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—— Abstract

In this work, we introduce the concept of permutable matchgate signatures and leverage it to
establish dichotomy theorems for #CSP and #Rp-CSP (D > 3) on planar graphs without the
variable ordering restriction. We also present a complete characterization of permutable matchgate

signatures and their relationship to symmetric signatures. Besides, we give a sufficient and necessary
condition for determining whether a matchgate signature retains its property under a certain variable
permutation, which can be checked in polynomial time. In addition, we prove a dichotomy for
Pl-#Rp-CSP (D > 3), where the variable ordering restriction exists.
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1 Introduction

Counting perfect matchings in a graph (denoted by #PM) is of great significance in counting
complexity. The study of #PM was motivated by the dimer problem in statistical physics
[13, 14, 15, 19], and two fundamental results emerged from this study. The first breakthrough
occurred in 1961, when a polynomial time algorithm for #PM on planar graphs was developed
by Kasteleyn, Temperley and Fisher [14, 19], now known as the FKT algorithm. The second
significant advancement occurred in 1979, when Valiant defined the complexity class #P and
proved that #PM on general graphs is #P-hard [21]. #PM was the first natural counting
problem discovered to be #P-hard on general graphs and polynomial-time computable on
planar graphs.

Matchgates were later introduced to generalize the FKT algorithm. Multiple studies
have been undertaken to systematically define and characterize matchgates [22, 23, 24, 2,
4,18, 7, 16]. In particular, the matchgate is proved to be highly related to the complexity
classification for counting constraint satisfaction problems (denoted by #CSP) on plane
graphs over Boolean domain and complex range [12, 5].
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In this article, we always restrict ourselves to Boolean domain and complex range. We
further develop the theory of matchgates and establish new complexity classifications for a
variant of #CSP. Our primary contribution is the introduction and detailed characterization
of permutable matchgate signatures — a novel concept that enables complexity analyses for
#CSP variants, such as #CSP on planar graphs without the variable ordering restriction.

Section 1.1 and Section 1.2 introduce the existing results regarding matchgates and #CSP.
Section 1.3 explains our motivation and presents our results.

1.1 #PM and matchgate signatures

For a graph G = (V| E), a matching is an edge set M C F such that no pair of edges in M
shares a common endpoint. Besides, if the vertices that M contains are exactly V(M) =V,
then M is a perfect matching of G.

» Definition 1. An instance of #PM is a graph G = (V, E) with weighted edges w : E — C.
The weight of a matching M is w(M) = [[.cp w(e). The output of the instance is the sum
of the weights of all perfect matchings in G:

#PM(G) = > w(M).

M:M is a perfect matching of G

When w(e) = 1 for each e € E, the output of the instance is exactly the number of perfect
matchings in the graph.

Matchgate and their associated matchgate signatures are defined in the context of #PM.
A signature (also referred to as a constraint function in some works) is defined as a function
f:{0,1}¥ — C that maps a string of length k to a complex number. For G = (V, E) and
X CV, weuse G — X to denote the graph obtained by deleting vertices in X from G.

» Definition 2. A matchgate is a plane graph G = (V, E) with weighted edges w : E — C,
and together with some external nodes U CV on its outer face labelled by {1,2,...,|U|} in a
clockwise order. The signature f of a matchgate G is a Boolean signature of arity |U| and
for each o € {0,1}1V1,

f(a) = #PM(G - X),

where X C U and a vertex in U with label i belongs to X if and only if the ith bit of « is 1.
A signature f is a matchgate signature if it is the signature of some matchgate. M
denotes all the matchgate signatures.

Matchgates provide a generalization of the FKT algorithm in the following way. Suppose
G is a plane graph with each vertex v representing some matchgate signature, forming a
signature grid. By replacing each vertex v with its corresponding matchgate H, the resulting
graph G’ remains a plane graph and consequently #PM (G’) can be solved in polynomial
time by the FKT algorithm. Consequently, the value of the signature grid GG, which is exactly
#PM(G'), can be computed in polynomial time.

In particular, a so-called matchgate identity (MGI) has been verified to be the necessary
and sufficient condition for a signature to be a matchgate signature [2, 4, 7], which provides
an algebraic way to characterize matchgate signatures. This identity also enables an universal
way to construct a corresponding matchgate for a matchgate signature.

» Theorem 3 (MGI). Suppose f is a signature of arity k. Then f is a matchgate signature
if and only if the following identity, denoted by MGI, is satisfied:
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For each B,y € {0,1}*, let P = {1 < j < k|B; # v;}, | = |P|. Let p; € P be the jth
smallest number in P and let ey, € {0, 1}* denotes a string with a 1 in the pjth indez, and 0
elsewhere. Then

n

S 1 fBee)f(r@ep,) =0,

j=1

» Lemma 4 ([7]). A matchgate signature of arity k can be realized by a matchgate with at
most O(k*) wertices, which can be constructed in O(k*) time.

1.2 #CSP

A counting constraint satisfaction problem is specified by a signature set F. #CSP(F) asks
for the value of an instance, which is the sum of the values over all configurations. Here, F
is a fixed and finite set of signatures. An instance of #CSP(F) is specified as follows:

» Definition 5 (#CSP [10]). An instance I of #CSP(F) has n variables and m signatures
from F depending on these variables. The value of the instance then can be written as

Z(I) = Z H fi($i17“'7xik)7

(x1,..,2n)€{0, 1} 1<i<m
where f1,..., fm are signatures in I and f; depends on z;,,...,x;, for each 1 <i <m.

The underlying graph of a #CSP(F) instance I is its incidence graph. It is a bipartite
graph G = (U,V, E), where for every constraint f there is a uy € U, for every variable x
there is a v, € V, and (uy,v,) € E if and only if f depends on z. See Figure 1 for an
example. Sometimes we also denote the value Z(I) as Z(G) for convenience.

There are several important variants of #CSP. A signature f is said to be symmetric
if the output of f depends only on the Hamming weight of the input. If each signature in
F is restricted to be symmetric, this kind of problem is denoted by symmetric #CSP, or
sym-#CSP for short. If the maximum degree of the vertices in V is at most a constant
D > 3, this kind of problem is denoted by #Rp-CSP [9]. If each vertex in V is of degree 2,
this kind of problem is denoted by Holant [8] (See Definition 15 for details). If we restrict
G to be a plane graph, in which the variables that f,, depends on are ordered clockwise for
each u € U (denoted by the variable ordering restriction), then we denote this problem as
Pl-#CSP. Pl-#Rp-CSP is defined similarly.

