Distributed Complexity of P.-Freeness:
Decision and Certification

Masayuki Miyamoto &
University of Tsukuba, Japan

—— Abstract

The class of graphs that do not contain a path on k nodes as an induced subgraph (Py-free graphs)
has rich applications in the theory of graph algorithms. This paper explores the problem of deciding
Py-freeness from the viewpoint of distributed computing.

For specific small values of k, we present the first CONGEST algorithms specified for Pj-freeness,
utilizing structural properties of Py-free graphs in a novel way. Specifically, we show that Pj-freeness
can be decided in O(1) rounds for k = 4 in the broadcast CONGEST model, and in O(n) rounds for
k = 5 in the CONGEST model, where n is the number of nodes in the network and O(-) hides a
polylog(n) factor. The main technical contribution is a novel technique used in our algorithm for
Ps-freeness to distinguish induced 5-paths from non-induced ones, which is potentially applicable
to other induced subgraphs. This technique also enables the construction of a local certification of
Ps-freeness with certificates of size O(n). This improves O(n®/?) by Bousquet and Zeitoun (TCS
2025), and is nearly optimal, given our Q(n'~°")) lower bound on certificate size.

For general k, we establish the first CONGEST lower bound, which is of the form n2-1/0k)
The n'/®® factor is unavoidable, in view of the O(n272/(3k+2)) upper bound by Eden et al.
(Dist. Comp. 2022). Additionally, our approach yields the first superlinear lower bound on certificate
size for local certification. This partially answers the conjecture on the optimal certificate size of
Py;-freeness, asked by Bousquet et al. (arXiv:2402.12148).

Finally, we propose a novel variant of the problem called ordered Pj detection. We show that
in the CONGEST model, the round complexity of ordered Pj detection is Q(n) for k > 5, and in
contrast, proving any nontrivial lower bound for ordered Ps detection implies a strong circuit lower
bound. As a byproduct, we establish a circuit-complexity barrier for Q(nl/ 2+2) quantum CONGEST
lower bounds for induced 4-cycle detection. This is complemented by our O(n3/ 4) quantum upper
bound, which surpasses the classical Q(n) lower bound by Le Gall and Miyamoto (ISAAC 2021).

2012 ACM Subject Classification Theory of computation — Distributed algorithms
Keywords and phrases subgraph detection, CONGEST model, local certification
Digital Object Identifier 10.4230/LIPIcs.ISAAC.2025.51

Related Version Full Version: https://arxiv.org/abs/2410.20353

Acknowledgements The author would like to thank Francois Le Gall for discussions and for
commenting on an earlier version of this paper. The author also acknowledges the anonymous

reviewers for their helpful comments.

1 Introduction

1.1 Background

The subgraph detection problems in the distributed setting of limited communication band-
width, including the CONGEST model, are interesting and well studied problems. For a
given specific small pattern graph H (the description of H is known to all nodes of the
network), the goal of H detection is to decide if the network G contains H as a subgraph
(or an induced subgraph). If the network G contains H, at least one node outputs “yes”,
otherwise all nodes of the network output “no”. (H detection is often referred as H freeness,
where at least one node outputs “no” if the network contains H, and otherwise all nodes

© Masayuki Miyamoto;
37 licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Algorithms and Computation (ISAAC 2025).
Editors: Ho-Lin Chen, Wing-Kai Hon, and Meng-Tsung Tsai; Article No. 51; pp.51:1-51:21

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:miyamoto@cs.tsukuba.ac.jp
https://doi.org/10.4230/LIPIcs.ISAAC.2025.51
https://arxiv.org/abs/2410.20353
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

51:2

Distributed Complexity of Py-Freeness: Decision and Certification

of the network output “yes”. In this paper we abuse these two problems since they are
essentially equivalent.) There are several variants previously considered in the literature:
H listing requires to output all copies of H in G (each node outputs some copies of H and
the union of all output lists are equivalent to the list of all copies of H in G). In recent
years, significant progress in distributed subgraph detection has been made, and we now
understand well the round complexities for detection of e.g., cliques and cycles. However,
much less is known about induced paths. In the full version, we also summarize the previous
results in this context.

Since it is known that in the CONGEST model, detecting non-induced k-paths can be
done in O(1) rounds for constant k [27], our focus in this paper is specifically on the induced
k-path detection problem. Induced k-paths are particularly more important than non-induced
paths because graphs that do not contain an induced k-path (often called Py-free graphs)
have numerous applications in algorithmic graph theory, particularly in the centralized
setting. The absence of induced k-node paths imposes structural constraints on graphs,
which can be leveraged to develop efficient algorithms for problems like independent set or
coloring [5, 20, 22, 31, 23, 36]. Despite its importance, few results are known for Py-freeness
in the distributed setting. The only known result we are aware of is the result of Nikabadi and
Korhonen [34], who explored the multicolored variant of the induced k-path detection, where
each node is colored by an integer from {1,2,...,k}, and the goal is to detect an induced path
on k different colors. They demonstrated that multicolored induced P} detection requires
Q(n/logn) rounds for any k > 7. However, their proof fails for Py-freeness. To the best of
our knowledge, there is no nontrivial result! for Pj-freeness in the CONGEST model beyond
the general result by [14]: for any subgraph H on k nodes, there is a randomized CONGEST
algorithm that solves induced H detection in ON(n%Til) rounds.

Local certification of P,-freeness

Another line of research focuses on local certification of Pg-freeness. In local certification,
small labels called certificates are assigned to the nodes of the graph, and each node decides if
the graph satisfies some property by using its local view. There are two important parameters,
that is, the size of certificates and the locality of verification. In local certification of size
s and locality ¢, each node receives an O(s)-bit certificate from the external entity called
the prover, and each node decides its binary output (accept or reject) only using the unique
identifiers and certificates of its ¢-hop neighbors. The scheme (with the locality ¢ = 1) is
introduced by [28] under the name of proof-labeling schemes, which is now a popular setting
in the community of distributed computing:

» Definition 1 (proof-labeling schemes). A proof-labeling scheme (PLSy) of size s is a pair
(e, A) of functions ¢ and A of the input graph G = (V, E) such that
for each node u, the function ¢ assigns a bit string c(u) of length s called the certificate
of u;
for each node u, the function A, called the verification algorithm, depends on the certificates
of £-hop neighbors of u as well as the identifiers of these nodes, and decides the output of
u. More precisely, let No(u) = {v1,...,vq} be the £-hop neighbors of u, then

A(id(w), c(u),id(v1), c(v1), . . ., id(vq), c(vg))

is the output of u.

! For the trivial case of k = 3, P detection can be done in O(1) rounds.

M. Miyamoto

Let P be a graph property. We say that there is a PLS, that certifies P if there exists a
verification algorithm A with locality £ (which outputs Accept or Reject) satisfies the following
conditions.
If G satisfies the property P, there exists a certificate function c such that all nodes in G
output Accept.
If G does not satisfy the property P, for any certificate function c, at least one node in G
outputs Reject.

When the locality of the verification algorithm is ¢ > g, there is a trivial way to certify
Pr-freeness: by assigning the list of IDs of neighbors as a certificate, each node try to find a
Py, by looking edges adjacent to its k/2-hop neighbors. If there is a Py, then its central node
can now detect it. Thus, our interest lies in cases where the path length is long relative to
the locality. Recently, Bousquet, Cook, Feuilloley, Pierron, and Zeitoun [2] studied this topic
by analyzing the relationship among path length, certificate size, and locality of verification.
They provided various nontrivial upper and lower bounds on certificate size (we discuss
details in Section 1.2). While local certification of various subgraph-related problems has
been studied (e.g., [3, 11, 18, 19]), the only known result for local certification of Pj-freeness
prior to [2] was for k = 4: there is a PLS; that certifies Py-freeness with O(logn) bits [17].
Moreover, [17] proved that every MSO; property II can be certified with O(log®n) bits and
locality 1 if all graphs satisfying II have bounded clique-width. Since Pg-freeness can be
expressed by MSOq, this suggests that the difficulty gap between certifying Ps-freeness and
Ps-freeness can be attributed to the fact that Ps-free graphs have bounded clique-width,
whereas Ps-free graphs do not. After that, Bousquet and Zeitoun [4] constructed a PLS;
that certifies Ps-freeness with O(n®/?) bits.

1.2 Our results
1.2.1 Result 1: P,-freeness for k =4 and k =5

We first show the following upper bounds for k = 4 and k = 5. Throughout the paper, we use
“a randomized algorithm” as an algorithm that outputs the correct answer with probability
at least 2/3.

» Theorem 2. There exists a randomized algorithm that solves Py-freeness in the broadcast
CONGEST model, running in O(logn) rounds.

loglogn

» Theorem 3. There exists a randomized algorithm that solves Ps-freeness in the CONGEST
model, running in O (n log? n) rounds.

