
Quadratic Kernel for Cliques or Trees Vertex
Deletion
Soh Kumabe #

CyberAgent, Tokyo, Japan

Abstract
We consider Cliques or Trees Vertex Deletion, which is a hybrid of two fundamental para-
meterized problems: Cluster Vertex Deletion and Feedback Vertex Set. In this problem,
we are given an undirected graph G and an integer k, and asked to find a vertex subset X of size
at most k such that each connected component of G − X is either a clique or a tree. Jacob et al.
(ISAAC, 2024) provided a kernel of O(k5) vertices for this problem, which was recently improved to
O(k4) by Tsur (IPL, 2025).

Our main result is a kernel of O(k2) vertices. This result closes the gap between the kernelization
result for Feedback Vertex Set, which corresponds to the case where each connected component
of G − X must be a tree.

Although both cluster vertex deletion number and feedback vertex set number are well-studied
structural parameters, little attention has been given to parameters that generalize both of them.
In fact, the lowest common well-known generalization of them is clique-width, which is a highly
general parameter. To fill the gap here, we initiate the study of the cliques or trees vertex deletion
number as a structural parameter. We prove that Longest Cycle, which is a fundamental problem
that does not admit o(nk)-time algorithm unless ETH fails when k is the clique-width, becomes
fixed-parameter tractable when parameterized by the cliques or trees vertex deletion number.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability

Keywords and phrases Fixed-Parameter Tractability, Kernelization, Deletion to Scattered Graph
Classes, Cluster Vertex Deletion, Feedback Vertex Set

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2025.48

Related Version Full Version: https://arxiv.org/abs/2509.16815

1 Introduction

Given a graph, can we remove at most k vertices so that the resulting graph belongs to
a class Π of well-structured graphs? Such problems are called vertex deletion problems
and include many well-studied parameterized problems. Indeed, Vertex Cover [12, 23],
Feedback Vertex Set [11, 25, 34, 39], Cluster Vertex Deletion [4, 15, 24], Odd
Cycle Transversal [32, 38], Interval Vertex Deletion [6], and Chordal Vertex
Deletion [36] correspond to the cases where Π is the classes of collection of isolated vertices,
collection of trees, collection of cliques, bipartite graphs, interval graphs, and chordal graphs,
respectively.

However, why must Π be a single graph class? It is still reasonable to call a graph well-
structured when all connected components are well-structured, even if different components
belong to different classes. Jacob et al. [26] introduced the problem framework of deletion to
scattered graph classes capturing this concept, asking: Can we remove at most k vertices
from a given graph so that each connected component of the resulting graph belongs to one
of the graph classes (Π1, . . . , Πp)? Together with the subsequent paper [27], they investigated
the parameterized complexity of this type of problems and provided both general and
problem-specific algorithms.

This paper considers the following fundamental special case of deletion problems to
scattered graph classes, called Cliques or Trees Vertex Deletion, which is first studied
in [27].

© Soh Kumabe;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Algorithms and Computation (ISAAC 2025).
Editors: Ho-Lin Chen, Wing-Kai Hon, and Meng-Tsung Tsai; Article No. 48; pp. 48:1–48:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kumabe_soh@cyberagent.co.jp
https://orcid.org/0000-0002-1021-8922
https://doi.org/10.4230/LIPIcs.ISAAC.2025.48
https://arxiv.org/abs/2509.16815
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

48:2 Quadratic Kernel for Cliques or Trees Vertex Deletion

Cliques or Trees Vertex Deletion: Given an undirected graph G = (V, E) and
an integer k ∈ Z≥1, is there a vertex subset X ⊆ V with |X| ≤ k such that each
connected component of G − X is either a clique or a tree?

This case is particularly interesting because it combines two of the most prominent para-
meterized problems, Feedback Vertex Set and Cluster Vertex Deletion. Moreover,
since both the feedback vertex set number and the cluster vertex deletion number are well-
studied structural parameters, it is natural to expect that the cliques or trees vertex deletion
number, which is the minimum k such that (G, k) becomes an yes-instance of Cliques or
Trees Vertex Deletion, is likewise an interesting structural parameter. In particular,
this number captures the structural simplicity of graphs that contain both dense parts (i.e.,
clique components) and sparse parts (i.e., tree components). This illustrates the benefit of
considering deletion to scattered graph classes, as a deletion distance to a single dense or
sparse class alone cannot capture such a property.

It has been proved that this problem is in FPT [26, 27]; that is, it admits an f(k)nc-time
algorithm for some computable function f and constant c. Accordingly, researchers are
investigating kernelization algorithms, which are polynomial-time algorithms that reduce the
given instance to an equivalent instance of size g(k) for some function g. Jacob et al. [28]
showed that this problem admits a kernel with O(k5) vertices, which was later improved to
O(k4) vertices by Tsur [40]. However, there is still a significant gap when compared to the
kernelization results of the original two problems, Feedback Vertex Set and Cluster
Vertex Deletion, which admit a kernel with O(k2) vertices [25, 39] and O(k) vertices [4],
respectively.

In this paper, we close this gap by proving the following.

▶ Theorem 1. Cliques or Trees Vertex Deletion admits a kernel with O(k2) vertices.

We remark that our result may surpass the expectations in the original research by Jacob
et al. [28], as they stated the following in their conclusion section:

One natural open question is to improve the size of our kernel, e.g. to O(k3) vertices.
We believe that such a result is possible to achieve, but we suspect that it would
require new techniques to develop such results.

We further initiate the study of Cliques or Trees Vertex Deletion as a structural
parameter. As mentioned above, both the feedback vertex set number [18, 41] and the
cluster vertex deletion number [10, 20] are well-studied structural parameters. However,
their common generalization has received relatively little attention. Actually, the smallest
well-investigated class that includes both graphs with bounded feedback vertex set number
and graphs with bounded cluster vertex deletion number is the class of bounded clique-width,
which is a very general parameter often placed at the top of diagrams illustrating the inclusion
relationships among structural parameters of graphs (see Figure 1).

As the second contribution of this paper, we demonstrate that the cliques or trees vertex
deletion number is indeed a useful structural parameter. Particularly, we demonstrate that
when parameterized by the cliques or trees vertex deletion number, a fundamental problem
that is hard when parameterized by clique-width becomes tractable. Specifically, we consider
the following Longest Cycle, one of the most well-investigated problems in the field of
parameterized complexity under structural parameterizations [3, 8, 9, 10, 13, 14, 19, 21, 29,
33].

Longest Cycle: Given an undirected graph G = (V, E), find a cycle of G with the
largest possible number of vertices.

S. Kumabe 48:3

feedback vertex
set number

cluster vertex
deletion number

clique-width

treewidth

pathwidth

twin-cover number

vertex cover number

treedepth

cliques or trees vertex
deletion number

neighborhood
diversity

modular-width

Figure 1 Diagram of structural parameters including the cliques or trees vertex deletion number.

