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Abstract
In the Pinwheel Packing problem, we are given a set of recurring tasks, each associated with
a positive integer ai for task i. The objective is to select one task to perform each day such that
every task i is performed at least once within every ai consecutive days. The exact computational
complexity of this problem, where

∑
1/ai = 1, has remained an open question for more than 30 years;

in particular, it is still unknown whether the problem is NP-hard. The first contribution of this paper
is to show that Pinwheel Packing cannot be solved in polynomial time under a standard complexity
assumption, improving upon the hardness result shown by Jacobs and Longo. Additionally, we
present fixed-parameter algorithms for variants of Pinwheel Packing, parameterized by the number
of tasks.
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1 Introduction

1.1 Pinwheel Scheduling
The (packing version of) Pinwheel Scheduling problem was introduced by Holte et al. [12] in
1989 as a formalization of a real-time scheduling problem. In the problem, we are given k

recurring tasks and a positive integer ai for each task i ∈ [k] = {1, . . . , k}. The objective is
to select one task to perform each day so that each task i is performed at least once every ai

days. In other words, we want to find pairwise disjoint sets S1, . . . , Sk ⊆ Z such that

|[m, m + ai) ∩ Si| ≥ 1 (1)

for all i ∈ [k] and m ∈ Z, where Si represents the set of days on which task i is performed.
Note that each Si can be an infinite set. A natural computational problem is to determine
the existence of such sets S1, . . . , Sk ⊆ Z, which is formally described as follows. Note
that we call this problem Pinwheel Packing in this paper, because we will discuss the
corresponding covering variant later.

Pinwheel Packing
Input: A sequence of positive integers A = (ai)i∈[k].
Task: Determine whether there exist pairwise disjoint sets S1, . . . , Sk ⊆ Z such
that |[m, m + ai) ∩ Si| ≥ 1 for all i ∈ [k] and m ∈ Z.
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47:2 Hardness and Fixed Parameter Tractability for Pinwheel Scheduling Problems

Despite the simplicity and naturalness of the problem setting, little is known about the
computational complexity of this problem. It has been shown in [12, Corollary 2.2] that
Pinwheel Packing is in PSPACE; however, it is unknown whether this problem is in NP.
Furthermore, it is unknown whether this problem is NP-hard. See [19] for details.

Since each task i has to be performed on at least a 1
ai

fraction of a sufficiently long
consecutive sequence of days, if A = (ai)i∈[k] is a yes-instance of Pinwheel Packing, then∑k

i=1
1
ai

(called the density of A) is at most 1. An instance A = (ai)i∈[k] is called dense if its
density is exactly 1. As we see in Section 1.2, for dense instances, Pinwheel Packing is
equivalent to several other problems, highlighting that dense instances form an interesting
special case. However, the exact complexity of dense instances of Pinwheel Packing has
been open for more than 30 years. In fact, it is noted in [12, Section 4] that the NP-hardness
of this problem remains an open question, and it is explicitly conjectured by Kawamura and
Soejima [21, Conjecture 19] that Pinwheel Packing for dense instances is NP-complete.
Note that the NP-hardness has been shown when the input sequence is represented in a
concise notation; see [12, Theorem 4.12] and [19, Theorem 5]. Jacobs and Longo showed
in their preprint [16] that (dense instances of) Pinwheel Packing cannot be solved in
polynomial time unless SAT with n variables has a randomized algorithm running in expected
time nO(log n log log n).

1.2 Exact Packing and Covering
As mentioned in the previous subsection, for dense instances, Pinwheel Packing is
equivalent to several other problems.

Observe that, if S1, . . . Sk ⊆ Z form a solution for a dense instance A = (ai)i∈[k] of
Pinwheel Packing, then they satisfy (1) with equality. Using this observation, for dense
instances, Pinwheel Packing is equivalent to the following exact variant.

Exact Pinwheel Packing
Input: A sequence of positive integers A = (ai)i∈[k].
Task: Determine whether there exist pairwise disjoint sets S1, . . . , Sk ⊆ Z such
that |[m, m + ai) ∩ Si| = 1 for all i ∈ [k] and m ∈ Z.

Note that the desired condition of this problem means that each task i is performed
exactly once every ai days. Therefore, Si satisfies |[m, m + ai) ∩ Si| = 1 for all m ∈ Z if
and only if it is a residue class modulo ai, i.e., Si = {ri + ai · q : q ∈ Z} for some integer
ri. Independently of its connection to Pinwheel Packing, Exact Pinwheel Packing
is an interesting problem in its own right. Indeed, Exact Pinwheel Packing has been
studied under the name (1-server) periodic maintenance problem [3, 25, 30] in the context of
scheduling problems, and its solution has also garnered attention in discrete mathematics
under the name disjoint residue classes [15, 21, 28]. It is shown in [3, 16, 21, 25] that Exact
Pinwheel Packing is NP-complete, where we note that the input is not necessarily dense.

We can also consider a problem that is, in a sense, dual to (Exact) Pinwheel Packing,
which is called (Exact) Pinwheel Covering [19]. Consider a scenario where a single task
must be performed every day, and it is to be handled by k agents. Each agent i ∈ [k] is
assigned a positive integer ai, which represents the condition that the agent can perform the
task at most once (or exactly once) every ai days. In this setting, the problem of determining
the assignment of agents corresponds to finding a collection of sets S1, . . . , Sk ⊆ Z such that⋃

i∈[k] Si = Z and

|[m, m + ai) ∩ Si| ≤ 1 (or |[m, m + ai) ∩ Si| = 1)

for all i ∈ [k] and m ∈ Z, where Si represents the set of days on which agent i performs the
task. That is, the problem is formally described as follows.
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Pinwheel Covering (resp. Exact Pinwheel Covering)
Input: A sequence of positive integers A = (ai)i∈[k].
Task: Determine whether there exist sets S1, . . . , Sk ⊆ Z such that

⋃
i∈[k] Si = Z

and |[m, m + ai) ∩ Si| ≤ 1 (resp. |[m, m + ai) ∩ Si| = 1) for all i ∈ [k] and
m ∈ Z.