To study the complexity of these problems, a number of dichotomy theorems have
been established, which classify that for each signature set, the specified problem is either
polynomial-time computable or #P-hard. &/ and & are two fundamental tractable signature
sets, whose definition can be found in [9]. A denote the matchgate signatures under a
specific holographic transformation explained later in Section 2.2.2.

» Theorem 6 ([9]). If F C o7 or F C P, then #CSP(F) is polynomial-time computable;
otherwise it is #P-hard.

» Theorem 7 ([9]). Suppose D > 3 is an integer. If F C of or F C &P, then #Rp-CSP(F)
1s polynomial-time computable; otherwise it is #P-hard.

» Theorem 8 ([5]). If FC &/ or FC & or F C M, then PI-#CSP(F) is polynomial-time
computable; otherwise it is #P-hard.
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1.3 Motivation and results

The study of counting complexity has been extended to a number of different graph classes.
In particular, the complexity of #PM on minor-excluded graphs has been fully classified
by [11, 20]. These results generalize the FKT algorithm and the #P-hardness of #PM on
general graphs. It is natural to consider adapting other counting algorithms and hardness
results related to #PM, such as the dichotomy for #CSP, to the minor-excluded setting.
However, existing results on P1-#CSP rely on the variable ordering restriction, a restriction
for the signatures rather than the graph class. This limitation obstructs the direct extension
of P1-#CSP to broader graph families.

To overcome this limitation, we focus on #CSP on planar graphs without the variable
ordering restriction. We use PL to denote the class of planar graphs and #CSP(F){PL) to
denote #CSP specified by the signature set F over the graph class PL. #CSP(F)(PL) is
exactly #CSP on planar graphs without the variable ordering restriction.

Before investigating #CSP(PL), we also observe that the complexity classification for
Pl-#Rp-CSP remains open in the literature. To address this gap, we establish the following
result:

» Theorem 9. Suppose D > 3 is an integer. If F C of or F C & or F C ,///l\, Pl-#Rp-
CSP(F) is polynomial-time computable; otherwise it is #P-hard.

The full proof of Theorem 9 is similar to that of Theorem 7 originally presented in in [9,
Section 6], and can be found in the full version. Here, we only remark the major differences
between the two proofs.

All the gadgets in our proof are constructed in the setting of Pl-#Rp-CSP instead of

#Rp-CSP;

Unlike [9, Lemma 6.5], we realize [0,0,1] = [0, 1]®? instead of [0, 1]®™;

Unlike [9, Lemma 6.2], instead of realizing a single non-degenerate binary signature h, we

realize h®? and use them to form a non-degenerate binary signature g = h” h.

Returning to the framework of #CSP(PL), we demonstrate that the concept of permut-
able matchgate signatures plays a pivotal role in establishing its dichotomy theorem in a
straightforward way.

» Definition 10 (Permutable matchgate signature). Suppose f is a signature of arity n. For
a permutation m € Sy, we use fr to denote the signature

fo(xr, . o zn) = f(m(z1), ... 7(zn))

If for each m € Sy, fr is a matchgate signature, we say f is a permutable matchgate signature.
We use Mp to denote the set of all the permutable matchgate signatures.

» Theorem 11. Let F be a finite signature set and D > 3 be an integer.

IfFC o orFC P orF C ////;, #CSP(F){PL) is polynomial-time computable;
otherwise it is #P-hard.

IfFCo or FC P or FC ////;, #Rp-CSP(F)(PL) is polynomial-time computable;
otherwise it is #P-hard.

Proof. Let 7' = {f;|f € F,arity(f) = n,m € S,}. Then we have #CSP(F)(PL) =r
P1-#CSP(F'). By Definitions of & and &, F' C & or & if and only if F C & or &
respectively. Furthermore, 7' C A if and only if F C ///l; by Definition 10. Consequently,
we are done by replacing the tractable criteria for F’ in Theorem 8 with those for F. The
same argument holds for #Rp-CSP(PL) as well. <
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The main contribution of this article is a detailed characterization of permutable matchgate
signatures, showing the connection between them and symmetric matchgate signatures. This
characterization has been proved to be useful in the algorithm design and the hardness proof
in the subsequent work [17]. A signature f is said to be realized by F if it can be simulated
using signatures in F under polynomial-time Turing reduction.

» Theorem 12 (Informal version of Theorem 25). Fach permutable matchgate signature of
arity n can be realized by a symmetric matchgate signature of arity n and O(n) binary
matchgate signatures.

» Theorem 13 (Informal version of Theorem 26). For each permutable matchgate signa-
ture f, if #R3-CSP({f}) is #P-hard, then a symmetric matchgate signature g, satisfy-
ing #R3-CSP({g}) is #P-hard, can be realized by f and 8 specific matchgate signatures
1,0],[1,0,1],[1,0,1,0].

It is noteworthy that there are actually three types of permutable matchgate signatures
(Pinning, Parity, Matching) possess different properties, but they are all related to the
corresponding symmetric matchgate signatures by our proof.

In addition, we also present a sufficient and necessary condition for determining whether
a matchgate signature retains its property under a specific variable permutation. This
condition is a simplified version of the MGI property, since it only requires considering O(n*)
equations from MGI rather than all O(2™) equations.

» Theorem 14 (Informal version of Theorem 22). Suppose f is a matchgate signature satisfying
f(0) # 0 and 7 is a permutation. Then f, retains MGI if O(n*) specific equations from
MGTI are still satisfied.

The proof of this theorem is inspired by an alternative proof of Theorem 3, given by
Jerrum and recorded in [1, Section 4.3.1]. By dividing the summation in MGI into appropriate
parts, we prove this result by a non-trivial induction.

2 Preliminaries

2.1 Counting problems

For a string o = ay ...y € {0,1}*, the Hamming weight of « is the number of 1s in a,
denoted by HW («). We use @ to denote the string that differs from « at every bit, which
means o; +a; = 1 for each 1 <7 < k.

