
A Parameterized Study of Secluded Structures in
Directed Graphs
Jonas Schmidt #

Bocconi University, Milan, Italy

Shaily Verma #

Hasso Plattner Institute, Potsdam, Germany

Nadym Mallek #

Hasso Plattner Institute, Potsdam, Germany

Abstract
Given an undirected graph G and an integer k, the Secluded Π-Subgraph problem asks you to
find a maximum size induced subgraph that satisfies a property Π and has at most k neighbors in
the rest of the graph. This problem has been extensively studied; however, there is no prior study of
the problem in directed graphs. This question has been mentioned by Jansen et al. [ISAAC’23].

In this paper, we initiate the study of Secluded Subgraph problems in directed graphs by
incorporating different notions of neighborhoods: in-neighborhood, out-neighborhood, and their
union. Formally, we call these problems {In, Out, Total}-Secluded Π-Subgraph, where given a
directed graph G and an integer k, we want to find an induced subgraph satisfying Π of maximum
size that has at most k in/out/total-neighbors in the rest of the graph, respectively. We investigate
the parameterized complexity of these problems for different properties Π. In particular, we prove
the following parameterized results:

We design an FPT algorithm for the Total-Secluded Strongly Connected Subgraph
problem when parameterized by k.
We show that the Out-Secluded F-Free Subgraph problem with parameter k is W[1]-hard,
where F is a family of directed graphs except any subgraph of a star graph whose edges are
directed towards the center. This result also implies that In/Out-Secluded DAG is W[1]-hard,
unlike the undirected variants of the two problems, which are FPT.
We design an FPT-algorithm for In/Out/Total-Secluded α-Bounded Subgraph when
parameterized by k, where α-bounded graphs are a superclass of tournaments.
For undirected graphs, we improve the best-known FPT algorithm for Secluded Clique by
providing a faster FPT algorithm that runs in time 1.6181knO(1).

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Graph algorithms analysis

Keywords and phrases Secluded Subgraph, Parametrized Complexity, Directed Graphs, Strong
Connectivity

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2025.53

Related Version Full Version: https://arxiv.org/abs/2502.06048 [21]

1 Introduction

Finding substructures in graphs that satisfy specific properties is a ubiquitous problem. This
general class of problems covers many classical graph problems such as finding maximum
cliques, Steiner trees, or even shortest paths. Another compelling property to look for in a
substructure is its isolation from the remaining graph. This motivated Chechik et al. [1],
to introduce the concept of secluded subgraphs. Formally, in the Secluded Π-Subgraph
problem, given an undirected graph G, the goal is to find a maximum size subset of vertices
S ⊆ V(G) such that the subgraph induced on S fulfills a property Π and has a neighborhood
|N(S)| ≤ k where k is a natural number.

© Jonas Schmidt, Shaily Verma, and Nadym Mallek;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Algorithms and Computation (ISAAC 2025).
Editors: Ho-Lin Chen, Wing-Kai Hon, and Meng-Tsung Tsai; Article No. 53; pp. 53:1–53:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jonas.schmidt2@phd.unibocconi.it
https://orcid.org/0000-0002-1115-3868
mailto:shaily.verma@hpi.de
https://orcid.org/0009-0000-6789-1643
mailto:nadym.mallek@hpi.de
https://orcid.org/0000-0002-4370-5145
https://doi.org/10.4230/LIPIcs.ISAAC.2025.53
https://arxiv.org/abs/2502.06048
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

53:2 A Parameterized Study of Secluded Structures in Directed Graphs

Table 1 Our main results for directed and undirected problems. WC stands for weakly connected.
All FPT results are with respect to parameter k and all hardness results are with respect to parameter
k + w. For the entry marked with ∗, the undirected algorithm from [15] immediately generalizes to
the total-secluded setting (for finite F). The problems marked with (?) are open.

Property Π In- / Out-Secluded Total-Secluded

WC F-Free Subgraph W[1]-hard Thm. 2 FPT∗ [15]
WC DAG W[1]-hard Cor. 3 ?
α-Bounded Subgraph FPT Thm. 4 FPT Thm. 5
Strongly Connected Subgraph ? FPT Thm. 1

Clique FPT in time 1.6181knO(1) Thm. 6

This problem has been studied extensively for various properties Π such as paths [23,
17, 8, 1], Steiner trees [1, 8], induced trees [7, 11], subgraphs free of forbidden induced
subgraphs [11, 15], and more [22]. Most of these studies focus on the parameterized setting,
due to the strong relation to vertex deletion and separator problems, which are foundational
in parameterized complexity. Our problem fits in that category since the neighborhood can
be considered a (S, V \ S)-separator.

While the undirected Secluded Π-Subgraph problem has been explored and widely
understood in prior work [15, 11, 7], the directed variant has not yet been studied, although it
is a natural generalization and was mentioned as an interesting direction by Jansen et al. [15].
Directed graphs naturally model real-world systems with asymmetric interactions, such as
social networks with unidirectional follow mechanisms or information flow in communication
systems. Furthermore, problems such as Directed Feedback Vertex Set, Directed
Multicut, and Directed Multiway Cut underline how directedness can make a fasci-
nating and insightful difference when it comes to parameterized complexity [2, 13, 19, 4].
These problems and their results provide a ground for studying directed secluded subgraph
problems, motivating the need to investigate them systematically.

