
Local Routing on Ordered Θ-Graphs
André van Renssen #

The University of Sydney, Australia

Shuei Sakaguchi #

The University of Sydney, Australia

Abstract
The problem of locally routing on geometric networks using limited memory is extensively studied
in computational geometry. We consider one particular graph, the ordered Θ-graph, which is
significantly harder to route on than the Θ-graph, for which a number of routing algorithms are
known. Currently, no local routing algorithm is known for the ordered Θ-graph.

We prove that, unfortunately, there does not exist a deterministic memoryless local routing
algorithm that works on the ordered Θ-graph. This motivates us to consider allowing a small amount
of memory, and we present a deterministic O(1)-memory local routing algorithm that successfully
routes from the source to the destination on the ordered Θ-graph. We show that our local routing
algorithm converges to the destination in O(n) hops, where n is the number of vertices. To the best
of our knowledge, our algorithm is the first deterministic local routing algorithm that is guaranteed
to reach the destination on the ordered Θ-graph.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Ordered Θ-graph, Local routing, Computational geometry

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2025.52

Related Version Full Version: https://arxiv.org/abs/2506.16021

Funding André van Renssen: This research was partially funded by the Australian Government
through the Australian Research Council (project number DP240101353).

1 Introduction

A geometric network G = (V, E) is a weighted graph where each vertex v ∈ V is a point
in the Euclidean plane R2 and each edge (u, v) ∈ E is a straight line segment, connecting
u ∈ V and v ∈ V , weighted by the Euclidean distance |uv|. We define the weighted distance
δG(u, v) between two vertices u and v on G to be the sum of the weights of the edges along
the weighted shortest path from u to v in G.

A subgraph H = (V, E′) of a geometric network G = (V, E) is called a c-spanner of G, if,
for every pair of vertices s, t ∈ V , we have δH(s, t) ≤ c · δG(s, t), where c ∈ R≥1. Here, G

is called the underlying network of H. The smallest constant c such that H is a c-spanner
of G is called the spanning ratio or stretch factor of H. We consider the situation where
the underlying network G is the complete Euclidean graph of V – i.e., a c-spanner H of G

approximates the Euclidean distance |st| = δG(s, t) between any pair of points s, t ∈ V by a
constant factor c. The spanning ratio of a class of spanners G is the spanning ratio of the
worst-case instance G ∈ G maximizing the spanning ratio. See the textbook by Narasimhan
and Smid [15] and the survey by Bose and Smid [9] for a comprehensive overview of spanners
and their open problems.

The study of geometric spanners is closely related to the design and analysis of efficient
routing algorithms that forward a message between a pair of vertices. Given a source vertex
s and a target vertex t on a graph G, a routing algorithm aims to find a short path from s to
t. If the information of the entire graph can be known and kept track during routing, several

© André van Renssen and Shuei Sakaguchi;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Algorithms and Computation (ISAAC 2025).
Editors: Ho-Lin Chen, Wing-Kai Hon, and Meng-Tsung Tsai; Article No. 52; pp. 52:1–52:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:andre.vanrenssen@sydney.edu.au
https://orcid.org/0000-0002-9294-9947
mailto:ssak8528@uni.sydney.edu.au
https://orcid.org/0009-0008-3698-6090
https://doi.org/10.4230/LIPIcs.ISAAC.2025.52
https://arxiv.org/abs/2506.16021
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

52:2 Local Routing on Ordered Θ-Graphs

classical path-finding algorithms, including Dijkstra’s algorithm [11] and the Bellman-Ford-
Moore algorithm [14], can be used on spanners to find a short path. However, when we have
restricted knowledge of the graph and limited memory, the routing problem becomes more
challenging.

A routing algorithm is called h-local if it only knows the h-neighbourhood of the current
vertex u and the information of the destination t, where the h-neighbourhood of u is the set
of vertices that can be reached from u by taking at most h distinct edges in the graph. A
routing algorithm is called m-memory if a memory of size m is stored with the message of
routing.1

Two major classes of local routing algorithms have been actively researched in the
literature: (1) deterministic 1-local memoryless routing algorithms and (2) deterministic
1-local O(1)-memory routing algorithms. Borrowing the notation used by Bose et al. [2],
these two classes of local routing algorithms can be formalised as follows:

A deterministic 1-local memoryless routing algorithm on a graph G = (V, E) is a routing
function f : V × V × P(V) → V , where P(·) denotes the power set. We express the
parameters of the function as f(u, t, N(u)), where u ∈ V is the “current” vertex during
routing (i.e., u currently holds the message we want to route from the source to the
destination), t ∈ V is the destination vertex, and N(u) ⊆ V is the 1-neighbourhood of u

(which simply means the set of immediate neighbours of u). The output of the routing
function with the given parameters, v = f(u, t, N(u)) ∈ N(u), is the neighbour of u to
which the message is forwarded.
A deterministic 1-local O(1)-memory routing algorithm on a graph G = (V, E) is a routing
function g : V × V × P(V)× I → V , which is similar to the routing function f above,
except the parameters of the function g(u, t, N(u), i) has an additional parameter i ∈ I,
modelling some information stored in the constant-sized memory of g that can be used to
make routing decisions.

A routing algorithm performed on a graph H is called c-competitive with respect to
the underlying network G if the total weight of the path traveled by the routing algorithm
between any pair of vertices in H is at most c times the total weight of the shortest path in
G [4]. The minimum possible value c for which the given routing algorithm is c-competitive
with respect to G is called the routing ratio of the routing algorithm in H.

