;, H;; defined this way have the same y-
coordinates. Moreover, the y-coordinates of the centers of all holes are in the range [—10n? +
10n, —10n]. Since the y-coordinates of the top square patches are in the range [—10n? +
1,10n2 — 1], this ensures that:
1. holes are well-defined,
2. each hole has distance at least 2 from the boundary of its square patch, and
3. for each 1 <4, j,k < n, where 4, j, k are pairwise different, the centers of H; ; and H;
have distance at least 10. As a result, H; ; and H;j have distance at least 6, as required
in the definition of a square patch.

It will be useful for the rest of the description, to define a cylinder-joint patch of length £
as a cylinder patch of length ¢, with two joint patches attached to its bases. Note that a
cylinder-joint patch can be used to connect two holes that are opposite to each other.

Next, for each 1 <4 < j < n, we connect H; ; and H;; as follows. We attach to both
H; ; and H;; a cylinder-joint patch of length fyer (i, j), which we denote by K; ; and K;;
respectively. The length fyc(7,j) will depend on e and its exact value will be set in the
proof of Theorem 3. We then attach K; ; to a rounded cube C; ; of size 8, through a circular
hole of radius 2 centered at the center of the bottom square patch of C; ;. Note that this
hole has distance at least 2 from the boundary of the square patch. Similarly, we attach KC; ;
to a rounded cube C;; of size 8, through a circular hole of radius 2 centered at the center of
the bottom square patch of the cube. We finally connect C; ; and C;; through a horizontal
cylinder-joint patch of length fpo.(i, j) = 40n? - (j — i), denoted by 7; ;. This concludes the
construction of S. Refer to Figure 6 for an illustration of the connection between f(z;), f(z;).
After constructing S we apply Theorem 12 for ¢ := max,, o, distx (i, z;) = O(® - n®/e), to
achieve a separation of max,, . distx (s, ;) between S(—1/2) and §(1/2). We let T denote
the resulting set of triangle obstacles.

Next, we sketch the proof of Theorem 3. Refer to the full version [26] for a detailed proof.

Proof sketch. We need to upper and lower bound the length of a geodesic from f(z;) to
f(z;). The choice of o ensures that we only need to consider geodesics within S(1/2). We
set Lyert(i,7) so that any geodesic that passes through the three-cylinder-tube connecting

46:13

ISAAC 2025



46:14

Realizing Metric Spaces with Convex Obstacles

R; and R; has length at least distx (z;,2;). Now a geodesic passing through multiple such
tubes will have a length that is at least the sum of the corresponding distances, thus by the
triangle inequality in X any such path will also have length at least distx (x;, ;).

To upper bound the geodesic distance of f(x;) to f(z;), we observe that there is a direct
path in S(—1/2) connecting f(z;) and f(z;) through the designated three-cylinder tube.
This will contain some additional short segments compared to our lower bound, namely, the
segments connecting the endpoints of the geodesic (f(x;) and f(x;)) to the entrance and exit
of the tube. The total length of these segments is shown to be less than edistx (z;, ;). <

We note the following observation from within the proof of Theorem 3 for later use.

» Observation 13. There is a path connecting f(z;) and f(z;) in the inside of S(—1/2) that
has length at most (1 + ¢) - distx (x;, ;).

» Remark 14 (Exact realizations). It is particularly challenging to realize a metric ezactly
with convex obstacles. While our construction can be modified to ensure the exact length of
the shortest path through the corresponding tube has the same exact length as the original
distance in (X, distx ), this is not sufficient.

The problem can be seen by considering the metric induced by a star on 4 vertices. If
a, b, ¢ are the leaves and x is the center of the star, then the the shortest f(a) — f(b) path
will be realized by going through the f(a) — f(x) tube and the f(z) — f(b) tube, foregoing
the small detour to f(x) within its rounded cube. This path will be strictly shorter than
distr(f(a), f(z)) + dist7(f(x), f(b)). While a realization exists for star graph metrics using
relatively open triangles, this does not generalize. Can we for example realize (X, distx)
exactly with disjoint convex obstacles assuming the image of disty is {1,2}?