In this paper, we introduce three natural directed variants of the Secluded Π-Subgraph
problem, namely Out-Secluded Π-Subgraph, In-Secluded Π-Subgraph, and Total-
Secluded Π-Subgraph. These problems limit either the out-neighborhood of S, its
in-neighborhood, or the union of both. The out/in-neighborhood of a set S is the set
of vertices in V(G) \ S reachable from S via an outgoing/incoming edge. The problems
corresponding to different types of neighborhoods can be encountered in real-life networks. In
privacy-aware social network analysis, one might aim to identify a community with minimal
external exposure. Similarly, robust substructures with limited connectivity to vulnerable
components are critical in cybersecurity. These real-world motivations further emphasize the
need to explore and formalize directed variants of the Secluded Π-Subgraph problem.

For any property Π, we formulate our general problem as follows. Notice that in-secluded
and out-secluded are equivalent for all properties that are invariant under the transposition
of the edges. For this reason, we mostly focus on total-neighborhood and out-neighborhood.

X-Secluded Π-Subgraph (X ∈ {In, Out, Total})

Parameter: An integer k ∈ N
Input: A directed graph G with vertex weights ω : V → N and an integer w ∈ N
Output: An k-X-secluded set S ⊆ V(G) of weight ω(S) ≥ w that satisfies Π, or
report that none exists.

J. Schmidt, S. Verma, and N. Mallek 53:3

Find a balanced
separator

G

If none exists

Solve unbreakable
case

Solutions S1, . . . , Sf(k) for all
border complementations

Limit B in W to the
neighborhoods of all Si

W

Recurse on G[W]

U W

WU

B ∩W

W ∗U

B ∩W ∗

Apply reduction rules

Weighted graph G, allowed sets I,O,B ⊆ V (G),
terminal set T ⊆ V (G), parameter k ∈ N

A feasible solution for every border
complementation of G, if one exists

Recurse on
reduced graph

Output:

Input:

Figure 1 An illustration of the general recursive understanding algorithm used in Section 2.
There are two recursive calls in total, highlighted with dashed arrows. As defined later, only vertices
inside B are allowed to be in the neighborhood of a solution. W is chosen to be the side of the
separation with a smaller intersection with T .

Our Contribution
In this subsection, we present the results we obtained for the problem. See Table 1 for an
overview of the results we obtained in this paper.

Strongly Connected Subgraph. We show that the Total-Secluded Strongly Con-
nected Subgraph problem is fixed-parameter tractable when parameterized with k. Pre-
cisely, we prove the following result:

▶ Theorem 1. Total-Secluded Strongly Connected Subgraph is solvable in time
222O(k2)

nO(1).

We design our FPT algorithm for Total-Secluded Strongly Connected Subgraph
problem using recursive understanding, a technique introduced by [12] and recently used
successfully for various parameterized problems [3, 11, 6, 16]. Specifically, [16] prove a
meta-result stating that if a problem is FPT on highly-connected graphs and expressible
in Counting Monadic Second-Order Logic, it is also FPT on general graphs. Thereby, this
theorem allows to shortcut the analysis and algorithm for the breakable case of recursive
understanding. However, it comes at the price of being nonconstructive and not giving
a concrete bound on the runtime. For this reason, it is still valuable to apply recursive
understanding directly. In future work, it could be promising to apply and generalize this
theorem for directed graphs. We visualize the overall structure of the algorithm in Figure 1.

On a high level, recursive understanding algorithms work by first finding a small balanced
separator of the underlying undirected graph. If no suitable balanced separator exists, the
graph must be highly connected, which makes the problem simpler to solve. In the other case,
we reduce and simplify one side of the separator while making sure to keep an equivalent set
of solutions in the whole graph. By choosing parameters in the right way, this process reduces
one side of the separator enough to invalidate the balance of the separator. Therefore, we
have made progress and can iterate with another balanced separator or reach the base case.

ISAAC 2025

53:4 A Parameterized Study of Secluded Structures in Directed Graphs

In our case, looking for a separator of size at most k makes the framework applicable.
Crucially, this is because in any secluded subgraph G[S], where S ⊆ V(G), the neighborhood
N(S) acts as a separator between S and V(G) \N[S]. Therefore, if no balanced separator of
size at most k exists, we can deduce that either S itself or V(G) \ S must have a small size.
This observation makes the problem significantly easier to solve in this case, using the color
coding technique developed in [3].

In the other case, we can separate our graph into two balanced parts, U and W , with a
separator P of size |P | ≤ k. Now, our goal is to solve the same problem recursively for one
of the sides, say W and replace that side with an equivalent graph of bounded size that only
contains all necessary solutions. However, finding subsets of solutions is not the same as
finding solutions; the solution S for the whole graph could heavily depend on including some
vertices in U . That being said, the different options for this influence are limited. At most 2k

different subsets X of P could be part of the solution. For any such X, the solution can only
interact across P in a limited number of ways. For finding strongly connected subgraphs,
we have to consider for which pair (x1, x2) ∈ X ×X there already is a x1-x2-path in the
U -part of the complete solution S. This allows us to construct a new instance for every
such possibility by encoding X and the existing paths into W . These instances are called
boundary complementations. We visualize the idea of this construction in Figure 2.