For a signature f : {0,1}* — C, k is denoted by the arity of f. A symmetric signature f
of arity k can be denoted by [fo, f1, .., fk]k, or simply [fo, f1, ..., fx] when k is clear from the
context, where for 0 < i < k, f; is the value of f when the Hamming weight of the input is 4.
For ¢ € C, we also use the notation c[fy, fi1, ..., fx] to denote the signature [cfy, cf1, ..., cfi].
We use <1 and =p to respectively denote polynomial-time Turing reduction and equivalence.
We denote by f*=¢ the signature that pins the ith variable to ¢ € {0,1}:

fmi:c(zla vy Li—1, Ti41, 7Ik) = f(zla vy Li—15,Cy L1, "'axk)~

2.1.1 Holant problems

A Holant problem Holant(F) can be seen as a #CSP(F) problem with the restriction that
all the variables must appear exactly twice.
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Figure 1 The underlying graph of a #CSP(F) instance if f,g,h € F and z,y, z are 3 variables;
or that of a Holant(F|£Q) instance if we treat z,y, z as =3, =2, =1 and the edges as the variables
instead.

» Definition 15. An instance of Holant(F) has an underlying graph G = (V, E). Each vertex
v € V is assigned a signature from F and each edge in E represents a variable. Here, F is a
fixed set of signatures and usually finite. The signature assigned to the vertex v is denoted
by fo. An assignment of E is a mapping o : E — {0,1}, which can also be expressed as an
assignment string o € {0, 1}‘E‘, and the value of the assignment is defined as

w(o) = H folo),

veV

where f,(0) = fy(o(€vy), ..y 0(€w,)) and v is incident to ey, , ..., ey, -
The output of the instance, or the value of G, is the sum of the values of all possible
assignments of E, denoted by:

Z[G) = >  w(o)
oe{0,1}IE]

Furthermore, we use Holant(F;|F2) represents Holant(F; U F3) with the restriction that
the underlying graph G = (U, V, E) is bipartite, and each vertex u € U is assigned a signature
from F; while each vertex v € V is assigned a signature from F,. We denote by £Q the
set of all equality functions. In other words, £Q = {= |k > 1} where = is the signature
[1,0,...,0,1]. We also denote {=j |1 < k < D} by £Q<«p for each integer D > 1. By
definition, we have the following lemma. Also see Figure 1 for an example.

» Lemma 16. Let C be an arbitrary graph class, F be an arbitrary signature set and D > 1
be an integer. Then,

#CSP(F)(C) =r Holant(F|EQ)(C),

#RD-CSP(]:) <C> =7 Holant(]:\é’QSD)(Q

2.2 Reduction methods

2.2.1 Constructing gadgets

A gadget of Holant(F) has an underlying graph GG = (V, E, D), where E is the set of normal
edges and D is the set of edges with only one endpoint, called dangling edges 3. Each vertex
in GG is still assigned a signature from F. A signature f of arity |D| is said to be realized

3 In order to differentiate from the notation of a graph, we use two capital letters to represent a gadget.
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~

Figure 2 The construction of the generalized mating gadget.

by GG = (V, E, D), if for each assignment o : D — {0,1}, f(a) = >_,¢(0,1y121 w(ao), where
ao is the assignment of edges in D U E. In this case, we also say f can be realized by F. By
constructing gadgets with existing signatures, we are able to realize desired signatures.

» Lemma 17. If f can be realized by F, then Holant(F) =r Holant(F U {f}).

Also, we present some derivative concepts related to the concept of a gadget. A left-side
gadget of Holant(F;|Fz2) has a bipartite underlying graph GG = (U,V, E, D), where each
vertex u € U is assigned a signature from Fj, each vertex v € V is assigned a signature
from F», F is the set of normal edges and D is the set of dangling edges. Furthermore,
the endpoint of each dangling edge must belong to U. It is easy to verify that, if f can
be realized by GG, then Holant(F;|F,) =r Holant(F; U {f}|F2). The right-side gadget is
defined similarly except that the endpoint of each dangling edge must belong to V.

In the hardness proofs, we create generalized mating gadgets defined as follows, which is a
generalization of the mating operation in [6]. In a generalized mating gadget, the variables of
F are divided into four parts: Sum-up variables, Fiz-to-0 variables, Fiz-to-1 variables and a
single Dangling variable. We assign F' to each vertex of degree n labelled by a solid circle in
Figure 2 in the following way: for each 1 < a < n, if the ath variable is the Dangling variable,
we let it correspond to the dangling edge. Otherwise we connect it to a vertex v, of degree 2
labelled by a hollow square. Furthermore, if the ath variable is a Sum-up/Fix-to-0/Fix-to-1
variable, we assign a [1,0,1]/[1,0,0]/[0,0, 1] signature to v,, and the gadget become well
defined. In such constructions, the p + ¢ variables corresponding to [1,0] or [0, 1] are always
Sum-up variables. We remark that using [1,0] we may obtain the [1,0,0] = [1,0]®? signature,
and we construct a gadget of [0,0, 1] when needed.

2.2.2 Holographic Transformation

Let T be a binary signature, and we denote the two dangling edges corresponding to the
input variables of it as a left edge and a right edge. Its value then can be written as a matrix
T= <z(1)2 Zi), where t;; is the value of T" when the value of left edge is ¢ and that of the
right edge is j.

This notation is conducive to the efficient calculation of the gadget’s value. Let us consider
two binary signatures, T' and P, with the right edge of T connected to the left edge of P. T
and P now form a binary gadget. Subsequently, it can be demonstrated that the value of
the resulting gadget is precisely TP, which represents the matrix multiplication of 7" and P.

For a signature f of arity n and a binary signature T, we use Tf/fT to denote the
signature “f transformed by 7, which is a signature of arity n obtained by connecting

50:7
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the right/left edge of T to every dangling edge of f. For a set F of signatures, we also
define TF = {Tf|f € F}. Similarly we define FT. The following theorem demonstrates the
relationship between the initial and transformed problems:

» Theorem 18 (Holographic Transformation[24, 3]). Holant(F|G) =r Holant(FT~YTG).