Pinwheel Covering was introduced and studied under the name point patrolling in [21].
Similarly to the packing problem, this problem is in PSPACE, and it is unknown whether
this problem is NP-hard. In contrast, very recently, it was shown that Exact Pinwheel
Covering is NP-hard [20]. Note that feasible solutions for Exact Pinwheel Covering
are known as Erdős covering systems and have been actively studied by number theorists;
see [2, 14].

Since each agent i can perform a task on at most a 1
ai

fraction of a sufficiently long
consecutive sequence of days, if A = (ai)i∈[k] is a yes-instance of Pinwheel Covering, then
its density

∑k
i=1

1
ai

is at least 1. Similarly to the packing problem, if the density is exactly 1,
then Pinwheel Covering and Exact Pinwheel Covering are equivalent. Furthermore,
if the density of A = (ai)i∈[k] is exactly 1 and S1, . . . , Sk ⊆ Z satisfy |[m, m + ai) ∩ Si| = 1
for all i ∈ [k] and m ∈ Z, then we see that

⋃
i∈[k] Si = Z if and only if S1, . . . , Sk are pairwise

disjoint. By combining these facts, we arrive at the following observation.

▶ Observation 1 (see [19, Section 5]). For instances with density exactly 1, the four above
problems, i.e., (Exact) Pinwheel Packing and (Exact) Pinwheel Covering, coincide.

For brevity, Pinwheel Packing, when restricted to dense instances, is referred to as
Dense Pinwheel Packing. Then, Observation 1 implies that Dense Pinwheel Packing
is a special case of all the four above problems.

1.3 Our Contributions
As described in Section 1.1, it was shown by Jacobs and Longo [16] that Dense Pinwheel
Packing cannot be solved in polynomial time unless SAT with n variables has a randomized
algorithm running in expected time nO(log n log log n). The first contribution of this paper is
to strengthen this result by showing that Dense Pinwheel Packing cannot be solved
in polynomial time under a weaker complexity assumption, partially addressing the open
question in [12, Section 4] and [21, Conjecture 19].

▶ Theorem 2. Dense Pinwheel Packing cannot be solved in polynomial time unless
NP ⊆ DTIME(nO(log n)).

Here, NP ⊆ DTIME(nO(log n)) means that every problem in NP can be solved in nO(log n)

time, where n is the input size of the problem. The assumption NP ̸⊆ DTIME(nO(log n)) is
weaker than the assumption in [16] in two key aspects: the running time is improved from
nO(log n log log n) to nO(log n), and our assumption does not rely on randomization. Note that
the assumption NP ̸⊆ DTIME(nO(log n)) is weaker than the Exponential Time Hypothesis
(ETH) and NP ̸⊆ QP (see Corollary 10), while it is stronger than P ̸= NP. Theorem 2 implies
that Pinwheel Packing and Pinwheel Covering cannot be solved in polynomial time
under the same assumption.

▶ Corollary 3. Neither Pinwheel Packing nor Pinwheel Covering can be solved in
polynomial time unless NP ⊆ DTIME(nO(log n)).

ISAAC 2025
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In our proof for Theorem 2, we refine the argument in [16]. We first prove that Exact
Pinwheel Packing is hard even when lcm(A) is not particularly large (see Theorem 6),
where lcm(A) denotes the least common multiple of a1, . . . , ak for A = (ai)i∈[k]. We then
reduce Exact Pinwheel Packing to Dense Pinwheel Packing by appending multiple
copies of integer lcm(A), thereby proving the hardness of Dense Pinwheel Packing. The
primary technical challenge lies in ensuring that lcm(A) does not become excessively large.

To achieve this, Jacobs and Longo [16] reduce an NP-hard problem of size n to a new
problem called Partial Coding, and then further reduce it to Exact Pinwheel Packing.
These reductions show that Exact Pinwheel Packing is hard even when lcm(A) =
nO(log n log log n). In contrast, we directly and carefully reduce an NP-hard problem to Exact
Pinwheel Packing, which enables us to achieve a tighter bound of lcm(A) = nO(log n). To
derandomize our reduction step, we utilize a sophisticated tool known as (n, k)-universal
sets [26] in a non-trivial manner, which constitutes the most technical aspect of our proof.
For details, see Section 2.

Theorem 2 suggests that (Exact) Pinwheel Packing and (Exact) Pinwheel Cov-
ering are unlikely to be solvable in polynomial time. It is then natural to consider the
fixed-parameter tractability of these problems. Indeed, Gąsieniec et al. [10] showed that
Pinwheel Packing can be solved in FPT time when parameterized by k. Our second
contribution is to show that the remaining three variants can also be solved in FPT time
with respect to the parameter k.

▶ Theorem 4. Pinwheel Covering and Exact Pinwheel Covering can be solved in
O(n) + kO(2k) time, where n :=

∑k
i=1 log ai is the input size of the problem.

▶ Theorem 5. Exact Pinwheel Packing can be solved in (log k)O(k2) · nO(1) time, where
n :=

∑k
i=1 log ai is the input size of the problem.