4 Realizing metrics with fat obstacles

We tweak our construction to prove the following theorem and answer Question 1 for convex
fat non-disjoint obstacles and for fat, disjoint but non-convex obstacles.

» Theorem 15. Let e € (0,1) and let (X, distx) be a metric space of size | X| = n and spread
31:21 z’s ). Then there exists a collection T of obstacles for each of the
following restrictions:

(i) T consists of O(n'"®° /) congruent reqular simplices (that are not necessarily disjoint).
(ii) T consists of O(n®®/e) disjoint, similarly-sized a-fat objects that are homeomorphic to
a ball. The objects have total complexity O(n'"®® /&%), where a > 0 is a constant.

In both cases, there is an injection f : X — R3 such that

O := maxg p e dex(

distx (a,b) < dist7(f(a), £(b)) < (1 +¢) - dist x (a, b).
for all a,be X. The set of obstacles can be constructed in poly(n,®,1/e) time.

Proof. (i) We modify the set of triangular obstacles in our basic construction as follows.
Recall from the proof of Lemma 11 that each triangle 7' € T is tangent at the center of
T to some S(0) at a point p € §(J), for some —1/2 < § < 1/2. We turn T into a regular
tetrahedron T where one face of T” is T, and the vertex of T” outside T is placed along the
normal ray from p, that is, the tetrahedron will point to the outside of S(J). The obstacles
in the new collection obtained this way, denoted by 7, are convex and 1/3-fat.

We can now prove Theorem 3 for 7’ instead of 7. For the lower bound, it suffices to
observe that Fr < Fy. This implies that the set of geodesics in F7- is a subset of the
geodesics in Fr, and thus for any two points x;,2; € X we have dist7 (f(z;), f(z;)) =
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S(-1) T S(-1)

Figure 7 (i) Side view of the region U (shaded in grey). (ii) The region U, = Cp nU (in red),
together with the ball B, c U, (in blue), indicating that U, is fat.

dist7(f(x;), f(x;)) = distx(x;,2;). On the other hand, the inside of S(—1/2) is in Fy,
due to the way we constructed the tetrahedra (pointing “out” of the offset surface they are
tangent to). Observation 13 now implies that dist7(f(x;), f(z;)) < (1 + ¢)distx (@, x;).

(ii) Let T be the triangle collection constructed by Section 3.3, and let U be the union
of all offsets of S, that is, U := {Jse[_1/,1/2)S(6). Refer to Figure 7 for an illustration.
Let N be a (1/8,1)-net of S obtained from Lemma 9 with ¢ = 1/8. Consequently, |N| =
area(S) = O(n°®/e). Compute the Voronoi diagram of N in R3, that is, a partition of R?
into cells according to the closest point of N. The Voronoi cells can be computed in poly(|N|)
time [18, Ch. 27]. For the cell C,, of p € N let U, := C, n U; note that each U, can be
represented explicitly in poly(]IV|) = poly(|7]) space. Observe that U, has diameter at most
diam(U,) < 3/2: indeed, any point in U is within distance at most 1/2 from S (along the
normal direction or its inverse), and any point of S is within distance at most 1 from some
point of N by the net property of N.

We claim that each set U, contains a ball B, of radius 1/16. Clearly the Voronoi cell
C)p contains this ball by the net property; it remains to show that B, is contained in U.
Consider the line ¢ normal to S at p, and let p(d) be the point of this line on S(J) where
d € [-1/16,1/16]. Notice that a point ¢ € B, the nearest point of £ is some point p(d), and
the tangent plane Hs of S(d) at p(d) contains g. Since |g,p(d)| < 1/16, we have by Lemma 7
that g is between S(§ — 2/162) and S(§ + 2/16%). Since § < 1/16, this implies that ¢ € U,
and concludes the proof that B, < U,.

Consider now the obstacle set T, and notice that its triangles have positive pairwise
distance from each other and also from §(—1/2) and from S(1/2). Let x> 0 be some small
number such that the Euclidean u-neighborhoods of the triangles of 7 remain pairwise
disjoint, and they remain subsets of U. For a triangle T € T let (T') denote the center of T
and let T denote the set of points ¢ in R? such that distgs (¢, T) < p (i.e., T* is an open
set). Here distgs(q,T) denotes the minimum Euclidean distance between ¢ and a point of T.