Technical challenges

As mentioned above, there were no nontrivial algorithms for Pg-freeness for £ > 4 in the
CONGEST model beyond the general O(n?~2/(3¥+2)) upper bound [14]. Moreover, the
previous CONGEST algorithms for subgraph detection have been mostly focused on non-
induced cases. Most techniques from these results seem to be useless for induced subgraph
detecion. Typical examples are the expander decomposition applicable to cliques [8, 9], and
the BFS search with threshold applicable to (non-induced) cycles [6, 18]. We thus need to
exploit structural properties of P;/Ps-free graphs, resulting our algorithms quite different
from the other algorithms for subgraph detection. We believe that our approach hints new
algorithms for other induced subgraphs.

51:3

ISAAC 2025

51:4

Distributed Complexity of Py-Freeness: Decision and Certification

We turn our attention to the framework of local certification. We get the following
certification scheme for Ps-freeness.

» Theorem 4. There is a PLS; that certifies Ps-freeness with certificates of size O(nlogn).

To obtain this result, we directly use the algorithm of Theorem 3. This is somewhat interesting,
as CONGEST algorithms for subgraph freeness cannot be used for local certification of
subgraph freeness in general (unless they are broadcast CONGEST algorithms). We also show
that the size of our certificates is optimal, up to a subpolynomial factor:

» Theorem 5. For any k > 40 + 1, any PLS, for Pi-freeness requires certificates of size
Q (60«/@))

This result is proved via a combination of several known reduction techniques: we first reduce
the nondeterministic three-party communication complexity of set-disjointness function to
triangle freeness, which is then reduced to Ps-freeness.

Independent and concurrent works

After submitting the first draft of this paper, we learned about the following independent
and concurrent works: Bousquet and Zeitoun [4] proved that there is a PLS; that certifies
Ps-freeness with certificates of size O(n?/?). Additionally, as noted in [4], Chaniotis, Cook,
Hajebi, and Spirkl (independently and concurrently) obtained Q(n'~°(1)) lower bound for
Ps-freeness.

1.2.2 Result 2: P,-freeness for general k

We provide the following lower bounds for Pj-freeness in the (randomized) CONGEST
model using the two-party communication complexity, which is the standard framework for
distributed subgraph detection problems.

» Theorem 6. Let d be any positive integer.

Ford < 2, Py-freeness for k > 11d require Q(nQ_l/d) rounds in the randomized CONGEST

model.

For d > 3, Py-freeness for k > 8d requires Q(ng_l/d) rounds in the randomized CONGEST

model.
The n'/4 = n!'/®®) factor is unavoidable, in light of the upper bound of n2~©(/) established
by [14]. We will show these lower bounds using the standard reduction from two-party
communication complexity. Although the framework used here is classic, there are several
challenges that makes the proof highly non-trivial, which we discuss in detail later in
Section 5.2.

Additionally, our constructions apply to the nondeterministic two-party communication
setting, leading to the following.

» Theorem 7. Let ¢ and d be positive integers.
Ford < 2, any PLS, for Py-freeness requires certificates of size Q(n>~Y/%) for k > 4d(+17d.
Ford >3, any PLS, for Py-freeness requires certificates of size Q(n>=Y/%) for k > 4d{¢+4d.

Comparison with the recent results by Bousquet et al. [2]

Let us now compare our results with those of Ref. [2], who considered local certification of
Py-freeness and obtained the following:

M. Miyamoto

Table 1 Summary of our results and previous results on local certification of Pj-freeness. Here n
denotes the number of nodes in the network.

Path length Certificate size Model Reference

5 O(nlogn) PLS; Thm 4
5 o(n*?) PLS, [4]
4041 Q(n'=oW) PLS, Thm 5
80+ 14 Q(n®'?) PLS, Thm 7
4dt + 4d, d > 3 Q(n?~1/9) PLS, Thm 7
3¢—1 O(nlog®n) PLS, 2]
4043 Q(n) PLS, 2]
(46 -1 O(n®/?1og?n) PLS, 2]

» Theorem 8 ([2]). If the locality is £ > 1, then:
Py-freeness for k < 30 — 1 can be certified with certificates of size O(n log® n);
Py.-freeness for k < f%“} — 1 can be certified with certificates of size O(n>/? log? n);
Py.-freeness for k > 40 4+ 3 requires certificates of size Q(n/¥f).

They also conjectured the following.

» Conjecture 9 ([2]). For all a > 0, the optimal size for local certification of Pye-free graphs
with, locality £ is of the form ©(n>=Y/1(®)) for some unbounded increasing function f.

We summarize our results and previous results in Table 1. For ¢ = 1, the results
of Bousquet et al. [2] provide nontrivial lower bound for P;-freeness, and Bousquet and
Zeitoun [4] provide nontrivial upper bound for Ps-freeness. In Theorems 4 and 5, we show
the nearly optimal bound of Ps-freeness for £ = 1.

For general k, Theorem 7 shows the first superlinear lower bounds, improving the previous
linear lower bounds. Moreover, Theorem 7 partially answers Conjecture 9: f is at least
linearly increasing.

1.2.3 Result 3: Ordered path detection and applications

We then define and study the following problem called ordered Py detection.

» Definition 10 (ordered Py detection). Each node of the graph has a color from {1,... k},
and the goal is to detect an induced path that consists of edges {(pi,pi+1)}icq1,
nodes {p; }ic(1,....k} where p; is colored by i.

vy

Motivation

The definition of ordered path detection may seem somewhat artificial; however, it can be mo-
tivated in a manner similar to that of multicolored path detection studied in [34]. Algorithms
for the multicolored/ordered variants of these problems with color-coding techniques [1] are
often used to address the standard version. For example, the state-of-the-art CONGEST
algorithm for detecting 2k-node cycles [6, 16] actually detects the ordered variant of 2k-cycles.
Consequently, lower bounds for the ordered variant reflect the limitations of algorithms that
employ color-coding. Moreover, as demonstrated in Theorem 12, we will show that ordered
path detection also provides some nontrivial insight for subgraph detection in the quantum
CONGEST model, which is not restricted to algorithms using color-coding.

51:5

ISAAC 2025

51:6

Distributed Complexity of Py-Freeness: Decision and Certification

Contribution

We first prove the following lower bound for k& = 5.

» Theorem 11. Any randomized algorithm that solves ordered Py, detection for k > 5 requires
Q(n) rounds in the CONGEST model.

We then focus on ordered Ps detection. Our next finding is that, similarly to triangle
detection, proving non-trivial lower bounds for ordered Ps detection is difficult. This result
also shows a circuit complexity barrier for induced C} detection.

» Theorem 12 (Informal). For any constant € > 0, proving any lower bound of the form Q(n®)
for ordered 3-path detection in the CONGEST model or Q(n1/2+5) for induced Cy detection
in the quantum CONGEST model implies super-linear lower bounds on circuit complexity for
an explicit family of boolean functions.

Note that our circuit complexity barrier for induced Cy detection is in the quantum CONGEST
model [30]. We then complement this result by showing a nontrivial upper bound for induced

Cy.

» Theorem 13. In the quantum CONGEST model, induced Cy detection can be solved in
O(n®/*) rounds with high probability.

Previously, no nontrivial upper bound for induced Cy detection was known, and our bound
for induced Cy detection beats a classical Q(n) lower bound [29].

2 Preliminaries

We write [n] = {1, .,n}. We let N(v) be the set of neighbors of v. For a graph
G = (V(G), E(G)), we say that H = (V(H), E(H)) is a subgraph of G if there is an injective
function ¢ : V(H) — V(QG) such that (u,v) € E(H) = (¢(u),¢(v)) € E(G) for any pair
of nodes u,v € V(H). We say that H is an induced subgraph of G if there is an injective
function ¢ : V(H) — V(G) such that (u,v) € E(H) < (¢(u), ¢(v)) € E(G) for any pair of
nodes u,v € V(H). Let Py be a path on k nodes. We say that G is Py-free if G does not
contain P as an induced subgraph. Throughout the paper, we assume that the input graph
is connected, otherwise we can treat each connected component separately.

The CONGEST model and variants

In the CONGEST model [35], each node of the network G = (V, E) has a distinct O(logn)-
bit identifier and can communicate with its neighbors in a synchronized manner. In each
round each node (1) does some local computation and (2) sends an O(logn)-bit message to
each of its neighbors. In the initial state, each node only knows its own unique identifier
(represented by O(logn) bits) and input, and the unique identifiers of its neighbors. The
broadcast CONGEST model is a weaker model in the sense that each node can only broadcast
a O(logn)-bit message in each round. In the congested clique model [32], we allow all-to-all
communication in each round. That is, the communication topology is always the n-node
clique, and the input graph G is a subgraph of the clique. In the quantum CONGEST
model [30], each node can send O(logn)-qubit quantum message to each of its neighbors,
instead of O(logn)-bit classical message.