We here describe proof ideas for these theorems, while formal proofs are given in Section 3.
Our proof for Theorem 4 is based on the following intuition: if some ai is extremely large,
then removing ai does not affect the feasibility of the problems. Our technical contribution
lies in formalizing this intuition. We then show that it is sufficient to consider the case where
each ai is bounded by a function of k, leading to FPT algorithms.

It should be noted that this argument does not apply to Exact Pinwheel Packing, as
removing a large ai could affect the feasibility of the problem. For instance, if A consists of
two large integers a1 and a2 that are coprime, then A is a no-instance. However, removing
either a1 or a2 would result in a yes-instance. Therefore, we adopt a completely different
approach to obtain Theorem 5. We observe that a solution to Exact Pinwheel Packing
consists of sets Si = {ri + ai · q : q ∈ Z}, where each set is determined by an integer ri.
Treating r1, . . . , rk as integer variables, we show that the constraints for ri can be formulated
as an integer linear program by introducing several auxiliary variables. Since the integer
linear programming problem can be solved in FPT time, parameterized by the number of
variables, this yields an FPT algorithm for Exact Pinwheel Packing.

Moreover, to highlight the similarities and differences between Pinwheel Packing and
(Exact) Pinwheel Covering, an FPT algorithm for Pinwheel Packing with an explicit
running time bound is provided in Appendix A.
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1.4 Related Work

A generalization of Pinwheel Packing has been studied under the name of Windows
Scheduling Problem. While Pinwheel Packing can be viewed as a scheduling problem
involving a single machine where all tasks have the same size, Windows Scheduling
Problem extends this to a setting with multiple machines and tasks of varying sizes [4, 5,
16, 22].

Bamboo Garden Trimming problem is an optimization variant of Pinwheel Packing.
Here, the objective is to find the smallest positive number h such that (h · ai)i∈[k] is a
yes-instance of Pinwheel Packing. Hardness results and approximation algorithms have
been investigated for this problem [9, 11, 29].

For Pinwheel Packing, there has been extensive research on sufficient conditions for
the density of the input A to be a yes-instance. It is not so difficult to show that A is a
yes-instance if its density is at most 1

2 [12]. A central question in this area is whether the same
statement holds when 1

2 is replaced with a larger number α. The maximum such number α

is called the density threshold. Since A = (2, 3, m) is a no-instance with a density of 5
6 + 1

m

for any integer m, the density threshold is at most 5
6 . Building on extensive research on the

density threshold [6, 7, 10, 24], Kawamura [18] recently showed that the density threshold is
exactly 5

6 , resolving the conjecture proposed by Chan and Chin [6]. A threshold depending
on the smallest element in A is investigated in [11]. It is also shown that if A consists of at
most two distinct values and its density is at most 1, then it is a yes-instance [13].

2 Hardness Results

The objective of this section is to show the hardness of Dense Pinwheel Packing (The-
orem 2). To achieve this, we reduce a well-known NP-hard problem called 3-Coloring
in Graphs with Maximum Degree Four; see [8]. In 3-Coloring in Graphs with
Maximum Degree Four, the input is a graph G = (V, E) with maximum degree four and
the objective is to decide whether G is 3-colorable, that is, to decide whether we can color V

with three colors so that adjacent vertices have different colors.
We first show in Section 2.1 that 3-Coloring in Graphs with Maximum Degree

Four with n vertices can be reduced to Exact Pinwheel Packing with lcm(A) = nO(log n).
Recall that lcm(A) denotes the least common multiple of a1, . . . , ak for A = (ai)i∈[k]. Then,
in Section 2.2, we reduce Exact Pinwheel Packing with lcm(A) = nO(log n) to Dense
Pinwheel Packing of size nO(log n).

2.1 Reduction to Exact Pinwheel Packing

▶ Theorem 6. Let G = (V, E) be a graph with |V | = n whose maximum degree is four.
In nO(1) time, we can construct a sequence of positive integers A with lcm(A) = nO(log n)

such that G = (V, E) is 3-colorable if and only if A is a yes-instance of Exact Pinwheel
Packing.

Proof. We give a reduction from 3-Coloring in Graphs with Maximum Degree Four
to Exact Pinwheel Packing. It suffices to consider the case where n is sufficiently large.

Reduction. Let G = (V, E) be a graph with |V | = n whose maximum degree is four. We
first construct a set T and a family (Tv)v∈V of subsets of T by applying the following technical
lemma, whose proof is postponed to Section 2.3.

ISAAC 2025



47:6 Hardness and Fixed Parameter Tractability for Pinwheel Scheduling Problems

▶ Lemma 7. Let G = (V, E) be a graph with |V | = n whose maximum degree is four. In
nO(1) time, we can construct a set T with |T | = O(log n) and its subsets Tv ⊆ T each indexed
by v ∈ V such that vertices v and v′ are adjacent in G if and only if Tv ∩ Tv′ = ∅.

We pick |T | distinct primes (pi)i∈T indexed by T such that n < pi < 2n for each i ∈ T .
Note that such primes exist when n is sufficiently large, because the prime number theorem
guarantees that, for any positive integer N , there are Θ

(
N

log N

)
primes less than or equal to

N . For every v ∈ V , let

av = 3 ·
∏

i∈Tv

pi.

Then, we obtain an instance A = (av)v∈V of Exact Pinwheel Packing. The construction
can be done in nO(1)-time, and

lcm(A) ≤ 3 ·
(

max
i∈T

pi

)|T |

= nO(log n).