The Θ-graph, introduced independently by Clarkson [10] and Keil [13], is a geometric
network studied extensively in the literature. Given a point set V ⊂ R2, the Θk-graph
G = (V, E) is defined and constructed as follows: For each vertex u ∈ V , we let equally
spaced k rays emerge from u, resulting in k cones, each with the aperture θ = 2π

k . For each
cone of every vertex u, we add an edge from u to the nearest neighbour v within that cone,
with distance measured along the bisector of the cone (see Figure 1).

It is known that Θk-graphs are spanners (see Table 1 for a summary). In addition, various
local routing algorithms with good routing ratios have been developed for Θk-graphs. A
prime example is Θ-routing, also known as cone-routing. Θ-routing from s to t on a Θk-graph
is defined as follows: Let u be the current vertex visited during the routing from s to t. If
there exists a direct edge from u to t, follow this edge. Otherwise, follow the edge to the
closest vertex in the cone of u containing t. This is repeated until the destination is reached.

1 In this paper, we use the standard real RAM model of computation used in computational geometry. In
this model, each machine word holds a real number or a O(log n)-bit integer (such as a pointer or an
index), and we assume that arithmetic operations (excluding the floor and ceiling functions for real
numbers) on machine words take O(1) time. Consequently, a O(1)-memory routing algorithm may store
O(log n) bits.

A. van Renssen and S. Sakaguchi 52:3

∆uv

u

v

w w′

v′

θ = 2π
k

Figure 1 The creation of an edge (u, v) during the construction of a Θk-graph. The orthogonal
projection v′ of v is the closest to u in the cone.

Θ-routing is known to be competitive when used on Θk-graphs for k ≥ 7. In addition to
Θ-routing, various local routing algorithms with good routing ratios have been developed for
Θ-graphs with smaller numbers of cones (see Table 1 for a summary).

Table 1 The current upper bounds on the spanning and routing ratio of Θk-graphs, with θ = 2π
k

.

Spanning Ratio Routing Ratio

Θ2 and Θ3 Not spanners [12] Not spanners [12]

Θ4 17 [3] 17 [3]

Θ5
sin (3π/10)

sin (2π/5)−sin (3π/10) [7] -

Θ6 2 [1] 2 [5]

Θ(4i+2) for i ≥ 2 1 + 2 sin (θ
2) [4] 1

1−2 sin (θ/2) [16]

Θ(4i+3) for i ≥ 1 cos (θ/4)
cos (θ/2)−sin (3θ/4) [4] 1 + 2 sin (θ/2)·cos (θ/4)

cos (θ/2)−sin (θ/2) [4]

Θ(4i+4) for i ≥ 1 1 + 2 sin (θ/2)
cos (θ/2)−sin (θ/2) [4] 1 + 2 sin (θ/2)

cos (θ/2)−sin (θ/2) [4]

Θ(4i+5) for i ≥ 1 cos (θ/4)
cos (θ/2)−sin (3θ/4) [4] 1 + 2 sin (θ/2)·cos (θ/4)

cos (θ/2)−sin (θ/2) [4]

Unfortunately, the Θ-graph has a number of undesirable properties, including potentially
a high maximum degree and a large diameter. The ordered Θ-graph alleviated these issues.
It was introduced by Bose et al. [6] in 2004 to achieve logarithmic maximum degree and
logarithmic diameter, in addition to the spanner property. An ordered Θk-graph is constructed
by inserting the vertices one by one and connecting each vertex to the “closest” previously
inserted vertex in each of the k cones.

However, achieving these additional properties comes at a price. For example, ordered
Θ-graphs with 4, 5, or 6 cones are not spanners [8], despite the fact that their unordered
counterparts are. In addition, ordered Θ-graphs have worse spanning ratios compared to
Θ-graphs. The best known upper bounds and lower bounds on the spanning ratio of ordered
Θk-graphs are summarized in Table 2.

Although we have good local routing algorithms for the Θ-graph, no local routing
algorithm is known for the ordered Θ-graph. A major obstacle is that even if there are
vertices in a cone, there may still not be any edges, due to the insertion order (see Figure 2).
This makes the ordered Θ-graph much more challenging to route on than the Θ-graph – for
example, Θ-routing fails on the ordered Θ-graph.

ISAAC 2025

52:4 Local Routing on Ordered Θ-Graphs

Table 2 The current upper and lower bounds on the spanning ratio of ordered Θk-graphs, with
θ = 2π

k
.

Upper Bound Lower Bound

Θ3, Θ4, Θ5, and Θ6 Not constant spanners [8] Not constant spanners [8]

Θ(4i+2) for i ≥ 2 1
1−2 sin (θ/2) [6] 1

1−2 sin (θ/2) [8]

Θ(4i+3) for i ≥ 1 1
1−2 sin (θ/2) [6] cos (θ/4)+sin (θ)

cos (3θ/4) [8]

Θ(4i+4) for i ≥ 1 1 + 2 sin (θ/2)
cos (θ/2)−sin (θ/2) [8] 1 + 2 sin (θ/2)

cos (θ/2)−sin (θ/2) [8]

Θ(4i+5) for i ≥ 1 1
1−2 sin (θ/2) [6] 1 + 2 sin (θ/2)·cos (θ/4)

cos (θ/2)−sin (3θ/4) [8]

v1

v2

v3

Figure 2 Three vertices v1, v2, and v3 are inserted in the order v1, v2, v3. When inserting v2, an
edge to v1 is added. When inserting v3, only an edge to v2 is added, resulting in v1 having vertex v3

in a cone with no edges.

2 Technical overview

Our contribution is twofold: First, we show why so far no deterministic memoryless h-local
routing algorithms have been found. Specifically, we prove that there does not exist a
deterministic memoryless h-local routing algorithm on the ordered Θk-graph, for h ≥ 1 and
k ≥ 2. We construct two ordered Θk-graphs Lk

h and Rk
h that cannot be distinguished in this

routing model, which implies that any such algorithm fails on one of Lk
h and Rk

h. By doing
so, we obtain the following theorem.