Fundamentally, we prove that an optimal solution for the original graph exists, that
coincides in W with an optimal solution to the boundary complementation graph in which U

is replaced. Hence, we restrict the space of solutions to only those whose neighborhood in W

coincides with the neighborhood of an optimal solution to some boundary complementation.
The restricted instance consists of a bounded-size set B of vertices that could be part of
N(S) and components in W \B that can only be included in S completely or not at all. We
introduce graph extensions to formalize when exactly these components play the same role in
a strongly connected subgraph. Equivalent extensions can then be merged and compressed
into equivalent extensions of bounded size. In total, this guarantees that W is shrunk enough
to invalidate the previous balanced separator, and we can restart the process.

F-Free Subgraph. For any family of graphs F , a graph G is called F-Free if it does not
contain any graph in F as an induced subgraph. Depending on the context both F and G are
either both undirected or both directed. The widely-studied Secluded F-Free Subgraph
problem on undirected graphs is FPT (with parameter k) using recursive understanding [11]
or branching on important separators [15] when we restrict it to connected solutions. We
study the directed version of the problem and surprisingly, it turns out to be W[1]-hard for
almost all forbidden graph families F even with respect to the parameter k + w. Precisely,
we prove the following theorem.

▶ Theorem 2. Let F be a non-empty set of directed graphs such that no F ∈ F is a subgraph
of an inward star. Then, Out-Secluded F-Free Weakly Connected Subgraph is
W[1]-hard with respect to the parameter k + w for unit weights.

We establish an almost complete dichotomy that highlights the few cases of families F
for which the problem remains tractable. One of these exceptions is if F contains an
edgeless graph of any size, where we employ our algorithm for Out-Secluded α-Bounded
Subgraph. Theorem 2 also implies the following result for the directed variant of Secluded
Tree problem.

▶ Corollary 3. Out-Secluded Weakly Connected DAG is W[1]-hard with parameter
k + w for unit weights.

J. Schmidt, S. Verma, and N. Mallek 53:5

α-Bounded Subgraph & Clique. In the undirected setting, the Secluded Clique prob-
lem is natural and has been studied specifically. There is an FPT-algorithm running in
time 2O(k log k)nO(1) through contracting twins [11]. The previous best algorithm however
uses the general result for finding secluded F-free subgraphs in time 2O(k)nO(1) [15]. By
using important separators, they require time at least 4knO(1). This property is naturally
generalizable to directed graphs via tournament graphs. We go one step further.

The independence number of an undirected or directed graph G is the size of the maximum
independent set in G (or its underlying undirected graph). If G has independence number at
most α, we also call it α-bounded. This concept has been used to leverage parameterized results
from the simpler tournament graphs to the larger graph class of α-bounded graphs [20, 10, 18].
We prove the following results:

▶ Theorem 4. Out-Secluded α-Bounded Subgraph is solvable in time (2α+2)knα+O(1).

▶ Theorem 5. Total-Secluded α-Bounded Subgraph is solvable in time (α+1)knα+O(1).

We achieve the goal via a branching algorithm, solving Secluded α-Bounded Subgraph
for all neighborhood definitions in FPT time (Theorems 4 and 5). Our algorithm initially
picks a vertex subset U ⊆ V(G) and looks only for solutions in the two-hop neighborhood of
U . A structural property of α-bounded graphs guarantees that any optimal solution is found
in this way. On a high level, the remaining algorithm depends on two branching strategies.
First, we branch on forbidden structures in the two-hop neighborhood of U , to ensure that it
becomes α-bounded. Second, we branch on farther away vertices to reach a secluded set.

Note that Theorem 5 is inherently also an undirected result. Furthermore, the ideas
behind the algorithm can in turn be used for the simpler undirected Secluded Clique
problem. By a closer analysis of these two high-level rules, we arrive at a branching vector of
(1, 2) for Secluded Clique. This results in the following runtime, a drastic improvement
on the previous barrier of 4knO(1).

▶ Theorem 6. Secluded Clique is solvable in time 1.6181knO(1).

Organization. We consider Total-Secluded Strongly Connected Subgraph and
prove Theorem 1 in Section 2. The hardness result about Out-Secluded F Weakly
Connected Subgraph in Theorem 2 is proved in Section 3. In Section 4, we give the
algorithm for Out-Secluded α-Bounded Subgraph and prove Theorem 4. Due to
space constraints, the algorithms and proofs of Theorems 5 and 6 can be found in the full
version [21]. Proofs of statements marked with (⋆) are also deferred to the full version.

Notation. Let G be a directed graph. For a vertex v ∈ V(G), we denote the out-neighborhood
by N+(v) = {u | (v, u) ∈ E(G)} and the in-neighborhood by N−(v) = {u | (u, v) ∈ E(G)}.
The total-neighborhood is defined as N(v) = N+(v) ∪N−(v). We use the same notation for
sets of vertices S ⊆ V(G) as N+(S) =

⋃
v∈S N+(v) \ S. Furthermore, for all definitions, we

also consider their closed version that includes the vertex or vertex set itself, denoted by
N+[v] = N+(v) ∪ {v}. For a vertex set S ⊆ V(G), we write G[S] for the subgraph induced
by S or G− S for the subgraph induced by V(G) \ S. We also use G− v instead of G− {v}.