Completeness. We show that if G is 3-colorable, then A = (av)v∈V is a yes-instance of
Exact Pinwheel Packing. Suppose G = (V, E) has a 3-coloring c : V → [3]. Let ℓ be a
bijection from V to [n]. For each v ∈ V , let rv be an integer such that

rv ≡ c(v) mod 3, (2)

and

rv ≡ ℓ(v) mod
∏

i∈Tv

pi, (3)

whose existence is guaranteed by the Chinese remainder theorem. Let Sv = {rv +av ·q : q ∈ Z}
for v ∈ V . We claim that (Sv)v∈V is a solution to the Exact Pinwheel Packing instance
A = (av)v∈V , that is, Sv ∩ Sv′ = ∅ holds for any pair of distinct v, v′ ∈ V . We consider the
following two cases separately.

Suppose that v and v′ are adjacent in G. Then, we have c(v) ̸= c(v′) as c is a coloring,
and hence rv ̸≡ rv′ (mod 3) by (2). Thus, for all q, q′ ∈ Z,

rv + av · q ̸= rv′ + av′ · q′,

because both av and av′ are divisible by 3. This shows that Sv ∩ Sv′ = ∅.
Suppose that v and v′ are not adjacent in G. Then, Tv ∩Tv′ ̸= ∅ holds by the construction
in Lemma 7. Let i be an element in Tv ∩ Tv′ . Since pi > n > |ℓ(v) − ℓ(v′)| ≥ 1, we have
ℓ(v) ̸≡ ℓ(v′) (mod pi), which implies that

rv ≡ ℓ(v) ̸≡ ℓ(v′) ≡ rv′ mod pi

by (3). Thus, for all q, q′ ∈ Z,

rv + av · q ̸= rv′ + av′ · q′,

because both av and av′ are divisible by pi. This shows that Sv ∩ Sv′ = ∅.
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Soundness. We show that if A = (av)v∈V is a yes-instance of Exact Pinwheel Packing,
then G is 3-colorable. Suppose that (Sv)v∈V is a solution to the Exact Pinwheel Packing
instance A = (av)v∈V . For each v ∈ V , since Sv is a residue class modulo ai, there exists
an integer rv such that Sv = {rv + av · q : q ∈ Z}. For v ∈ V , let c(v) be the integer in
{1, 2, 3} such that c(v) ≡ rv (mod 3). This defines a function c : V → [3]. We claim that c is
a coloring of G. Let v, v′ ∈ V be vertices that are adjacent to each other. Then, we have
Tv ∩ Tv′ = ∅, and hence gcd(av, av′) = 3, where gcd denotes the greatest common divisor.
Since Sv ∩ Sv′ = ∅ is equivalent to rv ̸≡ rv′ (mod gcd(av, av′)) by the Chinese remainder
theorem (see e.g. [3, Lemma 12]), we obtain

c(v) ≡ rv ̸≡ rv′ ≡ c(v′) mod 3.

Therefore, c is a 3-coloring of G. ◀

▶ Remark 8. Theorem 6 gives an alternative proof of the NP-completeness of Exact
Pinwheel Packing, which has already been shown in [3, 16, 21, 25]. The condition
lcm(A) = nO(log n) is not required to prove the NP-completeness of Exact Pinwheel
Packing. However, it is used to show the hardness of Dense Pinwheel Packing in the
next subsection.

2.2 Hardness of Dense Pinwheel Packing
In this subsection, we prove the hardness of Dense Pinwheel Packing using Theorem 6.

▶ Theorem 9. Let G = (V, E) be a graph with |V | = n whose maximum degree is four. In
nO(log n) time, we can construct an instance Â = (ai)i∈[k] of Dense Pinwheel Packing
such that k = nO(log n), ai = nO(log n) for each i ∈ [k], and G = (V, E) is 3-colorable if and
only if Â is a yes-instance of Dense Pinwheel Packing.

Proof. Let G = (V, E) be a graph with |V | = n whose maximum degree is four. By
Theorem 6, in nO(1) time, we construct a sequence of positive integers A = (ai)i∈[ℓ] with
lcm(A) = nO(log n) such that G = (V, E) is 3-colorable if and only if A is a yes-instance of
Exact Pinwheel Packing. We may assume that the density of A is at most 1, since
otherwise we can just return a trivial no-instance.

We construct an instance Â of Dense Pinwheel Packing from A by appending multiple
copies of integer lcm(A) so that the density becomes 1. That is, we define Â = (ai)i∈[k] by

k = ℓ +
(

1 −
ℓ∑

i=1

1
ai

)
lcm(A),

aℓ+1 = aℓ+2 = · · · = ak = lcm(A).

Then, we see that k ≤ lcm(A) = nO(log n) and ai ≤ lcm(A) = nO(log n) for each i ∈ [k]. This
implies that Â can be constructed in nO(log n) time.

It remains to show that G = (V, E) is 3-colorable if and only if Â is a yes-instance of
Dense Pinwheel Packing. To this end, we prove that A is a yes-instance of Exact
Pinwheel Packing if and only if Â is a yes-instance of Dense Pinwheel Packing.

Suppose first that Â is a yes-instance of Dense Pinwheel Packing and let (Si)i∈[k] be
a solution for it. Then, (Si)i∈[ℓ] is a solution to the Exact Pinwheel Packing instance A.