It is known that, when k is the clique-width, Longest Cycle (and even the special case
Hamiltonian Cycle) does not admit an no(k)-time algorithm unless ETH fails [13, 14].
We prove the following.

▶ Theorem 2. Longest Cycle can be solved in 2O(k log k)-time, where k is the cliques or
trees vertex deletion number.

Note that this result generalizes, without losing time complexity, the FPT algorithm for
Hamiltonian Cycle parameterized by the cluster vertex deletion number given by Doucha
and Kratochvíl [10] in the following two aspects. First, we solve Longest Cycle, which is
a generalization of Hamiltonian Cycle. Second, our algorithm is parameterized by cliques
or trees vertex deletion number, which is a more general parameter. We further note that
it is not hard to see that the clique-width of graphs with bounded cliques or trees vertex
deletion number is bounded.

1.1 Related Work
The literature on Π-deletion problems has studied several variants of Feedback Vertex
Set and Cluster Vertex Deletion. Examples of extensions of Feedback Vertex
Set are the cases where Π consists of graphs with treewidth at most η [16, 31] and graphs
that are at most l edges away from forests [37]. Examples of variants of Cluster Vertex
Deletion are the cases where Π consists of s-plexes [35], s-clubs [22], and graphs with a
small dominating set number [2].

Jacob et al. [26] introduced the notion of deletion to scattered graph classes. In that paper,
they obtained two general tractability results, stating that (Π1, . . . , Πp)-Vertex Deletion
(i) is fixed-parameter tractable when each Πi-Vertex Deletion is fixed-parameter tractable,
and (ii) admits a 2poly(k)-time algorithm when each Πi is defined by a finite set of forbidden
subgraphs. Jansen et al. [30] improved the time complexity of result (ii) to 2O(k). In the
subsequent work [27], Jacob et al. considered several specific cases and obtained efficient
FPT algorithms and approximation algorithms. In particular, for Cliques or Trees
Vertex Deletion, they obtained an O∗(4k)-time FPT algorithm and a polynomial-time
4-approximation algorithm. Jacob et al. [28] provided a kernel with O(k5) vertices for
this problem. Tsur [40] improved both of FPT and kernelization results by presenting
a deterministic algorithm running in O(3.46k) time, a randomized algorithm running in
O(3.103k) time, and a kernel with O(k4) vertices.

ISAAC 2025

48:4 Quadratic Kernel for Cliques or Trees Vertex Deletion

Several studies have investigated the parameterized complexity of Longest Cycle and
its special case, Hamiltonian Cycle, under structural parameterizations. Parameterized
by the cluster vertex deletion number, Doucha and Kratochvíl [10] presented an FPT
algorithm for Hamiltonian Cycle. Parameterized by the clique-width, Fomin et al. [13, 14]
showed that no no(k)-time algorithm for Hamiltonian Cycle exists unless ETH fails.
Bergougnoux et al. [3] proved this bound is tight by giving an nO(k)-time algorithm. The
cases parameterized by treewidth [9], pathwidth [8], twin-cover number [19], and proper
interval deletion number [21] are also investigated, as well as directed tree-width [33] and
directed feedback vertex set number [29] for the directed version.

1.2 Technical Overview
Here, we provide a technical overview of Theorems 1 and 2. Section 1.2.1 also contains a
brief explanation of how our kernelization algorithm differs from the existing kernelization
algorithms by Jacob et al. [28] and Tsur [40].

1.2.1 Overview of Theorem 1
Here, we briefly explain our idea toward Theorem 1. Our approach, at the highest level,
is based on the following simple observation. Let v be a vertex, and let NG(v) := {u ∈
V : (u, v) ∈ E} be the set of neighbors of v. Assume there is a feasible solution1 X such that v

is in a connected component of G−X that is a clique. Then, the neighbors of v in G−X induce
a clique. In particular, NG(v) contains a clique of size at least |NG(v) \ X| ≥ |NG(v)| − k.
Similarly, assume there is a feasible solution X such that v is in a connected component of
G − X that is a tree. Then, the neighbors of v in G − X induce an independent set. In
particular, NG(v) contains an independent set of size at least |NG(v) \ X| ≥ |NG(v)| − k.

The core observation is that if |NG(v)| is large, say at least 2k + 2, these two situations
cannot occur simultaneously, as a clique and an independent set cannot share an edge. In
other words, if the degree of v is large, we can determine that v is either

always in a clique component of G − X unless v ∈ X, or
always in a tree component of G − X unless v ∈ X,

for all feasible solutions X.
In our algorithm, we first partition the vertices into three subsets. Let c = 7. Set Vld of

vertices with a high degree (> ck) and dense neighbors, set Vls of vertices with a high degree
(> ck) and sparse neighbors, and set Vsmall of vertices with a low degree (≤ ck). Using the
above observation, we can claim that, for any feasible solution X, vertices in Vld cannot be
in a tree component of G − X, and vertices in Vls cannot be in a clique component of G

of G − X. This observation, very roughly speaking, enables us to apply reduction rules to
Vld as if we were solving Cluster Vertex Deletion. Similarly, we can apply reduction
rules to Vls as if we were solving Feedback Vertex Set. Furthermore, we can reduce the
number of vertices in Vsmall using the fact that they have small degrees.

Here we go into a little more detail. Our kernelization algorithm proceeds as follows.
First, we reduce the degrees of vertices in Vls into O(k). To acheive this, we directly apply
reduction rules used in the celebrated quadratic kernelization of Feedback Vertex Set
by Thomassé [39]. Note that this direct applicability is already a benefit of partitioning
the vertex set. Indeed, the original kernelization algorithm by Jacob et al. [28] also relied

1 We say a solution X is feasible if |X| ≤ k and each connected component of G − X is either a clique or
a tree.

S. Kumabe 48:5

on Thomassé’s quadratic kernelization in its “tree part” (and Tsur’s improvement [40] did
not touch this part), but extended the algorithm and analysis, including the use of a new
version of the expansion lemma by Fomin et al. [15]. In contrast, ours is almost identical
to Thomassé’s, and its analysis is also nearly the same except for a few technical details,
making our approach significantly simpler.

Next, we reduce the number of vertices in Vld. The main technical contribution of this
paper lies in this part, since the kernelization algorithms by Jacob et al. [28] and Tsur [40]
bound the number of vertices in the “clique part” by O(k5) and O(k4), respectively, which
dominates the overall kernel size. Both of those algorithms are based on a marking procedure,
whereas ours is not. As in those algorithms, we first compute a constant factor approximate
solution S in polynomial time and reduce the number of clique components of G − S by O(k)
using the textbook reduction [17] for Cluster Vertex Deletion using the expansion
lemma. Now, we can argue that there are only O(k2) vertices in Vld that are adjacent to
some vertex outside Vld as follows. First, any such vertex must

(i) belongs to S,
(ii) be adjacent to a vertex in S \ Vld, or
(iii) belongs to a clique component of G − S that contains a vertex outside Vld.