Let U, # denote the set of points ¢ with distgs (g, R3\U,) > u, that is, U, " is a closed sub-
set of U, where a small neighborhood of the boundary of U, has been removed. Consequently,
the sets U, #* are pairwise disjoint.

We group 7 according to the location of their triangle centers. Let 7T, denote the set of
triangles T' € T where z(T) € U,; if z(T') is on the shared boundary of several sets (Up)pen,
then we assign T' to one of the corresponding classes arbitrarily. As a result {7,},en is a
partition of 7. For each point p € N we define the following obstacle W, by adding all
triangles of 7, to U, *, but subtracting 7" for all T'e€ T\T,:
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Figure 8 (i) By shrinking U, we obtain the region U, ". Square points correspond to centers
of triangles in 7. Four triangles are drawn, again in side view. For illustration purposes, various
objects have not been drawn to scale. (ii) The final obstacle W}, obtained by attaching to U, " the
two red triangles, and removing a small neighborhood of the other two.

Wp:= U, "y UT \ U ™

TeT, TeT\Tp

Refer to Figure 8 for an illustration of an obstacle W,. The sets W, are computed in
polynomial time, and they are closed sets that are pairwise disjoint. Moreover, each set W),
has diameter at most diam(W,) < diam(U,) + s < 2 where sy < 1/100 is the side length
of the triangles in T'. Recall that each set U, contains a ball of radius 1/16 centered at p. It
follows that W, contains the ball of radius 1/16 — u — s > 1/32 centered at p. We conclude
that the sets W), are 1/64-fat.

The proof that the obstacle set {W)},cn approximately realizes (X, distx) can be argued
as in part (i). The number of obstacles is |N| = O(n°®/e). <

We note that both the size of our obstacle collection and the construction time could be
further improved; here, however, we did not attempt to optimize for these aspects.

5 Algorithms and lower bounds for TSP WITH OBSTACLES

This section is devoted to proving Corollary 4. In order to give an algorithm, we will first
need to (approximately) compute the distances between our input points. Let 7 denote a
collection of pairwise-disjoint polyhedral obstacles in R? of total complexity m. Har-Peled [21]
showed how to construct an e-approximate shortest path map from any source point s € Fr,
in time roughly O(m*/®). From his result we can deduce the following:

» Theorem 16 (Har-Peled [21]). Let T be a collection of pairwise-disjoint polyhedral obstacles
in R® of total complexity m and let S = Fr, be a set of |S| = n points. Then, for any
0 <e <1, we can compute a (1 + &)-approzimation for the all-pairs-shortest-paths problem
on S in time:

4
9] (nﬂ; (ﬂ(m) log % + log(mp) log(m log P)) log i)

4

where p is the ratio of the longest edge in T with the distance of the closest pair of points in
S, and f(m) = a(m)o(a(m))o(l), and a(m) is the inverse of the Ackermann function.
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Note that Har-Peled’s result is based on constructing a graph whose vertices correspond
to points and whose edges correspond to pairwise visible point pairs, where edge lengths are
high-precision estimates of the distance of the visible point pair. Har-Peled’s result computes
the true shortest paths in this graph. Consequently, the resulting approximate distance
function distapprox on S forms a metric space. One can also show using arguments similar to
Lemma 6 that for any ¢ € (0,1) the doubling dimension of (.S, distapprox) is at most constant
times the doubling dimension of (S, disty).

We now mention the result by Banerjee, Bartal, Gottlieb and Hovav, on TSP in doubling
spaces [6].

» Theorem 17 (Corollary 35 in [6]). Let (X,distx) be a metric space with |X| = n points
and of bounded doubling dimension 6. A (1 + €)-approzimation to the optimal tour of X can
be computed by a randomized algorithm in 206/ 4 (1/2)°@nlogn time.