Suppose next that A is a yes-instance of Exact Pinwheel Packing and let (Si)i∈[ℓ] be
a solution for it. Since each Si is a residue class modulo ai, it is the union of lcm(A)

ai
residue

classes modulo lcm(A). Then, Z \
⋃ℓ

i=1 Si is the union of lcm(A) −
∑ℓ

i=1
lcm(A)

ai
= k − ℓ

residue classes modulo lcm(A). Therefore, we can take residue classes Sℓ+1, . . . , Sk modulo
lcm(A) so that (Si)i∈[k] is a solution to the Dense Pinwheel Packing instance Â. ◀

ISAAC 2025
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We are now ready to prove Theorem 2, which we restate here.

▶ Theorem 2. Dense Pinwheel Packing cannot be solved in polynomial time unless
NP ⊆ DTIME(nO(log n)).

Proof. We prove NP ⊆ DTIME(nO(log n)) assuming that Dense Pinwheel Packing can
be solved in polynomial time. Suppose we are given an instance of a problem in NP whose
input size is n. Then, we can construct an equivalent instance of 3-Coloring in Graphs
with Maximum Degree Four whose size is nO(1), because 3-Coloring in Graphs with
Maximum Degree Four is NP-hard (see [8]). By Theorem 9, we construct an equivalent
instance of Dense Pinwheel Packing whose size is nO(log n). These reductions show that,
if Dense Pinwheel Packing can be solved in polynomial time, then the original problem
in NP can be solved in nO(log n) time. Therefore, NP ⊆ DTIME(nO(log n)) holds under the
assumption that Dense Pinwheel Packing can be solved in polynomial time. ◀

Using the same reduction, we can also show that Dense Pinwheel Packing cannot be
solved in quasi-polynomial time (i.e., 2polylog(n) time) under a stronger complexity assumption.
Note that the same hardness result holds also for Pinwheel Packing and Pinwheel
Covering, because Dense Pinwheel Packing is a special case of these problems.

▶ Corollary 10. Dense Pinwheel Packing cannot be solved in quasi-polynomial time
unless NP ⊆ QP, where QP is the class of problems that can be solved in quasi-polynomial
time, i.e., QP = DTIME(2polylog(n)).

Proof. As in the proof of Theorem 2, any problem in NP with input size n can be reduced
to Dense Pinwheel Packing with size N = nO(log n). If Dense Pinwheel Packing can
be solved in quasi-polynomial time, then the original problem can be solved in 2polylog(N) =
2polylog(n) time. Therefore, NP ⊆ QP holds under the assumption that Dense Pinwheel
Packing can be solved in quasi-polynomial time. ◀

2.3 Proof of Lemma 7
In this subsection, we give a proof of Lemma 7. Let G = (V, E) be a graph with |V | = n

whose maximum degree is four. A vertex subset I ⊆ V is called an independent set if no two
vertices in I are adjacent to each other. Our idea is to find a family I of independent sets in
G such that

(I) for any pair of non-adjacent vertices v, v′ ∈ V , there exists I ∈ I such that {v, v′} ⊆ I.

▷ Claim 11. Suppose we are given an independent set family I of size O(log n) with property
(I). Then, in polynomial time, we can construct a set T and a subset Tv ⊆ T for each v ∈ V

satisfying the conditions in Lemma 7.

Proof of Claim 11. Let I be an independent set family of size O(log n) with property (I).
Then, we can simply set T = I and let Tv = {I ∈ I : v ∈ I} for v ∈ V . We easily see that
such T and (Tv)v∈V satisfy the conditions in Lemma 7 as follows.

It is obvious that |T | = |I| = O(log n).
If vertices v and v′ are adjacent, then they are not contained in the same independent set
in G, and hence Tv ∩ Tv′ = ∅.
If vertices v and v′ are not adjacent, then there must exist an independent set I ∈ I such
that {v, v′} ⊆ I by property (I), and hence I ∈ Tv ∩ Tv′ .

This completes the proof of the claim. ◁
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To find an independent set family I of size O(log n) that satisfies property (I), we use an
argument inspired by the color-coding technique [1]. For every v ∈ V , let N [v] denote its
closed neighborhood, i.e., N [v] = {u ∈ V : vu ∈ E} ∪ {v}. Observe that |N [v] ∪ N [v′]| ≤ 10
for any distinct vertices v, v′ ∈ V as G is a graph with maximum degree four. We show that
it suffices to construct a family U ⊆ 2V of vertex subsets with |U| = O(log n) such that

(U) for any pair of distinct vertices v, v′ ∈ V , there exists a vertex subset U ∈ U such that
U ∩ (N [v] ∪ N [v′]) = {v, v′}.

▷ Claim 12. Suppose we are given a family U ⊆ 2V of vertex subsets that satisfies property
(U). Then, in polynomial time, we can construct an independent set family I of size at most
|U| with property (I).

Proof of Claim 12. For each U ∈ U , let IU be an inclusionwise maximal independent set in
G subject to IU ⊆ U . Then, set I = {IU : U ∈ U}, which can be computed in polynomial
time. It is obvious that |I| ≤ |U|.

Let v, v′ ∈ V be a pair of distinct non-adjacent vertices. By property (U), there exists a
vertex subset U ∈ U such that U ∩ (N [v] ∪ N [v′]) = {v, v′}. Since any maximal independent
set contained in U contains both v and v′, we obtain {v, v′} ⊆ IU . This shows that I satisfies
property (I). ◁

By Claims 11 and 12, to prove Lemma 7, it remains to construct in polynomial time a
family U ⊆ 2V with |U| = O(log n) that satisfies property (U). Below, we describe a simple
probabilistic construction of U , followed by a deterministic construction using a sophisticated
tool known as the (n, k)-universal sets.