M. Miyamoto

3 Algorithm for Ps-freeness

In this section we prove Theorem 2.

It is well known that a graph is Py-free iff it is a cograph [10]. A cograph is defined as a
graph that is constructed using the following rules:

A single-node graph K; is a cograph;

For cographs G = (Vg, Eg) and H = (Vi, Eg), its disjoint union (Vg W Vg, Eq W Ey) is

a cograph;

For cographs G = (Vi, E¢) and H = (V, Egy), its join (VoW Ve, EgW Eg W (Ve X Vi)

is a cograph;
Using this characterization, we can construct a low-congestion spanning tree for any cograph
as follows. A similar property on the spanning tree of cographs is also used in distributed
(interactive) proofs for Pj-freeness [17, 33]. We use the following results on the balls into
bins problem.

» Lemma 14 (Balls into bins problem [21]). Assume that there are n bins and n balls. Each
ball uniform randomly selects one bin which it places into. Then, with probability at least

1 —1/n, all bins have at most O (log’ign) balls.

» Lemma 15. There exists a broadcast CONGEST algorithm that runs in O(1) rounds and
performs the following:
If some node rejects, then G is not a connected cograph.
Otherwise, with high probability, it outputs a rooted spanning tree of depth 2, where each
node, except the root, has at most O (loigﬂ) children.

log

Proof. We first reject if the diameter of the graph is not O(1), since every connected cograph
has diameter at most 2. This can be accomplished in O(1) rounds by running a BFS
search from the node with minimum identifier as the depth of the BFS tree provides a
2-approximation of the diameter. From the definition of cographs, a connected cograph
G = (V, E) is constructed from the join operation on two distinct node sets V; and V, where
V =V; W V5 and |V4| > |Va|. Let r be the node with the maximum degree in G. Note that r
can be found in O(1) rounds since the diameter of the graph is constant. If deg(r) < n/2,
the algorithm rejects (if G is a connected cograph, then the maximum degree is at least n/2
as each node in V3 has degree at least |V4| > n/2). Consider the tree rooted at r where all
neighbors of r are at depth 1. As below, we can construct the desired spanning tree with
high probability if the graph is a connected cograph.

Case 1: r € V. Define Vi = Vo\(N(r) U{r}). Observe that V1 x V5 C E and |V3| < |V4].

Each v € V4 uniform randomly selects one node from its neighbors as its parent in the
tree. Now, each depth-1 node u (bin) is selected as the parent of v (ball) with probability
at most 1/|V3| as deg(v) > |V1]. Then from Lemma 14, all depth-1 nodes have at most

o) (log n) children with high probability.

loglogn

Case 2: 7 € V1. Define V/ = Vi\(N(r) U {r}). Since deg(r) > |V4]|, we have

Vi = Vi| = (deg(r) — [V2]) = 1 < [V2].

Each node v in VY selects one of its neighbors as its parent uniform randomly. Now, each
depth-1 node u (bin) is selected as the parent of v (ball) with probability at most 1/|V5|

as deg(v) > |V2|. Then from Lemma 14, all depth-1 nodes have at most O (log’ign)

children with high probability. |

51:7

ISAAC 2025

51:8

Distributed Complexity of Py-Freeness: Decision and Certification

Proof of Theorem 2. Ref. [25] demonstrated a protocol in the randomized multiparty si-
multaneous messages model (also known as the distributed sketching model), where each
node sends a message of size O(logn) to a referee. The referee can then determine if G is
a cograph with high probability. We can simulate this protocol in the constructed depth-2
spanning tree, with the root r acting as the referee. Since each depth-1 node has at most

0] (lololg") children, sending all messages to r is completed in O (1 1°1g”) rounds. |
glogn oglogn

4 Algorithm and certification for P;-freeness

In this section we give an overview of the proof strategy for Theorem 3 and Theorem 4.
Since these theorems share the same proof strategy, we focus on our CONGEST algorithm
for Ps-freeness (Theorem 3). Full proof of Theorem 4 will be found in the full version.

Our algorithm aims to efficiently detect whether a given graph is Ps-free, focusing on
cases where the graph has a diameter of 2 or 3 (observe that if the diameter is at least
4, then it must not be Ps-free). We treat these cases separately due to their distinct properties.

4.1 Subgraph freeness in graphs with diameter two

Here we assume that the graph G = (V| F) with n nodes and m edges has diameter 2. Let
r € V be the node with maximum degree. Then deg(r) = A = Q(m/n). Divide the node set
V ={r}UVi UVs where V; is the set of nodes whose distance to r is i. We first consider that
every node u broadcasts the list of its neighbors in O(n) rounds. After that r learns all the
edges connected to {r} UV;. In the remaining part we show that, with high probability,
can learn the edge set E N (Vo x V3) in another O(n) rounds. Therefore, r can locally decide
if the graph is Py free.

Assume that we divide Va into \/m/n subsets V3 for i € [\/m/n] as follows (assuming
v/m/n is an integer): each node v € V, chooses an integer ¢ € [y/m/n] uniformly at random
and joins V4. Next, we label the set V; as {vx|k € [A]} where ID(v;) is the k-th smallest
among IDs of nodes in V;. The partition of Vo = {V4'} and the label of V; nodes with respect
to the order of IDs are informed to all the nodes in the network in O(n) rounds. We use the
following lemma.

» Lemma 16 ([8]). Consider a graph with m edges and n vertices. We generate a subset S by
letting each vertex join S independently with probability p. Suppose that the maximum degree
is A < mp/20logn and p*m > 400log®n. Then, with probability 1 — 1/n® for sufficiently large
¢, the number of edges in the subgraph induced by S is at most 6p>m.

Here we set i = n, m = m, p = \/n/m. Clearly, p?>m > 4001og2ﬁ holds. As A < n, one can
verify that A < mp/20logn holds if m = m > 400n log? n. We assume that m > 400n log? n
holds since otherwise a simple O(m) = O(n)-round algorithm suffices. Then, with high
probability, |E N V{ x Vi| = O(p*m) = O(n) for all i,j € [\/m/n]. Consider the node
vp € Vi collects the edge set EN VY x V§ for k =i+ (j — 1)y/m/n. To do this, assume
that (u,v) € ENVY x VJ. Then there exists a node w such that (u,w), (w,v;) € E since
the diameter of the graph is 2. w knows the edge (u, v) because of the previous O(n) round
communication and thus w can send it to v;. Since |EN V4 x VJ| = O(n), this is done in
O(n) rounds. Finally, v sends ENVJ x V4 to r in O(n) rounds. Now we have established
the following theorem.

M. Miyamoto

» Theorem 17. In graphs with diameter 2, for any subgraph H, (non-induced and induced)
H-freeness can be solved in O(n log? n) rounds in the CONGEST model with high probability.

It is noteworthy that this result does not hold when the diameter is greater than 2, since for
any constant € > 0, there is a pattern graph H such that H-freeness in graphs with diameter
3 requires Q(n?~¢) rounds [15, 29].

4.2 Ps-freeness in graphs with diameter three
A High-Level Overview of Our Approach

In the case of a graph with diameter 3, the larger diameter necessitates more tricky definitions
and case analysis, resulting in a more involved proof. We outline the main ideas of our proof
here before giving details.

Let V; be the set of nodes at distance ¢ from r, for ¢ € {1,2,3}. The edges (except the
ones incident to r) are partitioned as E; ; = EN (V; x V;) for i < j. We employ a procedure
Peoltect (Algorithm 1) that runs in O(n) rounds, enabling r to gather Ej 1 and FEj .

Algorithm 1 Pojiect-

r: the node with maximum degree.

T': the rooted spanning tree created by the BFS traversal from r.

Step 1 Each node broadcasts the list of its neighbors in O(n) rounds.

Step 2 Consider the partition of V' into \/m/n subsets V? for i € [\/m/n] as follows: Each
node v € V chooses an integer i € [\/m/n] uniformly at random, joins V* and tells it to
all other nodes so that all nodes in the graph learn the partition V = {Vz}l ely/mym)’ The
node r broadcasts the set of nodes that contains all nodes in V; in ascending order with
respect to their IDs so that all nodes in the graph agree with vy € V3 such that ID(vy) is
the k-th smallest ID in V7.

Step 3 Define E5 5 by the set of edges (u,v) € Fs 5 satisfying at least one of the following:
1. N(vg) N (N(u) UN(v)) # 0 where v € V¥ and v € V7 for the partition V, and vy, is a

neighbor of r such that the integer k is assigned in Step 2 for k =i+ (j — 1)y/m/n,
2. (N(u) UN(v))N Vs #£ 0.

We also define Fyoq by the set of edges (u,v) € Fy 5\ E2 2 satisfying N(u)NV; = N(v)NV;.

Each node u tells the neighbors the list of its incident edges in F2 2 and Fpeq.