When we refer to a component of a directed graph, we mean a component of the underlying
undirected graph, that is, a maximal set that induces a weakly connected subgraph. In
contrast, a strongly connected component refers to a maximal set that induces a strongly
connected subgraph. For standard parameterized definitions, we refer to [5].

ISAAC 2025

53:6 A Parameterized Study of Secluded Structures in Directed Graphs

WU
T

(a) A strongly connected subgraph S of a graph G
with k = 5 neighbors. Black vertices are part of S.

WT

X

Y

Z

(b) The boundary complementation that admits an
equivalent feasible solution when setting k′ := k−2.

Figure 2 A visualization of a solution in the original graph and a solution in a boundary
complementation. Every partial solution in U can be represented by a boundary complementation.

2 Total-Secluded Strongly Connected Subgraph

In this section, we investigate the Total-Secluded Strongly Connected Subgraph
problem, or TSSCS for short. First, we prove that the problem is NP-hard in general graphs,
motivating analysis of its parameterized complexity.

▶ Theorem 7 (⋆). TSSCS is NP-hard, even for unit weights.

The proof of Theorem 7 also shows that TSSCS is W[1]-hard when parameterized by
w, since w in the proof also only depends on the parameter for Clique. In the following
subsections, we describe the recursive understanding algorithm to solve TSSCS parameterized
by k. We follow the framework by [3, 11] and first introduce generalized problems in
Section 2.1. In Section 2.2, we solve the case of unbreakable graphs. We introduce graph
extensions in Section 2.3 as a framework to formulate our reduction rules and full algorithm
in Section 2.4.

2.1 Boundaries and boundary complementations
In this subsection, we first define an additional optimization problem that is useful for
recursion. Then, we describe a problem-specific boundary complementation. Finally, we
define the auxiliary problem that our algorithm solves, which includes solving many similar
instances from the optimization problem.

Max TSSCS

Input: A directed graph G, subsets I, O, B ⊆ V(G), a weight function ω : V(G)→ N,
and an integer k ∈ N
Output: A set S ⊆ V(G) that maximizes ω(S) subject to I ⊆ S, O ∩ S = ∅,
N(S) ⊆ B, |N(S)| ≤ k, and G[S] strongly connected, or report that no feasible
solution exists.

Note that this problem generalizes the optimization variant of TSSCS by setting I :=
O := ∅ and B := V(G). However, Max TSSCS allows us to put more constraints on recursive
calls, enforcing vertices to be included or excluded from the solution and neighborhood.

J. Schmidt, S. Verma, and N. Mallek 53:7

▶ Definition 8 (Boundary Complementation). Let I = (G, I, O, B, ω, k) be a Max TSSCS
instance. Let T ⊆ V(G) be a set of boundary terminals with a partition X, Y, Z ⊆ T and let
R ⊆ X ×X be a relation on X. Then, we call the instance (G′, I ′, O′, B, ω′, k′) a boundary
complementation of I and T if
1. G′ is obtained from G by adding vertices u(a,b) for every (a, b) ∈ R and edges (a, u(a,b)),

(u(a,b), b), and for every y ∈ Y additionally (u(a,b), y),
2. I ′ := I ∪X ∪ {u(a,b) | (a, b) ∈ R},
3. O′ := O ∪ Y ∪ Z,
4. ω′(v) := ω(v) for v ∈ V(G) and ω′(u(a,b)) := 0 for (a, b) ∈ R, and
5. k′ ≤ k.

See Figure 2 for an example boundary complementation. The intuition here should be
that if we take the union of G with any other graph H and only connect H to G at the
vertices in T , then (X, Y, Z, R) encodes all possibilities of how a solution in G ∪H could
behave from G’s point of view. So, for any solution S to Max TSSCS in G ∪H, there is
some boundary complementation for G in which we can solve and exchange S ∩G for that
solution. Later, we prove a statement that is similar to this intuition.

To employ recursive understanding, we need a boundaried version of the problem. Intu-
itively, this problem is the same as the previous Max TSSCS but for a small part of the
graph we want to try out every possibility, giving many very similar instances. This small
part will later represent a separator to a different part of the graph.

Boundaried Max TSSCS

Input: A Max TSSCS instance I = (G, I, O, B, ω, k) and a set of boundary terminals
T ⊆ V(G) with |T | ≤ 2k

Output: A solution to Max TSSCS for each boundary complementation I ′ of I
and T , or report that no solution exists.

To even have a chance to solve this problem, we need to make sure that there are not too
many boundary complementations. The following lemma bounds that number in terms of k.

▶ Lemma 9 (⋆). For a Max TSSCS instance (G, I, O, B, ω, k) and T ⊆ V(G), there are at
most 3|T |2|T |2(k + 1) many boundary complementations, which can be enumerated in time
2O(|T |2)nO(1).

2.2 Unbreakable Case
This subsection gives the algorithm for the base case of our final recursive algorithm, when no
balanced separator exists. We start by giving the definitions of separations and unbreakability.

▶ Definition 10 (Separation). Given two sets A, B ⊆ V(G) with A ∪B = V(G), we say that
(A, B) is a separation of order |A ∩B| if there is no edge with one endpoint in A \ B and
the other endpoint in B \A.

