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Abstract
In the ℓ-Coloring problem, we are given a graph on n nodes, and tasked with determining if
its vertices can be properly colored using ℓ colors. In this paper we study below-guarantee graph
coloring, which tests whether an n-vertex graph can be properly colored using g − k colors, where g

is a trivial upper bound such as n. We introduce an algorithmic framework that builds on a packing
of co-triangles K3 (independent sets of three vertices): the algorithm greedily finds co-triangles
and employs a win-win analysis. If many are found, we immediately return yes; otherwise these
co-triangles form a small co-triangle modulator, whose deletion makes the graph co-triangle-free.

Extending the work of [Gutin et al., SIDMA 2021], who solved ℓ-Coloring (for any ℓ) in
randomized O∗(2k) time when given a K2-free modulator of size k, we show that this problem can
likewise be solved in randomized O∗(2k) time when given a K3-free modulator of size k.

This result in turn yields a randomized O∗(23k/2) algorithm for (n−k)-Coloring (also known as
Dual Coloring), improving the previous O∗(4k) bound. We then introduce a smaller parameteriza-
tion, (ω + µ − k)-Coloring, where ω is the clique number and µ is the size of a maximum matching
in the complement graph; since ω + µ ≤ n for any graph, this problem is strictly harder. Using
the same co-triangle-packing argument, we obtain a randomized O∗(26k) algorithm, establishing its
fixed-parameter tractability for a smaller parameter. Complementing this finding, we show that
no fixed-parameter tractable algorithm exists for (ω − k)-Coloring or (µ − k)-Coloring under
standard complexity assumptions.
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1 Introduction

Graph coloring is a cornerstone of theoretical computer science and discrete mathematics: it
connects to deep structure theorems and has driven the development of numerous algorithmic
techniques [3, 5, 6, 8, 14]. Given an undirected graph G on n vertices, a proper coloring of G

is an assignment of colors to its nodes such that any two adjacent vertices receive different
colors. The canonical decision problem for this concept is k-Coloring: given an integer k

and a graph G, decide whether G admits a proper coloring with at most k colors.
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5:2 Graph Coloring Below Guarantees via Co-Triangle Packing

While 2-Coloring is polynomial-time solvable, 3-Coloring (and therefore k-Coloring
for every k ≥ 3) is already NP-hard [18]. The field of parameterized complexity tackles such
NP-hard tasks by measuring the complexity of solving these problems in terms of secondary
measures. In this paper we focus on a particularly important subarea of this field known as
below-guarantee parameterization.

Below-Guarantee Parameterization. In the guarantee parameterization paradigm, we
reformulate problems by first identifying classes of instances that are trivially solvable –
typically because a solution is guaranteed to exist – and then parameterize general instances
by their distance from these “easy” cases. See [13] for a survey of this area.

Dual Coloring. In the context of coloring graphs with n nodes, observe that the n-Coloring
problem is trivial, because we can obtain a proper coloring by assigning each vertex a distinct
color. The framework of below-guarantee parameterization described above then motivates
studying the (n − k)-Coloring problem, also referred to as Dual Coloring, where the
parameter k captures how many colors we are trying to “save” compared to the trivial coloring
using different colors for all vertices. The Dual Coloring problem has been influential in
parameterized complexity, with its study in [7] introducing the concept of crown reductions,
by now a basic technique in the field of kernelization [10, Chapter 4]. Given an n-node
instance G of Dual Coloring and any constant ε > 0, [17] showed that in polynomial
time one can kernelize the instance to a graph G′ on (2 + ε)k vertices such that the answer
to the Dual Coloring problem is the same on G and G′, for sufficiently large k in terms
of ε > 0. Combining this kernelization with existing 2n poly(n) time algorithms for graph
coloring [5], we immediately recover a O∗(4(1+ε)k) time algorithm for Dual Coloring for
any constant ε > 0, where we write O∗(f(k)) to denote f(k) poly(n). Without going through
this kernelization, one can also use the algorithms of [12] to solve Dual Coloring directly
in O∗(4k) time. We improve upon this result:

▶ Theorem 1. Dual Coloring can be solved in randomized O∗(23k/2) time.

Let us mention a closely related problem called (n − k)-Set Cover. In this problem, we
are given a family F of subsets of [n], and are tasked with determining if there exist (n − k)
sets from F whose union is [n]. Very recently, Alferov et al. [2] showed that (n − k)-Set
Cover can be solved in O∗(23k/2|F|) time. Even though the (n − k)-Coloring problem can
be cast as an instance of (n − k)-Set Cover, where F is the collection of all independent
vertex sets of the graph, this result of [2] does not imply an O∗(23k/2) time algorithm
for (n − k)-Coloring, because F can have exponentially many sets in n. The dynamic
programming approach used in the algorithm of [2] appears to inherently require this runtime
dependence on |F| even when the sets F can be implicitly described as in (n − k)-Coloring,
so that Theorem 1 is not directly implied by this previous work. However, we note it seems
plausible that one could combine the ideas of [2] with the subset convolution arguments of [4]
to obtain fast algorithms for Dual Coloring as well, and recover Theorem 1.

A Stronger Structural Guarantee. Given a graph G, we let G denote its complement graph,
which has the same vertex set as G, but an edge {u, v} if and only if u and v are distinct,
non-adjacent nodes in G. Let ω = ω(G) denote the size of the maximum clique in G. Let
µ = µ(G) denote the size of the maximum matching in the complement G. Then we have
the following structural parameter-based guarantee for coloring G.