1 1
1 -1
by Theorem 18 we have:

Let Hy = < ) For a set of signatures F, we use F to denote HyF. As H{l = %Hg,

Holant(F|G) = Holant(F|G).
We additionally present the following fact as a lemma for future reference.

» Lemma 19. For each k > 1, = = [1,0,1,0,1,0,...]x. For ezample, =] = [1,0],=5 =
[1,0,1],=3 = [1,0,1,0]. Consequently, £Q = {[1,0,1,0,1,0,...]x|k > 1} and for an integer
D>1,80-p ={[1,0,1,0,1,0,...]x|]1 < k < D}.

3 Matchgate signatures under variable permutations

In Section 3.1, we introduce the concept of the normalized matchgate signature, which
simplifies the form of matchgate signatures. In Section 3.2, we prove that in polynomial
time we may check whether a matchgate signature under a given permutation remains a
matchgate signature. In Section 3.3, we characterize the permutable matchgate signatures in
detail.

3.1 Normalize the matchgate

A matchgate signature is said to be non-trivial if it does not remain constant at 0. We
say f is a normalized signature if f(0...0) = 1. For a normalized matchgate signature f
of arity n and distinct 1 < by,..., b < n,0 < k < n, we define F(by...b;) = f(a) where
ap, =---=ap, =1land a; =0foreach 1 <i<n,i#by,...,b,. For example, if the arity of
f is 4, then F'(24) = f(0101) while F'() = f(0000) = 1. We denote F as the index expression
of f, and we also say F' is a normalized matchgate signature without causing ambiguity.

This section presents the relationship between non-trivial matchgate signatures and
normalized matchgate signatures, together with a property that normalized matchgate
signatures have. The results in this section can be seen as a partial restatement of the results
in [7].

» Lemma 20. Fach non-trivial matchgate signature g of arity n can be realized by a
normalized matchgate signature f of arity n and O(n) [0,1,0] signatures, up to a constant
factor.

Proof. Since g is non-trivial, there exists 8 € {0, 1}" satisfying g(/3) # 0. For each « € {0, 1}",
we let f(a) = g(a® B)/g(8). It can be verified that f(0...0) =1 and f also satisfy MGI,
which implies that f is a normalized matchgate signature. Then we can use the following
gadget to realize ﬁﬁ) g: for each 1 < i < n satisfying §8; = 1, we connect a [0, 1, 0] signature
to the ¢th variable of f. <

We denote f as the normalization of g in the above lemma. Suppose k is an integer,
bi,...,bor € NT and by < -+ < bog. S ={b1,...,bax} is said to be an index set of size 2k.
A pairing M of S is a partition of S whose components contain exactly 2 elements. In other
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Figure 3 A visualization of the pairing M = {(1,6), (3,9),(4,7)}.

words, M can be seen as a perfect matching on the graph (S, S x S). In addition, suppose
a,b,e,d € Sand a <b<c<d. If M is a pairing of S and ac,bd € M, then (ac, bd) is said
to be a crossing in M. We use ¢(M) to denote the number of crossings in M.

We also give a visualization of the definitions above. We draw all elements in S on a circle
in a sequential order. Given a pairing M, we draw a straight line between the two elements
in each pair belonging to M. A crossing in M is formed if and only if two of the straight
lines form a crossing. See Figure 3 for an example. By the construction of the universal
matchgate in [7], we have the following lemma.

» Lemma 21. Suppose F is a normalized signature of arity n and of even parity. Then
F' is a matchgate signature if and only if for each integer 0 < k < n/2 and distinct
]-gblv"'vka STL,

F(by...by) = > ()M ] F(biby).

M:M is a pairing of {b1,...,bar} bibjeM

3.2 Permutation Check

In this section, we show that given a normalized matchgate signature F' of arity n and a
permutation m, we can decide whether F; is a matchgate signature in polynomial time in
n. To be precise, we only need to check whether F satisfy all the properties in Lemma 21
restricting to k = 2.

» Theorem 22. Suppose F' is a normalized matchgate signature and 7 is a permutation. If
foreach1<a<b<c<d<n, Frlabed) = Fr(ab)Fr(cd) — Fr(ac)Fr(bd) + Fr(ad)Fy(be),
then Fy is also a matchgate signature.

The proof of Theorem 22 can be found in the full version. Here we present the proof sketch.

Proof Sketch. By Lemma 21, we only need to prove that for each integer 0 < k < n/2 and
distinct 1 < bq,...,bop <,

LHS 2 Fp(by...by) = > (=)™ [ Fr(bib;) & RHS.
M:M is a pairing of {b1,...,bar } bibjeM

We prove this by induction. This statement is obviously true when k& = 1,2. Now suppose
this statement is true for k = 1,...,p — 1, and we focus on the situation that k = p.

50:9
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For convenience, we use a; to denote 7(b;) for each 1 <14 < 2k in the following proof. As
F' is a matchgate signature, we already have that

LHS = F(a; ...a9) = > ()M ] Flaiay).

Mnr:My is a pairing of {a1,...,a2r} aja;EMy

We begin by partitioning the set of all pairings. Suppose S = {b1, ..., b} and Sy, 52 is
a partition of S. Any pairing with no edges between S; and Sy can be decomposed into two
independent pairings on S; and S, respectively. By the induction hypothesis, each of these
sub-pairings satisfies the desired property. Summing over some valid partitions, we derive a
system of equations relating the partial sums on the left-hand side (LHS) and right-hand
side (RHS). A careful analysis of these equations — exploiting the inductive structure and
combinatorial symmetries — yields the desired global equality between the LHS and RHS
summations. <

3.3 Characterizations of permutable matchgate signatures

By Theorem 22, we can use the following property to characterize permutable matchgate
signature.

» Corollary 23. Suppose F' is a normalized matchgate signature of arity n. Then F is a
permutable matchgate signature if and only if for each 1 <a <b<c<d<n, F(ab)F(cd) =
F(ac)F(bd) = F(ad)F(bc).