▶ Definition 11 (Unbreakability). Let q, k ∈ N. An undirected graph G is (q, k)-unbreakable
if for every separation (A, B) of G of order at most k, we have |A \B| ≤ q or |B \A| ≤ q.

Due to space constraints, we defer any further details on the algorithm for the unbreakable
case to the full version [21]. It uses standard color coding techniques from [3, 11].

▶ Theorem 12 (⋆). Boundaried Max TSSCS on (q, k)-unbreakable graphs can be solved
in time 2O(k2 log(q))nO(1).

ISAAC 2025

53:8 A Parameterized Study of Secluded Structures in Directed Graphs

2.3 Compressing Graph Extensions
Before we give the complete algorithm, we define a routine that compresses a part of the
graph. We aim for two crucial properties in the compressed part. First, the part after
compression should be equivalent to the part before compression in terms of which strongly
connected components can be formed. Second, we want the size of the compressed part to
be functionally bounded by the size of remaining graph.

To achieve this goal, we first formally define sufficient properties to reason about this
equivalence and bound the number of equivalence classes. First, we define the notion of a
graph extension, a way to extend one graph with another. The extension will play the role
of the compressed part of the graph. This concept allows us to speak more directly about
graph properties before and after exchanging a part of the graph with a different one.

▶ Definition 13 (Extension). Given a directed graph G, we call a pair (D, EGD) an extension
of G if D is a directed graph and EGD ⊆ (V(G)×V(D)) ∪ (V(D)×V(G)) is a set of pairs
between G and D. We name the graph ExtG(D, EGD) := (V(G)∪V(D), E(G)∪E(D)∪EGD),
that can be created from the extension, G extended by (D, EGD).

We use extensions to construct extended graphs. Intuitively, an extension of G is a second
graph D together with an instruction EGD on how to connect D to G.

Next, we identify three important attributes of extensions in our context. Later, we
show that these give a sufficient condition on when two extensions form the same strongly
connected subgraphs. For this, consider a directed graph G with an extension (D, EGD). For
U ⊆ V(D), we write N−

EGD
(U) as a shorthand for N−

ExtG(D,EGD)(U), that is, all v ∈ V(G)
with (v, u) ∈ EGD for some u ∈ U . Define N+

EGD
(v) analogously. Write SCC(D) for the

condensation of D, where every strongly connected component C of D is contracted into a
single vertex. Define S(D, EGD), T (D, EGD) ⊆ 2V(G) such that

S(D, EGD) :=
{

N−
EGD

(U)
∣∣ U ⊆ V(D) is a source component in SCC(D)

}
and

T (D, EGD) :=
{

N+
EGD

(U)
∣∣ U ⊆ V(D) is a sink component in SCC(D)

}
,

that is, for every strongly connected source component C in SCC(D), S(D, EGD) contains the
set of all v ∈ V(G) such that (v, u) ∈ EGD for some u ∈ C and analogously for T (D, EGD).
Furthermore, define

C(D, EGD) :=
{

(a, b) ∈ V(G)2 ∣∣ there is a d1-d2-path in D with (a, d1), (d2, b) ∈ EGD

}
,

that is, all (a, b) such that there is an a-b-path in ExtG(D, EGD), whose intermediate vertices
and edges belongs to D. Refer to Figure 3 for examples of extensions and the three sets.

▶ Definition 14 (Equivalent Extensions). Let G be a directed graph. We say that two extensions
(D1, EGD1) and (D2, EGD2) of G are equivalent if

(S(D1, EGD1), T (D1, EGD1), C(D1, EGD1)) = (S(D2, EGD2), T (D2, EGD2), C(D2, EGD2)).

Clearly, extension equivalence defines an equivalence relation. The next statement reveals
the motivation behind the definition of extension equivalence. It gives us a sufficient condition
for two extensions being exchangeable in a strongly connected subgraph.

▶ Lemma 15. Let G be a directed graph with two equivalent extensions (D1, EGD1) and
(D2, EGD2). Let U ⊆ V(G) be nonempty such that the extended graph ExtG[U](D1, EG[U]D1)
is strongly connected. Then ExtG[U](D2, EG[U]D2) is also strongly connected.

J. Schmidt, S. Verma, and N. Mallek 53:9

D

G

D′

EGD EGD′

vc2

vc1

v1

v2

v3

vS

vT
d5

d2

d3

d1

d4

Figure 3 Two example extensions of a graph G. Observe that S(D, EGD) = {{v1}}, T (D, EGD) =
{{v3}}, and C(D, EGD) = {(v1, v2), (v1, v3)}. The extension (D′, EGD′) not only has the same sets
S, T , C and is thereby equivalent; it is also the compressed extension of (D, EGD). Since all sources
d1, d2, d3 have the same in-neighborhood, they are represented by the single vertex vS .

Proof. We construct a v1-v2-path for all v1, v2 ∈ U ∪V(D2) that only uses edges in E(D2),
EGD2 , and G[U] by case distinction.

Paths U → U . Let u1, u2 ∈ U . If there is a path from u1 to u2 in G[U], this path also
exists after exchanging (D1, EGD1) to (D2, EGD2). If the path passes through D1, since
C(D1, EGD1) = C(D2, EGD2), we can exchange all subpaths through D1 by subpaths
through D2.