Probabilistic Construction of U

Consider a random vertex subset U ⊆ V that contains each vertex independently with
probability 1

2 . Then, for any pair of distinct vertices v, v′ ∈ V , U ∩ (N [v] ∪ N [v′]) = {v, v′}
holds with probability

1
2|N [v]∪N [v′]| ≥ 1

210 .

We pick such a random vertex subset U independently many times to obtain a family U .
Then, for a pair of distinct vertices v, v′ ∈ V , U ∩ (N [v] ∪ N [v′]) ̸= {v, v′} holds for every
U ∈ U with probability at most(

1 − 1
210

)|U|

.

By the union bound, with probability at least 1 − |V |2
(
1 − 1

210

)|U|, U satisfies property (U).
When |U| = Θ(log |V |) = Θ(log n), we can generate such a family U with constant probability
in polynomial time.

Deterministic Construction of U

We use the (n, k)-universal sets to construct a desired family U deterministically.

▶ Definition 13 ((n, k)-universal set). For positive integers n and k, an (n, k)-universal set
is a set of vectors W ⊆ {0, 1}n such that for any index set S ⊆ [n] of size k, the projection
of W on S contains all 2k possible configurations.
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▶ Theorem 14 ([26, Theorem 2]). For any positive integers n and k with k ≤ n, an
(n, k)-universal set of cardinality O(k2k log n) can be constructed deterministically in time
O(
(

n
k

)
k22kn⌊k/2⌋).

Setting n = |V | and k = 10, by Theorem 14, we construct an (n, k)-universal set W of size
O(k2k log n) = O(log n) in time O(

(
n
k

)
k22kn⌊k/2⌋) = nO(1). Using an arbitrary bijection from

V to [n], W ⊆ {0, 1}n can be regarded as a subset of {0, 1}V . By identifying a subset of V and
its characteristic vector in {0, 1}V , W defines a family U ⊆ 2V . Then, |U| = |W | = O(log n).

We see that U satisfies property (U) as follows. Let v, v′ ∈ V be distinct non-adjacent
vertices. Since W is a (|V |, 10)-universal set and |N [v] ∪ N [v′]| ≤ 10, there exists a vector
w ∈ W whose projection on N [v] ∪ N [v′] is the characteristic vector of {v, v′}. This means
that the set U ∈ U corresponding to w satisfies U ∩ (N [v] ∪ N [v′]) = {v, v′}.

3 Fixed Parameter Algorithms

In this section, we present fixed parameter algorithms for (Exact) Pinwheel Covering
and Exact Pinwheel Packing. We prove Theorems 4 and 5 in Sections 3.1 and 3.2,
respectively.

3.1 Pinwheel Covering and Exact Pinwheel Covering
In this subsection, we deal with Pinwheel Covering and Exact Pinwheel Covering
simultaneously and prove Theorem 4. We first present the following claim. Although this
claim was already shown in [21, Section 4.1] for Pinwheel Covering, we here give a proof
for completeness.

▷ Claim 15 ([21, Section 4.1]). Pinwheel Covering and Exact Pinwheel Covering

can be solved in
(∏k

i=1 ai

)O(1)
time.

Proof of Claim 15. We first consider Pinwheel Covering. Construct a digraph G with∏k
i=1 ai vertices, each of which corresponds to a k-tuple (b1, . . . , bk) with bi ∈ {0, 1, . . . , ai−1}

for each i ∈ [k]. This vertex corresponds to a state in which agent i must wait for bi days before
handling the task again. We add an arc from a vertex (b1, . . . , bk) to a vertex (b′

1, . . . , b′
k)

when there is i ∈ [k] such that bi = 0, b′
i = ai − 1, and b′

j = max{0, bj − 1} for j ∈ [k] \ {i}.
Since a feasible solution of Pinwheel Covering corresponds to an infinite walk in G, A is a
yes-instance if and only if G contains a dicycle. This can be checked in

(∏k
i=1 ai

)O(1)
time.

To deal with Exact Pinwheel Covering, we modify the definition of the edge set as
follows: we add an arc from a vertex (b1, . . . , bk) to a vertex (b′

1, . . . , b′
k) when there is i ∈ [k]

such that bi = 0, b′
i = ai − 1, and (bj , b′

j) = (0, aj − 1) or b′
j = bj − 1 for j ∈ [k] \ {i}.

Then, A is a yes-instance if and only if the digraph contains a dicycle. This can be
checked in

(∏k
i=1 ai

)O(1)
time. ◁

By this claim, to obtain an FPT algorithm for (Exact) Pinwheel Covering, it is
sufficient to bound each ai by a function of k. To achieve this, we prove the following two
claims.

▷ Claim 16. Suppose that A = (ai)i∈[k] is a no-instance of (Exact) Pinwheel Covering
and (Si)i∈[k] is a family of subsets of Z such that

|[m, m + ai) ∩ Si| ≤ 1 (or |[m, m + ai) ∩ Si| = 1)
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for all i ∈ [k] and m ∈ Z. Then, no
∏k

i=1 ai consecutive integers are covered by
⋃k

i=1 Si, that
is, ∣∣∣∣∣

[
m, m +

k∏
i=1

ai

)
∩

(
Z −

k⋃
i=1

Si

)∣∣∣∣∣ ≥ 1 (4)

for all m ∈ Z.