▶ Theorem 1. There is no deterministic memoryless h-local routing algorithm (for any
integer h ≥ 1) capable of finding a path between every pair of source vertex s and destination
vertex t on the ordered Θk-graph (for any integer k ≥ 2).

We then present a deterministic O(1)-memory 1-local routing algorithm A and prove
that it converges to the destination in O(n) hops (i.e., taking at most O(n) edges). Our
algorithm A(s, t) works in two phases: The first routes from the source s to the first inserted
vertex v1 by repeatedly moving to a neighbour with a smaller order. In the second phase,
our algorithm routes from v1 to the destination t by systematically exploring vertices that
might lead to t. By exploring “candidate” vertices in a systematic way, we ensure that we do
not need to keep track of the path. Instead, we can use a simple memoryless 1-local routing
algorithm we call ordered Θ-routing, which allows us to implicitly keep track of the vertices
we need to backtrack to by utilizing the geometric property of the ordered Θ-graph.

To prove that our algorithm A(s, t) converges, we consider the path P travelled by ordered
Θ-routing from t to v1 and show that our algorithm explores this path in the reverse direction.
By arguing that any vertex is explored at most once and backtracked from at most once, we
conclude that our algorithm reaches the destination in at most O(n) hops and O(kn) time.
Consequently, we obtain the following theorem.

A. van Renssen and S. Sakaguchi 52:5

▶ Theorem 2. Given an arbitrary source vertex s ∈ V and the destination vertex t ∈ V of an
ordered Θk-graph G = (V, E) (for an integer k ≥ 2), the algorithm A(s, t) is a deterministic
O(1)-memory 1-local routing algorithm which successfully routes from s to t in O(n) hops.
In particular, A(s, t) takes O(kn) time in the worst-case.

3 Preliminaries

Given a set of vertices V ⊂ R2 in the Euclidean plane, the ordered Θk-graph G = (V, E) is a
geometric network, with edges being undirected straight line segments, constructed as follows.
For each vertex u ∈ V , we define ρ(u) to be the order of insertion of u – i.e., if vi is the
i-th vertex inserted into G, for some positive integer i ≤ n, where n = |V |, we let ρ(vi) = i.
We incrementally insert the vertices from the first to the last according to the pre-defined
order ρ. Upon inserting each vertex u ∈ V , we partition the plane around u into k disjoint
regions, by projecting k equally spaced rays from u, such that the angle between each pair of
consecutive rays is θ = 2π

k (see Figure 3(a)). We define a cone Cu of u to be a region in the
plane between two consecutive rays originating from u. We orient the k cones such that the
bisector of one of them coincides with the vertical half-line through u lying above u. Let the
cone with such a bisector be Cu

0 , from which we start numbering the cones in clockwise order
around u. For the insertion of every other vertex v ∈ V , we orient and number the cones
around v in the same way. We write Cv

i to denote the i-th cone of v, for 0 ≤ i < k. We say
that v is the apex of Cv

i . We also define Cv(w) to be the cone of v containing a vertex w.

u

Cu
0

Cu
1

Cu
2

Cu
3

Cu
4

Cu
5

Cu
6

Cu
7

(a) (b)

Figure 3 (a) the numbered cones around u and (b) the edges created in each of them.

Upon the insertion of each vertex u ∈ V , an edge is created to the “closest” previously
inserted vertex in each cone Cu

i of u (see Figure 3(b)). More formally, an edge is created
from u to v if (1) u is the apex of the cone that contains v such that ρ(v) < ρ(u) and (2)
for every vertex w within the cone such that ρ(w) < ρ(u), |uv′| ≤ |uw′|, where x′ denotes
the orthogonal projection of a vertex x onto the bisector of the cone of u that contains
x. The canonical triangle ∆uv corresponding to an edge created from u to v is defined
by the boundary of the cone of u containing v and the line through v and its orthogonal
projection onto the bisector. It is important to note that only the vertices inserted before
u are considered for the edge creation process. This is why different orderings of vertex
insertions result in different ordered Θk-graphs, even if the vertex set is the same.

For the insertion of each vertex u ∈ V , we store its order ρ(u) on the vertex, in addition
to the x- and y-coordinates of u. Since 1 ≤ ρ(u) ≤ n (where n = |V |), storing the order ρ(u)
requires at most ⌈log n⌉ extra bits per vertex, fitting in a single machine word.

ISAAC 2025

52:6 Local Routing on Ordered Θ-Graphs

It is important to note that a canonical triangle of the ordered Θ-graph is not necessarily
empty, despite the fact that any canonical triangle in the Θ-graph is always empty of vertices
in its interior. This is because the vertices are inserted incrementally and we can always
insert a vertex in a canonical triangle between a pair of vertices previously inserted: Suppose,
during the construction of an ordered Θ-graph, we have just inserted a vertex v ∈ V with
order ρ(v) = k. Let v′ with order ρ(v′) < ρ(v) = k be the closest neighbour of a cone of v. At
this stage, the canonical triangle ∆vv′ is empty. However, we can insert the next vertex v′′

with order ρ(v′′) = k + 1 into the interior of ∆vv′, making the canonical triangle non-empty.
For simplicity, in order to avoid tie-breaking for edge creation, we assume that V is in

general position. Specifically, we will assume that, upon inserting each vertex during the
construction of the ordered Θ-graph, it is clear which vertices lie in which cone (i.e., no
previously inserted vertex lies on a boundary of a cone of the currently inserted vertex) and
it is clear which vertex is the “closest” in each cone of a vertex (i.e., no vertex w lies on the
boundary of the canonical triangle ∆uv of the current vertex u and a neighboring vertex v,
where w ̸= u and w ̸= v). This assumption can be removed using standard techniques.