The number of vertices satisfying (i) is O(k) by definition. Since every vertex outside Vld has
degree O(k), the number of vertices satisfying (ii) is bounded by O(k2). Furthermore, each
clique component that appears in (iii) contains at most O(k) vertices because it contains
a vertex with degree O(k). Together with the fact that the number of clique components
is O(k), the number of vertices satisfying (iii) is bounded by O(k2). Now, we concentrate
on reducing the number of vertices in Vld that are adjacent only to vertices in Vld by O(k2).
To do this, we first borrow ideas from the quadratic kernelization of the 3-Hitting Set by
Abu-Khzam [1] and construct a list P of induced P3s (that are, induced subgraphs that are
paths of length two) such that no two different P3 share more than one vertex. A standard
argument similar to that used in Buss Kernel [5] for Vertex Cover reduces the size of P
to O(k2). Let Vldmod := Vld \

⋃
P ∈P P . By introducing additional structural observations,

we can state that
there are at most O(k) connected components in Vldmod, and
each connected component C of Vldmod is a clique-module of Vld, that is, the set NVld(v) ∪
{v} is same for all v ∈ C and includes C.

The important observation is that if G contains a clique-module of V of size at least k + 4,
then one of its vertices can be safely removed. This rule seems to bound the size of each
clique-module by O(k) and bound the size of Vldmod by O(k2). However, it is still insufficient
because we want clique-modules of V for the reduction, whereas the observation above only
provides clique-modules of Vld. Nevertheless, if a clique-module in Vld consists only of vertices
with no neighbor outside Vld, then it is also a clique-module of V . Therefore, we can reduce
the number of vertices in each clique-module that have no neighbor outside Vld to O(k),
obtaining the desired bound. (Precisely speaking, we need to perform a slightly more careful
argument to deal with multi-edges that may be introduced in reductions for Vls.)

We reduce the number of vertices in V \ Vld to O(k2) to complete the kernelization. By
an argument similar to that for (iii) above, we can bound the number of vertices in V \ Vld
that belong to clique components of G − S by O(k2). Therefore, it remains to bound the
number of vertices that belong to tree components. To do this, we apply a few reduction
rules based on local structure. Most of these rules appear in [28], but one is new. We apply
the following standard argument used in the kernelization of Feedback Vertex Set: If a
graph with minimum degree at least 3 can be turned into a forest by removing k vertices of

ISAAC 2025

48:6 Quadratic Kernel for Cliques or Trees Vertex Deletion

degree at most t, then the number of vertices in the original graph was O(tk). However, in
this case, we cannot completely eliminate vertices of degree 1 or 2, so this argument cannot
be applied directly. Nevertheless, we can bound the number of such low-degree vertices using
the numbers of vertices of degree 3 and at least 4. By extending the argument for Feedback
Vertex Set using these fine-grained bounds, we can bound the number of vertices in V \ Vld
by O(k2), which completes the analysis.

1.3 Overview of Theorem 2
Here, we briefly explain our ideas toward Theorem 2. Let G = (V, E) be a graph and X ⊆ V

be a given vertex subset with |X| = k such that each connected component of G − X is
either a clique or a tree. We begin by brute-force the order in which the desired cycle P

visits the vertices in X. If P is disjoint from X, the problem is trivial, so we may assume
that P intersects X, and denote the vertices in X ∩ P by v1, . . . , vl in the order they appear
along P . Let Pi be the vi, vi+1-path appearing on P (indices modulo l). Then, unless Pi has
length 1, the internal vertices of Pi belong to a single connected component Ci of G − X.

The next step is limiting the candidates of Ci. Here, we can state that, as candidates of
Ci, it is sufficient to consider the top k components that admit the longest vi, vi+1-paths.
Then, we can brute-force over all tuples (C1, . . . , Cl) within a total cost of 2O(k log k). Now,
the problem is reduced to solving the following problem for each connected component H of
G − X, where we set JH := {i : Ci = H}.

Given a list of vertex subset pairs {(Vi1 := N(vi) ∩ Ci, Vi2 := N(vi+1) ∩ Ci)}i∈JH
,

compute the maximum total length of vertex-disjoint paths {Pi}i∈JH
such that each

Pi is a path from a vertex in Vi1 to a vertex in Vi2.
We give FPT algorithms for this problem on both cliques and trees. First, we explain

the algorithm for cliques. We brute-force over flags f ∈ {0, 1}JH , where fi = 0 represents
that Pi consists of a single vertex, and fi = 1 indicates that Pi contains at least two vertices.
The problem of whether a family of paths satisfying the conditions defined by f exists can
be reduced to the bipartite matching problem and, thus, solved in polynomial time. If such
a family of paths exists for some flag f such that fi = 1 holds for some i ∈ JH , we can
extend the family to cover all vertices in H by appropriately adding internal vertices to the
paths. Thus, in this case, the answer is |H| − |JH |. If such a family of paths exists only
for f = (0, . . . , 0), the answer is zero. If no such family of paths exists for any f , then the
problem is infeasible. The time complexity is O∗(2k).

Now, we explain the algorithm for trees. Our algorithm uses dynamic programming. We
omit the formal details here, but the intuition is as follows. Regard H as a rooted tree. For
a vertex v and a set Z ⊆ JH , we define DP[v][Z] denote the maximum total length of a
family of paths {Pi}i∈Z that can be packed into the subtree rooted at v. We compute these
values in a bottom-up manner. We can analyze that such dynamic programming can be
implemented to work in O∗(3k) time.

1.4 Organization
The rest of this paper is organized as follows. In Section 2, we introduce basic notation and
well-known techniques in the literature on kernelization. In Section 3, we prove Theorem 1
by constructing a kernel for Cliques or Trees Vertex Deletion with O(k2) vertices.
Due to the space limitation, some proofs are given in the full version. In the full version, we
prove Theorem 2 by presenting an FPT algorithm for Longest Cycle parameterized by
the cliques or trees vertex deletion number.

S. Kumabe 48:7

2 Preliminaries

In this paper, the term graph refers to an undirected graph, which does not contain self-loops
but may contain multi-edges. For a graph G = (V, E) and a vertex v ∈ V , we call a
vertex belonging to NG(v) := {u ∈ V : (u, v) ∈ E} a neighbor of v in G, and the number
of edges incident to v, denoted dG(v), is referred to as the degree of v. Note that |NG(v)|
and dG(v) may differ due to multi-edges. Moreover, we denote by ρG(v) the size of the set
{{u1, u2} ⊆ NG(v) : (u1, u2) ∈ E}. In other words, ρG(v) represents the number of edges
connecting the neighbors of v in G, where multi-edges are counted as a single edge. When
the context is clear, we omit the subscript G and write N(v), d(v), and ρ(v) for simplicity.
A vertex v with d(v) = 1 is called a pendant.