Proof. By Theorem 22, F' is a permutable matchgate signature if and only if for any
permutation 7 € S(n) and integers 1 < a < b < ¢ < d < n, Fr(abed) = Fr(ab)Fy(cd) —
Fr(ac)Fy(bd) + Fr(ad)F,(bc). Notice that F(abed) = Fr(m(a)m=1(b)7~1(c)n~1(d)) also
holds for arbitrary =, hence by taking different 7, we have the following equation.

F(abed) =F (ab)F(ed) 4+ F(ac)F(bd) — F(ad)F(bc)
=F(ab)F(cd) — F(ac)F(bd) + F(ad)F(bc)
(ab)F(cd) + F(ac)F(bd) + F(ad)F (bc).

o

which implies F(ab)F(cd) = F(ac)F(bd) = F(ad)F (bc).

On the other hand, if F(ab)F(cd) = F(ac)F(bd) = F(ad)F (bc) holds for arbitrary 1 <
a < b<c<d<n,then for any 7, Fr(abed) = F(mw(a)w(b))F(w(c)n(d)) = Fr(ab)Fr(cd) —
Fr(ac)Fr(bd) + Fr(ad) Fx (be). <

Using the description above, we are able to classify and characterize the normalized
permutable matchgate signatures in the following way.

» Lemma 24. For a normalized permutable matchgate signature F of arity n > 4, one of

the following holds:

1. (Pinning type) For any distinct 1 < a,b < n, we have F(ab) = 0.

2. (Parity type 1) There exist distinct 1 < a,b,c,d <mn, such that F(ab)F(cd) # 0.

3. (Parity type 2) There exist distinct 1 < a,b,c <n, such that F(ab)F (ac)F(bc) # 0.

4. (Matching type) There exist distinct 1 < a,b,c,d < n, such that F(bc), F(bd), F(cd) =0,
but F(ab) # 0.

Proof. Suppose otherwise. As F' is not of Pinning type, there exists 1 < a,b < n such that
F(ab) # 0. Then for any distinct 1 < ¢,d < n and ¢,d # a,b, if F(cd) # 0, F is of Parity
type 1, so we may assume F'(cd) = 0.
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As F is not of Parity type 1, F(ac)F(bd) = F(ad)F(bc) = 0. As F is not of Parity
type 2, F(ac)F(bc) = 0 and F(ad)F(bd) = 0. Consequently, either F'(ac), F(ad) = 0, or
F(be), F(bd) = 0. In either case F is of Matching type, a contradiction. <

If F is of Parity type 1, then there exist distinct 1 < a, b, ¢,d < n, such that F(ac)F(bd) =
F(ad)F(bc) = F(ab)F(cd) # 0, and we have F(ab)F(ac)F(bc) # 0, indicating that F is also
of Parity type 2. Consequently, Parity type 1 and 2 can be concluded into a single type,
denoted by Parity type, in which each signature satisfy the condition of Parity type 2.

Now we present our main theorems. We present the full proofs of them in Appendix A
and B respectively. These proofs involve careful case analysis. We also note that o/ = JZ?T
and ////; — o is exactly ;/\{p — o — P, consequently Theorem 26 characterize those signatures
which are #P-hard on general graphs but computable on planar graphs in the setting of
#CSP.

» Theorem 25. Fach permutable matchgate signature F' of arity n can be realized by a

symmetric matchgate signature h and O(n) symmetric binary matchgate signatures up to a

constant factor in the following way.

1. If F' is of Pinning type after normalization, then h = [1,0,...,0] and O(n) symmetric
binary signatures [0,1,0] can realize F’.

2. If F' is of Parity type after normalization, then h = [1,0,1,0,...] or [0,1,0,1,...] and
the O(n) symmetric binary signatures with the form [1,0,y] or [0,0,1] can realize F’.

3. If F' is of Matching type, not of Pinning type and not of Parity type after normalization,
then h =1[0,1,0,0,...] and the O(n) symmetric binary signatures with the form [1,0,y]
or [0,1,0] can realize F'.

» Theorem 26. For each signature F' € M p—</ of arity n, a symmetric signature g € M —<f
can be realized in the setting of Holant({F'} | {[1,0],[1,0,1],[1,0,1,0]}) as a planar left-side
gadget.

To summarize, Theorem 25 shows that permutable matchgate signatures are exactly
symmetric matchgate signatures with possible binary modification on each variable. Further-
more, for each permutable matchgate signature that may lead to #P-hardness on general
graphs, Theorem 26 gives a constructive way to symmetrize them in the setting of #CSP.

4  Conclusions

In this article, we prove a dichotomy for Pl-#Rp-CSP, and transform the P1-#CSP dicho-
tomies into #CSP dichotomies on planar graphs. We present the sufficient and necessary
condition for a matchgate signature f and a permutation 7 such that 7(f) is a matchgate
signature as well, which can be checked in polynomial time. We also define the concept of
permutable matchgate signatures, and characterize them in detail.
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A  Proof of Theorem 25

» Lemma 27. If I is a normalized permutable matchgate signature of arity n of Parity
type, then there exist a function G : {1,...,n} = C such that for any distinct 1 < a,b < n,
F(ab) = G(a)G(b).

Proof. As F is of Parity type, there exist distinct 1 < a,b,c < n, such that
F(ab)F(ac)F(bc) # 0. To avoid ambiguity, we use /F(ab) to denote a specific com-
plex number 7, satisfying r2, = F(ab). We also use /F(ab) (ac)/F(bc) to denote the
complex number /F(ab \/F (ac)//F(bc). Let G(a) = \/F(ab)F(ac)/F(bc) # 0, G(b) =
V/F(ab)F(bc)/F(ac) and G(c) = \/F(ac)F(bc) /F(ab) For each 1 < d < n,d # a,b,c, let
G(d) = (ad)/G( ). Since F(ab)F( o) F (bc) # 0, G is well-defined.

Tt is easy to verify that F(ab) = G(a)G(b), F(ac) = G(a)G(c), F(be) = G(b)G(c). For
each 1 <d < n,d+#a,b,c,

G(a)G(d) = F(ad);

_ F(ad)G(c)G(b)  F(ad)F(bc)  F(cd)F(ab)
GG =—c6m ~  Fay - Fay e
For any distinct 1 < d, e < n satisfying d, e # a, b, c,
GA)G(e) = F(ad)F(be) _ F(de)F(ab) _ F(de). <

G(a)G(b) F(ab)
Now we analyze normalized permutable matchgate signatures of Matching type.