4 Local Routing on Ordered Θk-graphs

In this section, we will show that no deterministic memoryless local routing algorithm
is guaranteed to reach the destination on the ordered Θk-graph, for any integer k ≥ 2
(Section 4.1). As this motivates us to allow a small amount of memory, we will then present a
deterministic O(1)-memory local routing algorithm that is guaranteed to reach the destination
(Section 4.2).

We first define an important operation used by local routing algorithms.

▶ Definition 3 (Hop). We define a hop to be a single move or a forwarding operation from
one vertex to its neighbour. Namely, taking a hop means we either (1) move from a vertex
u to another vertex v through an edge, or (2) forward a message from u to v via an edge
between them.

4.1 Impossibility result for memoryless local routing
We show that no deterministic memoryless local routing algorithm works on the ordered
Θ-graph. This impossibility result naturally motivates us to consider the next weakest class
of local routing algorithms – deterministic O(1)-memory 1-local routing algorithm.

▶ Theorem 1. There is no deterministic memoryless h-local routing algorithm (for any
integer h ≥ 1) capable of finding a path between every pair of source vertex s and destination
vertex t on the ordered Θk-graph (for any integer k ≥ 2).

Proof. We present two ordered Θk-graphs such that any deterministic memoryless h-local
routing algorithm A fails to route from s to t on one of these graphs. Each of these two
graphs has 2h + 3 vertices and 2h + 2 edges, forming a simple path (see Figure 4).

Intuitively, we design two graphs, where one has a path from s to t to the left of s and t

(Lk
h) and one to the right of s and t (Rk

h). By ensuring that these graphs are identical up to
h hops from s, no h-local routing algorithm can tell them apart, and since it is deterministic
and has no memory, it will always make the same choice at s, regardless of what path of the
graph it has explored in the past.

Formally, we specify the location of the 2h + 3 vertices of Lk
h as follows: v1 = (0, 0),

v2i = (i
h ,−iϵ) and v2i+1 = (− i

h ,−iϵ) for i ∈ {1, 2, . . . , h}, v2h+2 = (−2,−2hϵ), and v2h+3 =
(0,− 2

tan (θ/2) − 3hϵ). Note that the y-coordinate of v2h+3 is given in terms of θ, ϵ, and h

A. van Renssen and S. Sakaguchi 52:7

v1 = s
v2hv2h+1

v2h+2

Lk
h Rk

h

v2h+3 = t

v2h+2
v2h+1v2h

v1 = s

v2h+3 = t

Figure 4 A pair of ordered Θk-graphs where any deterministic memoryless h-local routing
algorithm fails on one of them.

such that all previously inserted vertices belong to C
v2h+3
0 . Here, ϵ is an arbitrarily small

non-negative real number, such that for j ∈ {2, 3, . . . , 2h + 3}, a cone of vj contains the
vertices vj′ for j′ ∈ {1, 2 . . . , j − 1}. In particular, if no boundary of the cones of a vertex u

coincides with the horizontal line through u, ϵ can simply be 0. We insert these vertices in
ascending order: v1 and then vj for j ∈ {2, . . . , 2h + 3}. The creation of Rk

h is very similar
to that of Lk

h. The only difference is that v2h+2 is placed at (2,−2hϵ) in Rk
h.

We set s to be v1 and t to be v2h+3 for both Lk
h and Rk

h, then we run A on both graphs.
Consider the current vertex u = s = v1 of routing. From the perspective of A, the local
configuration at v1 in Lk

h and the local configuration at v1 in Rk
h are indistinguishable: The

coordinate and ordering information of u = v1, t = v2h+3, and the h-neighbourhood of u = v1
are identical between both graphs. Hence, any deterministic memoryless h-local routing
algorithm A must make the same choice at v1 both in Lk

h and Rk
h. If A decides to forward the

message to v2 from v1, A can never reach v3 in Lk
h, since A always deterministically makes

the same choice at v1 to forward the message to v2 because the algorithm is memoryless,
thereby going back and forth between v1 and v2 indefinitely. Similarly, if A decides to forward
the message to v3 from s = v1, A cannot reach v2 and thus t on Rk

h. ◀

4.2 O(1)-memory local routing
Now that we know we cannot route locally without using some memory, we shift to having a
limited amount of it. In particular, our approach will store O(1) information.

Our algorithm works in two phases, first to the lowest order vertex v1 (Section 4.2.1) then
to t (Section 4.2.2). The first phase repeatedly moves from the current vertex to a neighbour
with a smaller order, which results in reaching v1 from s without knowing v1 in advance.
The second phase routes from v1 to t by systematically exploring vertices that might lead
to t while implicitly keeping track of the vertices we need to backtrack to by utilizing the
geometric property of the ordered Θ-graph.

4.2.1 Reaching vertex v1

We consider a special vertex in the graph G = (V, E) – the first inserted vertex v1 ∈ V with
ρ(v1) = 1. We can easily route from s to v1 using the following algorithm that we call Adown.

▶ Algorithm 1 (Adown(s)). Given a source s, we initialize the current vertex u to be s. Then,
we repeat the following process until we have u = v1: Pick v ∈ N(u) such that ρ(v) < ρ(u)
(if there are multiple options, pick an arbitrarily one among them, say the minimum) and
update u← v. Note that we do not know v1 in advance before reaching it.

Below, we analyze the correctness and complexity of Adown.