For a vertex subset Z ⊆ V , we denote E(Z) := {e ∈ E : e ⊆ Z}. The subgraph of G

induced by Z is the graph (Z, E(Z)). For simplicity, when there is no risk of confusion, we
identify the vertex set Z with the subgraph induced by it: that is, when we refer to the
“graph Z” for Z ⊆ V , we mean the subgraph induced by Z. Moreover, for a vertex subset
Z ⊆ V , we write G − Z to denote the subgraph induced by V \ Z. When Z consists of a
single vertex z, we abbreviate G − {z} as G − z. Similarly, we denote by G − e the graph
obtained by removing an edge e ∈ E from G. A vertex subset Z ⊆ V induces a clique if
there is exactly one edge between any two different vertices in Z, an independent set if there
is no edge between any two vertices in Z, and a tree if Z is connected and contains no cycle.

For a vertex v ∈ V and t ∈ Z≥1, a v-flower of order t is a set of t cycles passing through
v such that no two cycles share a common vertex other than v. The following is well-known.

▶ Lemma 3 (Gallai’s Theorem [7, 17, 39]). Given an undirected graph G = (V, E), a vertex
v ∈ V , and an integer t ∈ Z≥1, there is a polynomial-time algorithm that computes either

a v-flower of order t + 1, or
a vertex set B ⊆ V \ {v} of size at most 2t such that G − B contains no cycle passing
through v.

For vertex subsets K, L and an integer q ∈ Z≥1, an edge set M is a q-expansion of K

into L if
exactly q edges of M are incident to each vertex in K, and
exactly one edge of M is incident to each vertex in L.

The following lemma is also well-known in the literature on kernelization.

▶ Lemma 4 (Expansion Lemma [7, 17]). Let H := (K∪̇L, E) be a bipartite graph with vertex
bipartition (K, L) and q ∈ Z≥1. Assume |L| ≥ q|K| and L contains no isolated vertex.
Then, there is a polynomial-time algorithm that computes a pair of non-empty vertex subsets
K ′ ⊆ K and L′ ⊆ L such that

NH(L′) ⊆ K ′, and
there exists a q-expansion of K ′ into L′.

3 Quadratic Kernel for Cliques or Trees Vertex Deletion

Let G = (V, E) be a graph and k ∈ Z≥1. In this section, we prove Theorem 1 by constructing
a quadratic kernel for Cliques or Trees Vertex Deletion. Due to the space limitation,
we defer the proofs of the lemmas marked with an asterisk to the full version.

ISAAC 2025

48:8 Quadratic Kernel for Cliques or Trees Vertex Deletion

3.1 Partitioning Vertices
We begin by classifying the vertices into three categories. Let

Vls :=
{

v ∈ V : |N(v)| > 7k ∧ ρ(v) ≤ |N(v)|(|N(v)| − 1)
4

}
,

Vld :=
{

v ∈ V : |N(v)| > 7k ∧ ρ(v) >
|N(v)|(|N(v)| − 1)

4

}
,

Vsmall := {v ∈ V : |N(v)| ≤ 7k} .

The vertices belonging to the first, second, and third groups are referred to as large-sparse,
large-dense, and small, respectively. The following lemma states that, for any feasible solution
X, large-sparse vertices are included in either X or a tree component of G − X.

▶ Lemma 5 (*). Let v ∈ Vls. Then, for any feasible solution X with v ̸∈ X, v is in a tree
component of G − X.

The following lemma states a result symmetric to Lemma 5, that is, for any feasible
solution X, large-dense vertices are included in either X or a clique component of G − X.

▶ Lemma 6 (*). Let v ∈ Vld. Then, for any feasible solution X with v ̸∈ X, v is in a clique
component of G − X.

Several times throughout this paper, we use the following type of alternative evidence for
a vertex belonging to a clique component or a tree component.

▶ Lemma 7 (*). Let v ∈ V and X be a feasible solution with v ̸∈ X. If N(v) contains a
clique of size k + 2, then v is in a clique component of G − X. Similarly, if N(v) contains
an independent set of size k + 2, then v is in a tree component of G − X.

In the rest of this paper, we will use Lemmas 5, 6, and 7 as basic tools without specifically
mentioning them.

3.2 Bounding Sizes of Neighbors of Vertices in Vls

In this section, we reduce the size of N(v) for large-sparse vertices v ∈ Vls. Most of the
reduction rules in this section are the same as the quadratic kernelization of Feedback
Vertex Set by Thomassé [39], while some details in the analysis require additional care in
proofs. We begin with the following.

▶ Reduction Rule 1. Let v be any large-sparse vertex. Apply Lemma 3 for v and t = k. If a
v-flower of order k + 1 is found, remove v and decrease k by 1.

▶ Lemma 8 (*). Reduction Rule 1 is safe.

Let v be a large-sparse vertex and assume Lemma 3 finds a vertex set B with size at
most 2k that hits all cycles containing v. Let Ctree be the family of connected components of
G − v − B that are trees and adjacent to v. Similarly, let Cnontree be the family of connected
components of G − v − B that are not trees and adjacent to v. Since G − B contains no
cycle containing v, for each C ∈ Ctree ∪ Cnontree, we have |N(v) ∩ C| = 1. Particularly,
|N(v)| = |Ctree| + |Cnontree| + |N(v) ∩ B|. We bound |N(v)| by bounding these three terms.
Obviously, |N(v) ∩ B| ≤ |B| ≤ 2k. To bound |Cnontree|, we use the following reduction rule.

▶ Reduction Rule 2. If |Cnontree| ≥ k + 1, remove v and decrease k by 1.

S. Kumabe 48:9

▶ Lemma 9 (*). Reduction Rule 2 is safe.

Now we bound |Ctree| by 4k using the expansion lemma. We construct an auxiliary
bipartite graph H. The vertex set of H is B∪̇Ctree with bipartition (B, Ctree). We add an
edge between b ∈ B and C ∈ Ctree if and only if NG(b) ∩ C ̸= ∅. We use the following
reduction rule to ensure the part Ctree does not contain isolated vertices.

▶ Reduction Rule 3. If there is a component C ∈ Ctree that has no neighbor in B, remove
all vertices of C.

▶ Lemma 10 (*). Reduction Rule 3 is safe.

Assume |Ctree| ≥ 4k. We apply 2-expansion lemma to H and obtain vertex sets C′ ⊆ Ctree
and B′ ⊆ B such that there is a 2-expansion of B′ into C′. We have |B′| ≤ k because
otherwise we obtain a v-flower of order k + 1. We apply the following reduction.

▶ Reduction Rule 4. Remove each edge between v and C′. Then, connect v and each vertex
in B′ by a double-edge.