▶ Observation 2. The graph G admits a proper coloring using at most (ω + µ) colors.
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Proof. Let M be a maximal matching in G. By definition, |M | ≤ µ. By maximality of M

in G, the vertices that are not incident to any edge in M form an independent set in G.
Thus the set C of vertices outside M form a clique in G, so |C| ≤ ω. We color G as follows.
For each edge in M , we assign a unique color to both of its endpoints, and we assign distinct
new colors to all vertices in C. In total, we use at most (ω + µ) colors. By construction this
coloring is proper, which proves the claim. ◀

Note that in any graphs with n vertices, we always have (ω + µ) ≤ n. This is because if we
take a clique C in G of size ω and a matching M in G of size µ, then by definition each edge of
M is incident to at least one distinct vertex outside of C, which forces n ≥ |C|+|M | = (ω + µ).
Thus the guarantee of Observation 2 is stronger than the trivial fact that any graph with n

vertices always has a proper coloring using n colors.
In the same way this latter observation motivated the Dual Coloring problem, it is

natural to ask if we can obtain efficient algorithms while parameterizing below the stronger
guarantee provided by Observation 2. We prove that this is indeed possible.

▶ Theorem 3 (Parameterization from Stronger Guarantee). Given an integer k ≥ 1, and a
graph G that has maximum clique size ω and whose complement has maximum matching
size µ, we can solve (ω + µ − k)-Coloring in randomized O∗(26k) time.

Our approach. The key ideas behind Theorems 1 and 3 are sketched below; see Section 1.1
for more details. We first greedily compute a maximal packing of co-triangles K3 (independent
triplets). If the packing holds many co-triangles, saving two colors per co-triangle already
yields the desired proper coloring. Otherwise, the packing’s vertices form a small co-triangle
modulator S, whose deletion results in a K3-free graph. In the latter case, we extend the
randomized procedure of Gutin et al. [12], to show that we can solve the desired coloring
problem in O∗(2|S|) time.

Hardness results. We also note that algorithms which are fixed-parameter tractable with
respect to k are unlikely to exist for (ω − k)-Coloring and (µ − k)-Coloring, so that
combining ω and µ together in Theorem 3 appears to be necessary in order to achieve efficient
parameterized algorithms with respect to these parameters. For the former, this is because
3-Coloring is NP-hard in planar graphs [11]. Since a planar graph does not have a clique
of size five, this means that assuming P ̸= NP we cannot hope to solve (ω − k)-Coloring in
f(k) poly(n) time for any function f(·). To show hardness for the latter problem, we prove
the following.

▶ Theorem 4. The (n/2 − k)-Coloring problem is W[1]-hard in the parameter k on graphs
with n vertices whose complement has a perfect matching.

In view of Theorem 4, we cannot hope for an O∗(f(k))-time algorithm for (µ − k)-Coloring,
for any function f(·).

1.1 Technical Overview
As a starting point, we give a brief overview for how the work of [12] implies a O∗(4k) time
algorithm for Dual Coloring.

Given a host graph G and pattern graph H, we say G is H-free if G does not contain H

as an induced subgraph. We say a set of vertices S in G is an H-free modulator if deleting
the vertices in S from G makes the graph H-free. For ℓ ∈ N, we let Kℓ denote the complete
graph on ℓ vertices, and Kℓ denote its complement, the independent set on ℓ vertices.

ISAAC 2025



5:4 Graph Coloring Below Guarantees via Co-Triangle Packing

The main relevant result from previous work is the following, proven in [12, Theorem 3.5].

▶ Proposition 5 (Clique Modulator). Given a graph G together with a K2-free modulator of
size p (i.e., a set of at most p vertices, whose deletion from G turns the graph into a clique),
we can solve k-Coloring on G for any k in randomized O∗(2p) time.

Recall that given a pattern graph H and a host graph G, we say an H-packing in G is a
collection H of vertex-disjoint, induced copies of H in G. Using Proposition 5 we can solve
Dual Coloring in O∗(4k) time using the following three steps.

Step 1: Identify Matching
Extract a maximal K2-packing M in G.

Step 2: Large Matching ⇒ Easy Instance
If |M | ≥ k, then report that a proper coloring using at most (n − k) colors exists.

Step 3: Small Matching ⇒ Small Modulator
If |M | < k, the vertices participating in M form a K2-free modulator of size p < 2k.
Then apply Proposition 5 to solve Dual Coloring in O∗(4k) time.

In Step 1 we obtain M by running a polynomial time algorithm for finding a maximum
matching in the complement graph G. In Step 2 we observe that if |M | ≥ k, then we
can assign a distinct color for each K2 in M to color its two vertices, and then color all
remaining vertices in G with different colors to obtain a proper coloring using at most
k + (n − 2k) = n − k colors overall. In Step 3 we observe that if |M | < k, by maximality
deleting each K2 in M results in a K2-free graph, so Proposition 5 solves the problem.

This strategy of extracting a matching and then performing casework on its size to either
identify a solution or enforce more structure is similar to previous work on kernelization for
Dual Coloring [7, 17] and applications of crown decomposition [10, Chapter 4].

To solve Dual Coloring faster in O∗(23k/2) time, we work with a structure more
complicated than a matching: a triangle packing. The core technical lemma powering our
new algorithms is the following result.

▶ Lemma 6. Given a K3-free modulator of size p and any positive integer k, the k-Coloring
problem can be solved in randomized O∗(2p) time.

Since any K3-free modulator is also a K2-free modulator by definition, Lemma 6 is a
stronger version of Proposition 5. We remark that an extension to K4-free modularator is
unlikely because Coloring is NP-hard on K4-free graphs [16].

Step 1: Identify Triangle Packing
Extract a maximal K3-packing T in G.

Step 2: Large Packing ⇒ Easy Instance
If |T | ≥ k/2, then report that a proper coloring using at most (n − k) colors exists.

Step 3: Small Packing ⇒ Small Modulator
If |T | < k/2, the vertices participating in T form a K3-free modulator of size p < 3k/2.
Then apply Lemma 6 to solve Dual Coloring in O∗(23k/2) time.