» Lemma 28. Suppose F' is a normalized permutable matchgate signature of arity n of
Matching type. If F' is not of Parity type, then there exists an integer 1 < x < n such that
for any distinct 1 < s,t < n, if s,t # x, F(st) = 0. Furthermore, if 2 < k < n/2 and
1<by <+ < by <n, thenF(blek):O

Proof. Suppose otherwise. Since F' is of Matching type, there exist distinct 1 < a,b < n

such that F(ab) # 0. There are three possible cases.

1. There exist distinct 1 < s,¢t < n,s,t # a,b such that F(st) # 0. It is obvious that a,b, s, t
can serve as a certificate that F' is of Parity type 1.

2. There exist distinct 1 < s,¢t < n, s,t # a,b such that F(as)F(bt) # 0. Again, a,b, s,t can
serve as a certificate that F' is of Parity type 1.

3. There exist 1 < s < n,s # a,b such that F(as)F(bs) # 0. In this case, a,b, s can serve as
a certificate that F is of Parity type 2.

In each case, F' is of Parity type, which is a contradiction.

By Lemma 21, if 2 < k < n/2and 1 < b; < -+ < by < n, then F(by...by) =
D_M:M is a pairing of {b1,....bar} (—1)cM) [1b.6,enr F(bibj) = 0, since for each M of size greater
than 2 there always exists st € M such that s,t # . <

Proof of Theorem 25. Suppose f (or the index expression F of f) is a normalization of F’.

For each case, we first realize F', then we analyze F’ through Lemma 20.
If F is of Pinning type, by Lemma 21 f = [1,0,0,...,0]. By Lemma 20, F’ can be
realized by connecting a [0, 1, 0] signature to some variables of F.

50:13
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If F is of Parity type, by Lemma 27 there exists a function G such that for any distinct
1<a,b<n, F(ab) = G(a)G(b). Then we can use the following gadget to realize F: for each
1 < a < n, we connect a [1,0,G(a)] signature to the ath variable of h’ = [1,0,1,0,...]. By
Lemma 20, F’ can be realized by connecting a [0, 1, 0] signature to some variables of F.

Now for some variables of k', they are connected to a [1,0, G(a)| signature, then a [0, 1, 0]
signature, where a is the index of the variable. For each such variable, we replace the
[1,0,G(a)] with a [0,1,0] and the [0, 1,0] with a [G(a), 0, 1] respectively. The signature of

the gadget remains the same after the replacement as (1 0 ) <(1) 1) = ( GO 1) =

0 G(a) 0 (a) 0O
0 1\ (G(a) 0
(o) (% 1)
Now consider the gadget formed by A’ = [1,0,1,0,...] and all the [0, 1,0] connecting

to it. If there is an odd number of [0,1,0] signatures, the signature of the gadget is
h =10,1,0,1,...]. If there is an even number of [0,1,0] signatures, the signature of the
gadget is h = [1,0,1,0,...]. For each 1 < a < n, the binary signature connecting to the ath
variable of h is either [1,0, G(a)] or [G(a), 0, 1], which has the form [1,0,y] or [0,0, 1] up to a
constant factor.

If F is of Matching type, not of Pinning type and not of Parity type, then by Lemma
28 there exists 1 < x < n such that the following holds: for any distinct 1 < a,b < n, if
F(ab) # 0, then = € {a,b}. Let G(z) =1 and G(a) = F(ax) for each 1 < a <n,a # x. It
can be verified that the following gadget realize F: for each 1 < a < n,a # x, we connect
a [1,0,G(a)] signature to the ath variable of h = [0,1,0,0,...]; we also connect a [0, 1, 0]
signature to the xzth variable. By Lemma 20, F’ can be realized by connecting a [0, 1, 0]
signature to some variables of F', which completes the proof. Besides, if there are two [0, 1, 0]
connecting to the xth variable of h, we can remove them without changing the signature of
the gadget for future convenience. <

We denote the gadget in the above lemma as the star gadget ST of F, and h as the
central signature hp of STr. For each 1 < a < n, all the binary signatures connecting to the
ath variable of h in a line form a gadget, and the signature of the gadget is denoted by the
ath edge signature.

B Proof of Theorem 26

We remark that [1,0],[1,0,1],[1,0,1,0] € .# and .# is closed under gadget construction.
Hence when proving the above theorem, we only need to ensure that the obtained g is
symmetric and does not belong to <.

Besides, such g must have one of the following forms:

» Lemma 29 ([12]). Suppose g € M — o and is symmetric. Then g has one of the following

forms.

1. [0,1,0, .., 0], k > 3

2. )0, ... 0,1,0]k,kz3,-

3. [1,0,7],7* #£0,1;

4. [1,0,7,0,7%, ]k, k > 3,72 #0,1;
5. 10,1,0,7,0,72, ..k, k > 3,72 #0, 1.

» Remark 30. In the following, we always construct the left-side gadget of
Holant({f}[{[1,0],[1,0,1],[1,0,1,0]}). For future convenience, whenever uv is an edge
and both u and v are assigned f in a gadget, we actually mean that we replace uv with
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uw,wv where w is assigned a [1,0, 1] signature in the gadget. Besides, if a gadget is formed
by connecting two existing gadgets together, we also automatically replace the connecting
edge uv with ww, wv, where w is assigned a [1,0, 1] signature. These operations would not
change the signature of the gadget. Consequently, it can be verified that each obtained
gadget always remains a left-side gadget in our following constructions.

If F is of Pinning type, we have F € & as [1,0,0,0,...],[0,1,0] € & and & is closed
under gadget construction. Consequently, F' is either of Parity type, or of Matching type
and not of Parity type.

B.1 Parity type case

Suppose F' is of Parity type. By Theorem 25, three kinds of binary signatures may connect to
the central signature hp in the star gadget STg, which are [1,0,0],[0,0,1] and [1,0,y],y # 0
respectively. Suppose p [1,0,0] and ¢ [0,0,1] are connected to hrp. Then we have F =
F' ®[1,0]°P © [0,1]®7 where F' € .#p — o is also of Parity type.