Proof of Claim 16. Suppose that A = (ai)i∈[k] is a no-instance of (Exact) Pinwheel
Covering. Then, the digraph in the proof of Claim 15 contains no dicycle. Therefore,
the digraph contains no walk of length

∏k
i=1 ai, which means that no

∏k
i=1 ai consecutive

integers are covered by
⋃k

i=1 Si. ◁

▷ Claim 17. Let A = (ai)i∈[k] be a sequence of positive integers with a1 ≤ a2 ≤ · · · ≤ ak,
and let ℓ ∈ [k−1]. If A is a yes-instance of (Exact) Pinwheel Covering and A′ = (ai)i∈[ℓ]

is a no-instance of (Exact) Pinwheel Covering, then aℓ+1 ≤ (k − ℓ)
∏ℓ

i=1 ai.

Proof of Claim 17. Let (Si)i∈[k] be a feasible solution for the instance A. Since A′ = (ai)i∈[ℓ]

is a no-instance of (Exact) Pinwheel Covering, by Claim 16, no
∏ℓ

i=1 ai consecutive
integers are covered by

⋃ℓ
i=1 Si. Therefore, in any

∏ℓ
i=1 ai consecutive integers, at least one

integer is covered by Sℓ+1 ∪ · · · ∪ Sk. This implies that

1∏ℓ
i=1 ai

≤ 1
aℓ+1

+ · · · + 1
ak

≤ k − ℓ

aℓ+1
,

and hence aℓ+1 ≤ (k − ℓ)
∏ℓ

i=1 ai. ◁

We are now ready to prove Theorem 4, which we restate here.

▶ Theorem 4. Pinwheel Covering and Exact Pinwheel Covering can be solved in
O(n) + kO(2k) time, where n :=

∑k
i=1 log ai is the input size of the problem.

Proof. Let A = (ai)i∈[k] be an instance of (Exact) Pinwheel Covering. Without loss of
generality, we may assume that a1 ≤ a2 ≤ · · · ≤ ak. It suffices to consider the case where
a1 ≤ k, since otherwise we can immediately conclude that A is a no-instance.

If ai ≤ k2i−1 for every i ∈ [k], then we can check the feasibility of A in
(∏k

i=1 ai

)O(1)
=

kO(2k) time by Claim 15. Otherwise, let ℓ ∈ [k − 1] be the minimum integer with aℓ+1 > k2ℓ ,
which can be computed in O(n) time. Then, we obtain

aℓ+1 > k2ℓ

= k

ℓ∏
i=1

k2i−1
> (k − ℓ)

ℓ∏
i=1

k2i−1
> (k − ℓ)

ℓ∏
i=1

ai, (5)

where the last inequality is by the minimality of ℓ and a1 < k21−1 . We observe that (ai)i∈[k]
is a yes-instance if and only if (ai)i∈[ℓ] is a yes-instance, as the “if” part is trivial and the
“only if” part follows from Claim 17 and (5). We can check whether (ai)i∈[ℓ] is a yes-instance

or not in
(∏ℓ

i=1 ai

)O(1)
time by Claim 15, and this running time is bounded by kO(2k). ◀
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3.2 Exact Pinwheel Packing
In this subsection, we deal with Exact Pinwheel Packing and prove Theorem 5.

▶ Theorem 5. Exact Pinwheel Packing can be solved in (log k)O(k2) · nO(1) time, where
n :=

∑k
i=1 log ai is the input size of the problem.

Proof. Let A = (ai)i∈[k] be an instance of Exact Pinwheel Packing. Recall that the
objective is to find pairwise disjoint sets S1, . . . , Sk such that Si is a residue class modulo ai

for i ∈ [k]. This is equivalent to finding ri ∈ Z for i ∈ [k] such that

Si = {ri + ai · q : q ∈ Z} and Sj = {rj + aj · q : q ∈ Z} are disjoint (6)

for all distinct i, j ∈ [k]. By the Chinese remainder theorem (see e.g. [3, Lemma 12]), (6) is
equivalent to

ri ̸≡ rj mod gcd(ai, aj). (7)

We now reduce this problem to the integer linear programming problem. We treat
r1, . . . , rk as integer variables. In addition to these, for all distinct i, j ∈ [k], we introduce
new integer variables qi,j and ℓi,j , and consider the following linear constraints:

ri − rj = qi,j · gcd(ai, aj) + ℓi,j , (8)
1 ≤ ℓi,j ≤ gcd(ai, aj) − 1. (9)

Then, we obtain an integer linear program with O(k2) variables and O(k2) constraints. Since
ri and rj satisfy (7) if and only if (8) and (9) hold for some integers qi,j and ℓi,j , Exact
Pinwheel Packing is reduced to the integer linear program defined by (8) and (9).

It is known that the integer linear programming problem can be solved in FPT time,
parameterized by its variable number p; see e.g., [17, 23, 27], and the current smallest
parameter dependency is (log p)O(p) [27]. Using this result, we obtain a (log k)O(k2) · nO(1)

time algorithm for Exact Pinwheel Packing. ◀
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A An FPT Algorithm for Pinwheel Packing

As described in Section 1.3, an FPT algorithm for Pinwheel Packing was already presented
in [10] (without an explicit running time bound). In this section, to highlight the similarities
and differences between Pinwheel Packing and (Exact) Pinwheel Covering, building
on the argument in [10], we present an FPT algorithm for Pinwheel Packing that runs in
O(n) + kO(2k) time.

An instance (ai)i∈[k] of Pinwheel Packing is called a strong yes-instance if there exist
pairwise disjoint sets S1, . . . , Sk ⊆ Z such that Z −

⋃k
i=1 Si contains an infinite number

of integers. We first present the following claim that was shown in [10] with a different
terminology.