ISAAC 2025

52:8 Local Routing on Ordered Θ-Graphs

▶ Lemma 4. Given an arbitrary source vertex s ∈ V and the destination vertex being the
first inserted vertex v1 ∈ V of an ordered Θk-graph G = (V, E) (for an integer k ≥ 2), the
algorithm Adown(s) is a deterministic memoryless 1-local routing algorithm which successfully
routes from s to v1 in O(n) hops. In particular, Adown(s) takes O(kn) time in the worst-case.

Now that we can route from s to v1 using Adown(s), we move on to showing how to route
from v1 to t.

4.2.2 Finding the destination t

Starting from v1, we will systematically explore vertices that might lead to t. Our strategy
has two main components: exploration and backtracking. For the former we have to be able
to tell which vertices have already been explored, while for the latter we have to know which
vertex to backtrack to when the current vertex has no more valid neighbours to explore.

We first present the core component of the backtracking strategy: ordered Θ-routing.
Given an ordered Θ-graph G and an arbitrary pair of source and destination vertices s, t ∈ V ,
we define ordered Θ-routing as follows.

▶ Algorithm 2 (Ordered Θ-routing). Initialize the current vertex u← s. Then, we repeat
this forwarding operation until reaching t or “getting stuck”: If there exists an edge from u

to t, take that edge – we are done. Otherwise, take the edge to the closest neighbour v ∈ ∆ut

such that ρ(v) < ρ(u). We call this single hop an ordered Θ-routing step. If both conditions
are negative – i.e., (1) there does not exist an edge from u to t and (2) there does not exist
an edge from u to a vertex v ∈ ∆ut with a smaller order – ordered Θ-routing is considered
“stuck” and we terminate.

The ordered Θ-routing scheme we presented is inspired by the Θ-routing scheme developed
for the regular Θ-graph. The main difference is that ordered Θ-routing considers the ordering
information when determining which neighbour to forward the message to – it always chooses
the closest neighbour with a smaller order.

Note that ordered Θ-routing from the source s to the destination t can only forward the
message to the next vertex if either (1) there exists an edge from the current vertex u to the
destination t or (2) there exists a vertex v ∈ ∆ut such that ρ(v) < ρ(u). Thus, it can fail to
reach the destination when neither condition is met. However, as we will see below, ordered
Θ-routing is guaranteed to reach the destination if the destination is v1, the first inserted
vertex during the construction of the ordered Θ-graph.

▶ Lemma 5. Given an arbitrary source s ∈ V of any ordered Θk-graph G = (V, E), ordered
Θ-routing towards the first inserted vertex v1 always reaches v1.

Proof. We prove the lemma by routing from s to v1 using ordered Θ-routing (see Figure 5).
We initialize the current vertex u← s, and consider the two possible routing steps:

If there is an edge from u to v1, we can take that edge and reach v1 – we are done.
Otherwise, consider the canonical triangle ∆uv1. The fact that there does not exist
an edge from u to v1 implies that, when the current vertex u was inserted during the
construction of the graph, there existed a vertex v ∈ ∆uv1 inserted before u (i.e., we
have ρ(u) > ρ(v)), such that v was the closest neighbour in the cone Cu(v1). This means
that there exists an edge from u to v ∈ ∆uv1, such that ρ(u) > ρ(v). We take that edge.
After moving from u to v, we update the current vertex u to be v.

Ordered Θ-routing from s to v1 eventually converges. Since the order ρ(v1) = 1 is the
smallest among all vertices in V , the current vertex u has an edge either to v1 or to a vertex
v ∈ ∆uv1 such that ρ(u) > ρ(v) by construction. So, the order ρ(u) of the current vertex u

A. van Renssen and S. Sakaguchi 52:9

v1

s u

Figure 5 Ordered Θ-routing from s to v1.

keeps decreasing by at least 1 for each step. Hence, within n− 1 hops, the canonical triangle
∆uv1 becomes empty of vertices whose order is smaller than that of u, which implies there
exists an edge from u to v1. ◀

We can route from any vertex to v1 using ordered Θ-routing. In particular, observe
that we can replace Adown(s) with ordered Θ-routing from s to v1 if every vertex stores v1.
However, to minimize space, we use Adown(s) instead.

In order to route from v1 to t, we look for the reverse of the path traveled by ordered
Θ-routing from t to v1. To see which vertices are “worth exploring” to find such a path, we
formally define the exploration space below. Conceptually, the exploration space builds a set
of vertices by considering the ordered Θ-routing paths from all vertices to v1, in order to
cover the reverse of the ordered Θ-routing path from t to v1.

▶ Definition 6 (Exploration Space). Given an ordered Θ-graph G = (V, E), the first inserted
vertex v1 ∈ V , and an arbitrary destination vertex t ∈ V , the exploration space S(v1) ⊆ V is
a set of vertices defined recursively as follows:

S(v1) := {v1} ∪
⋃

v∈N∗(v1)

{v} ∪ ⋃
v′∈N∗(v)

{v′} ∪
⋃

v′′∈N∗(v′)

(· · ·)

 ,

where we define the exploration candidate neighbours N∗(u) ⊆ N(u) of any vertex u ∈ V to
be the set of neighbours u′ of u satisfying these two conditions:
1. ρ(u) < ρ(u′) ≤ ρ(t).
2. Let Cu′(v1) be the cone of u′ containing v1 in its interior. Then, Cu′(v1) also contains u

in its interior – i.e., we have u ∈ Cu′(v1).
In particular, these two conditions are equivalent to saying that an ordered Θ-routing step
from u′ to v1 leads to u (see Lemma 7 below for the proof).