Step 4 For each edge (vg,w), w sends the edge (u,v) between V¢ and V7 to vy if w received
(u,v) in Step 1. After that, each vy € Vi sends these edges between V? and V7 to r. This
takes O(n) rounds since the number of edges between V* and V7 is O(n) w.h.p., due to
Lemma 16.

Step 5 r computes |Es 3], |E~272|, | Fpaq|. This is done by using the tree T'. r then rejects if
the following holds:

Condition 1 There is an edge in Fy 3 U E~2,2 that is not sent to 7.

For each edge (u,v) € E272\E2’2, u rejects if the following holds:
Condition 2 N(u) N V; # N(v) N V.

For each edge (u,v) € Fpqa, u rejects if the following holds:

Condition 3 There is a node w € N(u) NV, such that N(u) N V; € N(w).
For each edge (u,v) € E3 3, u rejects if the following holds:

Condition 4 N(u) NV3 # N(v) N Va.

For this procedure, we have the following.

51:9

ISAAC 2025

51:10

Distributed Complexity of Py-Freeness: Decision and Certification

» Lemma 18 (Restated in Lemma 22). If any of the conditions in Peoject (Conditions 1-4)
are met, then G contains an induced Ps.

After the execusion of Peoliect, if r detects any missing edge in (Eg 2\ Fpeq) U E2,3 — where
Fyaa is a carefully defined subset of Ey o (defined in Step 3 of Peoliect) — it can safely conclude
that the graph is not Ps-free. This is because (i) the invalidity of Condition 2 of Peoliect
ensures that Eg o\ Fpeq = E~’2’27 and (ii) the invalidity of Condition 1 of Peojiect ensures that
all edges in Egg UEs 3 = (E2,2\Fpaa) U E2 3 have been sent to r. Therefore, if no node rejects
in Peollect, 7 learns E\(Fpaq U E33).

The following lemmas shows that, for any Ps containing an edge from Fj,qUE3 3, detection
is performed by nodes connected to the endpoints of these edges.

» Lemma 19 (Restated in Lemma 23). Assume that no node rejects in Peoject- If G contains
an induced Ps with at least one edge from Fyqq, then there is a node that detects an induced Ps.

» Lemma 20 (Restated in Lemma 24). Assume that no node rejects in Peoliect- If G contains
an induced Ps with at least one edge from Es 3, then there is a node that detects an induced Ps.

For any P5 composed solely of edges from E\(FpqqUEs 3), detection is performed by node
r, which now has access to E\(Fpqq U E3.3). The key challenge here is distinguishing between
proper Pss (induced by the entire edge set E) and improper Pss (induced by E\(Fpgq U E3 3)
but not by E). We address this by having r count the improper patterns and subtract
this count from the total number of Pss it finds. As illustrated in Figure 1, there are 17
non-isomorphic patterns for possible improper Pss. We introduce the concept of a “dangerous”
induced subgraph. An induced copy of H € H in the input network G = (V, E) is dangerous
iff it induces a P5 in E\(Fpaq U E33). The following lemma shows that the number of such
dangerous patterns can be counted efficiently.

» Lemma 21 (Restated in Lemma 25). Let H = {H;};c17] be a set of five-node graphs that
contain Ps as a (non-necessarily induced) subgraph as in Figure 1. Then, for any H € H,
the number of induced copies of H in the graph that are dangerous can be counted (by the
node 1) in O(n) rounds.

This yields the correct count of proper Pss, since the number of Pss in G is now
obtained by subtracting the number of dangerous patterns in G from the number of Pss in
(V) E\(Fpaa U B3 3)).

4.2.1 Algorithm for Ps-freeness in graphs with diameter three

Assume that the diameter of the input graph (with n nodes and m edges) is 3 and m >
400n log? n. Similarly to the previous case, we divide the node set into V = {r} UV, UVo U V3
where V; is the set of nodes whose distance to r is . For all 4,5 € {1,2,3}, 7 < j, we also
define F; ; by the edge set between V; and V;. We use a subprotocol Peliect described in
Algorithm 1, and analyze it here.

» Lemma 22. If any of the conditions in Peoliect (Conditions 1-4) are met, then G contains
an induced Ps.

Proof.

Condition 1 Assume that there is an edge in E5 3 that is not sent to r in Peoliect. Then for
some i, j, k satisfying k =i + (j — 1)y/m/n, there exists an edge (u,v) between V* and
V7 such that no node in N (u)U N (v) is connected to vi. W.l.o.g., we assume that u € Vs
and v € V3. Then there exists a node w € N(u) NV; that is not connected to vy, € V7.
{vg,r,w,u,v} induces a Ps.

M. Miyamoto

Assume that there is an edge in E~’2’2 that is not sent to 7 in Peojiect. First, observe that if
an edge (u,v) in E~2’2 satisfies the first condition of E2,27 it is sent to 7 in Peojlect- Assume
that (u,v) satisfies the second condition of EQQ and is not sent to 7 in Pgojlect- Then
w.l.o.g., there are two nodes w € N(u) N V3 and # € N(u) NV;. Furthermore, assume
that u e Vi, v e Vi and k =i+ (j — 1)\/m/n. {vg,r,x,u,w} induces a Ps.

Condition 2 Suppose that, for some i, j, k satisfying k = ¢ + (j — 1)y/m/n, there exists an
edge (u,v) € Fa\Fs 5 between V? and V7 satisfying N(u) N Vi\N(v) N Vi # 0. Then
there exist a node w € V3 N (N(u)\N(v)) that is not connected to vy € V;. We can
conclude that {vg,r, w,u,v} is an induced Ps.

Condition 3 Let (u,v) € Fyaq N (V¥ x V7). For a node w € (N(u) U N(v)) N Va such that
N(u)NVy € N(w), if there is y € (N (u) N V1)\N(w), then {vg, 7, y,u, w} is an induced
Psfork=i+ (5 —1)y/m/n.

Condition 4 Let w € (N(u)\N(v)) N Va. Then there exists a node z € N(w) U V.
{r,z,w,u,v} is a Ps. <

Now, assuming that Pojiect does not reject, the following properties hold for each edge
(u,v) € Fyaq between Vi and V7.
Property 1 N(u)NV; = N(v)NVy,
Property 2 N(vig) N (N(u) UN((v))=0for k =14+ (j — 1)\/m/n,
Property 3 (N(u) UN(v))NV3 =0,
Property 4 for each w € (N(u) UN(v)) NV, N(u)N'V; = N(v)NVp C N(w).

» Lemma 23. Assume that no node rejects in Peojiect- If G contains an induced Py with at
least one edge from Fpqq, then there is a node that detects an induced Ps.

Proof. We write {(ps, pi+1)}ief1,2,3,43 be the four edges constructing some induced Ps. Here
we assume that exactly one edge of them is bad. First, consider that (p2,ps3) € Fpaq. Fix
one node v € N(p2) N N(p3) N V4. Then from Property 1 and Property 3, p4 is in Va.
Moreover, ps € N(v) from Property 4. Similarly, p; € Vo N N(v). Now observe that v knows
{(pi; pis1) bieq1,2,3,4y and v can detect the path.

We then consider that (p1,ps2) € Fpaq. Similarly to the above case, we can assume that
p3 € Vo. We distinguish the following cases.

Case 1: py € V5. If p; € V}, ps can detect the path since ps knows ps ¢ N(p2) and thus
ps ¢ N(p1) due to Property 1. If ps € V3, p3 can detect the path due to Property 3. If
ps € Va, for each node v € N(py1) N Vi, v € N(p2) N N(p3). If (pg,v) € E or (ps,v) € E,
v can detect the path. Otherwise {p1,v, ps, ps,ps} is an induced Ps. p3 can detect this
path as follows. Since p3 knows (p1,p2) € Fpaq and (v, Ps) ¢ E, p3 can conclude that
(p1,p5) ¢ E due to Property 4.

Case 2: py € V;. If p5 € Vi, then p3 can detect the path due to Property 1. Assume
ps € V. Fix arbitrary node v € N(p1) N N(p2) N N(p3) N V. If ps € N(v), then v can
detect the path. Otherwise, ps knows that ps ¢ N(v) and (ps,ps) ¢ E. p3 can detect the
path since p3 can verify that (p1,ps) ¢ E due to Property 4.

Case 3: py € V3. If p5 € V3, then p3 can detect the path since py, p2 do not have a neighbor
in V3. Assume ps € V3. Fix arbitrary node v € N(p1) N N(p2) N N(ps). If ps € N(v),
then v can detect the path. Otherwise, ps knows that ps ¢ N(v). From Property 4, we
have ps ¢ N(p1) U N(p2). ps can detect the path.

Therefore, any induced P; that contains exactly one edge from Fj,gq can be detected by some

node.

