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Abstract
We study the fair allocation of indivisible items to n agents to maximize the utilitarian social
welfare, where the fairness criterion is envy-free up to one item and there are only two different
utility functions shared by the agents. We present a 2-approximation algorithm when the two utility
functions are normalized, improving the previous best ratio of 16

√
n shown for general normalized

utility functions; thus this constant ratio approximation algorithm confirms the APX-completeness
in this special case previously shown APX-hard. When there are only three agents, i.e., n = 3, the
previous best ratio is 3 shown for general utility functions, and we present an improved and tight
5
3 -approximation algorithm when the two utility functions are normalized, and a best possible and
tight 2-approximation algorithm when the two utility functions are unnormalized.
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1 Introduction

We study a special case of the fair allocation of indivisible items to a number of agents to
maximize their utilitarian social welfare, where the agents fall into two types and the fairness
criterion is envy-free up to one item. We present a set of approximation algorithms that each
improves the previous best one when reduced to this special case, or is the best possible for
this special case.

Throughout this paper, we denote by {a1, a2, . . . , an} the set of n agents and by M =
{g1, g2, . . . , gm} the set of m indivisible items or goods. An allocation of items is an n-
tuple A = (A1, A2, . . . , An), where Ai is the pair-wise disjoint bundle/subset of items
allocated/assigned to ai. The allocation is complete if ∪n

i=1Ai = M , i.e., every item is
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49:2 Efficient EF1 Allocation for Two Types of Agents

allocated, or otherwise it is partial. Each agent ai has a non-negative additive utility (or
valuation) function ui : M → R≥0. Extending to 2M , for any subset S ⊆ M , ui(S) =∑

g∈S ui(g). If ui(M) = 1 for all i, then the utility functions are said normalized; otherwise,
they are unnormalized. The utilitarian social welfare of the allocation A = (A1, A2, . . . , An)
is defined as

∑n
i=1 ui(Ai).

The allocation A = (A1, A2, . . . , An) is envy-free up to one item (EF1), if for any
i ̸= j, ui(Ai) ≥ ui(Aj \ g) holds for some item g ∈ Aj . Between two agents ai and
aj , if ui(Ai) ≥ ui(Aj), then ai does not envy aj ; otherwise, ai envies aj . Similarly, if
ui(Ai) ≥ ui(Aj \ g) for some g ∈ Aj , then ai does not strongly envy aj ; otherwise, ai strongly
envies aj .

In this paper, we study the optimization problem to find an EF1 allocation with the
maximum utilitarian social welfare, denoted as USW-EF1, and we focus on the special case
where there are only two types of agents, or equivalently speaking only two distinct utility
functions shared by the agents. W.l.o.g., we assume that the first j agents a1, a2, . . . , aj

use the utility function u1, referred to as the first type of agents, and the last n − j agents
aj+1, aj+2, . . . , an use the second utility function un, for some 1 ≤ j < n. Let A be the
allocation produced by an approximation algorithm and A∗ be an optimal allocation. We
denote by SOL =

∑n
i=1 ui(Ai) and OPT =

∑n
i=1 ui(A∗

i ) their objective values, respectively.
The algorithm is an α-approximation if the ratio OPT/SOL ≤ α for all instances. We remark
that this two-types-of-agents special case is important for several reasons, for example, most
hardness and inapproximability results are proven for this special case, and this special case
also models some real application scenarios such as individual versus business investors and
faculty members versus administration staff.

1.1 Related work
Discrete fair division aims to allocate a set of indivisible items to a set of agents so that all
the agents feel “fair” with respect to their heterogeneous preferences over the items. Typical
fairness criteria include envy-freeness (EF) [12] and proportionality [11]. By an EF allocation,
each agent ai does not envy any other agent aj . Since an EF allocation does not always
exist, one relaxation of EF is envy-freeness up to one item (EF1) proposed in [9, 7]. Formally
speaking, for each pair of agents ai, aj , agent ai does not envy aj after the removal of some
item from the bundle allocated to aj . Replacing the quantifier “for some” by “for any” leads
to another more restricted relaxation envy-freeness up to any item (EFX) [8].

A complete EF1 allocation can be computed in polynomial time by the envy-cycle
elimination (ECE) algorithm proposed by Lipton et al. [9] or by the round-robin (RR)
algorithm proposed by Caragiannis et al. [8]. In brief, in the ECE algorithm, an envy digraph
is constructed on the agents where agent ai points to agent aj (i.e., the arc (ai, aj) exists) if ai

envies aj ; whenever there is a cycle in the digraph, the bundles allocated to the agents on the
cycle are rotated to eliminate the cycle; afterwards the algorithm assigns an unallocated item
to an agent not envied by anyone else, and the iteration goes on. In the RR algorithm, the
agents are ordered cyclically and the agent at the head of the order picks its most preferred
item from the pool of unassigned items and then lines up at the back of the order, until no
item is left.

Besides the existence of EF1 allocations, the price of such fair allocations is an interesting
concern in economics and social science. Given that the utilitarian social welfare measures
the efficiency of an allocation, the price of EF1 is defined as the ratio between the maximum
utilitarian social welfare across all allocations and the maximum utilitarian social welfare
among only EF1 allocations. The price of EF1 for normalized utility functions is Θ(

√
n):

Barman et al. [4] first showed that the price is at most O(
√

n), and later Bei et al. [5] showed
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that the price is at least Ω(
√

n). The price of EF1 for unnormalized utility functions is
n: Barman et al. [4] showed that the price is Θ(n), and later Bu et al. [6] constructed an
instance to show that it is at least n.

For the optimization problem USW-EF1, Barman et al. [4] proved that it is already
NP-hard for two agents even when the valuation function of an agent is a scaled version of
that of the other, and it is NP-hard to approximate within a factor of m1−ϵ for any ϵ > 0 for
n agents and m items when both n and m are part of the input. When the utility functions
are normalized, the problem remains NP-hard for n agents when n ≥ 2 is a fixed integer [3, 6].
Moreover, Bu et al. [6] showed several hardness results when n ≥ 3 that, firstly the problem
is NP-hard to approximate within the factor 4n

3n+1 for normalized functions when one agent
uses a utility function and the other agents use a common second utility function; secondly it
is NP-hard to approximate within the factor 1+

√
4n−3
2 for unnormalized functions when one

agent uses a utility function, two other agents use a common second utility function, and all
the other agents (if any) use a common third utility function; and thirdly it is NP-hard to
approximate within the factor m

1
2 −ϵ or within the factor n

1
3 −ϵ, for any ϵ > 0, for normalized

utility functions when both n and m are part of the input.
On the positive side, Barman et al. [4] presented a 16

√
n-approximation algorithm when

n is a fixed integer and the utility functions are normalized. Aziz et al. [3] proposed a
pseudo-polynomial time exact algorithm for the same variant. Bu et al. [6] gave a fully
polynomial-time approximation scheme (FPTAS) for two agents and an n-approximation
algorithm for n ≥ 3 agents with unnormalized utility functions.

We remark that we reviewed in the above only those directly related work, but not
the entire body of the literature on fair division of indivisible goods. For example, the
Nash social welfare (NSW) objective, the geometric mean of the agents’ utilities, has been
extensively studied, and it is known that an allocation which maximizes NSW is EF1 [8]
though approximate solutions are not necessarily EF1. One may refer to [2, 1] for an excellent
survey on recent progress and open questions.

1.2 Our contribution and organization of the paper
In this paper, we aim to design approximation algorithms for the special case of USW-EF1
where there are only two distinct utility functions shared by the agents, i.e., there are two
types of agents. Note that when all agents share the same utility function, a complete EF1
allocation returned by the ECE or RR algorithm is optimal. Also, given that the above two
lower bounds on the approximation ratios [6] are proven for two or three utility functions, our
study on the special case may shed lights on the general case. In particular, we demonstrate
the use of the item preference order in all our three approximation algorithms.

We first present in the next section a 2-approximation algorithm for any number of agents
with normalized utility functions. Then, in Section 3, we present a tight 2-approximation
algorithm for three agents with unnormalized utility functions, which is the best possible by
the lower bound 1+

√
4n−3
2 [6]. Section 4 contains an improved and tight 5

3 -approximation
algorithm for three agents with normalized utility functions. Due to page limit, we leave the
third case for three agents with unnormalized utility functions to the full arXiv version [10].
We conclude our paper in Section 5.