Note that the implication of the two conditions (that an ordered Θ-routing step from u′

to v1 leads to u) is what we actually want to check, because we want to find the reverse of the
path travelled by ordered Θ-routing from t to v1. However, directly checking the implication
would require 2-local information – given a current vertex u, accessing a neighbour u′ ∈ N(u)
is 1-local, and accessing a neighbour u′′ ∈ N(u′) of u′, in order to check whether an ordered
Θ-routing step from u′ to v1 leads to u′′ such that u′′ = u, is 2-local. So, instead we check
the two conditions (1) and (2), which is 1-local – we just have to compare the order of u, u′,
and t, and check the geometric statement u ∈ Cu′(v1), both of which are 1-local.

▶ Lemma 7. Given an ordered Θ-graph G = (V, E), the first inserted vertex v1 ∈ V , an
arbitrary destination vertex t ∈ V , an arbitrary current vertex u ∈ V , and a neighbour
u′ ∈ N(u) of u, we have the following: ρ(u) < ρ(u′) ≤ ρ(t) and u ∈ Cu′(v1) if and only if an
ordered Θ-routing step from u′ to v1 leads to u and ρ(u′) ≤ ρ(t).

ISAAC 2025

52:10 Local Routing on Ordered Θ-Graphs

Proof. The fact that the ordered Θ-routing step and the inequality ρ(u′) ≤ ρ(t) imply the
two conditions follows by definition. Hence, we focus on the other proof direction. Suppose
there exists u′ ∈ N(u) satisfying the first and second conditions. Then, ρ(u′) ≤ ρ(t) trivially
holds, and since u′ ∈ N(u), we have an edge {u, u′} ∈ E. The edge {u, u′} must have been
created upon the insertion of u′ into G (when we inserted u into G, u′ did not exist yet).
This means that, when u′ was inserted into G, u was the closest vertex in Cu′(v1). It follows
that there does not exist a vertex w ̸= u such that w lies in the canonical triangle ∆u′u

and the order of w is smaller than the order of u′, because the existence of such vertex w

contradicts the fact that u was the closest vertex in Cu′(v1) when u′ was inserted into G.
Note that we have ∆u′u ⊂ Cu′(v1) by the second condition u ∈ Cu′(v1). Hence, an ordered
Θ-routing step from u′ to v1 leads to u and ρ(u′) ≤ ρ(t). ◀

It is important to ensure that the exploration space S(v1) contains t, which we will argue
through the lemma given below.

▶ Lemma 8. Given an ordered Θ-graph G = (V, E), the first inserted vertex v1 ∈ V , an
arbitrary destination vertex t ∈ V , the exploration space S(v1) contains t.

Consequently, our problem of locally routing from v1 to t can be reduced to systematically
exploring all vertices belonging to the exploration space S(v1) defined above. Building upon
the lemmas we have, we now present a deterministic O(1)-memory 1-local routing algorithm
Aup that routes from v1 to t, where v1 ∈ V is the first inserted vertex and t ∈ V is an
arbitrary destination vertex of the given ordered Θk-graph G = (V, E) (for an integer k ≥ 2).
Conceptually, Aup mimics Depth-First Search (DFS) over the vertices in the exploration
space S(v1). However, unlike how DFS keeps track of the current exploration path from
the source by storing a sequence of vertices in a stack so that backtracking can be done by
popping the top vertex from the stack, Aup does not explicitly store the exploration path –
our local routing algorithm delegates it to the geometric property of the ordered Θ-graph, as
backtracking can be done with an ordered Θ-routing step. Below is the full description.

▶ Algorithm 3 (Aup(v1, t)). Do the following:
1. Initialize the previous vertex up to be null.
2. Initialize the current vertex u to be v1.
3. Initialize a bit named state to be 1, indicating whether the previous hop was exploration

or backtracking.
4. Repeat this block until u = t:

If state = 1 (the previous hop was exploration):
Let l be the horizontal half-line originating from u towards the right. Sweep l in
counter-clockwise direction (see Figure 6). Let v ∈ N(u) be the first neighbour that
touches l. Check whether v ∈ N∗(u) by checking:

a. ρ(u) < ρ(v) ≤ ρ(t).
b. u ∈ Cv(v1).
If indeed v ∈ N∗(u), then we explore v from u by updating the current vertex u, i.e.,
we set u← v. Otherwise, we keep sweeping l in counter-clockwise direction, checking
whether each v ∈ N(u) is an exploration candidate neighbour in N∗(u) – if one is
found, explore that exploration candidate neighbour, updating u. If l reaches its
original position, we perform an ordered Θ-routing step from u to v1 to backtrack to a
vertex u′ (observe that u ∈ N∗(u′)), updating the current vertex u← u′, the previous
vertex up ← u, and the state bit state← 0.

A. van Renssen and S. Sakaguchi 52:11

Else, i.e., state = 0 (the previous hop was backtracking):
Let l be the half-line originating from u through up. Sweep l in counter-clockwise
direction as usual, starting from this position, until it becomes the half-line pointing
to the right. For each v ∈ N(u) that touches l, check whether it is an exploration
candidate neighbour by checking the two conditions in the same way as above. If
an exploration candidate neighbour is found, explore it and update the variables
accordingly, setting u to be the neighbour and state to be 1. If l becomes the half-line
pointing to the right, we perform an ordered Θ-routing step from u to v1 to backtrack
to a vertex u′, updating the variables as in the previous case, setting u← u′, up ← u,
and state← 0.

Cv(v1)

up

l

v1

v

u

u′

Figure 6 Illustration of Aup(v1, t).