Paths V(D2) → U . Let v ∈ V(D2), u ∈ U . We construct a v-u-path by first walking
from v to any sink component T in SCC(D2). If there is no edge (t, u′) ∈ EGD2 with
t ∈ T, u′ ∈ U that we can append, since T (D1, (D1, EGD1)) = T (D2, (D2, EGD2)), there
must also be a sink component in SCC(D1) with no outgoing edge to U . However, this is a
contradiction to the fact that ExtG[U](D1, EG[U]D1) is strongly connected with nonempty
U . Therefore, we can find a (t, u′) to append for some t ∈ T, u′ ∈ U . From u′, there is
already a path to u, as proven in the first case.

Paths U → V(D2). Next, we construct a u-v-path backwards by walking from v backwards
to a source s in D2. Analogously, there is an edge (u′, s) ∈ EGD2 for some u′ ∈ U since
S(D1, EGD1) = S(D2, EGD2), which we append. From u, there is a path to u′, as proven
in the first case, which we prepend to the rest of the path.

Paths V(D2) → V(D2). Let v1, v2 ∈ V(D2). To construct a v1-v2-path, we can just walk
from v1 to any u ∈ U and from there to v2 as shown before. ◀

Furthermore, observe that the union of two extensions creates another extension where
source, sink and connection sets correspond exactly to the union of the previous sets. Hence,
the union of two equivalent extensions will again be equivalent. This fact is formalized in
the next observation and will turn out useful in later reduction rules.

▶ Observation 16. Let G be a directed graph with two equivalent extensions (D1, EGD1) and
(D2, EGD2). Consider the extension defined by D := (V(D1) ∪V(D2), E(D1) ∪ E(D2)) and
EGD := EGD1 ∪ EGD2 . Then (D, EGD) is equivalent to (D1, EGD1) and (D2, EGD2).

Now, we finally define our compression routine, which compresses an extension to a
bounded size equivalent extension. If an extension is strongly connected, it is easy to
convince yourself that it is always possible to compress the extension to a single vertex.
Otherwise, we add one source vertex per neighborhood set in S(D, EGD) as well as one
sink vertex per neighborhood set in T (D, EGD), realizing the same S and T . Then, we add

ISAAC 2025

53:10 A Parameterized Study of Secluded Structures in Directed Graphs

vertices in between suitable source and sink vertices to realize exactly the same connections
in C without creating additional ones. The result of a compression is visualized in Figure 3.
Now, we describe the procedure formally.

Let G be a directed graph with an extension (D, EGD). Our compression routine returns
an extension that we call compressed extension, denoted as CompG(D, EGD).

Compression Routine.
If D is strongly connected, we contract D to one vertex v and remove self-loops and
multiple edges. We adjust EGD by using v instead of V(D) and removing multiple edges.
Otherwise, CompG(D, EGD) := (D′, EGD′), where (D′, EGD′) is an extension such that

V(D′) := {vS | S ∈ S(D, EGD)} ∪ {vT | T ∈ T (D, EGD)} ∪ {vc | c ∈ C(D, EGD)} ,

EGD′ := {(s, vS) | S ∈ S(D, EGD), s ∈ S } ∪ {(vT , t) | T ∈ T (D, EGD), t ∈ T }
∪ {(a, vc), (vc, b) | c = (a, b) ∈ C(D, EGD)} .

To define E(D), consider every source component Cs and sink component Ct in SCC(D)
such that Ct is reachable from Cs in D. Let S := N−

EGD
(Cs) and T := N−

EGD
(Ct) be the

corresponding sets in S(D, EGD) and T (D, EGD).
Add the edge (vS , vT) to E(D).
For every c = (a, b) ∈ C(D, EGD) that satisfies (s, b) ∈ C(D, EGD) and (a, t) ∈
C(D, EGD) for every s ∈ S, t ∈ T , add the edges (vS , vc) and (vc, vT) to E(D).

Now we go on to prove the properties that are maintained while compressing. Then, we
bound the size of a compressed extension and thus also the number of equivalence classes.

▶ Lemma 17. Let G be a directed graph with an extension (D, EGD) and let (D′, EGD′) be
the compressed extension of (D, EGD). Then, the following are true.
1. If D is weakly connected, then D′ is also weakly connected.
2. D is strongly connected if and only if D′ is strongly connected.
3. (D′, EGD′) is equivalent to (D, EGD).

Proof. For the first property, assume that D is weakly connected. We know by definition that
every sink in D′ is reached by at least one source. Consider a vc with c = (a, b) ∈ C(D, EGD).
To show that vc is connected to some vS and vT , consider the path from d1 to d2 in D

that realizes this connection. There must be a source component CS and a sink component
CT in SCC(D) such that d1 is reachable from CS and CT is reachable from d2. Therefore,
any vertex in CS can also reach d2 and d1 can reach every vertex in CT . By definition of
compression, these two components ensure that vc is connected.