51:11

ISAAC 2025

51:12

Distributed Complexity of Py-Freeness: Decision and Certification

Now we consider a path {(pi, pis1)}ic{1,2,3,4) containing at least two edges from Fyquq.
If there are two consecutive bad edges in the path, (p;, pit1), (Pi+1, Pi+2), there is a node
uw € ViNN(p;) N N(pit1) N N(pit2) from Property 1. u is also connected to p;y3 when i < 2
or p;—1 when ¢ > 2. u can detect the path. The remaining case is the path containing two
bad edges that are not consecutive. We have two distinct cases.

Case 4: (p1,p2), (P3,Pa) € Fpaa. From Property 1 and Property 4, there is a node u €
N(p1) N N(p2) N N(p3) N N(ps) who can detect the path.

Case 5: (p1,p2), (P4, Ps) € Fpaa. This is similar to a subcase of Case 1. For each node
v € N(p1) N Vi, v € N(p2) N N(ps3). If (pg,v) € E or (ps,v) € E, v can detect the
path. Otherwise {p1, v, p3, P4, p5} is an induced Ps. ps can detect this path as follows.
Since p3 knows (p1,p2) € Fpeq and (v, P5) ¢ E, p3 can conclude that (p1,ps5) ¢ E due to
Property 4. <

» Lemma 24. Assume that no node rejects in Peojiect- If G contains an induced Ps with at
least one edge from E3 3, then there is a node that detects an induced Ps.

Proof. We write {(p:,pit+1)}icf1,2,3,4) be the four edges constructing some induced Ps.
Consider that (p2,p3) € Es 3 for instance. p1,py € V3 since Condition 4 of Pjlect does
not hold. Similarly, since (ps,ps) € Es3 we have ps € V3. Therefore there exists v €
N(p1) N N(p2) N N(p3) N N(ps) N N(ps) N Vo that can detect the path. The analysis of the
other cases is done in the same way — we can show that all path edges are from Fjs 3. <

Given Lemmas 23 and 24, we can detect any induced P that involves edges from Fy,q U E3 3.

Our focus now shifts to the detection of an induced Ps solely composed of edges from
E\(Fpeq U E33). In this context, we need to ensure that any Ps induced by E\(Fpeq U E3.3)
does not actually arise as an artifact of the removal of F.q U E3 3, but is genuinely induced
by E. To address this, we consider all five-node induced subgraphs of G. As illustrated in
Figure 1, there are exactly 17 distinct five-node patterns H = {Hj, ..., Hi7}, each containing
a P5 as a subgraph. See Figure 2 for the illustration.

We introduce the concept of a “dangerous” induced subgraph. An induced copy of H € ‘H
in the input network G = (V, E) is dangerous iff it induces a P5 in E\(Fpeq U E3 3).

» Lemma 25. Let H = {H;}ic;17) be a set of five-node graphs that contain Ps as a (non-
necessarily induced) subgraph as in Figure 1. Then, for any H € H, the number of induced
copies of H in the graph that are dangerous can be counted (by the node r) in O(n) rounds.

Proof. We first note that there is no dangerous copy of H € #H including edges from both
Fyqq and E3 3, since two endpoints of a bad edge do not have neighbors in V3 due to Property
3 of Fbad-

We consider the case of H; in Figure 1, i.e., 5-node cycles C5. Let

{(c1,¢2), (ca,c3), (c3,ca), (cayc5), (c5,c1)}

be five edges that form a dangerous Cs where (c5,¢1) € Fpaq and (¢;, ¢iy1) € E\ (FpeaU E3 3)
for i € {1,2,3,4}. Then, from Property 1 and Property 3 of Fyp,q, we can assume that
2, ¢4 € Va. Moreover, from Property 4 all the nodes in N(¢;)NV; = N(c5)NV; are neighbors
of ¢3 and ¢4. Let u be the node in N(c1) NVy = N(c5) N'Vy with minimum identifier. Then
u can detect the cycle as it knows all the neighbors of c1, ¢, ¢4, c5. Each node counts the
number of such cycles, and sends it to r. In this way, r can count the number of dangerous Cj
in the graph. Note that it is impossible to have (cs,c1) € E3 3 due to the fact that Condition
4 of Peoliect does not hold: If (c5,c1) € E3 3, then co,cq € V3. It contradicts the assumption
that (Cl, CQ) §é E373.

M. Miyamoto

For any other pattern graph from {Ha, ..., Hy7} illustrated in Figure 1, we can see that
at least one node of the pattern is connected to at least three other nodes of the pattern who
can detect the pattern. This completes the proof. |

Proof of Theorem 3. In O(n) rounds, we can compute the diameter of the graph [24]. If
the diameter exceeds 3, the network immediately rejects. If the diameter is two, we apply
Theorem 17, which establishes that Ps-freeness can be verified in O(nlog® n) rounds with
high probability. So we focus on the case where the diameter is exactly 3.

First, if the number of edges in the graph satisfies m < 400n log? n, the node r collects
all edges in O(m) rounds and decide if G is Ps-free. Otherwise, the network runs Peojiect in
O(n) rounds. Assuming Peollect does not reject, r knows all the edges in E\(Fpeq U E33) as
E39\E22 = Fya.

Next, we assume that there is no induced P; that contains at least one edge from
Fieqa U B3 3 as such a P5 can be detected by some node due to Lemma 23 and Lemma 24.

For each H; € H, the node r counts the number of induced copies of H; that are dangerous
as in Lemma 25. Let ¢(H;) be the count and let t =, (7 t(H;) be the sum of them.

Finally, r counts the number of Ps’s induced by E \ (Fpea U E33). If it is equal to ¢,
we can conclude that G is Ps-free as removing Fi,q U E3 3 from G increases the number of
induced Ps’s by t. Otherwise, if the count is strictly larger than ¢, G is not Ps-free. <

4.3 Local certification of P;-freeness

We use the following standard technique.

» Lemma 26. Let G = (V, E) be an n-node connected graph, and T be a spanning tree rooted
at arbitrary node t. For each u € V, let a(u) € [poly(n)] be an integer assigned to u. Then,
there is a PLSy that computes), .y, a(u) with certificates of size O(logn).

Proof. Let T}, be a subtree of T rooted at u. The certificate to u consists of two O(log n)-bit
values b and b(u). If u is a leaf, u rejects when a(u) # b(u). If u is not a leaf, u rejects when
b(u) # a(u) + 3-, e N(uwynr, b(v). The root node ¢ rejects when b # b(t). If no node rejects,

b="> ey alu). <

Proof of Theorem 4. We first describe the certificates and then explain the verification
process and its correctness.

The certification comprises the following components, each represented by O(nlogn) bits.
We assume that \/m/n is an integer (otherwise, we use [y/m/n]).

Neighbors: For each node u, Neighbors(u) consists of a set of neighbors of w.

Diameter: Diameter(u) consists of a BFS tree starting from w.

SpanningTree: SpanningTree(u) describes a spanning tree rooted at the node with maxi-

mum degree, denoted r. Thus, it is identical to Diameter(r).

Partition: Partition(u) provides a partition of nodes. The prover divides V into /m/n

subsets V = {Vi}ie[m] so that the number of edges between Vi and V7 is O(n) for all

i,j € [v/m/n]. This partition exists due to Lemma 16. Partition(u) includes the partition
VY and a set containing all the neighbors of r in ascending order with respect to their
IDs. Additionally, Partition(u) includes encoded values in O(logn)-bit: e 2, Mped, M2,3,
ms.3, Ma2(1), Mpga(w), ma 3(uw), ms 3(u). These values are used to verify the size of edge
subsets. Finally, Partition(u) includes, for each H € H, the numbers ¢(H) and ¢, (H).
These values are used to count the number of dangerous copy of H in the graph.

51:13

ISAAC 2025

51:14 Distributed Complexity of Py-Freeness: Decision and Certification

Figure 1 All different 5-node graphs that contain a Ps as a subgraph.

M. Miyamoto

Lo L 0 &

Figure 2 An illustration of H that contains exactly one bad edge considered in Lemma 25. Thick
edges represent bad edges. For instance, an induced C5s (the leftmost graph) contains exactly one
edge from Fyaq U Es3 3, and the remaining edges from E\(Fyeq U E3,3), then removing Fyeq U E3 3
from the graph creates a new induced Ps.

Edges: Let vi be the neighbor of r whose degree is the k-th largest among all the
neighbors of r for k € [m/n]. Edges(vy) then contains O(nlogn)-bit descriptions of all
edges between V? and V7 where k =i+ (j — 1)\/m/n.

Verification

Diameter is used to certificate the graph diameter is at most 3. This is done by checking the
structure of the trees as in [7].