Before analyzing the correctness of Aup, we will first argue that Aup is a deterministic
O(1)-memory 1-local routing algorithm: There is no randomness involved in the algorithm,
so it is deterministic. It only stores v1, up, and the state bit. The routing algorithm does not
have to store the current vertex u because we are at said vertex, which means we can trivially
access the current node without storing it. Hence, the algorithm only uses O(1)-memory. The
algorithm only accesses the 1-neighbourhood N(u) of u, so it is a 1-local routing algorithm.
Therefore, we have the following lemma.

▶ Lemma 9. Aup is a deterministic O(1)-memory 1-local routing algorithm.

Next, we prove the convergence of Aup, by showing that the algorithm, starting from v1,
reaches t in O(n) hops. To deduce this, we will prove three lemmas.

▶ Lemma 10. Let u be the current vertex of Aup(v1, t). Then, u ∈ S(v1).

▶ Lemma 11. Any vertex v ∈ S(v1) is explored by Aup(v1, t) at most once.

Proof. We prove the lemma by induction.
The base case is when v = v1. At the beginning, the algorithm is at v1. Clearly, v1 cannot

be explored again from a neighbour v ∈ N(v1), since the first condition (ρ(v) < ρ(v1) ≤ ρ(t))
for v1 being in N∗(v) cannot be met, because ρ(v1) = 1 is the minimum among all vertices
of the graph. Hence, v1 is explored at most once.

The inductive case is when v ̸= v1. Suppose v was explored for the first time from u. Our
inductive hypothesis is that u was explored at most once. We will prove by contradiction
that v cannot be explored again: For the sake of contradiction, suppose Aup(v1, t) explored

ISAAC 2025

52:12 Local Routing on Ordered Θ-Graphs

the vertex v for the first time from u and then for a second time from u′ (see Figure 7).
Then, we have v ∈ N∗(u) and v ∈ N∗(u′), since the algorithm explicitly checks whether v is
an exploration candidate neighbour of u and u′. Firstly, we will show that u ̸= u′. Having
u = u′ means that we visited v from u twice. By induction hypothesis, u was explored at
most once. So, to visit v twice from u, after exploring v from u for the first time, we have
to backtrack from v to u through an ordered Θ-routing step and then explore v again from
u. However, this is impossible since the counter-clockwise sweep of l, which determines the
exploration order of the vertices in N∗(u), is done only once. Hence, we cannot explore
v ∈ N∗(u) twice from u, meaning that u ̸= u′.

v

u

u′

v1

Cv(v1)

Figure 7 Illustration of a situation where v is explored from u and from u′, which leads to a
contradiction.

Consider Cv(v1). Since we explored v from u and then from u′, both u and u′ lie in the
cone Cv(v1) by the second condition of Definition 6. Also, both u and u′ are inserted before v

by the first condition of Definition 6. By the general position assumption, only one of u or u′

is the closest to v in Cv(v1). Consequently, during the construction of the ordered Θ-graph,
an edge is created from v to only one of u or u′, meaning that we have either v /∈ N(u) or
v /∈ N(u′) – i.e., v is not a neighbour of either u or u′. This contradicts to the fact that v

was explored from u and then from u′. Hence, v ̸= v1 can be explored at most once.
Therefore, any vertex v ∈ S(v1) is explored by Aup(v1, t) at most once. ◀

Observe that, since the algorithm is guaranteed to visit any vertex at most once, we do
not have to keep track of which vertices have been explored and which have not.

▶ Lemma 12. For any vertex v ∈ S(v1) explored by Aup(v1, t), an ordered Θ-routing step is
performed at v towards v1 at most once – i.e, the algorithm backtracks from v at most once.

By Lemma 10, the local routing algorithm Aup(v1, t) only explores vertices that belong to
S(v1). By Lemma 11 and Lemma 12, there can be at most O(n) exploration and backtracking
hops because S(v1) ⊆ V . In addition, we know that t ∈ S(v1) by Lemma 8. Therefore,
Aup(v1, t) requires O(n) hops overall to reach t, implying the following lemma.

▶ Lemma 13. Aup(v1, t) reaches t in O(n) hops.

Next, we show that Aup(v1, t) performs a linear number of operations to determine all
exploration candidate neighbours.

▶ Lemma 14. Given any current vertex u during the local routing procedure of Aup(v1, t),
let a candidate verification of v ∈ N(u) be the operations required for checking the two
conditions required for having v ∈ N∗(u). Then, Aup(v1, t) performs at most O(kn) candidate
verifications before reaching t, where k is the number of cones of the ordered Θ-graph.

A. van Renssen and S. Sakaguchi 52:13

4.2.3 Routing from s to t

As Adown routes from s to v1 and Aup routes from v1 to t, we obtain our full algorithm.

▶ Algorithm 4 (A(s, t)). Given the source vertex s ∈ V and the destination t ∈ V , the
algorithm routes from s to t by performing the following two steps:
1. Execute Adown(s) to route from s to v1.
2. Execute Aup(v1, t) to route from v1 to t.

Consequently, we obtain the following theorem.

▶ Theorem 2. Given an arbitrary source vertex s ∈ V and the destination vertex t ∈ V of an
ordered Θk-graph G = (V, E) (for an integer k ≥ 2), the algorithm A(s, t) is a deterministic
O(1)-memory 1-local routing algorithm which successfully routes from s to t in O(n) hops.
In particular, A(s, t) takes O(kn) time in the worst-case.

5 Conclusion

In this paper, we addressed the following problem with a positive result: Does there exist a
local routing algorithm that works on the ordered Θ-graph? We first proved there does not
exist a deterministic memoryless h-local routing on the ordered Θk-graph for any integers
h ≥ 1 and k ≥ 2. Then, we presented a deterministic O(1)-memory local routing algorithm
that is guaranteed to reach the destination in O(n) hops and O(kn) time on the ordered
Θk-graph for any k ≥ 2. To the best of our knowledge, the algorithm we provided is the first
local routing strategy that is successful on the ordered Θk-graph.