In all our three algorithms, the items are firstly sorted, and thus we assume w.l.o.g. that
they are given, in the non-increasing order of their preferences, where the preference of an
item g is defined as u1(g)/un(g) (Definition 1) that measures the extent of preference of the
first type of agents over the second type of agents. Intuitively, in an efficient allocation, items
at the front of this order should be allocated to the first type of agents, while items at the
back should be allocated to the second type of agents. This is exactly the main design idea.

ISAAC 2025



49:4 Efficient EF1 Allocation for Two Types of Agents

2 A 2-approximation for normalized functions

Recall that agents a1, . . . , aj share the first utility function u1(·) and agents aj+1, . . . , an

share the second utility function un(·). For each item g ∈ M , we assume w.l.o.g. that its
two values u1(g), un(g) are not both 0.

▶ Definition 1. The preference of item g is defined as ρ(g) = u1(g)/un(g), where if un(g) = 0
then ρ(g) = ∞.

Extending to a non-empty set of items S ⊆ M , the preference of S is defined as ρ(S) =
u1(S)/un(S), where if un(S) = 0 then ρ(S) = ∞.

Specially, the preference of an empty set is ±∞, indicating that it is less than but also
greater than any real value.

We assume w.l.o.g. that ρ(g1) ≥ ρ(g2) ≥ . . . ≥ ρ(gm), i.e., the items are given in the
non-decreasing preference order. Our algorithm, denoted as Approx1, uses two variables
k1 and k2 to store the smallest and the largest indices of the unassigned items, which are
initialized to 1 and m, respectively. In each iteration, the algorithm finds the agent as (at,
resp.) having the minimum utility among the first (second, resp.) type of agents. (Comment:
These two agents as and at will be proven not to envy each other.) If as is not envied by at,
then as takes the item gk1 and k1 is incremented by 1; otherwise, at is not envied by as, at

takes gk2 and k2 is decremented by 1. The algorithm terminates when all items are assigned
(i.e., k1 > k2), of which a high-level description is depicted in Algorithm 1.

Algorithm 1 Approx1 for normalized utility functions.
Input: n ≥ 3 agents of two types and a set of m indivisible items ρ(g1) ≥ ρ(g2) ≥ . . . ≥ ρ(gm).
Output: A complete EF1 allocation.

1: Initialize k1 = 1, k2 = m, and Ai = ∅ for every agent ai;
2: while (k1 ≤ k2) do
3: find s = arg minj

i=1 u1(Ai) and t = arg minn
i=j+1 un(Ai);

4: if (as is not envied by at) then
5: As = As ∪ {gk1} and k1 = k1 + 1;
6: else
7: At = At ∪ {gk2} and k2 = k2 − 1;
8: return the final allocation.

We next prove that inside each iteration, the found two agents as and at do not envy
each other, and thus Approx1 produces a complete EF1 allocation. To this purpose, we
introduce the following definition.

▶ Definition 2. For two item sets A, B ⊆ M , if ming∈A\B ρ(g) ≥ maxg∈B\A ρ(g), then we
say A precedes B and denote it as A ≺ B. That is, excluding the common items, every item
of A (if any) comes before any item of B (if any) in the item preference order.

An allocation A is good if As ≺ At for every pair (s, t) with s ≤ j < t. (Comment: Since
As ∩ At = ∅, this implies ρ(As) ≥ ρ(At).)

Recall that ρ(∅) = ±∞, if As = ∅ then both As ≺ At and At ≺ As hold.

▶ Lemma 3. Given a good allocation A, two agents of different types do not mutually envy
each other.

Proof. Assume to the contrary that for a pair (s, t) with s ≤ j < t, as and at envy each
other, that is, u1(As) < u1(At) and un(At) < un(As). It follows that none of As and At is ∅
and ρ(As) = u1(As)/un(As) < u1(At)/un(At) = ρ(At), which contradicts the definition of a
good allocation. ◀
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Note that there are exactly m iterations inside the algorithm Approx1, and we let
A0 = (∅, . . . , ∅) and let Ai = (Ai

1, . . . , Ai
n) denote the allocation at the end of the i-th

iteration. The final produced allocation is A = Am.

▶ Lemma 4. The allocation Ai is good and EF1, for each i = 0, 1, . . . , m.

Proof. We prove by induction.
The initial empty allocation A0 is clearly good and EF1. Assume Ai is good and EF1 for

some i < m, and let as and at be the agents found in the (i + 1)-st iteration.
Consider the case where as is not envied by at (the other case is symmetric), in which

the algorithm updates As to As ∪ {gk1}. By the description of Approx1, As ∪ {gk1} is
a non-empty subset of {g1, . . . , gk1} and Ai ⊆ {gk2+1, . . . , gm} for every i ≥ j + 1. By
Definitions 1 and 2 and k1 ≤ k2, As ∪ {gk1} ≺ Ai for every i ≥ j + 1, and thus Ai+1 is good.

Since at the beginning of the iteration as is not envied by at, un(At) ≥ un(As). Also, by
the definition of s and t, u1(Ai) ≥ u1(As) for every i ≤ j and un(Ai) ≥ un(At) ≥ un(As) for
every i ≥ j + 1. That is, no agent envies as in the allocation Ai, and thus does not strongly
envy as in the allocation Ai+1 (by removing the item gk1). Note that in this iteration only
as gets an item. Therefore, Ai+1 is EF1 as Ai is EF1. ◀

▶ Theorem 5. Approx1 is a 2-approximation algorithm.

Proof. For the optimal allocation A∗, we have

OPT =
n∑

i=1
ui(A∗

i ) = u1(∪j
i=1A∗

i ) + un(∪n
i=j+1A∗

i ) ≤ u1(M) + un(M) = 2.

Note from Lemma 4 that the final allocation A produced by Approx1 is complete, good and
EF1. By Definition 2, we have ρ(∪j

i=1Ai) ≥ ρ(∪n
i=j+1Ai). Therefore, either ρ(∪j

i=1Ai) ≥ 1
or ρ(∪n

i=j+1Ai) < 1; or equivalently, either u1(∪j
i=1Ai) ≥ un(∪j

i=1Ai) or u1(∪n
i=j+1Ai) <

un(∪n
i=j+1Ai). In the first case, we have

SOL =
n∑

i=1
ui(Ai) = u1(∪j

i=1Ai)+un(∪n
i=j+1Ai) = u1(∪j

i=1Ai)−un(∪j
i=1Ai)+un(M) ≥ 1.

In the second case, we have

SOL = u1(∪j
i=1Ai) + un(∪n

i=j+1Ai) = u1(M) − u1(∪n
i=j+1Ai) + un(∪n

i=j+1Ai) > 1.

Therefore, SOL ≥ 1
2 OPT always holds. ◀

3 A 2-approximation for three agents with unnormalized functions

We continue to assume w.l.o.g. that the items are given in their preference order, that is,
ρ(g1) ≥ ρ(g2) ≥ . . . ≥ ρ(gm), and use the definitions of precedence and good allocation in
Definition 2. Since there are only three agents categorized into two types, we assume w.l.o.g.
that j = 1, i.e., agent a1 is of the first type and agents a2 and a3 are of the second type.

For ease of presentation we partition the items into two sets based on their preference:

X = {g ∈ M : u1(g) ≥ u3(g)}, Y = {g ∈ M : u1(g) < u3(g)}. (1)

We first examine the structure of a fixed optimal EF1 allocation, denoted as (A∗
1, A∗

2, A∗
3).

Denote the item g∗ = arg maxg∈A∗
1

u3(g), i.e., the most valuable to a2 and a3 among those
items allocated to a1. The following lemma establishes an important upper bound on
u3(A∗

1 \ g∗).

ISAAC 2025



49:6 Efficient EF1 Allocation for Two Types of Agents

▶ Lemma 6. u3(A∗
1 \ g∗) ≤ 1

3 u3(M \ g∗).

Proof. Suppose to the contrary that u3(A∗
1 \ g∗) > 1

3 u3(M \ g∗). Then we have

u3(A∗
2 ∪ A∗

3) = u3(M) − u3(A∗
1) = u3(M \ g∗) − u3(A∗

1 \ g∗) < 2u3(A∗
1 \ g∗).