Certifying the partition of nodes and edges. FEach node u checks that the partition of
nodes and the set representing all the neighbors of 7 in ascending order with respect to their
IDs written in Partition(u), and the spanning tree written in SpanningTree(u) are the same
as of its neighbors, so that all nodes agree the same partition, and the distance from r for all
nodes. Now, given a partition of nodes in Partition and the spanning tree in SpanningTree,
endpoints of each edge e determine which subset of

E11UFE15UFs5U FyqUFa3U F3 3

the edge e belongs to. Next, each node computes the sizes of edge sets |Ey 1], |E1 2], |E2,2|,
|Foadl, |E2,3], |E3,3| using the protocol of Lemma 26 and the values written in Partition as
follows: For example, we can compute |Es 3| by setting b = |Ej 3], b(u) = ma 3(u), and a(u)
be the number of edges in Es 3 incident to wu.

Certifying the assigned edges. Let v, be the neighbor of r that has the k-th minimum ID

among all the neighbors of r. Since all nodes agree on the set representing all the neighbors

of r in ascending order with respect to their IDs, all nodes know which is vg. For each vy, the

validity of Edges(vy) can be checked as follows. First, each vy checks if the following holds.

1. Edges(vy) C EN (Vi x VI) for k =i+ (j — 1)y/m/n. vy can check this since all nodes
agree on the partition V.

2. For each edge e € Edges(vg), at least one of its endpoints is at most distance 2 from wvy.

vk can check this since vy, knows nodes with distance 2 from vy by looking at Neighbors

of its neighbors.
If these conditions do not hold then vy rejects. Each neighbor u of v, rejects if Edges(vy)
contains non-edge that includes v’ for some v’ € N(u) by looking at Neighbors(u’). This
ensures that the edge set Edges(vy,) is indeed the set of edges between V¢ and V7 such that
at least one of the endpoints are a 2-hop neighbor of v,. Each node then checks whether
the four conditions described in Pegject hold: r checks Condition 1, and each node u checks
Condition 2,3, and 4 for each edge (u,v). If any condition holds, the network rejects. This
part of verification ensures that r learns E\(Fpqq U E3.3).

51:15

ISAAC 2025

51:16

Distributed Complexity of Py-Freeness: Decision and Certification

Detecting an induced P;5 containing Fpoq U E3 3. Assuming Conditions 1-4 of Peoject
are not met, some node can now detect an induced Ps that contains at least one edge from
Fraq U Es 3 if exists, as in Lemma 23 and Lemma 24 since all necessary information from
Peoliect 18 included in its certificate or the certificates of its neighbors.

Detecting an induced P; solely composed of E\(Fpqq U E33). The final components
of Partition(u) are used to count the number of dangerous H for H € H, as described in
Lemma 25. This is accomplished using Lemma 26 as follows. For simplicity, let us consider
the case of induced C5 (H; in Figure 1). In our CONGEST algorithm, as in the proof of
Lemma 25, for each such cycle, the node in V; with minimum identifier that is incident to
the cycle detects it, and report the number of detected cycles to the node r through the
BF'S tree to compute the entire number of dangerous C5’s in the graph. Setting b = ¢(Hy),
b(u) = ¢, (H1), and a(u) be the number of dangerous C5’s detected by u in Lemma 26, we
can certify it. r then determines the number of Ps’s that increase by removing Fy,q U Es 3
(i.e., the number of dangerous copies of H for all H € H) and compares this with the number
of induced Ps’s in (V, E\(Fpea U E3,3)). Based on this comparison, r can decide if G is
Ps-free. <

5 Lower bounds for P.-freeness

5.1 Proof of Theorem 5

Our proof leverages a reduction from the three-party nondeterministic communication
complexity of the set-disjointness problem in the number-on-forehead (NOF) model. In this
model, each player sees the inputs of the other two players but not their own. The players
communicate by writing bit strings on a shared blackboard, and the communication cost of
the protocol is the total number of bits written.

As a first step, we use the reduction from set-disjointness to triangle-freeness established
by Drucker et al.[13]. The key graph used in their reduction is a tripartite graph Grs =
(AU BUC, FE) where (1) |A| = |B| = n and |C| = n/3 for arbitrary integer n; (2) Ggrs
contains t = eo(”ﬁ triangles T = {T1,...,T:}; (3) each edge of the graph belongs to
exactly one triangle. This graph construction relates to the Ruzsa—Szemerédi problem[26] in
extremal graph theory and has been well studied.

For X4, Xp, Xc € {0,1}, we define G(X 4, Xp, X¢) as the graph obtained by removing
edges from Grg as follows. Let T; = (ea,ep,ec) be a triangle such that e4 is an edge
between B and C, ep is an edge between A and C, and e¢ is an edge between A and B. For
P € {A, B,C}, we remove the edge ep iff the i-th bit of Xp is 0.

We then construct another graph G*(Xa, Xp,X¢) as follows. This construction is
obtained by tweaking the construction in [12, 34]. Let G(X4, X5, X¢) be the complement
graph of G(X 4, Xp, X¢). For each node u in G(X4, Xp, X¢), we have a triangle uy, us, u3
in G*(Xa,Xp,Xc). We add edges (u;,v;) for all i € {1,2,3}. For each edge (u,v) in

G(Xa,XB,Xc), we add edges (u;,v;) forall 4,5 € {1,2,3} in G*(X 4, X, X¢). Additionally,

there are two extra nodes z,y. z is connected to uy and us for all u € V(G(X 4, X5, X¢)).

y is connected to ug and ug for all u € V(G(Xa, Xp, Xc)). Thus, the number of nodes in
G*(XA,XB,Xc) is O(n)

» Lemma 27. G*(X 4, Xp, X)) contains an induced Ps if and only if X4, Xp and X¢ are
not disjoint.

M. Miyamoto

Proof. Suppose that there is an index ¢ such that the i-th bit of X 4, Xp and X¢ are all 1.
Then we have a triangle T; in the graph G(X 4, Xp, X¢) and thus have an independent set
{u,v,w} of size 3 in G(Xa, Xp, Xc). {u1,z,ve,y,ws} induces Ps in G*(X4, Xp, X¢).
Conversely, assume that G*(X 4, Xp, X¢) contains an induced Ps. Let us focus on an
independent set of size 3 in the path. The set does not contain = and y at the same time,
since each other node is connected at least one of x and y. Moreover, the set cannot contain
x, as otherwise the other two nodes are written ug and vz, but it is impossible since u3 and
vg are always connected. A similar contradiction occurs if the set contains y. Therefore three
nodes in the set are written uy, va, wz. From the construction u,v,w in G(Xa, Xp, X¢) is
an independent set. This means that X 4, Xp and X are not disjoint. |

We are now ready to prove Theorem 5.

Proof of Theorem 5. Suppose that Ps-freeness can be certified with certificates of size s. We
construct a non-deterministic communication protocol for set-disjointness with communication
complexity O(ns). Suppose that Alice, Bob, and Charlie, who receive the inputs X4, Xp,
and X¢, respectively, simulate G*(X 4, Xp, X¢) as follows:
For all u € A in G(X 4, X, X¢), Alice simulates nodes wuy,uz, u3 in G*(Xa, X, X¢).
For all u € B in G(Xa, Xp, Xc), Bob simulates nodes u1, uz, uz in G*(Xa, X5, Xc).
For all u € C' in G(X 4, Xp, X¢), Charlie simulates nodes u1, uz,u3 in G*(Xa, Xp, X¢).
All players simulates x and y.
Since the incident edges of simulated nodes by each player are independent from its input,
each player can construct the inputs of its simulated nodes locally. Then the players simulate
the certification for Ps-freeness. Since the certificate size is s and each player simulates O(n)
nodes, the length of the certificates for each player is O(ns). In order to determine the
outputs of the simulated nodes, each player writes its certificates to the shared blackboard.

From Lemma 27, the players can compute set-disjointness of size OL We now obtain
cO(logn)

5= (M%) = Q(n'~°M) as desired by the nondeterministic multiparty communication
complexity of set-disjointness in the number-on-forehead model [37]. To extend the lower
bound for larger locality, we just replace edges incident to = and y by longer paths. Thus we
can increase the locality by 1 at the cost of increasing the path length by 4. |

5.2 Lower bounds for P.-freeness: general k
Technical challenges and the general proof idea for Theorem 6

We use a standard reduction from two-party set-disjointness function for the proof of
Theorem 6 (and Theorem 7). Alice and Bob jointly construct some graph which depends on
their inputs so that the constructed graph is Py-free iff the output of some function (in our
case, the set-disjointness function) is 1.

The main challenge in this proof is to ensure that the cut of the constructed graph (i.e.,
the number of edges between nodes held by Alice and those held by Bob) is as sparse as
possible. This was not an issue in the proof of Theorem 5, which uses the non-deterministic
communication complexity of the NOF model or in the proof of the lower bound given
in [2], which uses counting arguments. In fact, the constructions used in these proofs do not
achieve a sparse cut, making them unsuitable for the proof of Theorem 6 that holds for the
CONGEST model.