Although our local routing algorithm A(s, t) can route between any source and destination,
we remark that the total routing path length can be arbitrarily high, which means our local
routing algorithm is not c-competitive.

Therefore, one natural open question is whether there exists a c-competitive local routing
algorithm using a small amount of memory on the ordered Θ-graph. Things that make
finding such an algorithm difficult include the fact that ordered Θ-graphs are generally not
plane, the proofs used to bound the spanning ratio by Bose et al. [8] and Bose et al. [6] are
highly non-local, and the commonly used properties (such as empty canonical triangles) do
not hold for these graphs.

References
1 N. Bonichon, C. Gavoille, N. Hanusse, and D. Ilcinkas. Connections between theta-graphs,

Delaunay triangulations, and orthogonal surfaces. In Proceedings of the 36th International
Workshop on Graph Theoretic Concepts in Computer Science, pages 266–278. Springer Berlin
Heidelberg, 2010. doi:10.1007/978-3-642-16926-7_25.

2 P. Bose, J.-L. De Carufel, and O. Devillers. Expected complexity of routing in θ6 and half-
θ6 graphs. Journal of Computational Geometry, 11(1):212–234, 2020. doi:10.20382/jocg.
v11i1a9.

3 P. Bose, J.-L. De Carufel, D. Hill, and M. Smid. On the spanning and routing ratio of
the directed theta-four graph. Discrete & Computational Geometry, 71(3):872–892, 2024.
doi:10.1007/s00454-023-00597-8.

4 P. Bose, J.-L. De Carufel, P. Morin, A. van Renssen, and S. Verdonschot. Towards tight
bounds on theta-graphs: More is not always better. Theoretical Computer Science, 616:70–93,
2016. doi:10.1016/j.tcs.2015.12.017.

ISAAC 2025

https://doi.org/10.1007/978-3-642-16926-7_25
https://doi.org/10.20382/jocg.v11i1a9
https://doi.org/10.20382/jocg.v11i1a9
https://doi.org/10.1007/s00454-023-00597-8
https://doi.org/10.1016/j.tcs.2015.12.017

52:14 Local Routing on Ordered Θ-Graphs

5 P. Bose, R. Fagerberg, A. van Renssen, and S. Verdonschot. Optimal local routing on
Delaunay triangulations defined by empty equilateral triangles. SIAM Journal on Computing,
44(6):1626–1649, 2015. doi:10.1137/140988103.

6 P. Bose, J. Gudmundsson, and P. Morin. Ordered theta graphs. Computational Geometry,
28(1):11–18, 2004. doi:10.1016/j.comgeo.2004.01.003.

7 P. Bose, D. Hill, and A. Ooms. Improved spanning ratio of the theta-5 graph. Journal of
Computational Geometry, 15(1):66–87, 2024. doi:10.20382/jocg.v15i1a3.

8 P. Bose, P. Morin, and A. van Renssen. The price of order. International Journal of Computa-
tional Geometry & Applications, 26(03n04):135–149, 2016. doi:10.1142/S0218195916600013.

9 P. Bose and M. Smid. On plane geometric spanners: A survey and open problems. Computa-
tional Geometry, 46(7):818–830, 2013. doi:10.1016/j.comgeo.2013.04.002.

10 K. Clarkson. Approximation algorithms for shortest path motion planning. In Proceedings
of the 19th Annual ACM Symposium on Theory of Computing, pages 56–65, 1987. doi:
10.1145/28395.28402.

11 E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1:269–271, 1959. doi:10.1007/BF01386390.

12 N. M. El Molla. Yao spanners for wireless ad hoc networks. Master’s thesis, Villanova University,
2009. URL: http://www.csc.villanova.edu/~mdamian/StudentTheses/NawarThesis.pdf.

13 J. M. Keil. Approximating the complete Euclidean graph. In Proceedings of the 1st Scandinavian
Workshop on Algorithm Theory, pages 208–213, 1988. doi:10.1007/3-540-19487-8_23.

14 E. F. Moore. The shortest path through a maze. In Proceedings of the International Symposium
on the Theory of Switching, pages 285–292, 1959.

15 G. Narasimhan and M. Smid. Geometric spanner networks. Cambridge University Press, 2007.
doi:10.1017/CBO9780511546884.

16 J. Ruppert and R. Seidel. Approximating the d-dimensional complete Euclidean graph. In
Proceedings of the 3rd Canadian Conference on Computational Geometry, pages 207–210, 1991.
URL: https://cccg.ca/proceedings/1991/paper50.pdf.

https://doi.org/10.1137/140988103
https://doi.org/10.1016/j.comgeo.2004.01.003
https://doi.org/10.20382/jocg.v15i1a3
https://doi.org/10.1142/S0218195916600013
https://doi.org/10.1016/j.comgeo.2013.04.002
https://doi.org/10.1145/28395.28402
https://doi.org/10.1145/28395.28402
https://doi.org/10.1007/BF01386390
http://www.csc.villanova.edu/~mdamian/StudentTheses/NawarThesis.pdf
https://doi.org/10.1007/3-540-19487-8_23
https://doi.org/10.1017/CBO9780511546884
https://cccg.ca/proceedings/1991/paper50.pdf

	1 Introduction
	2 Technical overview
	3 Preliminaries
	4 Local Routing on Ordered Theta_{k}-graphs
	4.1 Impossibility result for memoryless local routing
	4.2 O(1)-memory local routing
	4.2.1 Reaching vertex v_1
	4.2.2 Finding the destination t
	4.2.3 Routing from s to t

	5 Conclusion