It follows that at least one of u3(A∗
2) and u3(A∗

3) is less than u3(A∗
1 \ g∗). W.l.o.g., we

assume u3(A∗
2) < u3(A∗

1 \ g∗), and thus by the definition of g∗ agent a2 strongly envies a1, a
contradiction to EF1. ◀

We next present an upper bound on the optimal total utility OPT . To this purpose,
we define what a critical set is below. We remark that although the definition relies on the
fixed optimal EF1 allocation A∗, we can actually compute a critical set for any item, by the
procedure Algo2 presented in Subsection 3.1.

▶ Definition 7. An item set K is critical for an item g if the following three conditions are
satisfied:
1. g ∈ K and K \ g ⊆ X;
2. K \ g ≺ A∗

1 \ g;
3. u3(K \ g) ≥ min{u3(X \ g), 1

3 u3(M \ g)}.

▶ Lemma 8. For any critical set K for g∗, we have OPT ≤ u1(K) + u3(M \ K).

Proof. We partition the items of A∗
1 \ g∗ into two sets according to Eq. (1):

B1 = (A∗
1 \ g∗) ∩ X, B2 = (A∗

1 \ g∗) ∩ Y.

One sees from B2 ⊆ Y that u1(B2) ≤ u3(B2). Since K \ g∗ ≺ A∗
1 \ g∗ and B1 ⊆ A∗

1 \ g∗,
K \g∗ ≺ B1 too. Let C = (K \g∗)∩B1; then ρ(K \{g∗ ∪C}) ≥ ρ(B1 \C). Since K \g∗ ⊆ X,
ρ(K \ g∗) ≥ 1. In summary, we have

ρ(K \ {g∗ ∪ C}) ≥ max{ρ(B1 \ C), 1}.

By the third condition in Definition 7 and Lemma 6, we have

u3(K \ {g∗ ∪ C}) ≥ min{u3(X \ g∗), 1
3u3(M \ g∗)} − u3(C)

≥ min{u3(X \ g∗), u3(A∗
1 \ g∗)} − u3(C)

≥ u3(B1 \ C).

The above inequalities together give rise to

u1(A∗
1 \ g∗) − u3(A∗

1 \ g∗) ≤ u1(B1) − u3(B1)
= u1(C) − u3(C) + u1(B1 \ C) − u3(B1 \ C)
= u1(C) − u3(C) + u3(B1 \ C)(ρ(B1 \ C) − 1)
≤ u1(C) − u3(C) + u3(K \ {g∗ ∪ C})(ρ(K \ {g∗ ∪ C}) − 1)
= u1(K \ g∗) − u3(K \ g∗). (2)

It follows from the above Eq. (2) that

OPT = u1(g∗) + u1(A∗
1 \ g∗) + u3(A∗

2 ∪ A∗
3)

≤ u1(g∗) + u3(A∗
1 \ g∗) + u1(K \ g∗) − u3(K \ g∗) + u3(A∗

2 ∪ A∗
3)

= u1(K) + u3(M \ K).

This proves the lemma. ◀
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The next lemma states an important property for any allocation in which agent a1 is
envied, by the fact that a2 and a3 share the same utility function u3.

▶ Lemma 9. Suppose A is an allocation in which agent a1 is envied. If a2 (a3, resp.) is
not envied by a3 (a2, resp.), then a2 envies a1, i.e., u3(A2) < u3(A1) (a3 envies a1, i.e.,
u3(A3) < u3(A1), resp.).

Proof. We prove the lemma for a2 (for a3 it is symmetric), that is, agent a2 is not envied by
a3, but a1 is envied by at least one of a2 and a3.

If a2 does not envy a1, then a3 envies a1, i.e., u3(A2) ≥ u3(A1) > u3(A3), a contradiction
to a2 not envied by a3. ◀

3.1 Producing a critical set for every item
Recall that the items are given in the preference order ρ(g1) ≥ ρ(g2) ≥ . . . ≥ ρ(gm); and
we see from Eq. (1) that X ≺ Y . For any ordered item set, if the order inherits the given
preference order, then it is regular.

Note from Lemma 8 that a critical set for the item g∗ plays an important role, but we
have no knowledge of A∗

1 or g∗. Below we construct a critical set for every item gi ∈ M , in
the procedure Algo2 depicted in Algorithm 2. The key idea is, excluding gi, the critical set
matches a prefix of the item preference order.

Algorithm 2 Algo2 for computing a critical set.
Input: The item preference order S = ⟨g1, . . . , gm⟩ and an item gi ∈ M .
Output: A critical set K for gi.

1: Find the smallest t such that
∑t

j=1 u3(gj) ≥ min{u3(X \ gi), 1
3 u3(M \ gi)};

▷ If X \ gi = ∅, then t = 0.
2: if (t < i) then
3: output K = {g1, . . . , gt, gi};
4: else
5: find the smallest t′ such that

∑t′

j=1 u3(gj) ≥ min{u3(X), 1
3 u3(M \ gi) + u3(gi)};

6: output K = {g1, . . . , gt′}.

▶ Lemma 10. Algo2 produces a critical set K for the item gi.

Proof. Consider the index t in Line 1 of the procedure Algo2. Clearly, t ≤ |X|. If t < i,
then gi ∈ K and K \ gi = {g1, . . . , gt}. Therefore, K \ gi ⊆ X and K \ gi ≺ A∗

1 \ gi. Lastly,
u3(K \ gi) =

∑t
j=1 u3(gj) ≥ min{u3(X \ gi), 1

3 u3(M \ gi)}. All the three conditions in
Definition 7 are satisfied and thus K is a critical set for gi.

If t ≥ i, then t′ in Line 5 exists and |X| ≥ t′ ≥ t ≥ i. Therefore, gi ∈ K, K ⊆ X and
K \ gi ≺ A∗

1 \ gi. Lastly, u3(K \ gi) =
∑t′

j=1 u3(gj) − u3(gi) ≥ min{u3(X \ gi), 1
3 u3(M \ gi)}.

All the three conditions in Definition 7 are satisfied and thus K is a critical set for gi. ◀

Given that the procedure Algo2 is able to produce a critical set for any item, by
enumerating the items we will have a critical set K for the item g∗, and thus by Lemma 8 to
bound the OPT . From K, we will also design algorithms to return a complete EF1 allocation
of total utility at least half of this bound and thus at least 1

2 · OPT .
In the next three subsections, we deal with the critical set K produced by Algo2 for an

item gi, separately for three possible cases. Let k = |K|. When maxg∈K u1(g) < 1
2 u1(K), K

contains at least three items, i.e., k ≥ 3; if the index of the item gi is i ≥ k, then we modify

ISAAC 2025



49:8 Efficient EF1 Allocation for Two Types of Agents

the item order S by moving the item gi to the (k − 1)-st position, and denote the new order
as S′ = ⟨g′

1, . . . , g′
m⟩. Note that the net effect is, if i ≥ k, then the items gk−1, . . . , gi−1 are

moved one position forward to become g′
k, . . . , g′

i; otherwise S′ is identical to S. In either
case, S′ \ g′

k−1 is regular and K contains the first k items in the order S′, summarized in
Remark 11.

The three distinguished cases are (due to space limit, Case 3 is dealt with in detail in the
full arXiv version [10]):
1. maxg∈K u1(g) ≥ 1

2 u1(K);
2. maxg∈K u1(g) < 1

2 u1(K) and u3(g′
k) > u3(M \ K);

3. maxg∈K u1(g) < 1
2 u1(K) and u3(g′

k) ≤ u3(M \ K).

▶ Remark 11. In Cases 2 and 3, i.e., maxg∈K u1(g) < 1
2 u1(K) and thus k = |K| ≥ 3, for the

new item order S′, g′
k ̸= gi, S′ \ g′

k−1 is regular, K = {g′
1, g′

2, . . . , g′
k}, and

∑k−1
j=1 u3(g′

j) <
1
3 u3(M \ gi) + u3(gi).