By assigning n — p — ¢ [1, 0] signature to F’, we realize [1,0]®? @ [0,1]®9. By assigning
[1,0]2P®[0,1]®7 back to F again we can realize the F’ signature in a planar way. Consequently,
we may assume all the signatures connected to hp has the form [1,0,y],y # 0 since we can
eliminate all of the [1,0]s and [0, 1]s by gadget construction. We also assume that for each
1 < a < n, the ath variable of hp is connected to the binary signature [1,0, y,].

Case 1: hp = [1,0,1,0,...]. If n =2, F is already symmetric and we are done. Now
we assume n > 3. For distinct 1 < a,b < n, if we connect a [1,0] signature to each variable
of F except for the ath and the bth one, we realize the [1,0, y,us] signature. If (y,us)* # 1,
[1,0,y.ys] ¢ </ and we are done.

Now we suppose for any distinct 1 < a,b < n, (y,yp)* = 1. For any distinct 1 < a,b,c < n,
we have v = (Ya¥b - Ya¥e/wyc)* = 1. If y3 = 1 and y} = —1, again we are done since
(Yayp)t = —1 # 1. If for each 1 < a < n, yi = 1, then [1,0,y,] € &. And since
[1,0,1,0,...] € & and & is closed under gadget construction, we have F' € &7, which is a
contradiction.

Otherwise, for each 1 < a < n, y* = —1. Let a = Vi = €>™/8, then y, = +a, +ia,
and [1,0,y,ys] is either [1,0,i] or [1,0,—i]. Notice that each element in {ta«,+ia} can
become « by multiplying i or —i 0 to 3 times. Consequently, we may connect 0 to 3 [1,0, i]
or [1,0,—i] to each variable of F to get a gadget ST, such that after replacing F' with

the gadget STp, each edge signature of the obtained star gadget ST} is exactly [1,0,al.

It can be then verified that, the signature of ST, which is also the signature of ST}, is
exactly [1,0,1,0,—1,0,—1,0,1,...],. We are done since [1,0,i,0,—1,0,—1,0,1,...], ¢ &
when n > 3.
Case 2:hp = [0,1,0,1,...]. Ifn =2, wesuppose F'(1) =1, F(2) = y despite the presence
of a constant factor. In other words, f = <(1) g) Because F ¢ o/, y* # 1. By connecting
the first variables of two F' signatures to each other, we realize [1,0,y?]. If y® = (y?)* # 1, we
are done. Otherwise, y = +a, +ia. By connecting the second variables of three F' signatures
to [1,0,1,0], as shown in Figure 4, we realize [0,y?,0, 1], which is either [0,i,0,1] ¢ & or
[0,—i,0,1] ¢ .
Otherwise, n > 3. For distinct 1 < a,b < n, if we connect a [1,0] signature to each
variable of F' except for the ath and the bth one, we realize the #5*¥ = <0 L&
Y

a
By connecting the second variable of #£5*'¥* to the ath variable of F', we construct a gadget

GGFE, whose signature is Fy,.

signature.
0> ignatur
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Figure 4 The construction of a gadget appears in the Case 2 of Parity type. The vertex of degree
3 represented by a solid circle is assigned [1,0, 1, 0], while each vertex of degree 2 represented by a
hollowed circle is assigned F' with the second variable connecting to [1,0, 1, 0].

Now we analyze the properties of F,,. By replacing F' with the corresponding star gadget
STr in GGF,, we obtain the gadget ST, with central signature hp = [0,1,0,1,...]. For the
ath variable of hp, it is connected to a [1,0, y,] signature, then a #5*'v*

the [1,0,y,] with [0,1,0] and the #5*¥* with [1, 0, y,] respectively. As (y() %b> ((1) ;) =

signature. We replace

0 Yats = YaYb Lo 01 , the signature of the gadget remains the same up to
Yo O 0 1/yp/ \1 O

a constant factor after the replacement.

Now consider the gadget formed by hr = [0,1,0,1,...] and the [0, 1, 0] connecting to the
ath variable of it. The signature of the gadget is h = [1,0,1,0,...], which means that F,
belongs to Parity type Case 1. Consequently, we are done unless for each 1 < ¢ < n,c # a,
ye = 1.

By connecting the first variable of #5%"¥* to the bth variable of F', we construct a gadget
GG, whose signature is Fy. Similarly, we are done unless for each 1 < ¢ <mn,c#b, y* = 1.
As a result, the only case left is that for each 1 < ¢ < n, y* = 1. In this case, for each
1<e¢<n,[1,0,y.] € &. Since [0,1,0,1,...] € & and & is closed under gadget construction,
F € 4/, a contradiction.

B.2 Matching type case

Suppose F' is of Matching type and not of Parity type. By Theorem 25, two kinds of
binary signatures may directly connect to the central signature hp in the star gadget STr,
which are [1,0,0] and [1,0,y],y # 0 respectively. Besides, the other variable of each of
these signatures might also be connected to a [0, 1, 0] signature. Suppose p + ¢ [1,0,0] are
connected to hp directly and ¢ of them are further connected to [0,1,0]. Then we have
F=F ®[1,0]°? ®0,1]®? where F' € .#p — </ of arity k =n — p — ¢ is also of Matching
type and not of Parity type.

When k = 2, the central signature of F’ is [0, 1,0], and F is also of Parity type. Therefore,
it can be demonstrated that & > 3. Let STr/ be the star gadget that realize F’ as stated in
Theorem 25, and hps be the central signature. By Theorem 25, for each 1 < a < k, exactly
one of the following statements holds.

1. The ath variable of hp is connected to a [1,0,y,],ys # O signature. In this case we
denote a as an upright index of F’, and the ath variable of F’ as an upright variable.
2. The ath variable of hp/ is connected to a [1,0,y.],y. 7# O signature, then a [0,1,0]

signature. In this case we denote a as a reversed index of F’, and the ath variable of F’

as a reversed variable.
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Suppose the number of reversed indexes of F” is [. In the following, F’ is examined in
4 possible cases based on [. In each case, we create generalized mating gadgets defined in
Section 2.2.1.