In Step 1 we obtain T in polynomial time by running a greedy algorithm. In Step 2 we
observe that if |T | ≥ k/2, then we can assign each K3 in T a different color to color its three
vertices, and then color all remaining vertices in G with different colors to obtain a proper
coloring using at most k/2 + (n − 3k/2) = n − k colors overall. In Step 3 we observe that if
|T | < 3k/2, by maximality deleting each K3 in T results in a K3-free graph, so Lemma 6
solves the problem.
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The proof of Proposition 5 from [12] is established using algebraic techniques. The main
idea is that given a K2-free modulator S of size p, the induced subgraph on V \ S is a clique,
so every vertex outside of S must be assigned a different color. Solving the k-Coloring
problem can then be reduced to a problem similar to bipartite matching, where one must
determine for each vertex outside of S the subset of vertices in S it shares a color with
(intuitively, the subset of S it is “matched to”). The authors use determinants to enumerate
bipartite matchings in an auxiliary graph capturing this question, and apply algorithms for
polynomial sieving and fast subset convolution to find the best matching (corresponding to
an optimal coloring) and solve this problem in O∗(2p) time, comparable to the number of
subsets of S that must be considered.

Our proof of Lemma 6 uses similar technical ingredients. Here, because we are given
a K3-free modulator S instead of a K2-free modulator, we can no longer assume that the
vertices in S = V \S all get different colors. However, we can assume that in a proper coloring
of the graph, any given color appears at most twice across the nodes in S. This then lets us
reduce the k-Coloring problem in this context to a problem related to perfect matchings,
albeit in a nonbipartite graph. At a high level, we do this by considering all partitions of
S into sets of size at most two, where these parts represent distinct color classes in S, and
then consider all ways of matching these parts to different subsets of S, corresponding to
extending these color classes from S to the full graph.

Since we work with matchings in general undirected graphs, we use Pfaffians instead of
determinants in our arguments. We also used a Pfaffian-based algebraic approach in recent
work on Edge Coloring [1]. On top of this framework, we use fast subset convolution to
ensure that we achieve the same O∗(2p) runtime as before.

Our algorithm for (ω + µ − k)-Coloring follows by employing a similar strategy to the
procedure for Dual Coloring outlined above, with a more refined analysis with respect to
the relevant structural parameters.

Comparison with the (n−k)-Set Cover Result. Alferov et al. [2] achieved an O∗(23k/2|F|)
algorithm for (n − k)-Set Cover on input families F via a different toolkit. Their procedure
likewise begins by extracting a maximal triangle packing and immediately reports a yes-
instance when that packing is large (Step 2 in our outline). When the packing is small, they
study the matching structure in the remaining part via the Gallai-Edmonds decomposition. A
sufficiently large matching again certifies a solution, and they carefully use this fact to obtain
a runtime bound of O∗(23k/2|F|). These arguments are tailored to (n − k)-Set Cover, and
do not lead to an efficient algorithm parameterized by K3-free modulator size as in Lemma 6,
which is central to proving Theorem 3. For the special case of (n − k)-Coloring, where the
set F can be succinctly described as the collection of independent sets in a given graph, the
dynamic program employed in [2] still suffers from this issue. Due to this limitation, this
previous approach does not directly prove Theorem 1 either.

Organization. In Section 2, we review notation and basic facts about graphs, matrices, and
polynomials that will be useful to us. In Section 3 we prove Lemma 6. In Section 4, we
apply Lemma 6 to design our algorithm for Dual Coloring and (ω + µ − k)-Coloring
(our harder structural parameter variant of Dual Coloring) and prove Theorem 3, and
also establish a lower bound for a related problem by proving Theorem 4. We conclude in
Section 5 by summarizing our work and mentioning relevant open problems.

ISAAC 2025
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2 Preliminaries

General Notation. Given a positive integer a, we let [a] = {1, . . . , a} denote the set of the
first a consecutive positive integers.

Graph Notation. We let G denote the input graph on n vertices and m edges. We let V

denote the vertex set of G. Given a subset of nodes S ⊆ V , we let G[S] denote the induced
subgraph of G on S. We let µ(G), ω(G), and α(G) denote the size of a maximum matching,
clique, and independent set in G respectively. We let K3 denote the complete graph on three
nodes, which we refer to as a triangle.

From Coloring to Clique Covers. Given a graph G, we say a clique cover of G is a collection
C of vertex-disjoint cliques in G such that every vertex appears in some clique of C. The size
of this cover is simply |C|, the number of cliques used in the clique cover.

In the p-Clique Cover problem, we are given a graph G on n vertices and are tasked
with determining if G has a clique cover of size at most p. For convenience, we refer to
(n − k)-Clique Cover as the Dual Clique Cover problem. By complementing the graph
it is easy to see that p-Coloring and p-Clique Cover are equivalent computational tasks.

▶ Observation 7 (Clique Cover). For any integer p ≥ 1, solving p-Coloring on a graph
G is equivalent to solving p-Clique Cover on the complement graph G.

Proof. Suppose we have a proper coloring of G. Then the set of vertices assigned any fixed
color form an independent set in G, which means they form a clique in G. Thus the coloring
induces a clique cover of the same size. The reverse direction, that a solution to p-Clique
Cover on G implies a solution to p-Coloring on G, follows by symmetric reasoning. ◀

For convenience, in our proofs we will use Observation 7 to frame our algorithms as
solving problems related to Clique Cover instead of Coloring.

Algebraic Preliminaries. Throughout we work over a finite field F of size poly(n). Arithmetic
operations over F take poly(log n) time.