Fortunately, in the simplest case where d > 3, we can utilize the construction from
Ref. [29] with a slight modification, taking advantage of the graph structure that holds for all
d > 3. However, for the cases where d = 1 and d = 2, the construction from Ref. [29], which

51:17

ISAAC 2025

51:18

Distributed Complexity of Py-Freeness: Decision and Certification

is applicable to induced k-cycles for every k > 4, fails for induced k-paths. This is intuitively
because we lose several symmetric properties of induce k-cycles by removing one edge from
the cycle. We thus construct two other graph families from scratch. The main challenge in
establishing these constructions is that both edges and non-edges must be carefully chosen to
avoid creating unexpected induced k-paths. Our proof requires a detailed analysis to ensure
this, as the general structure valid for d > 3 does not apply for d < 2.

6 Ordered path detection and applications

In this section, we address the problem of detecting an ordered Pj. In this problem, each
node of the graph is assigned a color from {1,...,k}, and the objective is to detect an
induced path {(ps,pit1)}ieq1,... k—13 on k nodes {p,...pr}, where each node p; is colored
with 4. Our first result is that detecting an ordered P; is already challenging, unlike the case
of Pj-freeness where we only know nontrivial lower bound for £ > 11 as in Theorem 6.

» Theorem 28. Any randomized algorithm that solves ordered Py detection for k > 5 requires
Q(n) rounds in the CONGEST model.

The proof of this theorem leverages a reduction from two-party communication complexity,
with a construction that is notably simpler compared to the proof of Theorem 6. The detailed
proof is provided in the full version.

Our next insight regarding ordered path detection is the connection between proving
non-trivial lower bounds for ordered P; detection and a long-standing open problem in circuit
complexity.? Moreover, this result has implications for the detection of induced Cj in the
quantum CONGEST model. Specifically, the following problem has remained unresolved for
decades:

» Open Problem 1. Construct an explicit family of boolean functions f, : {0,1}"™ — {0,1}
such that there exist constants d1,02 > 0 such that any family of circuits {Cy, }nen, where
each circuit Cy, is depth O(n®') and consists of O(n'*2) gates with constant fan-in and
fan-out, cannot compute {fn}nen-

The following theorem formalizes this relationship:

» Theorem 29 (The formal version of Theorem 12). Let e > 0 be a constant. Then proving
Q(n®) lower bound for ordered Ps detection in the CONGEST model or Q(n'/?%¢) lower bound
for induced Cy detection in the quantum CONGEST model solves Open Problem 1.

» Remark 30. One might think that ordered P3 detection can be solved in O(1) rounds as
the case of Ps-freeness. However, it is easily shown that the round complexity of ordered
Ps detection in the CONGEST model is actually at least the round complexity of triangle
detection in the congested clique model: Let G’ be the graph resulting by deleting all edges
in the input graph G between a node colored by 1 and a node colored by 3, and replacing
non-edges between them by edges. Then any CONGEST algorithm for ordered P3 detection
is simulated in the congested clique model with the input graph G’ where each ordered P3 in
G corresponds to a multicolored triangle in G’. Note that multicolored triangle detection
can be reduced to (the standard) triangle detection in this model [34].

2 This kind of connection is already known for several subgraphs such as triangles and 6-cycles [15, 14].

M. Miyamoto

Proof sketch of Theorem 29. The first part of the statement builds on the known hardness
results for triangle detection (and counting) established by [14]. We demonstrate that ordered
P;3 detection is at least as difficult as certain variants of triangle counting or ordered Pj
counting in high-conductance graphs. The full proof is deferred to the full version.

For the second part, we use the framework of distributed quantum search [30]. Consider
a function f : X — {0,1} defined on some finite set X, and assume a T-round CONGEST
algorithm allows a fixed node u to output f(z) with constant probability, given input z € X.
In the quantum CONGEST model, we can find an element x € X such that f(z) = 1 (if such
an element exists) with constant probability in O(/]X| - T) rounds.

Now, assume that ordered Ps detection can be solved in T rounds in the CONGEST
model. We can show that induced Cy detection can be solved in O(y/n - T) rounds in the
quantum CONGEST model. The statement then follows from the first part of the theorem,
as an Q(n'/?+¢) lower bound for induced Cy detection implies an (n°) lower bound for
ordered Ps5 detection.

Specifically, let u be an arbitrary node, and define M (u) = {v : dist(u,v) = 2}. Consider
the subgraph G[N(u) U M (u)] induced by N(u) and M (u). Nodes in M (u) are colored
with color 2, while nodes in N(u) randomly choose their color from 1 and 3. Note that
G[N (u)U M (u)] contains an ordered Ps (p1,p2,ps) if G contains an induced Cy (u,p1,p2, p3).
Since p; and ps randomly choose their colors, the probability that (p1,p2,ps) is properly
colored is constant. Therefore, in O(T") rounds, we can determine if u belongs to an induced
Cy4. By using distributed quantum search for a function f : V' — {0,1}, which outputs
f(u) =1 if and only if u belongs to an induced Cy, we can solve induced Cy4 detection in
O(y/n - T) rounds. <

—— References

1 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. Journal of the ACM (JACM),
42(4):844-856, 1995. doi:10.1145/210332.210337.

2 Nicolas Bousquet, Linda Cook, Laurent Feuilloley, Théo Pierron, and Sébastien Zeitoun.
Local certification of forbidden subgraphs. arXiv preprint arXiv:2402.12148, 2024. doi:
10.48550/arXiv.2402.12148.

3 Nicolas Bousquet, Laurent Feuilloley, and Théo Pierron. Local Certification of Graph
Decompositions and Applications to Minor-Free Classes. In 25th International Confer-
ence on Principles of Distributed Systems (OPODIS 2021), pages 22:1-22:17, 2022. doi:
10.4230/LIPIcs.0PODIS.2021.22.

4 Nicolas Bousquet and Sébastien Zeitoun. A subquadratic certification scheme for p5-free
graphs. Theoretical Computer Science, page 115091, 2025. doi:10.1016/J.TCS.2025.115091.

5 Christoph Brause, Ingo Schiermeyer, Premysl Holub, Zdenék Ryjacek, Petr Vrdna, and
Rastislav Krivos-Bellus. 4-colorability of Ps-free graphs. Electronic Notes in Discrete Mathe-
matics, 49:37-42, 2015.

6 Keren Censor-Hillel, Frangois Le Gall, and Dean Leitersdorf. On distributed listing of cliques.
In Proceedings of the 39th Symposium on Principles of Distributed Computing, pages 474-482,
2020. doi:10.1145/3382734.3405742.

7 Keren Censor-Hillel, Ami Paz, and Mor Perry. Approximate proof-labeling schemes. Theoretical
Computer Science, 811:112-124, 2020. doi:10.1016/J.TCS.2018.08.020.

8 Yi-Jun Chang, Seth Pettie, and Hengjie Zhang. Distributed triangle detection via expander
decomposition. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 821-840. STAM, 2019. doi:10.1137/1.9781611975482.51.

9 Yi-Jun Chang and Thatchaphol Saranurak. Improved distributed expander decomposition
and nearly optimal triangle enumeration. In Proceedings of the 2019 ACM Symposium on
Principles of Distributed Computing, pages 66—73, 2019. doi:10.1145/3293611.3331618.

51:19

ISAAC 2025

https://doi.org/10.1145/210332.210337
https://doi.org/10.48550/arXiv.2402.12148
https://doi.org/10.48550/arXiv.2402.12148
https://doi.org/10.4230/LIPIcs.OPODIS.2021.22
https://doi.org/10.4230/LIPIcs.OPODIS.2021.22
https://doi.org/10.1016/J.TCS.2025.115091
https://doi.org/10.1145/3382734.3405742
https://doi.org/10.1016/J.TCS.2018.08.020
https://doi.org/10.1137/1.9781611975482.51
https://doi.org/10.1145/3293611.3331618

51:20

Distributed Complexity of Py-Freeness: Decision and Certification

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Derek G Corneil, Helmut Lerchs, and L Stewart Burlingham. Complement reducible graphs.
Discrete Applied Mathematics, 3(3):163-174, 1981. doi:10.1016/0166-218X(81)90013-5.
Pierluigi Crescenzi, Pierre Fraigniaud, and Ami Paz. Trade-Offs in Distributed Interactive
Proofs. In 38rd International Symposium on Distributed Computing (DISC 2019), pages
13:1-13:17, 2019. doi:10.4230/LIPICS.DISC.2019.13.

Mina Dalirrooyfard, Thuy Duong Vuong, and Virginia Vassilevska Williams. Graph pattern
detection: Hardness for all induced patterns and faster non-induced cycles. In Proceedings of
the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 1167-1178, 2019.
doi:10.1145/3313276.3316329.