▶ Lemma 11 (*). Assume |Ctree| ≥ 4k. Then, Reduction Rule 4 is safe.

Since all the above reduction rules reduce the number of pairs of vertices connected by at
least one edge, the reduction rules in this section can be applied only a polynomial number
of times. Thus, we have the following.

▶ Lemma 12 (*). Let G be the graph obtained by exhaustively applying all the above reduction
rules. Then, for all vertex v ∈ V \ Vld, we have |N(v)| ≤ 7k (and thus, Vls = ∅).

3.3 Bounding |Vld|
In this section, we reduce the number of vertices in Vld. This part is the main technical
contribution of this paper. As in [28], we apply a 4-approximation algorithm for Cliques
or Trees Vertex Deletion given in [27] and obtain an approximate solution S ⊆ V . We
apply the following reduction rule to ensure |S| ≤ 4k, which is clearly safe.

▶ Reduction Rule 5. If |S| > 4k, return no.

Let Cclique be the family of connected components of G − S that are cliques of size at
least 3. Similarly, let Ctree be the family of connected components of G − S that are trees.
The following rule ensures that each vertex v ∈ Vld is contained in a clique component of
G − S unless v ∈ S.

▶ Reduction Rule 6. If there is a vertex v ∈ Vld that is in a tree component of G−S, remove
v and decrease k by 1.

▶ Lemma 13. Reduction Rule 6 is safe.

Proof. We prove that v is contained in all solutions X. Since v ∈ Vld, v is in a clique
component of G − X unless v ∈ X. Since v is in a tree component of G − S, NG−S(v) is an
independent set, whose size is at least |NG(v)| − |S| ≥ 7k − 4k = 3k ≥ k + 2. Thus, v is in a
tree component of G − X unless v ∈ X, which leads to v ∈ X. ◀

We construct an auxiliary bipartite graph H as follows. The vertex set of H is S∪̇Cclique
with bipartition (S, Cclique). We add an edge between s ∈ S and C ∈ Cclique if and only if
NG(s) ∩ C ̸= ∅. To ensure the part Cclique does not contain isolated vertices, we apply the
following fundamental rule, which is clearly safe.

ISAAC 2025

48:10 Quadratic Kernel for Cliques or Trees Vertex Deletion

▶ Reduction Rule 7. If G contains a connected component that is a clique or a tree, remove
that component.

Assume |Cclique| ≥ 2|S|. We apply 2-expansion lemma to H and obtain vertex sets
C′ ⊆ Cclique and S′ ⊆ S. The following reduction is proved to be safe in [28].

▶ Reduction Rule 8. Remove vertices of S′ and decrease k by |S′|.

▶ Lemma 14 ([28]). Reduction Rule 8 is safe.

Now we can assume |Cclique| ≤ 8k. We first bound the number of vertices in Vld that are
adjacent to some vertices outside Vld. We have the following.

▶ Lemma 15. After applying all the above reduction rules, there are at most 84k2 + 4k

vertices in Vld that have some neighbor outside Vld.

Proof. A large-dense vertex v is adjacent to a vertex outside Vld only when
(i) v ∈ S,
(ii) v ̸∈ S and v has a neighbor in S \ Vld, or
(iii) v ̸∈ S and the component C ∈ Cclique containing v contains a vertex from V \ Vld.
Reduction Rule 5 ensures that at most |S| ≤ 4k vertices satisfy condition (i). Moreover, since
vertices in V \ Vld has degree at most 7k, at most 7k|S| ≤ 28k2 vertices satisfy condition
(ii). Furthermore, if v satisfies condition (iii), C is a clique of size at most 7k + 1 because
it contains a vertex with degree at most 7k. Therefore, at most 7k|Cclique| ≤ 56k2 vertices
satisfy condition (iii). ◀

Now we bound the number of vertices v ∈ Vld with NG(v) ⊆ Vld. A vertex triplet
(v1, v2, v3) induces P3 if (v1, v2), (v2, v3) ∈ E and (v3, v1) ̸∈ E. We remark that even if
the edges (v1, v2) or (v2, v3) are multi-edges, we still consider them as inducing a P3. The
following lemma is analogous to the fundamental observation in the literature on Cluster
Vertex Deletion.

▶ Lemma 16. Let X be a feasible solution and P be a subset of Vld that induces P3. Then,
X ∩ P ̸= ∅.

Proof. Assume otherwise and let C be the connected component of G − X that contains
P . From Lemma 6, C is a clique component. However, cliques cannot contain induced P3,
leading to a contradiction. ◀

This leads to the following reduction rule, which is clearly safe.

▶ Reduction Rule 9. Let v ∈ Vld. If there is a collection of k + 1 induced P3s in Vld such
that any two of them intersect only at {v}, then remove v and decrease k by 1.

Whether v ∈ V satisfies the condition of Reduction Rule 9 can be checked by computing
the maximum matching on the graph (NG(v), Ev), where Ev is the set of pairs of the vertices
(u1, u2) such that {v, u1, u2} induces P3. Therefore, this rule can be applied in polynomial
time. Let P be a maximal collection of induced P3s in Vld such that any two induced P3s in
the collection have an intersection of size at most 1. The idea to construct this P and the
following reduction rule are borrowed from the quadratic kernelization of 3-Hitting Set by
Abu-Khzam [1].

▶ Reduction Rule 10. If |P| > k2, return no.

▶ Lemma 17. Reduction Rule 10 is safe.

S. Kumabe 48:11

Proof. Assume |P| > k2 and let X be a feasible solution. From the assumption that
Reduction Rule 9 cannot be applied, each vertex in X hits at most k induced P3s in P.
Therefore, there exists an induced P3 that is disjoint from X, which contradicts Lemma 16. ◀

Now we can assume
∣∣⋃

P ∈P P
∣∣ ≤ 3|P| ≤ 3k2. The remaining task is to bound the number

of vertices in Vldmod := Vld \
⋃

P ∈P P . We first bound the number of connected components.

▶ Lemma 18. Vldmod contains at most 12k connected components.

Proof. A clique can intersect at most one connected component of Vldmod. Since Reduction
Rule 8 is exhaustively applied, Vld can be partitioned into at most 8k cliques and |S| ≤ 4k

vertices. Therefore, there can be at most 8k + 4k = 12k connected components in Vldmod. ◀

We state that each connected component of Vldmod has a specific structure. A vertex set
Z is extended clique-module in a graph G′ = (V ′, E′) if

(i) for each different u, v ∈ Z, (u, v) ∈ E′, and
(ii) for each u, v ∈ Z, NG′(u) ∪ {u} = NG′(v) ∪ {v}.

In other words, an extended clique-module is a clique-module [17] in the graph obtained
by reducing the multiplicity of each multi-edge to 1. We can prove that each connected
component of Vldmod is actually an extended clique-module in Vld.

▶ Lemma 19. Each connected component of Vldmod is an extended clique-module in Vld.