Given a set S, let Π(S) denote the set of perfect matchings on S (i.e., the collection
of partitions of S into sets of size exactly two). Given a skew-symmetric matrix A (i.e., a
matrix that equals A = −A⊤ the negative of its transpose) with rows and columns indexed
by a set S, its Pfaffian is defined to be

Pf A =
∑

M∈Π(S)

sgn(M)
∏

{u,v}∈M

A[u, v] (1)

for a function sgn: Π(S) → {−1, 1} whose definition is not relevant here [20, Section 7.3.2].
An arithmetic circuit is a way of constructing a polynomial by starting with its input

variables, and iteratively building up more complicated expressions by using the standard
operations of addition, multiplication, and division. The size of an arithmetic circuit is the
total number of non-scalar operations used to construct its final output polynomial in this
way. Our algorithms use the well known fact that Pfaffians admit polynomial-size arithmetic
circuits that only use addition and multiplication operations [22].

▶ Proposition 8 (Pfaffian Construction). In poly(n) time we can construct a division-free
arithmetic circuit of poly(n) size over F whose inputs are indeterminate entries of an n × n

skew-symmetric matrix A, and whose output is the polynomial Pf A.
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We make use of the following classic result, proven for example in [19, Theorem 7.2].

▶ Proposition 9 (Identity Testing). Let P be a nonzero polynomial over a finite field F of
degree at most d. If each variable of P is assigned an independent, uniform random value
from F, then the corresponding evaluation of P is nonzero with probability at least 1 − d/|F|.

Subset Convolution. Let S be a set of size p. Let α and β be functions from the collection
of subsets of S to F.

The subset convolution (α ∗ β) of α and β is the function defined by setting

(α ∗ β)(T ) =
∑

A,B⊆S
T =A⊔B

α(A)β(B) for all T ⊆ S.

For each v ∈ S, introduce a variable yv. Let Y = {yv}v∈S be this set of variables.
Consider polynomials

P =
∑
A⊆S

α(A)
∏
a∈A

ya and Q =
∑
B⊆S

β(B)
∏
b∈B

yb

over the quotient ring R = F[Y ]/⟨(y2)y∈Y ⟩. That is, R is the usual ring of polynomials
over the variables in Y with coefficients from F, except that whenever we multiply the same
variable with itself the resulting product vanishes.

We refer to R as the squarefree ring over Y . By definition of polynomial multiplication
and the fact that only squarefree monomials survive in R, we get that

P · Q =
∑
T ⊆S

(α ∗ β)(T )
∏
t∈T

yt

over R. This shows that computing subset convolutions is equivalent to computing products
of polynomials over R. The following result then follows from known O∗(2p) time algorithms
for subset convolution [4].

▶ Proposition 10 (Fast Subset Convolution). We can compute addition and multiplication
over the squarefree ring R on p variables in O∗(2p) time.

3 Triangle Modulator

In this section, we prove the following key lemma.

▶ Lemma 6. Given a K3-free modulator of size p and any positive integer k, the k-Coloring
problem can be solved in randomized O∗(2p) time.

Proof. Replace the input graph with its complement. Then by Observation 7, it suffices to
show that given a K3-free modulator S of size p for G and a positive integer k, we can solve
k-Clique Cover on G in O∗(2p) time.

We write S = V \ S. By definition, G[S] contains no triangle (i.e., a copy of K3). This
means that for every clique C in G, we have |C ∩ S| ∈ {0, 1, 2}. Given a clique cover C of G,
we say it has type t⃗ = (t0, t1) if for each i ∈ {0, 1} the cover C contains exactly ti cliques C

satisfying |C ∩ S| = i. Note that if a cover has type t⃗, then because every vertex appears in
a unique clique in the cover, exactly t2 = (|S| − t1)/2 cliques in the cover intersect S at two
nodes. Consequently, the size of a clique cover with type t⃗ is exactly

t0 + t1 + t2 = t0 + (t1 + |S|)/2 = t0 + (t1 + n − p)/2.

We say a type t⃗ = (t0, t1) is valid if and only if we have t0 + (t1 + n − p)/2 ≤ k so that a
clique cover of type t⃗ has size at most k.

ISAAC 2025



5:8 Graph Coloring Below Guarantees via Co-Triangle Packing

Our task is to determine if G contains a clique cover of size at most k. Such a cover has
at most O(k2) ≤ poly(n) valid types t⃗, and we try out each possible such type and look for a
clique cover with exactly that type.

To that end, fix a valid type t⃗ = (t0, t1). We now construct an auxiliary graph H, such
that perfect matchings in H encode how clique covers of G with type t⃗ may restrict to clique
covers of G[S]. We include the vertex set S in H, and add all edges from G[S] to H. We
then introduce a set U of t1 new vertices, and add edges from every node in U to every
vertex in S. Intuitively, when we take a perfect matching M of H, it will correspond to a
clique cover C of G such that

for each edge {u, v} with u ∈ U , there is a clique C ∈ C with C ∩ S = {v}, and
for each edge {v, w} ∈ M with v, w ∈ S, there is a clique C ∈ C with C ∩ S = {v, w}.

With this correspondence in mind, we move to constructing a polynomial that will
enumerate clique covers of G.

Let E(H) denote the edge set of H. For each e ∈ E(H), introduce an indeterminate
variable xe. Now consider the matrix A whose rows and columns are indexed by nodes of H,
with entries defined by

A[v, w] =


xvw if {v, w} ∈ E(H) and v ≺ w

−xvw if {v, w} ∈ E(H) and w ≺ v

0 otherwise

where (≺) is some fixed ordering on the nodes of H.
By Equation (1) and the definition of A above, we have

Pf A =
∑

M∈Π(H)

sgn(M)
∏

e∈M

xe (2)

where here Π(H) denotes the set of perfect matchings in H, and sgn(M) ∈ {−1, 1} for each
choice of M .