In the subsequent analysis, we can see that two kinds of generalized mating gadgets
would play an important role in each case: the Gadget 1 asks exactly one variable of F’ to
be Sum-up, while the Gadget 2 asks exactly two variables of F’ to be Sum-up. All other
upright variables are Fix-to-0 and all other reversed variables are Fix-to-1.

Also, it should be noted that the subsequent analysis does not include a detailed compu-
tation of the values of the signature of each gadget. Nevertheless, readers are encouraged to
verify the results of these computations for themselves using the following observation:

Each variable corresponding to [1,0] or [0, 1] is a Sum-up variable, and consequently does
not contribute to the value of the signature. If a is an upright index, and the ath variable
of F’ is connected to [1,0] or [1,0,0], then the corresponding edge signature of F’ does not
contribute to the value of the gadget. Besides, the ath variable of the central signature hp are
pinned, while hps remains the form [0,1,0,0,...] after this pinning. Similarly, if a reversed
variable of F is connected to [0, 1] or [0, 0, 1], the same statement holds. Furthermore, if a
reversed variable is set to be the Sum-up variable in the generalized mating gadget, then the
2 [0, 1, 0] signatures meet and have no effect to the value of the gadget.

Case 1: I = 0. Let1<a,b,c <k be distinct integers.

Gadget 1. Construct a generalized mating gadget. Let the ath variable be Dangling, the
bth variable be Sum-up and all other variables of F’ be Fix-to-0.

By Gadget 1, we realize the signature [y2,0,42], and we are done unless (y2)* = (y2)*.
Similarly, by replacing b with ¢ in the construction of the above gadget, we are done unless
(y2)* = (y2)*. Now we assume (y2)* = (y7)* = (y2)*.

Gadget 2. Construct a generalized mating gadget. Let the ath variable be Dangling, the
bth and the cth variable be Sum-up and all other variables of F’ be Fix-to-0.

By Gadget 2, we realize the signature [yg +92,0,92%]. Similarly by replacing a with b
or ¢, we realize [y2 + y2,0,y7] and [y2 + y2,0,y?] respectively. As (y2)* = (y3)* = (y)*,
ly2 + 2|, [y2 + 92, |v2 + 2| € {0,v/2]y2|,2|y2|} and one of them does not equal to 0. Without
loss of generality let |y7 + y?| # 0, and we have [y? 4+ y2,0,y%] € A — .

Case 2: I = 1. Let 1< a,b,c <k be distinct integers and a be the reversed index of F”.

Gadget 1. Construct a generalized mating gadget. Let the ath variable be Dangling, the
bth variable be Sum-up and all other variables of F’ be Fix-to-0.

By Gadget 1, we realize the signature [y2,0,y7], and we are done unless (y2)* = (y7)*.
Similarly, by replacing b with ¢ in the construction of the above gadget, we are done unless
(v2)* = (y2)*. Now we assume (y3)* = (y;)* = (y2)".

Gadget 2. Construct a generalized mating gadget. Let the ath variable be Dangling, the
bth and the cth variable be Sum-up and all other variables of F’ be Fix-to-0.

By Gadget 2, we realize the signature [y2,0,y? + y2]. Similarly by replacing a with b or
¢, we realize [y2 +y2,0,y7] and [y2 + y2, 0, y?] respectively. Similar to the analysis in Case 1,
we are done.

Case 3: 1 = 2. Let 1 <a,b,c <k be distinct integers and b, ¢ be reversed indices of F”’.

We first realize the [0, 0, 1] signature using F' and [1,0]. By connecting a [1,0] to each
variable of F representing [1,0], a [1, 0] to each upright variable of F’ and a [1,0] to the bth
variable, we realize the [0,1]®9"! signature. By making [g/2| self-loops on [0,1]®9F1 we
realize either [0, 1] or [0,0,1]. If we realize [0, 1], we can realize [0,0, 1] = [0, 1]®? as well by
tensor production.
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Gadget 1. Construct a generalized mating gadget. Let the ath variable be Dangling, the
bth variable be Sum-up, the cth variable be Fix-to-1 and all other variables of F’ be Fix-to-0.
By Gadget 1, we realize the signature [yZ,0,y2], and we are done unless (y2)* = (y7)*.
Similarly, by replacing b with ¢ in the construction of the above gadget, we are done unless
(va)* = (y2)*. Now we assume (y3)* = (y;)* = (y2)".
Gadget 2. Construct a generalized mating gadget. Let the ath variable be Dangling, the
bth and the cth variable be Sum-up and all other variables of F’ be Fix-to-0.
By Gadget 2, we realize the signature [yf +92,0,52]. Similarly by replacing a with b or
¢, we realize [y2,0,y2 + y2] and [y2,0,y2 + y7] respectively. Similar to the analysis in Case 1,
we are done.

Case 4: 1 > 3. Let 1 <a,b,c <k be distinct reversed indices of F’.

We first realize the [0, 0, 1] signature using F' and [1,0]. By connecting a [1,0] to each
variable of F' representing [1,0], a [1,0] to each upright variable of F’ and a [1,0] to the
cth variable, we realize the [0,1]®9t~! signature. By making [(q + | — 2)/2] self-loops
on [0,1]®9H=1 we realize either [0,1] or [0,0,1]. Again, if we realize [0, 1], we can realize
[0,0,1] = [0,1]®2 as well by tensor production.

Gadget 1. Construct a generalized mating gadget. Let the ath variable be Dangling, the
bth variable be Sum-up, all other reversed variables of F’ be Fix-to-1 and all other upright
variables of F’ be Fix-to-0.

By Gadget 1, we realize the signature [y2,0,y?], and we are done unless (y2)* = (y7)*.
Similarly, by replacing b with ¢ in the construction of the above gadget, we are done unless
(ya)* = (y2)*. Now we assume (y3)* = (y7)* = (y2)".

Gadget 2. Construct a generalized mating gadget. Let the ath variable be Dangling, the
bth and the cth variable be Sum-up, all other reversed variables of F’ be Fix-to-1 and all
other upright variables of F’ be Fix-to-0.

By Gadget 2, we realize the signature [y2,0,y? 4+ y2]. Similarly by replacing a with b or
¢, we realize [y7,0,y2 + y?] and [y2,0,y2 + y7] respectively. Similar to the analysis in Case 1,
we are done.
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