By combining Theorem 17 and Theorem 16, we will obtain a PTAS for the case B =
convex A pairwise disjoint A fat. For the other cases, the APX-hardness is based on the
inapproximability result by Karpinski, Lampis and Schmied on METRIC TSP [25]. They
showed an inapproximability bound of 123/122. By inspection of the construction given
in [25], we have the following crucial observation:

» Observation 18. It is NP-hard to approximate METRIC TSP within a ratio of 123/122,
even when the underlying metric space has polynomial spread.

Proof. This follows by inspection of the construction by Karpinski, Lampis and Schmied
(Section 5.1 in [25]), which is based on a the shortest path metric of a connected edge-weighted
graph. The weights of all edges used are small constants. Namely, the smallest edge has
weight 0.5, and the longest edge has length 2. Therefore, the graph has diameter at most
2(n — 1), and the construction has a spread at most % =4(n—1) = 0O(n). <

Now we have all the necessary elements to prove Corollary 4.

» Corollary 4. Let T be a collection of obstacles in R® with property B of total complexity
m = poly(|X|). Then TSP WITH OBSTACLES has a PTAS if P = “conver and pairwise
disjoint and fat”, and it is APX-hard for all other 3.

Proof of Corollary 4. Let S < Fr denote a set of n points, whose optimal tour we want to
compute. We have the following cases:
The obstacles in 7 are convex, a-fat and pairwise disjoint.

We show that then TSP WITH OBSTACLES admits a PTAS. Towards that, let € € (0,1).

By Theorem 16, we can approximate disty up to a factor of 1 + &/3. Let distapprox
denote the approximate metric. The doubling dimension of (S, distapprox) is at most
a constant factor larger than that of (S, dist7). Therefore, by Lemma 6, it is at most
O(1). By Theorem 17, we can get a (1 + €/3)-approximation for TSP WITH OBSTACLES
on (S, distapprox), With running time 21/=% My 4 1/e9Mnlogn. Since (14¢/3)2 <1 +¢,
the result is a (1 + €)-approximation for TSP WITH OBSTACLES.

The obstacles in 7 are convex and pairwise disjoint but not fat, or fat and
convex but non-disjoint, or fat and disjoint but non-convex.

We will show that in this case the problem is APX-hard, with an inapproximability bound
of % —eg, for any € > 0. For a set S < Fr, let OPT+(S) denote the length of an optimal
tour through S. Assume that we could, in polynomial time, compute a tour of length

Tapprox(9) such that Topprox(S) < (322 — &) OPT(9), for a fixed € > 0.
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Let (X,distx) denote an instance of METRIC TSP, where |X| = n and X has spread
poly(n). From Observation 18, we have a 123/122 inapproximability bound for computing
the optimal tour on X, denoted by OPT(X). From Theorem 3 or Theorem 15, we
compute a set of obstacles 7 in R3 and an injection f : X — R3, such that:

OPT,(f(X)) < (1 +¢)OPT(X),

’ ; 123 = 123
where we set ¢’ to satisfy 122(1+e) — 122

By our assumption, we can compute a value Tapprox(f(X)) such that:

E.

123

Tl (X)) < (135 ) OPTH(X)

Therefore, Tapprox(f(X)) < 123 OPT(X), which contradicts the APX-hardness of METRIC

TSP. <

6 Conclusion

In this paper we have shown that all metric spaces are approximately realizable in R® using
convex disjoint obstacles, or using convex fat but non-disjoint obstacles, or using fat disjoint
obstacles that are non-convex. Our convex construction is easily generalizable to several
other obstacle types, however, it always requires objects whose minimum bounding box has
two long edges (polynomially long in n,1/c and the spread) and one short edge of length 1.

Some notable obstacle types where the possible realizable metrics remain unexplored
include disjoint axis-parallel box obstacles and disjoint 1 x 1 x n boxes of arbitrary orientation.
We suspect that obstacles of the former type cannot realize all metric spaces, and obstacles
of the latter type can only realize spaces of small doubling dimension. It also remains open
whether exact realization of any metric space is possible with convex obstacles, even if all
distances in the metric space are either 1 or 2.

Finally, can we generalize the planar studies of distances among weighted regions [9,17,30]
to R3? What metrics can be realized if we are allowed to pass through the objects of 7, but
we need to pay some custom penalty (weight) for doing so?
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