Next, we will introduce additional, larger polynomial expressions that we will substitute
in for the xe variables, with the end goal of transforming the matching polynomial Pf A into
a polynomial that enumerates collections of cliques in G.

Go through all subsets T ⊆ S, and for each check if T is a clique in G. This lets us
determine the collection F of all cliques in S in O∗(2p) time overall.

Then for each edge e ∈ E(H) and clique C ⊆ S, we introduce a variable zeC . For each
i ∈ [t0] and clique C ⊆ S, also introduce a variable ziC . Let Z be the set of all these zeC

and ziC variables.
Additionally, for each each node v ∈ S, we introduce a variable yv. Let Y = {yv}v∈S

denote this set of k variables.
Now for each e ∈ E(H) and subset T ⊆ S, define the polynomial

Φe[T ] =
∑
C∈F
C⊆T

zeC

∏
v∈C

yv. (3)

Intuitively this polynomial enumerates those cliques C ⊆ T that can be extended using
vertices in e ∩ S to obtain larger cliques in G.

Also for each i ∈ [t0], define the polynomial

Φi =
∑
C∈F

ziC

∏
v∈C

yv. (4)

Intuitively these polynomials enumerate cliques C ⊆ S that we do not plan on extending
with nodes in S.
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For each vertex v ∈ V , let N(v) denote the set of vertices in S adjacent to v in G. We
construct a new matrix B, by starting with the matrix A and

for each e = {u, v} ∈ E(H) with u ∈ U and v ∈ S, substituting xuv with Φe[N(v)], and
for each e = {v, w} ∈ E(H) with v, w ∈ S, substituting xvw with Φe[N(v) ∩ N(w)].

Now define the polynomial

F = (Pf B) ·
t0∏

i=1
Φi (5)

over R[Z], where R = F[Y ]/
〈
(y2)y∈Y

〉
is the squarefree ring defined in Section 2.

▷ Claim 11 (Polynomial Characterization). The polynomial F has a monomial divisible by∏
v∈S yv if and only if G has a clique cover of type t⃗ = (t0, t1).

Proof. Suppose first that F has a monomial divisible by
∏

v∈S yv. Since we work over the
squarefree ring R, this monomial is of the form

f(Z)
∏
v∈S

yv (6)

for some polynomial f ∈ F[Z]. Moreover, from Equation (5) such a monomial in F must
have been generated by taking the product of monomials from Pf B and each of the Φi such
that the appearance of variables from Y in these monomials partition Y .

For each i ∈ [t0], let Ci be the set of vertices v ∈ S such that the yv variable was used
by the monomial from Φi selected to help generate the expression from Equation (6) in the
expansion of the product from Equation (5). Then by the partition property, the Ci are
pairwise disjoint. From the definition of Φi in Equation (4), we get that each Ci is a clique.

Now, consider the monomial selected from Pf B to help generate the expression from
Equation (6) in the expansion of the product from Equation (5). By Equation (2) and the
definition of B in terms of A, this monomial corresponds to a matching M ∈ Π(H). Split
M = M1 ⊔ M2 by letting Mb retain the edges in M which have exactly b endpoints in S

for each b ∈ [2]. Since H has vertex set S ⊔ U and |U | = t1, we get that M1 has exactly t1
edges, and each of its edges has one endpoint in U and one endpoint in S. Let v1, . . . , vt1 be
the nodes in S appearing as endpoints of edges in M1. For each j ∈ [t1], let ej be the edge
containing vj in M1.

Since in B we take A and replace each xej variable with Φej [N(vj)], the product over
the edges of M1 from Equation (2) contributes the variables yv precisely for those vertices v

appearing in the union of some choice of cliques D1, . . . , Dt1 ⊆ S with the property that the
set Dj ⊔ {vj} is a clique in G for each j. Since we work over R, the cliques Ci and Dj are
mutually disjoint. Moreover, since Ci ⊆ S for all i, we actually have that the cliques Ci and
Dj ⊔ {vj} are collectively vertex-disjoint.

Set t2 = (|S| − t1)/2, and let ẽ1, . . . , ẽt2 be the edges of M2. For each ℓ ∈ [t2], let Ñℓ be
the set of common neighbors in S of the endpoints of the edge ẽℓ. Since in B we take A and
replace each xẽℓ

variable with Φẽℓ
[Ñℓ], the product over the edges of M2 from Equation (2)

contributes the variables yv precisely for those vertices v appearing in the union of some
choice of cliques D̃1, . . . , D̃t2 ⊆ S with the property that the set D̃ℓ ⊔ eℓ is a clique in G for
each ℓ. Since we work over R, the Ci, Dj , and D̃ℓ are mutually disjoint. Moreover, since
M = M1 ⊔ M2 is a matching in S, we in fact know that the Ci, Dj ⊔ {vj}, and D̃ℓ ⊔ ẽℓ are
all vertex-disjoint cliques in G.
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Combining this vertex-disjoint condition with the facts that M is a perfect matching on S

and that the monomial in Equation (6) generated by the products of the monomials of all the
cliques we have listed so far is divisible by

∏
v∈S yv, we get that the Ci, Dj ⊔{vj} , and D̃ℓ ⊔ ẽℓ

cliques taken together form a clique cover of G of type t⃗ = (t0, t1) as claimed.
Conversely, suppose G has a clique cover of type t⃗ = (t0, t1). Set t2 = (|S| − t1)/2.
Let C1, . . . , Ct0 be the cliques in this cover intersecting S at zero nodes, D1, . . . , Dt1

be the cliques in this cover intersecting S at one node, and D̃1, . . . , D̃t2 be the cliques in
this cover intersecting S at two nodes. For each i ∈ [t0], select the monomial from Φi in
Equation (4) corresponding to the clique Ci.