Proof. Let C be a connected component of Vldmod. C should satisfy condition (i), because
otherwise C would contain an induced P3, contradicting the maximality of P. Moreover, C

should satisfy condition (ii), because otherwise there would exist u ∈
⋃

P ∈P P and v1, v2 ∈ C

such that (u, v1) ∈ E and (u, v2) ̸∈ E, which would form an induced P3, again contradicting
the maximality of P. ◀

Let Emul be the set of multi-edges of G. Since any feasible solution should contain at least
one endpoint of each edge in Emul, the graph Gmul := (V, Emul) should have a vertex cover of
size k. This observation leads to the following two reduction rules called Buss rule [5, 7, 17]
in the literature of kernelization of Vertex Cover, which are clearly safe.

▶ Reduction Rule 11. If there is a vertex v ∈ V with |NGmul(v)| > k, remove v and decrease
k by 1.

▶ Reduction Rule 12. If |Emul| > k2, return no.

We finish the analysis by bounding the number of vertices in each connected component
of Vldmod that is neither adjacent to a vertex outside Vld nor incident to a multi-edge. We
have the following.

▶ Lemma 20. Let u, v ∈ Vld with (u, v) ∈ E and assume neither u nor v is incident to a
multi-edge. Assume NG(u) ∪ {u} = NG(v) ∪ {v}. Then, for any minimum feasible solution
X, either {u, v} ⊆ X or {u, v} ∩ X = ∅ holds.

Proof. Assume a feasible solution X satisfies u ∈ X and v ̸∈ X. It is sufficient to prove that
X \ {u} is still feasible. Let C be a connected component of G − (X \ {u}) containing both u

and v. Since X is feasible, all connected components of G− (X \{u}) other than C are either
cliques or trees. It suffices to show that C is a clique. Since v ∈ Vld, the connected component
C ′ of G − X that contains v is a clique. Since NG−(X\{u})(u) = NG−(X\{u})(v) ∪ {v} \ {u} =
NG−X(v) ∪ {v} \ {u} = C ′, we obtain C = C ′ ∪ {u}. Since there are no multi-edges between
u and C ′, C is a clique. ◀

ISAAC 2025

48:12 Quadratic Kernel for Cliques or Trees Vertex Deletion

Now, we apply the following reduction rule.

▶ Reduction Rule 13. Assume a connected component of Vldmod contains k + 4 vertices that
are not adjacent to vertices outside Vld and incident to no multi-edges. Then, remove one of
those k + 4 vertices.

▶ Lemma 21. Reduction Rule 13 is safe.

Proof. Let Z be a set of vertices satisfying the assumption of the rule. Clearly, Z induces
a clique. Since each vertex in Z has no neighbor outside Vld, from Lemma 19, the set
NG(v) ∪ {v} is same for all v ∈ Z. Let X be a minimum feasible solution for G. Then,
Lemma 20 ensures Z ∩ X = ∅ because |Z| > k. Therefore, X is still a feasible solution for
G − v for any v ∈ Z. Conversely, let v ∈ Z and X ′ be a feasible solution for G − v. Since
Z \ {v} is a clique of size k + 3, Z − v − X ′ is contained in a single clique component C ′ of
G − v − X ′. Moreover, we have NG−X′(v) = NG−X′(u) ∪ {u} \ {v} for all u ∈ Z \ (X ′ ∪ {v}),
and thus, NG−X′(v) = C ′. Particularly, C ′ ∪ {v} is a clique component of G − X ′. Therefore,
X ′ is still a feasible solution for G. ◀

Now we can bound |Vld| by O(k2).

▶ Lemma 22. After applying all the above reduction rules, we have |Vld| ≤ 101k2 + 40k.

Proof. A vertex v is in Vld only when
(i) it has a neighbor outside Vld,
(ii) it is in

⋃
P ∈P P ,

(iii) there is a multi-edge incident to v, or
(iv) it does not satisfy neither of condition (i), (ii), and (iii).
Lemma 15 states that at most 84k2 + 4k vertices satisfy condition (i). Reduction Rule 10
ensures that at most 3k2 vertices satisfy condition (ii). Reduction Rule 12 ensures that
at most 2k2 vertices satisfy condition (iii). Lemma 18 and Reduction Rule 13 ensures
at most 12k · (k + 3) = 12k2 + 36k vertices satisfy condition (iv). Therefore, we have
|Vld| ≤ (84k2 + 4k) + 3k2 + 2k2 + (12k2 + 36k) ≤ 101k2 + 40k. ◀

3.4 Bounding Number of Vertices
Now, we finish the overall analysis by bounding the number of vertices in V \ Vld. We first
bound the number of edges between S and the tree components of G − S (remember, S is a
4-approximate solution). Let Vtree :=

⋃
C∈Ctree

C. We begin by the following.

▶ Reduction Rule 14. If there is a vertex v ∈ Vld ∩ S such that N(v) contains at least 2k + 4
vertices from Vtree, remove v and decrease k by 1.

▶ Lemma 23 (*). Reduction Rule 14 is safe.

Thus, we can bound the number of vertices in Vtree adjacent to some vertex in S.

▶ Lemma 24 (*). After exhaustively applying all the above reduction rules, at most 28k2

vertices in Vtree are adjacent to some vertex in S.

We apply the following reduction rules by local structures. Most of them appear in [28],
but Reduction Rule 19 is new.

▶ Reduction Rule 15 ([28]). If a vertex v is adjacent to at least two pendant vertices, remove
one of them.

S. Kumabe 48:13

▶ Reduction Rule 16 ([28]). If there are multi-edges with a multiplicity of at least 3, reduce
the multiplicity to 2.

▶ Reduction Rule 17 ([28]). If there are three different vertices (v1, v2, v3) such that
(v1, v2), (v2, v3) ∈ E, (v1, v3) ̸∈ E, d(v2) = 2, and d(v3) = 1, remove v3.

▶ Reduction Rule 18 ([28]). If there are five different vertices (v1, v2, v3, v4, v5) such that
(v1, v2), (v2, v3), (v3, v4), (v4, v5) are in E and d(v2) = d(v3) = d(v4) = 2, remove v3 and
add an edge (v2, v4).

▶ Reduction Rule 19. If there are four different vertices (v1, v2, v3, v4) such that (vi, vj) ∈ E

if and only if i = 1, d(v1) = 3, and d(v4) = 1, remove v4.

▶ Lemma 25 (*). Reduction Rule 19 is safe.

Now, we bound |Vtree|. We begin with the following.

▶ Lemma 26 (*). After applying all the above reduction rules, Vtree contains at most 28k2

pendant vertices that are adjacent to a vertex of degree 3.

Now, we can prove the following.

▶ Lemma 27 (*). We have |Vtree| ≤ 1232k2.

Now, we can bound the size of the whole graph, which directly proves Theorem 1.