It remains to show that any source is reachable by any other source in the underlying
undirected graph. Let vS , vS′ be two sources in D′ with corresponding source components C,
C ′ in SCC(D). Since D is weakly connected, there is a path from C to C ′ in the underlying
undirected graph. Whenever the undirected path uses an edge in a different direction than
the one before, we extend the path to first keep using edges in the same direction until a
source or sink component is reached and then go back to the switching point. This new path
can directly be transferred to D′, where we only keep the vertices corresponding to source
and sink components. By definition, this is still a path in D′ that connects vS to vS′ , and
D′ is weakly connected

The second property is simple to verify, since strongly connected graphs are by definition
compressed to single vertices. If D is not strongly connected, D′ will have at least one source
and one sink that are not the same.

J. Schmidt, S. Verma, and N. Mallek 53:11

Regarding the equivalence, we create one source for every S ∈ S(D, EGD) with the same
set of incoming neighbors and create no other sources. Therefore, S(D′, EGD′) = S(D, EGD)
and T (D′, EGD′) = T (D, EGD) follows analogously. For every connection c ∈ C(D, EGD),
we create vc in D′ that realizes this connection. Therefore, we know that C(D′, EGD′) ⊇
C(D, EGD). Since vc is only reachable from sources and reaches only sinks that do not give
new connections, we arrive at C(D′, EGD′) = C(D, EGD). ◀

We also bound the number of possible different compression outputs as well as their size.

▶ Lemma 18 (⋆). For a directed graph G, there can be at most 22·2|V(G)|+|V(G)|2 different
compressed extensions. Furthermore, every compressed extension has at most 2|V(G)|+1 +
|V(G)|2 vertices.

In the past section, we have defined graph extensions and an equivalence relation on
them that captures the role they can play in forming strongly connected subgraphs. We have
presented a way to compress an extension such that its size only depends on the size of G,
while remaining equivalent. In the next section, we will use this theory to design reduction
rules for Boundaried Max TSSCS. Crucially, we view components outside of the set B as
extensions, which allows us to keep only one compressed extension of each equivalence class.

2.4 Solving Boundaried Max TSSCS
We start by giving some reduction rules for a Boundaried Max TSSCS instance I =
(G, I, O, B, ω, k, T). Additionally, we assume that T ⊆ B to ensure that we do not change T

when changing G−B. This condition will always be satisfied in our algorithm. A (⋆) after a
reduction rule denotes that its proof of safeness can be found in the full version [21].

The first reduction rule extends the sets I and O to whole components of G−B. This is
possible since no solution can include only part of a component without its neighborhood
intersecting the component. Remember that components always refer to weakly connected
components.

▶ Reduction Rule 19 (⋆). Let Q be a component of G−B. If Q∩O ≠ ∅, set O = O ∪N[Q].
If N[Q] ∩ I ̸= ∅, set I = I ∪Q. If both cases apply, the instance has no solution.

If this reduction rule is no longer applicable, every component in G−B is either completely
in I, completely in O, or intersects with none of the two.

From this point, we will use extensions from the previous section for components of G−B.
Namely, for a component Q of G−B, let EBQ be all the edges with exactly one endpoint in
B and one in Q. Then, (G[Q], EBQ) defines an extension of G−Q. For simplicity, we also
refer to this extension as (Q, EBQ). Hence, we also use S, T , and C, as well as CompG−Q

for these extensions.
The next reduction rule identifies a condition under which a component Q can never be

part of a solution, namely, if Q includes strongly connected components with no in-neighbors
or no out-neighbors, which is exactly the case if the empty set is in S(Q, EBQ) or T (Q, EBQ).

▶ Reduction Rule 20 (⋆). Let Q be a component of G−B such that G[Q] is not strongly
connected. If ∅ ∈ S(Q, EBQ) ∪ T (Q, EBQ), include Q into O.

Note that after Reduction Rules 19 and 20 have been applied exhaustively, every source
in Q has incoming edges from B, and every sink in Q has outgoing edges to B. Finally, we
have one more simple rule, which removes vertices v ∈ O \B. It relies on the fact that by
Reduction Rule 19, we also have N(v) ⊆ O.

ISAAC 2025

53:12 A Parameterized Study of Secluded Structures in Directed Graphs

▶ Reduction Rule 21. If Reduction Rule 19 is not applicable, remove O \B from G.

The previous reduction rules were useful to remove trivial cases and extend I and O.
From now on, we assume that the instance is exhaustively reduced by Reduction Rules 19–21.
Therefore, any component of G−B is either contained in I or does not intersect I and O.

The next two rules will be twin type reduction rules that allow us to bound the number of
remaining components. If there are two components of G−B that form equivalent extensions
it is enough to keep one of them, since they fulfill the same role in forming a strongly
connected subgraph. The reduction rules rely on Lemma 15 and Observation 16 to show
that equivalent extensions can replace each other and can be added to any solution.

▶ Reduction Rule 22. Let Q1, Q2 be components of G−B such that both G[Q1] and G[Q2]
are not strongly connected and (Q1, EBQ1) and (Q2, EBQ2) are equivalent. Delete Q2 and
increase the weight of some q ∈ Q1 by ω(Q2). If Q2 ∩ I ̸= ∅, set I = I ∪Q1.

Proof of Safeness. By the previous reduction rules, components of G − B can only be
included as a whole or not at all. Notice that since C(Q1, EBQ1) = C(Q2, EBQ2) and
Reduction Rule 20, we get N(Q1) = N(Q2). Let S be a solution to the old instance. We
differentiate some cases.