For each j ∈ [t1], let vj be the unique vertex from S in Dj . For each ℓ ∈ [t2], let ẽℓ be the
subset of two vertices in S contained in D̃ℓ. Since D̃ℓ is a clique, ẽℓ is an edge. Let Ñℓ be
the set of common neighbors in S of the endpoints of ẽℓ. The vj and ẽℓ are vertex-disjoint
and account for all vertices in S, because we are assuming we are starting with a clique cover.
So we can take a perfect matching M of H which includes all the ẽℓ edges, and pairs each vj

with a different node in U (here we use the fact that U has exactly t1 nodes). Let ej be the
edge containing vj in M for each j ∈ [t1].

Then we can select the monomial of Pf B corresponding to choosing the summand for M

in Equation (2), choosing the summand for the cliques Dj \ {vj} in the sums for Φej [N(vj)]
given by Equation (3), and choosing the summands for the cliques D̃ℓ \ ẽℓ in the sums for
Φẽℓ

[Ñℓ] given by Equation (3) again.
Then from the clique cover assumption, the product of all the monomials we selected

from the Φi and Pf B will be divisible by
∏

v∈S yv. Moreover, the product of the variables
from Z appearing in this monomial uniquely recover the cliques Ci, Dj , and D̃ℓ, as well as
the matching M , because the ziC variables record the ordering of the Ci cliques, and the
zeC variables annotate the edges e of the matchings corresponding to the Dj ∩ S and D̃ℓ ∩ S

sets. Thus the monomial generated in this way cannot be cancelled out by any other term in
the expansion of F in Equation (5), which proves the desired result. ◁

Having established Claim 11, it suffices to show that we can test that F has a monomial
divisible by

∏
v∈S yv in O∗(2p) time. To do this, we will take a random evaluation of the

variables in Z, and then use fast subset convolution over the variables in Y .
For all i ∈ [t0] and cliques C ⊆ S, we pick independent, uniform random ξiC ∈ F.

Independently from those values, for all e ∈ E(H) and C ⊆ S we also pick independent,
uniform random ξeC ∈ F. For each i ∈ [t0], let

φi =
∑
C∈F

ξiC

∏
v∈C

yv. (7)

be the result of evaluating the Z variables of Φi on the ξiC values. We can compute each φi

in O∗(2p) time because we have already precomputed the collection F of cliques in S.
Similarly, for each e ∈ E(H) and T ⊆ S, let

φe[T ] =
∑
C∈F
C⊆T

ξeC

∏
v∈C

yv (8)

be the result of evaluating the Z variables of Φe[T ] on the ξeC values. Since we precomputed
all the cliques contained in S, for any fixed e ∈ E(H) and T ⊆ S we can use Equation (8) to
compute φe[T ] in O∗(2p) time. In particular, we can compute φe[T ] for all e ∈ E(H) and
T ⊆ S of the form T = N(v) for some v ∈ S or T = N(v) ∩ N(w) for some v, w ∈ S in
O∗(2p) time, because there are poly(n) choices for e and T in this case.
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Having computed all these values, we can substitute the xe for the relevant values φe[T ]
values needed to turn A into B (with respect to our random evaluation of the variables
in Z). Now use Proposition 8 to obtain a polynomial-size, division-free arithmetic circuit
for the Pfaffian, and feed the entries of B we have just computed into it. Each addition
and multiplication operation for this arithmetic circuit is now over the squarefree ring R,
which by Proposition 10 takes O∗(2p) time. Since there are only poly(n) such operations, we
compute this random evaluation of Pf B over R in O∗(2p) time overall. We then compute the
product of this with all the φi again in O∗(2p) time by Proposition 10, which by Equation (5)
gives us the value of the polynomial F under our random evaluation to its Z variables.

Since F has degree at most poly(n) in its Z variables, applying Proposition 9 to the
coefficient of

∏
v∈S yv in F (viewed as a polynomial in Z), we see that by picking the size

of the field F to be a sufficiently large polynomial in n, with high probability the random
evaluation of F we computed has the monomial

∏
v∈S yv if and only if the original polynomial

F has a monomial divisible by
∏

v∈S yv. So by Claim 11 checking if this random evaluation
of F has the monomial

∏
v∈S yv solves the k-Coloring problem in O∗(2p) time with high

probability. This proves the desired result. ◀

4 Below Guarantee Parameterizations

In this section, we present our algorithm for Dual Coloring.

▶ Theorem 1. Dual Coloring can be solved in randomized O∗(23k/2) time.

Proof. We replace the graph G with its complement. Then by Observation 7, it suffices to
solve the Dual Clique Cover problem.

We first construct a maximal collection T of vertex-disjoint triangles in G. Since we can
find a triangle in G if one exists in polynomial time, we can construct T by repeatedly finding
a triangle T in G, including T in T , then deleting the vertices of T from G and repeating
this process, until we determine that no triangles are left. We find at most n/3 triangles in
this way, so this takes polynomial time overall.

Let t = |T |. Suppose t ≥ k/2. Then taking the triangles in T together with the single-
node sets consisting of each vertex v not used by a triangle in T yields a clique cover for G

of size t + (n − 3t) = n − 2t ≤ n − k. Thus, we can solve Dual Clique Cover by returning
the cover described above.

Otherwise, we have t < k/2. In this case, maximality of T implies that the set S =
⊔

T ∈T T

is a K3-free modulator for G of size 3t. Then by Observation 7 and Lemma 6 we can solve
Dual Coloring in this case in O∗(23t) ≤ O∗(23k/2) time, as desired. ◀

Next, we establish (randomized) fixed-parameter tractability for a smaller parameter.

▶ Theorem 3 (Parameterization from Stronger Guarantee). Given an integer k ≥ 1, and a
graph G that has maximum clique size ω and whose complement has maximum matching
size µ, we can solve (ω + µ − k)-Coloring in randomized O∗(26k) time.