▶ Lemma 28 (*). After applying all the above reduction rules, we have |V | ≤ 1389k2 + 52k.

References
1 Faisal Abu-Khzam. A kernelization algorithm for d-hitting set. Journal of Computer and

System Sciences, 76(7):524–531, 2010. doi:10.1016/j.jcss.2009.09.002.
2 Matthias Bentert, Michael Fellows, Petr Golovach, Frances Rosamond, and Saket Saurabh.

Breaking a graph into connected components with small dominating sets. In International
Symposium on Mathematical Foundations of Computer Science (MFCS), pages 24–1, 2024.
doi:10.4230/LIPIcs.MFCS.2024.24.

3 Benjamin Bergougnoux, Mamadou Moustapha Kanté, and O-joung Kwon. An optimal XP
algorithm for hamiltonian cycle on graphs of bounded clique-width. Algorithmica, 82(6):1654–
1674, 2020. doi:10.1007/s00453-019-00663-9.

4 Stéphane Bessy, Marin Bougeret, Dimitrios Thilikos, and Sebastian Wiederrecht. Kernelization
for graph packing problems via rainbow matching. In Symposium on Discrete Algorithms
(SODA), pages 3654–3663. SIAM, 2023. doi:10.1137/1.9781611977554.ch139.

5 Jonathan Buss and Judy Goldsmith. Nondeterminism within P ∗. SIAM Journal on Computing,
22(3):560–572, 1993. doi:10.1137/0222038.

6 Yixin Cao and Dániel Marx. Interval deletion is fixed-parameter tractable. ACM Transactions
on Algorithms (TALG), 11(3):1–35, 2015. doi:10.1145/2629595.

7 Marek Cygan, Fedor Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 5. Springer,
2015. doi:10.1007/978-3-319-21275-3.

8 Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Fast hamiltonicity checking via bases of
perfect matchings. Journal of the ACM (JACM), 65(3):1–46, 2018. doi:10.1145/3148227.

9 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michał Pilipczuk, Johan MM Van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth
in single exponential time. ACM Transactions on Algorithms (TALG), 18(2):1–31, 2022.
doi:10.1145/3506707.

ISAAC 2025

https://doi.org/10.1016/j.jcss.2009.09.002
https://doi.org/10.4230/LIPIcs.MFCS.2024.24
https://doi.org/10.1007/s00453-019-00663-9
https://doi.org/10.1137/1.9781611977554.ch139
https://doi.org/10.1137/0222038
https://doi.org/10.1145/2629595
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1145/3148227
https://doi.org/10.1145/3506707

48:14 Quadratic Kernel for Cliques or Trees Vertex Deletion

10 Martin Doucha and Jan Kratochvíl. Cluster vertex deletion: A parameterization between vertex
cover and clique-width. In International Symposium on Mathematical Foundations of Computer
Science (MFCS), pages 348–359. Springer, 2012. doi:10.1007/978-3-642-32589-2_32.

11 Rod Downey and Michael Fellows. Fixed-parameter tractability and completeness i: Basic
results. SIAM Journal on computing, 24(4):873–921, 1995. doi:10.1137/S0097539792228228.

12 Michael Fellows, Lars Jaffke, Aliz Izabella Király, Frances Rosamond, and Mathias Weller.
What is known about vertex cover kernelization? In Adventures Between Lower Bounds and
Higher Altitudes: Essays Dedicated to Juraj Hromkovič on the Occasion of His 60th Birthday,
pages 330–356. Springer, 2018. doi:10.1007/978-3-319-98355-4_19.

13 Fedor Fomin, Petr Golovach, Daniel Lokshtanov, and Saket Saurabh. Almost optimal lower
bounds for problems parameterized by clique-width. SIAM Journal on Computing, 43(5):1541–
1563, 2014. doi:10.1137/130910932.

14 Fedor Fomin, Petr Golovach, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Clique-
width III: Hamiltonian cycle and the odd case of graph coloring. ACM Transactions on
Algorithms (TALG), 15(1):1–27, 2018. doi:10.1145/3280824.

15 Fedor Fomin, Tien-Nam Le, Daniel Lokshtanov, Saket Saurabh, Stéphan Thomassé, and
Meirav Zehavi. Subquadratic kernels for implicit 3-hitting set and 3-set packing problems.
ACM Transactions on Algorithms (TALG), 15(1):1–44, 2019. doi:10.1145/3293466.

16 Fedor Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar F-deletion:
Approximation, kernelization and optimal fpt algorithms. In Annual Symposium on Foundations
of Computer Science (FOCS), pages 470–479. IEEE, 2012. doi:10.1109/FOCS.2012.62.

17 Fedor Fomin, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Kernelization: theory of
parameterized preprocessing. Cambridge University Press, 2019.

18 Esther Galby, Liana Khazaliya, Fionn Mc Inerney, Roohani Sharma, and Prafullkumar Tale.
Metric dimension parameterized by feedback vertex set and other structural parameters. SIAM
Journal on Discrete Mathematics, 37(4):2241–2264, 2023. doi:10.1137/22m1510911.

19 Robert Ganian. Improving vertex cover as a graph parameter. Discrete Mathematics &
Theoretical Computer Science, 17(2):77–100, 2015. doi:10.46298/dmtcs.2136.

20 Tatsuya Gima, Eun Jung Kim, Noleen Köhler, Nikolaos Melissinos, and Manolis Vasilakis.
Bandwidth parameterized by cluster vertex deletion number. In International Symposium
on Parameterized and Exact Computation (IPEC), volume 285, pages 21:1–21:15, 2023. doi:
10.4230/LIPIcs.IPEC.2023.21.

21 Petr Golovach, R Krithika, Abhishek Sahu, Saket Saurabh, and Meirav Zehavi. Graph
hamiltonicity parameterized by proper interval deletion set. In Latin American Symposium on
Theoretical Informatics, pages 104–115. Springer, 2020. doi:10.1007/978-3-030-61792-9_9.

22 Jiong Guo, Christian Komusiewicz, Rolf Niedermeier, and Johannes Uhlmann. A more relaxed
model for graph-based data clustering: s-plex cluster editing. SIAM Journal on Discrete
Mathematics, 24(4):1662–1683, 2010. doi:10.1137/090767285.

23 David Harris and N. S. Narayanaswamy. A faster algorithm for vertex cover parameterized
by solution size. In International Symposium on Theoretical Aspects of Computer Science
(STACS), volume 289, pages 40:1–40:18, 2024. doi:10.4230/LIPIcs.STACS.2024.40.

24 Falk Hüffner, Christian Komusiewicz, Hannes Moser, and Rolf Niedermeier. Fixed-parameter
algorithms for cluster vertex deletion. Theory of Computing Systems, 47(1):196–217, 2010.
doi:10.1007/s00224-008-9150-x.