▷ Claim 18 (see [10, Proposition 2.1]). Pinwheel Packing can be solved in
(∏k

i=1 ai

)O(1)

time. We can also check whether a given instance (ai)i∈[k] is a strong yes-instance in(∏k
i=1 ai

)O(1)
time.

Proof of Claim 18. We construct a digraph G with
∏k

i=1 ai vertices, each of which corresponds
to a k-tuple (b1, . . . , bk) with bi ∈ {0, 1, . . . , ai −1} for each i ∈ [k]. This vertex corresponds to
a state where task i must be performed within bi days from the present. We define two types
of arcs in G, which we call normal arcs and lazy arcs. We add a normal arc from a vertex
(b1, . . . , bk) to a vertex (b′

1, . . . , b′
k) when there is i ∈ [k] such that b′

i = ai − 1, and b′
j = bj − 1

for j ∈ [k] \ {i}. We add a lazy arc from a vertex (b1, . . . , bk) to a vertex (b′
1, . . . , b′

k) when
b′

j = bj − 1 for j ∈ [k]. Note that traversing a normal arc corresponds to performing task i,
while traversing a lazy arc corresponds to performing no task. Since a feasible solution of
Pinwheel Covering corresponds to an infinite walk in G, A is a yes-instance if and only if
G contains a dicycle. Similarly, A is a strong yes-instance if and only if G contains a dicycle
containing a lazy arc. Both conditions can be checked in

(∏k
i=1 ai

)O(1)
time using depth

first search. ◁

In a similar way to (Exact) Pinwheel Covering, we prove the following two claims
to bound each ai by a function of k.

▷ Claim 19. Suppose that A = (ai)i∈[k] is a strong yes-instance of Pinwheel Packing.
Then, there exists a feasible solution (Si)i∈[k] such that at least one integer is not covered by⋃k

i=1 Si in every consecutive
∏k

i=1 ai integers, that is, (4) holds for all m ∈ Z.
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Proof of Claim 19. If A is a strong yes-instance, then the digraph in the proof of Claim 18
has a dicycle containing a lazy arc. Let (Si)i∈[k] be a feasible solution of Pinwheel Packing
that corresponds to an infinite walk traversing such a dicycle repeatedly. Since the length
of the dicycle is at most

∏k
i=1 ai, in every consecutive

∏k
i=1 ai steps along this walk, we

traverse at least one lazy arc. This means that, in every consecutive
∏k

i=1 ai days, there is
at least one day on which no task is performed. Therefore, (4) holds for all m ∈ Z. ◁

▷ Claim 20. Let A = (ai)i∈[k] be a sequence of positive integers with a1 ≤ a2 ≤ · · · ≤ ak,
and let ℓ ∈ [k − 1]. If A′ = (ai)i∈[ℓ] is a strong yes-instance of Pinwheel Packing and
aℓ+1 ≥ (k − ℓ)

∏ℓ
i=1 ai, then A is a yes-instance of Pinwheel Packing.

Proof of Claim 20. Suppose that A′ = (ai)i∈[ℓ] is a strong yes-instance of Pinwheel Packing
and aℓ+1 ≥ (k − ℓ)

∏ℓ
i=1 ai. By Claim 19, there exist pairwise disjoint sets S1, . . . , Sℓ ⊆ Z

such that at least one integer is not covered by
⋃ℓ

i=1 Si in every consecutive
∏ℓ

i=1 ai integers.
Let (xj)j∈Z be an infinite sequence of all integers not covered by

⋃ℓ
i=1 Si, which are arranged

in ascending order. For h ∈ {ℓ + 1, ℓ + 2, . . . , k}, set

Sh = {xj : j ≡ h mod k − ℓ}.

Then, obviously, S1, . . . , Sk are pairwise disjoint. For h ∈ {ℓ + 1, ℓ + 2, . . . , k}, since

xj+k−ℓ − xj ≤ (k − ℓ)
ℓ∏

i=1
ai ≤ aℓ+1 ≤ ah

holds for every j ∈ Z, we see that task h is performed every ah days. Therefore, (Si)i∈[k] is a
feasible solution for the instance A. ◁

We are now ready to show the following theorem.

▶ Theorem 21 (see [10, Corollary 3.2]). Pinwheel Packing can be solved in O(n) + kO(2k)
time, where n :=

∑k
i=1 log ai is the input size of the problem.

Proof. Let A = (ai)i∈[k] be an instance of Pinwheel Packing. Without loss of generality,
we may assume that a1 ≤ a2 ≤ · · · ≤ ak. If a1 ≥ k, then A is a yes-instance, as we can
simply perform each task exactly once every k days. Thus, it suffices to consider the case
where a1 < k.

If ai ≤ k2i−1 for every i ∈ [k], then we can check the feasibility of A in
(∏k

i=1 ai

)O(1)
=

kO(2k) time by Claim 18. Otherwise, let ℓ ∈ [k − 1] be the minimum integer with aℓ+1 > k2ℓ ,
which can be computed in O(n) time. Then, we obtain

aℓ+1 > k2ℓ

= k

ℓ∏
i=1

k2i−1
> (k − ℓ)

ℓ∏
i=1

ai (10)

in the same way as (5). We observe that (ai)i∈[k] is a yes-instance if and only if (ai)i∈[ℓ] is a
strong yes-instance, as the “only if” part is trivial and the “if” part follows from Claim 20
and (10). Therefore, it suffices to determine whether (ai)i∈[ℓ] is a strong yes-instance or not,

which can be done in
(∏ℓ

i=1 ai

)O(1)
time by Claim 18. This running time is bounded by

kO(2k), because ai ≤ k2i−1 for i ∈ [ℓ]. ◀
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