Proof. We replace the graph G with its complement. Let µ = µ(G) and α = α(G) be the
size of a maximum matching and maximum independent set in the new graph respectively.
Since complementing the graph turns cliques into independent sets, by Observation 7 it
suffices to show that we can solve (α + µ − k)-Clique Cover in O∗(26k) time.

We first construct a maximal collection T of vertex-disjoint triangles in G. Since finding
a triangle in G, if it exists, takes polynomial time, and T can have at most n/3 triangles, we
can obtain T in polynomial time using a greedy algorithm that repeatedly finds triangles,
includes them in T , deletes the obtained triangles from G, and continues in this fashion until
we are left with a triangle-free graph.
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Let t = |T |. Suppose that t ≤ 2k. In this case, define the set S =
⊔

T ∈T T of all vertices
participating in the triangles of T . Then by maximality of T , the set S is a K3-free modulator
of G of size 3t. In this case, by Observation 7 and Lemma 6 we can solve (α + µ − k)-Clique
Cover in O∗(23t) ≤ O∗(26k) time as claimed.

Otherwise, t > 2k. In this case, take T̃ ⊆ T consisting of exactly 2k triangles, and define
S =

⊔
T ∈T̃ T to be a set of 6k vertices making up 2k of the triangles in T . We show that in

this case, a clique cover of size at most (α + µ − k) always exists in G.
Write S = V \ S. Let Mout be a maximum matching in G[S]. We can find Mout in

polynomial time. Let µout = |Mout| be the size of this matching. Let I be the set of vertices
in S that do not appear as an endpoint of an edge in Mout. By maximality of Mout, the set
I forms an independent set in G. Write αout = |I|.

▷ Claim 12. We have µout + αout ≤ α + µ − 3k.

Proof. We will prove the claim by establishing several inequalities concerning structural
parameters in G.

First, construct a maximum matching Min in G[S ⊔I] in polynomial time. Let µin = |Min|
be the size of this matching. Since Mout is in G[S \ I] by definition, we see that Min ⊔ Mout
is a matching in G of size (µin + µout).

Since µ is the size of a maximum matching in G, we get that

µin + µout ≤ µ. (9)

Note that since α is the maximum size of independent sets in G, we have

αout ≤ α. (10)

Now, by maximality of Min in G[S ⊔ I], we know that the set of vertices in S ⊔ I not
participating as an endpoint in Min forms an independent set in G. This set then has size
(αout + 6k − 2µin). Since α is the maximum size of independent sets in G, we have

αout + 6k − 2µin < α. (11)

Now, we can write

µout + αout = µout + (1/2)αout + (1/2)αout. (12)

By applying Equations (9)–(11) to the first through third terms on the right-hand side of
Equation (12) respectively, we can bound

µout + αout ≤ (µ − µin) + (1/2)α + (1/2)(α + 2µin − 6k) = α + µ − 3k

which proves the desired result. ◁

By definition, every vertex in S either appears as an endpoint of Mout, or belongs to I.
Then using the triangles in T̃ to cover the vertices in S, and taking the edges from Mout and
the individual nodes from I to cover the vertices in S, we obtain a clique cover for G of size

2k + µout + αout ≤ α + µ − k

by Claim 12. So we can solve (α + µ − k)-Clique Cover just by returning this cover. ◀

Curiously, previous work showed that Induced Matching (the problem of finding a
1-regular induced subgraph on k vertices) is also fixed-parameter tractable in k for the same
below-guarantee parameter α + µ − k as in the proof above [15].
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Hardness. We now present our lower bound, demonstrating that although Theorem 3 shows
we can get an efficient parameterized algorithm for graph coloring below (ω + µ), we do not
expect an analogous algorithm to exist for coloring below the quantity µ on its own.

▶ Theorem 4. The (n/2 − k)-Coloring problem is W[1]-hard in the parameter k on graphs
with n vertices whose complement has a perfect matching.

Proof. By replacing the graph with its complement and applying Observation 7, it suffices to
show that (n/2 − k)-Clique Cover is W[1]-hard on graphs containing a perfect matching.

We prove this result by reducing from k-Colored Clique. In this problem, we are given
a k-partite graph G on kn vertices, with vertex set V = V1 ⊔ · · · ⊔ Vk partitioned into parts
Vi consisting of n nodes each, and are tasked with determining if G contains a clique on k

vertices. This problem is known to be W[1]-hard [9, Theorem 13.25].
Take an instance G of k-Colored Clique.
For each i ∈ [k], we order the vertices in Vi = {vi1, . . . , vin}.
We construct a larger graph G̃ that contains G as a subgraph, in addition to some

auxiliary nodes and edges we describe next. For each i ∈ [k + 2], we introduce a new node ui

in G̃. For each i ∈ [k] and j ∈ [n − 1], we introduce a new node wij in G̃. We add edges
between all the ui nodes. For all i ∈ [k], we add an edge from ui to vi1. For all i ∈ [k] and
j ∈ [n − 1] we add edges from wij to vij and vi(j+1).

Conceptually, this construction of G̃ from G involves adding a new clique of size (k + 2)
to the graph on the ui vertices, and for each i ∈ [k] introducing a path

Pi =
〈
ui, vi1, wi1, vi2, wi2, . . . , wi(n−1), vin

〉
(13)

beginning at ui, and alternating between nodes in Vi and Wi according to the orders of the
vertices in these sets. By design, for any j ∈ [n], we can always split the path

Pi = ⟨ui⟩ ⋄ Aij ⋄ ⟨vij⟩ ⋄ Bij (14)

into its first node, a path Aij on an even number of vertices, the node vij , and a suffix Bij

on an even number of vertices. Moreover, Aij and Bij consist of 2n − 2 nodes altogether in
this decomposition.