25 Yoichi Iwata. Linear-time kernelization for feedback vertex set. In International Colloquium
on Automata, Languages, and Programming (ICALP), volume 80 of LIPIcs, pages 68:1–68:14,
2017. doi:10.4230/LIPIcs.ICALP.2017.68.

26 Ashwin Jacob, Jari JH de Kroon, Diptapriyo Majumdar, and Venkatesh Raman. Deletion
to scattered graph classes I-case of finite number of graph classes. Journal of Computer and
System Sciences, 138:103460, 2023. doi:10.1016/j.jcss.2023.05.005.

https://doi.org/10.1007/978-3-642-32589-2_32
https://doi.org/10.1137/S0097539792228228
https://doi.org/10.1007/978-3-319-98355-4_19
https://doi.org/10.1137/130910932
https://doi.org/10.1145/3280824
https://doi.org/10.1145/3293466
https://doi.org/10.1109/FOCS.2012.62
https://doi.org/10.1137/22m1510911
https://doi.org/10.46298/dmtcs.2136
https://doi.org/10.4230/LIPIcs.IPEC.2023.21
https://doi.org/10.4230/LIPIcs.IPEC.2023.21
https://doi.org/10.1007/978-3-030-61792-9_9
https://doi.org/10.1137/090767285
https://doi.org/10.4230/LIPIcs.STACS.2024.40
https://doi.org/10.1007/s00224-008-9150-x
https://doi.org/10.4230/LIPIcs.ICALP.2017.68
https://doi.org/10.1016/j.jcss.2023.05.005

S. Kumabe 48:15

27 Ashwin Jacob, Diptapriyo Majumdar, and Venkatesh Raman. Deletion to scattered graph
classes II-improved FPT algorithms for deletion to pairs of graph classes. Journal of Computer
and System Sciences, 136:280–301, 2023. doi:10.1016/j.jcss.2023.03.004.

28 Ashwin Jacob, Diptapriyo Majumdar, and Meirav Zehavi. A polynomial kernel for deletion
to the scattered class of cliques and trees. In International Symposium on Algorithms and
Computation (ISAAC), volume 322 of LIPIcs, pages 41:1–41:17, 2024. doi:10.4230/LIPIcs.
ISAAC.2024.41.

29 Ashwin Jacob, Michal Wlodarczyk, and Meirav Zehavi. Finding long directed cycles is hard
even when DFVS is small or girth is large. In European Symposium on Algorithms (ESA),
volume 274, pages 65:1–65:17, 2023. doi:10.4230/LIPIcs.ESA.2023.65.

30 Bart Jansen, Jari de Kroon, and Michal Wlodarczyk. Single-exponential FPT algorithms for
enumerating secluded F-free subgraphs and deleting to scattered graph classes. Journal of
Computer and System Sciences, 148:103597, 2025. doi:10.1016/j.jcss.2024.103597.

31 Eun Jung Kim, Alexander Langer, Christophe Paul, Felix Reidl, Peter Rossmanith, Ignasi
Sau, and Somnath Sikdar. Linear kernels and single-exponential algorithms via protrusion
decompositions. ACM Transactions on Algorithms (TALG), 12(2):1–41, 2015. doi:10.1145/
2797140.

32 Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New tools
for kernelization. In 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science,
pages 450–459. IEEE, 2012. doi:10.1109/FOCS.2012.46.

33 Michael Lampis, Georgia Kaouri, and Valia Mitsou. On the algorithmic effectiveness of
digraph decompositions and complexity measures. Discrete Optimization, 8(1):129–138, 2011.
doi:10.1016/j.disopt.2010.03.010.

34 Jason Li and Jesper Nederlof. Detecting feedback vertex sets of size k in O∗(2.7k) time. ACM
Transactions on Algorithms (TALG), 18(4):34:1–34:26, 2022. doi:10.1145/3504027.

35 Hong Liu, Peng Zhang, and Daming Zhu. On editing graphs into 2-club clusters. In Frontiers
in Algorithmics and Algorithmic Aspects in Information and Management (FAW-AAIM), pages
235–246. Springer, 2012. doi:10.1007/978-3-642-29700-7_22.

36 Dániel Marx. Chordal deletion is fixed-parameter tractable. Algorithmica, 57:747–768, 2010.
doi:10.1007/s00453-008-9233-8.

37 Ashutosh Rai and Saket Saurabh. Bivariate complexity analysis of almost forest deletion.
Theoretical Computer Science, 708:18–33, 2018. doi:10.1016/j.tcs.2017.10.021.

38 Bruce Reed, Kaleigh Smith, and Adrian Vetta. Finding odd cycle transversals. Operations
Research Letters, 32(4):299–301, 2004. doi:10.1016/j.orl.2003.10.009.

39 Stéphan Thomassé. A 4k2 kernel for feedback vertex set. ACM Transactions on Algorithms
(TALG), 6(2):32:1–32:8, 2010. doi:10.1145/1721837.1721848.

40 Dekel Tsur. Faster algorithms and a smaller kernel for cliques or trees vertex deletion.
Information Processing Letters, 190:106570, 2025. doi:10.1016/j.ipl.2025.106570.

41 Meirav Zehavi. Tournament fixing parameterized by feedback vertex set number is FPT. In
AAAI Conference on Artificial Intelligence, pages 5876–5883, 2023. doi:10.1609/aaai.v37i5.
25728.

ISAAC 2025

https://doi.org/10.1016/j.jcss.2023.03.004
https://doi.org/10.4230/LIPIcs.ISAAC.2024.41
https://doi.org/10.4230/LIPIcs.ISAAC.2024.41
https://doi.org/10.4230/LIPIcs.ESA.2023.65
https://doi.org/10.1016/j.jcss.2024.103597
https://doi.org/10.1145/2797140
https://doi.org/10.1145/2797140
https://doi.org/10.1109/FOCS.2012.46
https://doi.org/10.1016/j.disopt.2010.03.010
https://doi.org/10.1145/3504027
https://doi.org/10.1007/978-3-642-29700-7_22
https://doi.org/10.1007/s00453-008-9233-8
https://doi.org/10.1016/j.tcs.2017.10.021
https://doi.org/10.1016/j.orl.2003.10.009
https://doi.org/10.1145/1721837.1721848
https://doi.org/10.1016/j.ipl.2025.106570
https://doi.org/10.1609/aaai.v37i5.25728
https://doi.org/10.1609/aaai.v37i5.25728

	1 Introduction
	1.1 Related Work
	1.2 Technical Overview
	1.2.1 Overview of Theorem 1

	1.3 Overview of Theorem 2
	1.4 Organization

	2 Preliminaries
	3 Quadratic Kernel for Cliques or Trees Vertex Deletion
	3.1 Partitioning Vertices
	3.2 Bounding Sizes of Neighbors of Vertices in V_{ls}
	3.3 Bounding |V_{ld}|
	3.4 Bounding Number of Vertices