Proof. We only need to prove the last inequality
∑k−1

j=1 u3(g′
j) < 1

3 u3(M \ gi) + u3(gi).
If K is outputted in Line 3 of the algorithm Algo2, then k = t + 1 and

∑k−1
j=1 u3(g′

j) =∑t−1
j=1 u3(gj) + u3(gi) < 1

3 u3(M \ gi) + u3(gi), i.e., the inequality holds. If K is outputted
in Line 6 of the algorithm Algo2 and i < t′ = k, then

∑k−1
j=1 u3(g′

j) =
∑t′−1

j=1 u3(gj) <
1
3 u3(M \ gi) + u3(gi), i.e., the inequality holds. If K is outputted in Line 6 of the algorithm
Algo2 and i = t = t′ = k, then

∑k−1
j=1 u3(g′

j) ≤
∑t−1

j=1 u3(gj) + u3(gi) < 1
3 u3(M \ gi) + u3(gi),

i.e., the inequality holds. This proves the last inequality. ◀

3.2 Case 1: maxg∈K u1(g) ≥ 1
2u1(K)

Recall that K is the critical set for the item gi produced by the procedure Algo2. This case
where maxg∈K u1(g) ≥ 1

2 u1(K) is considered easy, and we present an algorithm Approx3
to produce a complete EF1 allocation.

The algorithm starts with the allocation A = ({g}, ∅, ∅), where the item g is one such
that u1(g) ≥ 1

2 u1(K). A is trivially EF1 and u1(A1) ≥ 1
2 u1(K). In fact, A is well-defined

with permutation (1, 2, 3), formally defined below.

▶ Definition 12. An allocation A is well-defined with permutation (i1, i2, i3) if
1. A is EF1;
2. u1(A1) ≥ 1

2 u1(K) and u3(A1) ≤ u3(K);
3. (i1, i2, i3) ∈ {(1, 2, 3), (3, 1, 2)} such that agent ai1 does not envy ai2 or ai3 , and ai2 does

not envy ai3 .

Given the well-defined allocation A = ({g}, ∅, ∅) with permutation (1, 2, 3), let U =
M \ (A1 ∪ A2 ∪ A3) be the unassigned item set. The algorithm Approx3 fixes the agent
order ⟨a3, a2, a1⟩ to apply the Round-Robin (RR) algorithm to distribute the items of U . A
high-level description of the algorithm is depicted in Algorithm 3, which accepts a general
well-defined allocation.

▶ Lemma 13. Given a well-defined allocation A = (A1, A2, A3) with permutation (i1, i2, i3),
Approx3 produces a complete EF1 allocation with total utility at least 1

2 u1(K)+ 1
2 u3(M \K).

Proof. Note from the RR algorithm that the returned allocation (A1 ∪ U1, A2 ∪ U2, A3 ∪ U3)
is complete.

The initial allocation A = (A1, A2, A3) is EF1 by Definition 12. Consider any two agents
as and at, where s precedes t in the permutation (i1, i2, i3). That is, as does not envy
at, and thus us(As) ≥ us(At). Since the RR algorithm uses the agent order ⟨ai3 , ai2 , ai1⟩,
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Algorithm 3 Approx3 for a complete EF1 allocation.
Input: A well-defined allocation A = (A1, A2, A3) with permutation (i1, i2, i3).
Output: A complete EF1 allocation.

1: Fix the agent order ⟨ai3 , ai2 , ai1⟩;
2: apply the RR algorithm to allocate the unassigned items, denoted as (U1, U2, U3);
3: output the final allocation (A1 ∪ U1, A2 ∪ U2, A3 ∪ U3).

we have us(Us) ≥ us(Ut) − us(g), where g is the first item picked by agent at; and thus
us(As ∪ Us) ≥ us(At ∪ Ut) − us(g) for the same g ∈ Ut. That is, as does not strongly envy at.
Similarly, since A is EF1, ut(At) ≥ ut(As) − ut(g) for some g ∈ As; we have ut(Ut) ≥ ut(Us)
by the RR algorithm. Thus ut(At ∪ Ut) ≥ ut(As ∪ Us) − ut(g) for the same g ∈ As, that is,
at does not strongly envy as. Therefore, the returned allocation is EF1.

We estimate the total utility of the returned allocation as follows. Since the agent
index 1 precedes 2 in the permutation (i1, i2, i3) ∈ {(1, 2, 3), (3, 1, 2)}, we have u3(U2) ≥
u3(U1) from the RR algorithm; we also have u1(A1) ≥ 1

2 u1(K) and u3(A1) ≤ u3(K)
from Definition 12 of well-defined allocation, the total utility of the returned allocation is
u1(A1 ∪ U1) + u3(A2 ∪ A3 ∪ U2 ∪ U3), which is at least

1
2u1(K) + 1

2u3(M \ A1) = 1
2u1(K) + 1

2u3(M) − 1
2u3(A1) ≥ 1

2u1(K) + 1
2u3(M \ K).

This proves the lemma. ◀

▶ Theorem 14. Let K be the critical set of the item g∗ produced by the procedure Algo2.
If maxg∈K u1(g) ≥ 1

2 u1(K), then Approx3 returns a complete EF1 allocation with its total
utility at least 1

2 OPT .

Proof. For this set K, the allocation A = ({g}, ∅, ∅) is well-defined with the permutation
(1, 2, 3), where g = arg maxg∈K u1(g). The theorem follows from Lemmas 13 and 8. ◀

3.3 Case 2: maxg∈K u1(g) < 1
2u1(K) and u3(g′

k) > u3(M \ K)
Recall that K is the critical set of an item gi produced by the procedure Algo2. In this
case, k = |K| ≥ 3 and we work with the new item order S′ such that S′ \ g′

k−1 is regular,
and g′

k ̸= gi. Adding the last inequality
∑k−1

j=1 u3(g′
j) < 1

3 u3(M \ gi) + u3(gi) from Remark 11
and u3(g′

k) > u3(M \ K) together gives

u3(g′
k) >

1
3u3(M \ gi) ≥ u3(K \ {g′

k, gi}), and thus u3(g′
k) >

1
2u3(K \ gi). (3)

One sees from the above three lower bounds on u3(g′
k) that the item g′

k is very valuable to
agents a2 and a3. We design another algorithm called Approx7 for this case to construct a
complete EF1 allocation, in which g′

k is the only item assigned to a3.
Inside the algorithm Approx7, the first procedure Algo4 produces a partial EF1 and

good allocation. It starts with the allocation A = ({g′
1}, ∅, {g′

k}), which is EF1 and good
(see Definition 2), and uses the order S′ to allocate the items in the two sets K \ {g′

1 ∪ g′
k}

and M \ K to the agents a1 and a2, respectively, till exactly one of them becomes empty. A
detailed description of the procedure is depicted in Algorithm 4.

▶ Lemma 15. Given the critical set K for item gi produced by the procedure Algo2
satisfying maxg∈K u1(g) < 1

2 u1(K), k = |K|, the new item order S′ in which g′
k ̸= gi, and

u3(g′
k) > u3(M \ K), Algo4 produces a partial EF1 and good allocation.
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Algorithm 4 Algo4 for a partial EF1 and good allocation.

Input: The critical set K for item gi satisfying maxg∈K u1(g) < 1
2 u1(K), the new item order

S′ in which g′
k ̸= gi, and u3(g′

k) > u3(M \ K).
Output: A partial EF1 allocation A.

1: Initialize A = ({g′
1}, ∅, {g′

k}) and U = M \ {g′
1, g′

k};
2: initialize k1 = 2 and k2 = m;
3: while (k1 < k < k2) do
4: if (a1 is not envied by a2) then
5: A1 = A1 ∪ {g′

k1
}, U = U \ g′

k1
, and k1 = k1 + 1;

6: else
7: A2 = A2 ∪ {g′

k2
}, U = U \ g′

k2
, and k2 = k2 − 1;

8: return A.

Proof. Note from the description that when Algo4 terminates, either k1 = k < k2 or
k1 < k = k2, i.e., at least one item remains unassigned, and thus the returned allocation A
is incomplete.

We remark that since the procedure starts with the allocation ({g′
1}, ∅, {g′

k}), and allocates
the items in the two sets K \ {g′

1 ∪ g′
k} and M \ K to the agents a1 and a2, respectively, the

bundle A1 ≺ A2 and A1 ≺ A3 throughout the procedure, and thus the allocation maintains
good (see Definition 2). Also throughout the procedure, since A3 = {g′

k} contains a single
item, no one strongly envies a3; since u3(g′

k) > u3(M \ K) and Eq. (3), agent a3 does not
strongly envy any of a1 or a2.