Note that the constructed graph G̃ has a perfect matching, by taking the edges {ui, vi1}
for all i ∈ [k] and

{
wij , vi(j+1)

}
for all i ∈ [k] and j ∈ [n − 1].

From its definition, G̃ has N = 2kn + 2 nodes. Set the parameter ℓ = k(n − 1) + 2.

▷ Claim 13. G has a clique on k vertices if and only if G̃ has a clique cover of size ℓ.

Proof. Suppose that G has a clique of size k. Let (v1j1 , . . . , vnjn) ∈ V1 × · · · × Vk be the
k-tuple of vertices participating in this clique.

For each i ∈ [k], by Equation (14) we can split each path Pi into

⟨ui⟩ ⋄ Aiji
⋄ ⟨vij1⟩ ⋄ Bij1

its first node, two paths Aiji
and Bij1 on even numbers of vertices with 2n − 2 nodes total,

and the node vij1 . For each i ∈ [k], we can cover the nodes in Aiji
and Biji

using the
endpoints of the edges from a matching of size (n − 1). This shows that with k(n − 1) cliques,
we can cover all vertices in G̃ in a disjoint fashion, except the ui and viji

nodes. We include
all the ui nodes in one clique and all the viji nodes in another clique to then obtain a clique
cover of size ℓ = k(n − 1) + 2 of G̃ as claimed.
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Conversely, suppose G̃ has a clique cover of size ℓ. Note that the wij vertices, with indices
ranging over i ∈ [k] and j ∈ [n − 1], form an independent set. Consequently, covering the
wij requires using k(n − 1) distinct cliques. Now, each wij has degree two in G̃, and the
neighbors of wij are non-adjacent in G̃ by definition. Consequently, the cliques used to cover
the wij collectively cover at most 2k(n − 1) vertices in G̃.

In the assumed clique cover of size ℓ from G̃, this implies that a set of ℓ − k(n − 1) = 2
distinct cliques are used to cover the at least N − 2k(n − 1) = 2k + 2 remaining nodes in
G̃ not covered by the cliques that contain the wij vertices. Since node uk+2 is adjacent to
only other ui nodes, the clique that covers uk+2 must solely consist of ui nodes. Without
loss of generality, we may then assume the clique covering uk+2 contains all ui nodes. After
removing the nodes covered by this clique, we have one clique left, that must be used to
cover the at least (2k + 2) − (k + 2) = k remaining nodes in G̃. Moreover, this clique uses
no ui nodes or wij nodes. Consequently, the last clique must be a clique of size k in the vij

nodes, which pulls back to the a clique of size k in G. This proves the claim. ◁

Observe that N/2 − ℓ = (k + 1), so that ℓ = N/2 − (k + 1).
By Claim 13, solving k-Colored Clique problem on graphs with n vertices reduces to

solving (N/2 − (k + 1))-Clique Cover on graphs with N = 2kn + 2 nodes and a perfect
matching. Hence the reduction is efficient enough to imply that (n/2 − k)-Clique Cover is
W[1]-hard in graphs with perfect matchings, which proves the desired result. ◀

5 Conclusion

In this paper, we presented a faster parameterized algorithm for Dual Coloring, improving
the runtime from O∗(4k) to O∗(23k/2) ≤ O∗(2.83k). We also introduced a new below-
guarantee parameterization for graph coloring, which can be viewed as a harder version of
Dual Coloring. We showed that this problem can be solved in 2O(k) poly(n) time as well,
and noted that a closely related parameterization is in contrast W[1]-hard.

The most relevant open question to this work is: what is the true parameterized complexity
of Dual Coloring? The current best algorithms for k-Coloring take O∗(2n) time for
general k, and without improving this runtime we cannot hope to solve Dual Coloring in
faster than O∗(2k) time. Can we indeed achieve a O∗(2k) runtime for Dual Coloring?

A natural strategy to obtain faster algorithms for Dual Coloring would be to try and
strengthen Lemma 6 further, by obtaining efficient coloring algorithms parameterized by H-
free modulators for larger pattern graphs H. For example, obtaining an analogue of Lemma 6
for K4-free modulators would immediately imply a faster Dual Coloring algorithm by
following the framework outlined in Section 1.1. Unfortunately, this simple attempt at
generalizing Lemma 6 does not seem possible. This is because solving k-Coloring in graphs
without induced copies of K4 is NP-hard in general [16, Theorem 1], so that assuming
P ̸= NP we cannot hope to solve k-Coloring in graphs with K4-free modulators of size p in
f(p) poly(n) time, for any function f(·). As mentioned in the Section 1, (n − k)-Set Cover
can be solved in O∗(23k/2) time using a different method. Can this approach be combined
with our triangle packing argument to obtain a faster Dual Coloring algorithm?

Another interesting research direction is to obtain faster algorithms for multiplicative
below-guarantee graph coloring. For any parameter δ ∈ [1/3, 1], by setting k = (1 − δ)n in
Theorem 1 we get that (δn)-Coloring can be solved in O∗(2(1−(δ−1/3)n) time. Using very
different techniques, previous work showed that for δ ∈ [0, 1] it is possible to distinguish
between the cases where the input graph G admits a proper coloring with (δn − 1) colors
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and the case where any proper coloring of G needs at least (δn + 1) colors in O∗(2(1−Ω(δ4))n)
time [21, Theorem 1.2]. Can the dependence on δ be improved and the need for additive
approximation here be removed, to solve (δn)-Coloring in O∗(2(1−Ω(δ))n) time in general?

Finally, we showed that for Dual Coloring and its harder variant, constructing a
maximal triangle packing instead of a maximal matching can accelerate algorithms for these
problems. Can this method be used more generally to help improve parameterized algorithms
or kernelization for other problems where the current best methods rely on matching-based
techniques such as crown decomposition?
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