Andrew Drucker, Fabian Kuhn, and Rotem Oshman. On the Power of the Congested Clique
Model. In Proceedings of the 2014 ACM symposium on Principles of distributed computing
(PODC 2014), pages 367376, 2014. doi:10.1145/2611462.2611493.

Talya Eden, Nimrod Fiat, Orr Fischer, Fabian Kuhn, and Rotem Oshman. Sublinear-time
distributed algorithms for detecting small cliques and even cycles. Distributed Computing,
pages 1-28, 2022.

Orr Fischer, Tzlil Gonen, Fabian Kuhn, and Rotem Oshman. Possibilities and impossibilities
for distributed subgraph detection. In Proceedings of the 30th on Symposium on Parallelism
in Algorithms and Architectures, pages 153-162, 2018. doi:10.1145/3210377.3210401.

Pierre Fraigniaud, Magl Luce, Frederic Magniez, and Ioan Todinca. Even-cycle detection in
the randomized and quantum congest model. In Proceedings of the 43rd ACM Symposium on
Principles of Distributed Computing (PODC 2024), pages 209-219, 2024.

Pierre Fraigniaud, Frédéric Mazoit, Pedro Montealegre, Ivan Rapaport, and Ioan Todinca.
Distributed certification for classes of dense graphs. In Proceedings of the 37th International
Symposium on Distributed Computing (DISC 2023), pages 20:1-20:17, 2023. doi:10.4230/
LIPICS.DISC.2023.20.

Pierre Fraigniaud, Pedro Montealegre, Ivan Rapaport, and Ioan Todinca. A meta-
theorem for distributed certification. Algorithmica, 86(2):585-612, 2024. doi:10.1007/
S00453-023-01185-1.

Pierre Fraigniaud and Dennis Olivetti. Distributed detection of cycles. ACM Transactions on
Parallel Computing (TOPC), 6(3):1-20, 2019. doi:10.1145/3322811.

Peter Gartland and Daniel Lokshtanov. Independent Set on Pg-Free Graphs in Quasi-
Polynomial Time. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science
(FOCS), pages 613-624. IEEE, 2020.

Gaston H Gonnet. Expected length of the longest probe sequence in hash code searching.
Journal of the ACM (JACM), 28(2):289-304, 1981. doi:10.1145/322248.322254.

Andrzej Grzesik, Tereza Klimosova, Marcin Pilipczuk, and Michat Pilipczuk. Polynomial-time
algorithm for maximum weight independent set on Ps-free graphs. ACM Transactions on
Algorithms (TALG), 18(1):1-57, 2022. doi:10.1145/3414473.

Chinh T Hoang, Marcin Kaminski, Vadim Lozin, Joe Sawada, and Xiao Shu. Deciding
k-colorability of Ps-free graphs in polynomial time. Algorithmica, 57:74-81, 2010. doi:
10.1007/S00453-008-9197-8.

Stephan Holzer and Roger Wattenhofer. Optimal distributed all pairs shortest paths and
applications. In Proceedings of the 2012 ACM symposium on Principles of distributed computing,
pages 355-364, 2012. doi:10.1145/2332432.2332504.

Jarkko Kari, Martin Matamala, Ivan Rapaport, and Ville Salo. Solving the induced subgraph
problem in the randomized multiparty simultaneous messages model. In International Collo-
quium on Structural Information and Communication Complezxity (SIROCCO 2015), pages
370-384, 2015. doi:10.1007/978-3-319-25258-2_26.

Janos Komlés and Miklés Simonovits. Szemeredi”s regularity lemma and its applications in
graph theory, 1995.

https://doi.org/10.1016/0166-218X(81)90013-5
https://doi.org/10.4230/LIPICS.DISC.2019.13
https://doi.org/10.1145/3313276.3316329
https://doi.org/10.1145/2611462.2611493
https://doi.org/10.1145/3210377.3210401
https://doi.org/10.4230/LIPICS.DISC.2023.20
https://doi.org/10.4230/LIPICS.DISC.2023.20
https://doi.org/10.1007/S00453-023-01185-1
https://doi.org/10.1007/S00453-023-01185-1
https://doi.org/10.1145/3322811
https://doi.org/10.1145/322248.322254
https://doi.org/10.1145/3414473
https://doi.org/10.1007/S00453-008-9197-8
https://doi.org/10.1007/S00453-008-9197-8
https://doi.org/10.1145/2332432.2332504
https://doi.org/10.1007/978-3-319-25258-2_26

M

27

28

29

30

31

32

33

34

35
36

37

. Miyamoto

Janne H. Korhonen and Joel Rybicki. Deterministic Subgraph Detection in Broadcast CON-
GEST. In Proceedings of the 21st International Conference on Principles of Distributed
Systems (OPODIS 2017), pages 4:1-4:16, 2018. doi:10.4230/LIPIcs.0PODIS.2017.4.

Amos Korman, Shay Kutten, and David Peleg. Proof labeling schemes. Distributed Computing,
22(4)2157233,2010.doi:10.1007/500446—010-0095-3

Francois Le Gall and Masayuki Miyamoto. Lower Bounds for Induced Cycle Detection in
Distributed Computing. In 32nd International Symposium on Algorithms and Computation
(ISAAC 2021), pages 58:1-58:19, 2021. doi:10.4230/LIPICS.ISAAC.2021.58.

Francgois Le Gall and Frédéric Magniez. Sublinear-time quantum computation of the diameter in
CONGEST networks. In Proceedings of the 2018 ACM Symposium on Principles of Distributed
Computing (PODC 2018), pages 337-346, 2018. URL: https://dl.acm.org/citation.cfm?
1d=3212744.

Daniel Lokshantov, Martin Vatshelle, and Yngve Villanger. Independent set in Ps-free graphs
in polynomial time. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on
discrete algorithms, pages 570-581. STAM, 2014. doi:10.1137/1.9781611973402.43.

Zvi Lotker, Elan Pavlov, Boaz Patt-Shamir, and David Peleg. Mst construction in o (log log
n) communication rounds. In Proceedings of the fifteenth annual ACM symposium on Parallel
algorithms and architectures, pages 94—100, 2003. doi:10.1145/777412.777428.

Pedro Montealegre, Diego Ramirez-Romero, and Ivan Rapaport. Compact distributed interac-
tive proofs for the recognition of cographs and distance-hereditary graphs. In International
Symposium on Stabilizing, Safety, and Security of Distributed Systems (SSS 2021), pages
395-409, 2021. doi:10.1007/978-3-030-91081-5_26

Amir Nikabadi and Janne Korhonen. Beyond distributed subgraph detection: Induced
subgraphs, multicolored problems and graph parameters. In 25th International Conference on

Principles of Distributed Systems (OPODIS 2021), volume 217, 2022. doi:10.4230/LIPIcs.

0OPODIS.2021.15.

David Peleg. Distributed computing: a locality-sensitive approach. STAM, 2000.

Bert Randerath and Ingo Schiermeyer. 3-Colorability € P for Ps-free graphs. Discrete Applied
Mathematics, 136(2-3):299-313, 2004.

Anup Rao and Amir Yehudayoff. Simplified lower bounds on the multiparty communication
complexity of disjointness. In 30th Conference on Computational Complexity (CCC 2015).
Schloss-Dagstuhl-Leibniz Zentrum fiir Informatik, 2015. doi:10.4230/LIPIcs.CCC.2015.88.

51:21

ISAAC 2025

https://doi.org/10.4230/LIPIcs.OPODIS.2017.4
https://doi.org/10.1007/S00446-010-0095-3
https://doi.org/10.4230/LIPICS.ISAAC.2021.58
https://dl.acm.org/citation.cfm?id=3212744
https://dl.acm.org/citation.cfm?id=3212744
https://doi.org/10.1137/1.9781611973402.43
https://doi.org/10.1145/777412.777428
https://doi.org/10.1007/978-3-030-91081-5_26
https://doi.org/10.4230/LIPIcs.OPODIS.2021.15
https://doi.org/10.4230/LIPIcs.OPODIS.2021.15
https://doi.org/10.4230/LIPIcs.CCC.2015.88

	1 Introduction
	1.1 Background
	1.2 Our results
	1.2.1 Result 1: P_k-freeness for k = 4 and k = 5
	1.2.2 Result 2: P_k-freeness for general k
	1.2.3 Result 3: Ordered path detection and applications

	2 Preliminaries
	3 Algorithm for P_4-freeness
	4 Algorithm and certification for P_5-freeness
	4.1 Subgraph freeness in graphs with diameter two
	4.2 P_5-freeness in graphs with diameter three
	4.2.1 Algorithm for P_5-freeness in graphs with diameter three

	4.3 Local certification of P_5-freeness

	5 Lower bounds for P_k-freeness
	5.1 Proof of Theorem 5
	5.2 Lower bounds for P_k-freeness: general k

	6 Ordered path detection and applications