We show next that throughout the procedure, between a1 and a2, no one strongly envies
the other, and thus the final allocation is EF1. This is true for the starting allocation
({g′

1}, ∅, {g′
k}). Assume this is true for the allocation at the beginning of an iteration of the

while-loop; since the allocation is good, by Lemma 3 a1 and a2 do not envy each other. If
a1 is not envied by a2, then the item g′

k1
∈ K \ g′

k is assigned to a1, and thus a2 does not
strongly envy a1 due to g′

k1
at the end of the iteration; a1 remains not strongly envy a2, also

due to g′
k1

at the end of the iteration. If a2 is not envied by a1, then the item g′
k2

∈ M \ K is
assigned to a2, and thus a1 does not strongly envy a2 due to g′

k2
at the end of the iteration;

a2 remains not strongly envy a1, also due to g′
k2

at the end of the iteration. ◀

If the procedure Algo4 terminates at k1 < k = k2, then the returned allocation is
A = ({g′

1, . . . , g′
k1−1}, M \ K, {g′

k}) and the unassigned item set is U = {g′
k1

, . . . , g′
k−1}.

The next procedure Algo5 continues on to assign the items of U to produce a complete
EF1 allocation, by re-setting k2 = k − 1. A detailed description of Algo5 is depicted in
Algorithm 5. Basically, if at least one of a1 and a2 is not envied by any of the other two
agents, then the procedure allocates an unassigned item to such a non-envied agent; otherwise,
both a1 and a2 are envied by some agent and the procedure allocates all the remaining
unassigned items to a1. That is, either g′

k1
is assigned to a1, or g′

k2
is assigned to a2, or

all of the items of U = {g′
k1

, . . . , g′
k2

} are assigned to a1, respectively. One sees that the
allocation A remains good before the last item is assigned (in fact, the allocation loses being
good only if the last item is g′

k−1 = gi and it is assigned to a1) in the procedure Algo5, and
consequently a1 and a2 do not envy each other by Lemma 3 before the last item is assigned.

▶ Lemma 16. Algo5 produces a complete EF1 allocation.

Proof. Since there will not be any unassigned item at the end of the procedure, the returned
allocation is complete. We remind the readers that during the execution of Algo5, the
allocation A remains good before the last item is assigned.
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Algorithm 5 Algo5 for a complete EF1 allocation.

Input: The critical set K for item gi satisfying maxg∈K u1(g) < 1
2 u1(K), the new item

order S′ in which g′
k−1 = gi, and u3(g′

k) > u3(M \ K); the EF1 and good allocation
A = ({g′

1, . . . , g′
k1−1}, M \ K, {g′

k}) returned by Algo4, where k1 < k.
Output: A complete EF1 allocation A.

1: Set k2 = k − 1 and the unassigned item set U = {g′
k1

, . . . , g′
k2

};
2: while (k1 ≤ k2) do
3: if (a1 is not envied) then
4: A1 = A1 ∪ {g′

k1
}, U = U \ g′

k1
, and k1 = k1 + 1;

5: else if (a2 is not envied) then
6: A2 = A2 ∪ {g′

k2
}, U = U \ g′

k2
, and k2 = k2 − 1;

7: else
8: A1 = A1 ∪ U , and k1 = k2 + 1;
9: return A.

The starting allocation A = ({g′
1, . . . , g′

k1−1}, M \ K, {g′
k}), which is returned by Algo4,

is EF1 and good. At the beginning of an iteration of the while-loop, if a1 is not envied by
any other agent (the case where a2 is not envied by any other agent is symmetric), then after
g′

k1
is allocated to a1 no agent will strongly envy a1. That is, the updated allocation is EF1

too.
Consider the last case of the while-loop, i.e., at the beginning of the last iteration

A = (A1, A2, {g′
k}) is the EF1 and good allocation in which both a1 and a2 are envied by

some agent.
We claim that a3 envies a2. If not, i.e., u3(g′

k) ≥ u3(A2), then a2 is envied by a1, and
thus by Lemma 3, a2 does not envy a1, i.e., u3(A2) ≥ u3(A1). It follows that a3 does not
envy a1. That is, a1 is not envied by any agent, a contradiction.

In the final allocation A′ = (A1 ∪ U, A2, {g′
k}), a1 does not strongly envy any of a2 or a3

for sure, and none of a2 and a3 strongly envies the other. From Eq. (3) a3 does not strongly
envy a1. Since a3 envies a2, a2 does not strongly envy a1 either.

In summary, no agent strongly envies another agent in the final allocation A′. ◀

The allocation returned by the procedure Algo5 is complete and EF1. The next
procedure Algo6 takes in a complete EF1 allocation A = (A1, A2, A3), and if in which agent
a1 envies a2, i.e., u1(A1) < u1(A2), then outputs the allocation between A and (A2, A1, A3)
with a larger total utility. In general, for a complete EF1 allocation A = (A1, A2, A3), the
allocation (A2, A1, A3) after bundle swapping might not be EF1. We nevertheless show in
the next lemma that the allocation returned by the procedure Algo6 is EF1.

Algorithm 6 Algo6 for a larger total utility.
Input: The complete EF1 allocation A = (A1, A2, A3) returned by Algo5.
Output: A complete EF1 allocation.

1: if (u1(A1) ≥ u1(A2)) then
2: output A;
3: else
4: output the allocation between (A1, A2, A3) and (A2, A1, A3) with a larger total utility.

▶ Lemma 17. Algo6 produces a complete EF1 allocation.
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Proof. Note that A = (A2, A1, {g′
k}) can be returned only if u1(A1) < u1(A2). We show

that in such a case, none of a1 and a2 strongly envies the other in (A2, A1, {g′
k}) (noting

that a3 does not strongly envy a1 or a2, the same as in A, and none of a1 and a2 strongly
envies a3 who is allocated with the single item g′

k). Because u1(A2) > u1(A1), a1 does not
envy a2 in the allocation (A2, A1, {g′

k}).
Let g be the last item allocated to A2, done either by Algo4 or by Algo5. If this is

done by Algo4, then (g is g′
k+1 and) by Lines 6–7 in the description at that moment a2

envies a1, and thus u3(A2 \ g) < u3({g′
1, . . . , g′

k1−1} ≤ u3(A1). If g is allocated by Algo5,
then by Lines 5–6 in the description at that moment a1 is envied by some agent and a2 is
not envied by any agent, and thus by Lemma 9 u3(A2 \ g) < u3({g′

1, . . . , g′
k1−1} ≤ u3(A1).

Therefore, we always have u3(A1) > u3(A2 \ g), i.e., a2 does not strongly envy a1 in the
allocation (A2, A1, {g′

k}). This proves the lemma. ◀

The algorithm, denoted as Approx7, for producing a complete EF1 allocation for Case 2,
is depicted in Algorithm 7, which utilizes the three procedures introduced in the above. When
Algo4 terminates at k1 = k < k2, the returned partial allocation is A = (K \ g′

k, A2, {g′
k})

where A2 ⊂ M \ K, which is completed by calling the Envy Cycle Elimination (ECE)
algorithm to assign the rest of the items, i.e., g′

k+1, . . . , g′
k2

.

Algorithm 7 Approx7 for a complete EF1 allocation.

Input: The critical set K for item gi satisfying maxg∈K u1(g) < 1
2 u1(K), the new item order

S′ in which g′
k ̸= gi, and u3(g′

k) > u3(M \ K).
Output: A complete EF1 allocation.

1: Call Algo4 to produce an EF1 partial allocation A = (A1, A2, {g′
k}), and k1, k2;

2: set U = M \ (A1 ∪ A2 ∪ {g′
k});

3: if (k1 = k < k2) then
4: call the ECE algorithm on A to continue to assign the items in U ;
5: output the final allocation;
6: else
7: re-set k2 = k − 1;
8: call Algo5 on A to continue to assign the items in U ;
9: call Algo6 on A to output the final allocation.

▶ Lemma 18. Approx7 produces a complete EF1 allocation.

Proof. If the procedure Algo4 terminates at k1 = k < k2, then since the returned partial
allocation is EF1 by Lemma 15, the ECE algorithm continues from there to produce a
complete EF1 allocation [9].

If the procedure Algo4 terminates at k1 < k = k2, then the final allocation is returned
by Algo6 and by Lemma 17 is complete and EF1. ◀

▶ Theorem 19. Given the critical set K for the item g∗ produced by the procedure Algo2
satisfying maxg∈K u1(g) < 1

2 u1(K), k = |K|, the new item order S′ in which g′
k ̸= g∗, and

u3(g′
k) > u3(M \ K), Approx7 constructs a complete EF1 allocation with its total utility at

least 1
2 OPT .

Proof. By Lemma 18 the final allocation is complete and EF1.
If the procedure Algo4 terminates at k1 = k < k2, then SOL ≥ u1(K \ g′

k) + u3(g′
k).

Since u1(g′
k) < 1

2 u1(K) and u3(g′
k) > u3(M \ K), the total utility is greater than 1

2 u1(K) +
u3(M \ K) ≥ 1

2 OPT where the last inequality holds by Lemma 8.
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If the procedure Algo4 terminates at k1 < k = k2, then let A = (A1, A2, {g′
k}) denote

the allocation returned by the procedure Algo5, in which A1 ⊆ K \ g′
k and A2 ⊂ M \ g′

k.
We distinguish to whom g′

k−1 is allocated.
If g′

k−1 ∈ A1, then A1 = K \ g′
k, and the above argument for the first termination

condition applies too, so that SOL > 1
2 OPT , by noting that the procedure Algo6 never

reduces the total utility.
If g′

k−1 ∈ A2, then (M \K)∪{g′
k−1, g′

k} ⊆ A2∪A3. By
∑k−1

j=1 u3(g′
j) < 1

3 u3(M \g∗)+u3(g∗)
from Remark 11, u3(A2) + u3(A3) > 2

3 u3(M \ g∗). When u1(A1) < u1(A2), the procedure
Algo6 outputs A or (A2, A1, A3) with a larger total utility, which is

SOL ≥ 1
2u1(A1 ∪ A2) + 1

2u3(A1 ∪ A2) + u3(A3) ≥ 1
2u1(M \ g′

k) + 1
2u3(M).

When u1(A1) ≥ u1(A2), A is the final allocation with its total utility

SOL ≥ 1
2u1(A1 ∪ A2) + u3(A2) + u3(A3) >

1
2u1(M \ g′

k) + 2
3u3(M \ g∗).

Noting from g′
k ̸= g∗, u3(g′

k) > 1
3 u3(M \ g∗) in Eq. (3), and u3(A∗

1 \ g∗) ≤ 1
3 u3(M \ g∗) in

Lemma 6, we have g′
k /∈ A∗

1. Therefore, u1(A∗
1) ≤ u1(M \ g′

k) and then since g∗ ∈ A∗
1,

SOL ≥ 1
2u1(M \ g′

k) + min{1
2u3(M), 2

3u3(M \ g∗)} ≥ 1
2u1(A∗

1) + 1
2u3(A∗

2 ∪ A∗
3) = 1

2OPT.

This proves the theorem. ◀

3.4 Case 3: maxg∈K u1(g) < 1
2u1(K) and u3(g′

k) ≤ u3(M \ K)
Recall that K is the critical set of item gi produced by the procedure Algo2. The same as
in Case 2, here we also have k = |K| ≥ 3 and we work with the new item order S′ such that
K = {g′

1, . . . , g′
k}, S′ \ g′

k−1 is regular, and g′
k ̸= gi. Note the difference from Case 2 that,

here we have u3(g′
k) ≤ u3(M \ K). We design an algorithm denoted Approx9 for this case

to construct a complete EF1 allocation, summarized in the following. Due to space limit,
the complete design and analysis for Case 3 is in the full arXiv version [10].

▶ Theorem 20. Given the critical set K for the item g∗ produced by the procedure Algo2
satisfying maxg∈K u1(g) < 1

2 u1(K), k = |K|, the new item order S′ in which g′
k ̸= g∗, and

u3(g′
k) ≤ u3(M \ K), Approx9 constructs a complete EF1 allocation with its total utility at

least 1
2 OPT .

3.5 An instance to show the tightness of ratio 2
We provide an instance below to show that the approximation ratio 2 of the combination of
the three algorithms, Approx3, Approx7 and Approx9, for the case of three agents with
two unnormalized utility functions is tight. In this instance there are only five items in the
order ρ(g1) > ρ(g2) > ρ(g3) > 1 > ρ(g4) = ρ(g5), with their values to the three agents listed
as follows, where ϵ > 0 is a small value:

g1 g2 g3 g4 g5

a1 ϵ 1 1 0 0
a2, a3 0 ϵ 2ϵ ϵ ϵ

We continue to use the same notations introduced in Section 3. One sees that X = {g1, g2, g3},
and thus A∗ = ({g1, g2, g3}, {g4}, {g5}) is an optimal EF1 allocation of total utility 2 + 3ϵ.

ISAAC 2025



49:14 Efficient EF1 Allocation for Two Types of Agents

For each of g1 and g2, u3(X \ gi) > 1
3 u3(M \ gi) ≥ 4

3 ϵ; the critical set produced by Algo2
is K = {g1, g2, g3}. One can verify that maxg∈K u1(g) < 1

2 u1(K), and the new item order
is the same as the original preference order. Since u3(g3) = u3(M \ K), it falls into Case
3. In this case, Algo8 starts with the allocation ({g1}, {g3}, ∅): In the first iteration, a1
is not envied by a2 or a3, the allocation is updated to ({g1, g2}, {g3}, ∅) and the procedure
terminates with k1 > k2. Since ({g1, g2}, {g3}, ∅) is well-defined with permutation (1, 2, 3),
Approx3 calls the RR algorithm that assigns g4 and g5 one to each of a3 and a2, achieving
the final allocation either ({g1, g2}, {g3, g5}, {g4}) or ({g1, g2}, {g3, g4}, {g5}) of total utility
1 + 5ϵ.

For g3, u3(X \ g3) = 1
3 u3(M \ g3) = ϵ; the critical set produced by Algo2 is also

K = {g1, g2, g3}, and the new item order is S′ = ⟨g1, g3, g2, g4, g5⟩. Since u3(g2) < u3(M \K),
it falls into Case 3 too. In this case, Algo8 starts with the allocation ({g1}, {g2}, ∅): In the
first iteration, a1 is not envied by a2 or a3, the allocation is updated to ({g1, g3}, {g2}, ∅)
and the procedure terminates with k1 > k2. Since ({g1, g3}, {g2}, ∅) is well-defined with
permutation (1, 2, 3), Approx3 calls the RR algorithm that assigns g4 and g5 one to each of a3
and a2, achieving the final allocation either ({g1, g3}, {g2, g5}, {g4}) or ({g1, g3}, {g2, g4}, {g5})
of total utility 1 + 4ϵ.

For g4 (g5 can be identically discussed), u3(X \ g4) = 3ϵ > 1
3 u3(M \ g4) = 4

3 ϵ; the
critical set produced by Algo2 is K = {g1, g2, g3, g4}, and the new item order is S′ =
⟨g1, g2, g4, g3, g5⟩. Since u3(g3) > u3(M \ K), it falls into Case 2. In this case, Algo4
starts with the allocation ({g1}, ∅, {g3}): In the first iteration, a1 is not envied by a2,
the allocation is updated to ({g1, g2}, ∅, {g3}); in the second iteration, a1 is envied by
a2, the allocation is updated to ({g1, g2}, {g5}, {g3}), and the procedure terminates with
k1 < k = k2. Since in ({g1, g2}, {g5}, {g3}) a1 is not envied, Algo5 assigned g4 to a1,
achieving the complete allocation ({g1, g2, g4}, {g5}, {g3}). Lastly, Algo6 confirms the final
allocation is ({g1, g2, g4}, {g5}, {g3}), of total utility 1 + 4ϵ.

Therefore, we have SOL ≤ max{1 + 4ϵ, 1 + 5ϵ} = 1 + 5ϵ. It follows that OPT/SOL ≥
(2 + 3ϵ)/(1 + 5ϵ) = 2 − 7ϵ/(1 + 5ϵ) → 2, when ϵ tends to 0.

4 A 5
3-approximation for three agents with normalized functions

Recall that the algorithm Approx1 is a 2-approximation for n agents with normalized
functions. In this section, we consider the special case where n = 3, and again assume w.l.o.g.
that agent a1 uses the utility function u1(·) and a2 and a3 use u3(·). We continue to assume
the items are given in the preference order ρ(g1) ≥ ρ(g2) ≥ . . . ≥ ρ(gm).

We also continue to use some notations and definitions introduced earlier, such as the sets
X = {g ∈ M : u1(g) ≥ u3(g)} and Y = M \ X defined in Eq. (1), a good allocation defined
in Definition 2, and so on. Additionally, for any subset A ⊆ M , we define the quantity

∆(A) = u1(A) − u3(A). (4)

Since now u1(M) = u3(M) = 1, we have ∆(X) + ∆(Y ) = 0 and

OPT ≤ u1(X) + u3(Y ) = u1(X) − u3(X) + u3(M) = ∆(X) + 1 = 1 − ∆(Y ). (5)

In the rest of the section we distinguish two cases on maxg∈X u1(g), the most value of a
single item in X to agent a1, and we design two different, but similar, algorithms, respectively.
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4.1 Case 1: maxg∈X u1(g) ≤ 1
3

The design idea of our algorithm Approx10 is similar to Approx1, with a change that,
after all the items of X have been allocated, i.e., both to-be-allocated items gk1 and gk2 are in
Y , agent at has the priority to receive gk2 if it is not envied by a1. The detailed description
of the algorithm Approx10 is presented in Algorithm 8.

Algorithm 8 Approx10 for three agents with normalized utility functions.
Input: Three agents of two types and a set of m indivisible items ρ(g1) ≥ ρ(g2) ≥ . . . ≥ ρ(gm),
where maxg∈X u1(g) ≤ 1

3 .
Output: A complete EF1 allocation.

1: Initialize k1 = 1, k2 = m, and Ai = ∅ for every agent ai;
2: while (k1 ≤ k2) do
3: find t = arg mini=2,3 u3(Ai);
4: if (k1 ≤ |X|) then ▷ a1 has the priority.
5: if (a1 is not envied by at) then
6: A1 = A1 ∪ {gk1} and k1 = k1 + 1;
7: else
8: At = At ∪ {gk2} and k2 = k2 − 1;
9: else ▷ Change of priority: Now at has the priority.

10: if (at is not envied by a1) then
11: At = At ∪ {gk2} and k2 = k2 − 1;
12: else
13: A1 = A1 ∪ {gk1} and k1 = k1 + 1;
14: return the final allocation.

▶ Lemma 21. Approx10 produces a good, complete and EF1 allocation.

Proof. The returned allocation by Approx10 is clearly complete from the while-loop
termination condition. We prove that at the end of each iteration of the while-loop in the
algorithm, the updated allocation is good and EF1, similar to Lemma 4. Note that the initial
empty allocation is trivially good and EF1.

Assume that at the beginning of the iteration the allocation denoted as A = (A1, A2, A3)
is good and EF1; note that the to-be-allocated items are gk1 and gk2 with k1 ≤ k2.

Consider the case where k1 > |X| and at is not envied by a1 (we intentionally pick this
case to prove, the other three cases are symmetric), in which the algorithm updates A1 to
At ∪{gk2}. By the description of Approx10, A1 = {g1, . . . , gk1−1} and Ai ⊆ {gk2+1, . . . , gm}
for i = 2, 3. By Definitions 1 and 2 and k1 ≤ k2, A1 ≺ Ai ∪ {gk2} for i = 2, 3, and thus the
updated allocation is good.

Since at the beginning of the iteration at is not envied by a1, u1(A1) ≥ u3(At). Also, by
the definition of t, u3(Ai) ≥ u3(At) for the third agent ai. That is, no agent envies at in the
allocation A, and thus does not strongly envy at in the updated allocation (by removing the
item gk2 , if necessary). Note that in this iteration only at gets the item gk2 . Therefore, the
updated allocation is EF1. ◀

Let us examine one scenario of the final allocation returned by Approx10 in the next
lemma, and leave the other to the main Theorem 23.

▶ Lemma 22. In the final allocation A = (A1, A2, A3) returned by Approx10, if X ⊆ A1,
then SOL ≥ 2

3 OPT .
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Proof. If A1 = X, then A is optimal, i.e., SOL = OPT .
Below we consider the scenario where a1 receives some items from Y . This means when

Approx10 terminates, k1 > |X| + 1 and A1 = {g1, . . . , gk1−1}. Let Y1 = {g|X|+1, . . . , gk1−1},
that is, A1 = X ∪ Y1.

We claim min{∆(X), −∆(Y1)} ≤ 1
2 . Assume to the contrary, then u1(X) ≥ ∆(X) > 1

2
and u3(Y1) ≥ −∆(Y1) > 1

2 . Consider the iteration where a1 is allocated with the last item
gk1−1. Since at the beginning of the iteration the allocation is good, by Lemma 3, a1 and a2
do not envy each other, so do a1 and a3. From gk1−1 ∈ Y and Lines 9–13 in the algorithm
description, at is envied by a1, and thus u1(A1 \ gk1−1) < u1(A2 ∪ A3). It follows from
A2 ∪ A3 = Y \ Y1 and Eq. (1) that

u1(X) < u1(A2 ∪ A3) < u3(A2 ∪ A3) = u3(Y ) − u3(Y1) < 1 − 1
2 = 1

2 , a contradiction.

Since A2 ∪ A3 ⊂ Y , we have u1(A2 ∪ A3) < u3(A2 ∪ A3), and therefore SOL = u1(A1) +
u3(A2 ∪ A3) > u1(A1) + u1(A2 ∪ A3) = 1.

Using the claimed min{∆(X), −∆(Y1)} ≤ 1
2 , if ∆(X) ≤ 1

2 , then by Eq. (5), OPT ≤ 3
2 ≤

3
2 · SOL; if ∆(X) > 1

2 , then −∆(Y1) ≤ 1
2 < ∆(X), and thus SOL = u1(A1) − u3(A1) +

u3(M) = ∆(X) + ∆(Y1) + 1 > 2
3 (∆(X) + 1) ≥ 2

3 OPT , where the last inequality is by Eq. (5).
This proves the lemma. ◀

▶ Theorem 23. If maxg∈X u1(g) ≤ 1
3 , then Approx10 produces a complete EF1 allocation

with its total utility SOL ≥ 3
5 OPT .

Proof. Lemma 21 states that the final allocation A = (A1, A2, A3) returned by the algorithm
is complete and EF1. If X ⊆ A1, then by Lemma 22 the total utility of A is at least 2

3 OPT .
We next consider the other scenario where A1 ⊂ X, i.e., the algorithm Approx10

terminates with k1 ≤ |X|. Let X1 = {gk1 , . . . , g|X|}, then A1 = {g1, . . . , gk1−1} = X \ X1
and A2 ∪ A3 = X1 ∪ Y .

We claim that ∆(X1) ≤ 2
3 , and prove it by contradiction to assume ∆(X1) > 2

3 . It follows
that u1(X1) > 2

3 and thus u1(A1) ≤ u1(M \ X1) < 1
3 .

From Lines 4–8 in the description of the algorithm, the item gk1 is assigned to agent at

in the last iteration of the while-loop (in which k2 = k1 at the beginning of the iteration and
k2 is decremented afterwards leading to the termination condition k2 < k1). That is, gk1 is
the last item received by at. Denote the other agent as ai, i.e., {t, i} = {2, 3}. Since a1 is
envied at the beginning of the iteration, a1 is envied by at; further because the allocation is
good, a1 does not envy at. To summarize,

u3(At \ gk1) ≤ u3(Ai), u3(At \ gk1) < u3(A1), and u1(A1) ≥ u1(At \ gk1). (6)

It follows from A1 ⊆ X that

u3(At \ gk1) < u3(A1) ≤ u1(A1) <
1
3 . (7)

One sees that if agent ai also receives some items from X1, then the above argument applies
too for the last item ai receives, denoted as gℓ, such that Eq. (7) holds, i.e., u3(Ai \ gℓ) < 1

3 .
Subsequently, if A2 ∩ X1 ̸= ∅ and A3 ∩ X1 ̸= ∅, then

∆(X1) ≤ ∆(X) = −∆(Y ) ≤ u3(At \ gk1) + u3(Ai \ gℓ) <
2
3 , a contradiction.

If X1 ⊆ At, then by Eq. (6),

u1(gk1) ≥ u1(At) − u1(A1) ≥ u1(X1) − u1(A1) >
1
3 , contradicting to maxg∈X u1(g) ≤ 1

3 .
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We have thus proved the claim that ∆(X1) ≤ 2
3 .

We linearly combine ∆(X1) ≤ 2
3 and ∆(X1) ≤ ∆(X) to have ∆(X1) ≤ 3

5 · 2
3 + 2

5 · ∆(X) =
2
5 + 2

5 ∆(X), and thus by Eq. (5)

SOL = u1(X \ X1) + u3(X1 ∪ Y ) = 1 + ∆(X) − ∆(X1) ≥ 3
5(1 + ∆(X)) ≥ 3

5OPT.

This proves the theorem. ◀

4.2 Case 2: maxg∈X u1(g) > 1
3

In this case, we let g∗ = arg maxg∈X u1(g); thus u1(g∗) > 1
3 , which is so big that it is assigned

to agent a1 immediately. On the other hand, we can use g∗ to bound OPT as follows:

OPT ≤ u1(X) + u3(Y ) ≤ u1(X) + u3(M) − u3(g∗) ≤ 2 − u3(g∗) <
5
3 + ∆(g∗). (8)

Our algorithm for this case is very similar to Approx10, with two changes: One is the
starting allocation set to be ({g∗}, ∅, ∅), and the other is, when k2 = |X|, the while-loop
terminates and the algorithm switches to the Envy-Cycle Elimination (ECE) algorithm to
assign the rest of items. The detailed description of the algorithm, denoted as Approx11, is
presented in Algorithm 9.

Algorithm 9 Approx11 for three agents with normalized utility functions.
Input: Three agents of two types and a set of m indivisible items ρ(g1) ≥ ρ(g2) ≥ . . . ≥ ρ(gm),
where g∗ = arg maxg∈X u1(g) and u1(g∗) > 1

3 .
Output: A complete EF1 allocation.

1: Initialize k1 = 1, k2 = m, and A = ({g∗}, ∅, ∅);
2: if gk1 = g∗, then k1 = k1 + 1;
3: while (k1 ≤ k2 and k2 > |X|) do
4: find t = arg mini=2,3 u3(Ai);
5: if (k1 ≤ |X|) then
6: if (a1 is not envied by at) then
7: A1 = A1 ∪ {gk1}, k1 = k1 + 1, if gk1 = g∗ then k1 = k1 + 1;
8: else
9: At = At ∪ {gk2} and k2 = k2 − 1;

10: else
11: if (at is not envied by a1) then
12: At = At ∪ {gk2} and k2 = k2 − 1;
13: else
14: A1 = A1 ∪ {gk1}, k1 = k1 + 1, if gk1 = g∗ then k1 = k1 + 1;
15: if (k2 = |X|) then
16: call the ECE algorithm on A to continue to assign the items in {gk1 , . . . , gk2} \ {g∗};
17: return the final allocation.

▶ Theorem 24. If maxg∈X u1(g) > 1
3 , then Approx11 produces a complete EF1 allocation

with its total utility SOL ≥ 3
5 OPT , and the approximation ratio 3

5 is tight.

Proof. We distinguish the two termination condition of the while-loop in Approx11.
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In the first scenario, the while-loop terminates at k1 > k2, that is, all the items are
assigned and k2 ≥ |X| implying X ⊆ A1 in the returned allocation A = (A1, A2, A3). Note
that the while-loop body is the same as the while-loop body in Approx10. It follows from
Lemma 21 that A is good, complete and EF1, and from Lemma 22 that its total utility is
SOL ≥ 2

3 OPT .
In the other scenario, the while-loop terminates at k1 ≤ k2 = |X|, that is, all the items

of Y have been assigned to a2 and a3 (i.e., Y ⊆ A2 ∪ A3), and the unassigned items are
gk1 , . . . , gk2 excluding g∗. By Lemma 21, the achieved allocation A is good and EF1. Since
g∗ ∈ A1, we have ∆(A1) ≥ ∆(g∗).

We claim that the ECE algorithm does not decrease ∆(A1). To prove the claim, we
assume in an iteration of the ECE algorithm, with the allocation A = (A1, A2, A3) at
the beginning, agent a1 gets the bundle A2 or A3 due to the existence of an envy cycle.
Further assume w.l.o.g. that a1 gets bundle A2, which means a1 envies a2 and the envy
cycle is either (1 → 2 → 3 → 1) or (1 → 2 → 1). Either way, u1(A1) < u1(A2) and
u3(A2)(< u3(A3)) < u3(A1). Therefore, ∆(A1) < ∆(A2). This proves the claim.

The final allocation A = (A1, A2, A3) returned from the ECE algorithm has its total
utility

SOL = u1(A1) + u3(A2 ∪ A3) ≥ ∆(A1) + u3(M) ≥ ∆(g∗) + 1 >
3
5OPT,

where the last inequality is by Eq. (8). We thus prove that the approximation ratio of
Approx11 is at least 3

5 .
We next provide an instance below to show that this approximation ratio is tight. In this

instance, there are five items given in the order ρ(g1) > ρ(g2) > ρ(g3) > 1 > ρ(g4) = ρ(g5),
with their values to the three agents listed as follows, where ϵ > 0 is a small value:

g1 g2 g3 g4 g5

a1
1
3

1
3 − ϵ 1

3 + ϵ 0 0
a2, a3 ϵ ϵ 1

3
1
3 − ϵ 1

3 − ϵ

One sees that the instance is normalized, X = {g1, g2, g3}, and A∗ = ({g1, g2}, {g3, g4}, {g5})
is an optimal EF1 allocation of total utility 5

3 − 3ϵ.
Since u1(g3) > 1

3 , Approx11 is executed which starts with the allocation ({g3}, ∅, ∅): In
the first iteration, a1 is envied by a2 and a3, and the allocation is updated to ({g3}, ∅, {g5})
or ({g3}, {g5}, ∅); in the second iteration, a1 and a3 (resp., a1 and a2) are envied by a2 (resp.,
a3), and the allocation is updated to A = ({g3}, {g4}, {g5}); the procedure terminates with
k2 = |X| = 3.

Next, the ECE algorithm is called on A to continue to assign the items g1 and g2: In
the first iteration, since in ({g3}, {g4}, {g5}) only a1 is still envied by a2 and a3, a2 and
a3 are not envied, the ECE algorithm assigns g1 to a2 (or to a3, symmetrically) resulting
in the updated allocation ({g3}, {g1, g4}, {g5}); in the second iteration, the ECE algorithm
assigns the last item g2 to a3, ending at the complete allocation A = ({g3}, {g1, g4}, {g2, g5}).
This final allocation A = ({g3}, {g1, g4}, {g2, g5}) has total utility 1. Therefore, we have
OPT/SOL = ( 5

3 − 3ϵ)/1 → 5
3 , when ϵ tends to 0. ◀

5 Conclusion

Fair division of indivisible goods is an interesting problem which has received a lot of studies,
from multiple research communities including artificial intelligence and theoretical computer
science. Finding an EF1 allocation to maximize the utilitarian social welfare from the
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perspective of approximation algorithms emerges most recently. Despite EF1 being one of the
most simplest fairness criteria, the design and analysis of approximation algorithms for this
problem in the general case seems challenging [4, 6]. In this paper, we focused on the special
case where agents are of only two types, and we hope our work may shed lights on and inspire
more studies for the general case. For this special case, we presented a 2-approximation
algorithm for any number of agents with normalized utility functions; by the lower bound of

4n
3n+1 from [6], our result shows the problem in this special case is APX-complete. When
there are only three agents, we presented an improved 5

3 -approximation algorithm. When
there are only three agents but the utility functions are unnormalized, we presented a tight
2-approximation algorithm which is the best possible by the lower bound of 1+

√
4n−3
2 from [6].

In all three algorithms, we demonstrate the use of the item preference (Definition 1) order,
which can be explored further for improved algorithms.

We remark that the lower bound of 4n
3n+1 on the approximability in [6] is proven for a

more restricted case where the two utility functions are normalized, agent a1 uses a utility
function and all the other agents use the other function. It would be interesting to narrow the
gap for either the special case we study or this more restricted case; we expect some improved
lower bounds or some approximation ratios as functions in n1 and n2, where n1 agents use a
common utility function and the other n2 = n − n1 use the second utility function.
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