If S∩(Q1∪Q2) = ∅, we know that also N(S)∩(Q1∪Q2) = ∅. Therefore, the neighborhood
size and strong connectivity of S do not change in the new instance, and it is also a solution.
If S includes only one of Q1 and Q2, assume without loss of generality S ∩ (Q1 ∪Q2) = Q1,
since Q1 is not strongly connected by itself, the solution must include vertices of B. Because
N(Q1) = N(Q2), the solution must also include Q2, a contradiction. If S includes both Q1
and Q2, we claim that S′ := S \Q2 is a solution for the new instance. The neighborhood
size and weight clearly remain unchanged. Strong connectivity follows by Observation 16
and Lemma 15. The last two cases also show that if a solution had to include at least one
of Q1 and Q2, that is, (Q1 ∪Q2) ∩ I ̸= ∅, any solution for the reduced instance must also
include Q1. Therefore, the adaptation to I is correct.

Let S be a solution to the reduced instance. Again, if S does not include vertices from
Q1, then S will immediately be a solution to the old instance. If Q1 ⊆ S, then S′ := S ∪Q2
will be a solution to the old instance by Observation 16 and Lemma 15. ◀

For strongly connected components, the rule is different, since we have to acknowledge
the fact that they can be a solution by themselves. For every such component we destroy
strong connectivity of smaller-weight equivalent component, which can then be reduced by
Reduction Rule 22.

▶ Reduction Rule 23. Let Q1, Q2 be components of G−B that are also strongly connected
with (Q1, EBQ1) and (Q2, EBQ2) equivalent and ω(Q1) ≥ ω(Q2). Add a vertex q′

2 with edges
(q2, q′

2) and (q′
2, v), for all q2 ∈ Q2 and v ∈ N(Q2). Set ω(q′

2) = 0.

Proof of Safeness. Let S be a solution of the old instance. If S ∩ (Q1 ∪ Q2) = ∅, then S

is also a solution for the new instance. If S includes only one of Q1 and Q2, then we must
have S ∈ {Q1, Q2}, so S′ := Q1 is a solution for the new instance with ω(S′) ≥ ω(S). If S

includes both Q1 and Q2, adding q′
2 to S obviously gives a solution of the same weight.

For a solution of the reduced instance S, we can simply remove q′
2 if it is inside for a

solution to the old instance. ◀

Using both Reduction Rules 22 and 23 exhaustively makes sure that there are at most
two components per extension equivalence class left. The last rule compresses the remaining
components to equivalent components of bounded size.

J. Schmidt, S. Verma, and N. Mallek 53:13

Algorithm 1 The recursive understanding algorithm for Boundaried Max TSSCS.

def Solve(G, I, O, B, ω, k, T):

q ← 222ck2

for a suitable constant c

if G is ((2q + 1)q2k, k)-unbreakable then
return solve the problem using Theorem 12

else
(U, W)← (q, k)-separation of G with |T ∩W \ U | ≤ k

(G̃, Ĩ, Õ, B̃, ω̃, k, T̃)← restriction to W with T̃ = (T ∩W) ∪ (U ∩W)
R ← Solve(G̃, Ĩ, Õ, B̃, ω̃, k, T̃)
N ← T̃ ∪

⋃
R∈R N(R) ∩W

B̂ ← (B ∩ U) ∪ (B ∩N)
(G∗, I∗, O∗, B̂∗, ω∗, k∗, T ∗)← reduce (G, I, O, B̂, ω, k, T) with Lemma 25
return Solve(G∗, I∗, O∗, B̂∗, ω∗, k∗, T ∗)

end

▶ Reduction Rule 24. Let Q be a component of G−B that is not equal to its compressed
extension. Replace Q by its equivalent compressed extension and set the weight such that
ω(Q′) = ω(Q). If Q ∩ I ̸= ∅, set I = I ∪Q′.

Proof of Safeness. Since Q is not strongly connected, it can only be part of a solution
that includes some vertices from G−Q. Thus, we can apply Lemmas 15 and 17, and the
old instance and the new instance have exactly the same strongly connected subgraphs.
Because of C(Q, EBQ) = C(Q′, EBQ′) and Reduction Rule 20, we get N(Q) = N(Q′). Since
ω(Q′) = ω(Q), the rule is safe. ◀

This finally allows us to bound the size of G−B. In the next lemma, we summarize the
progress of our reduction rules and apply the bounds from the previous section. Note that
we need the stronger bound using the neighborhood of the components instead of simply B.

▶ Lemma 25 (⋆). Let Q be a set of components of G−B with total neighborhood size h :=∣∣∣⋃Q∈Q N(Q)
∣∣∣. Then we can reduce the instance, or there are at most 22h+1+h2 (

2h+1 + h2)
=

2O(2h) vertices in Q in total.
Executing the reduction rules in the proposed order guarantees termination after O(n)

applications. The total execution takes at most nO(1) time.

▶ Lemma 26 ([11, Lemma 3]). Given an undirected graph G, there is an algorithm with
runtime 2O(min{q,k} log(q+k))nO(1) that either finds a (q, k)-separation of G or correctly reports
that G is ((2q + 1)q2k, k)-unbreakable.

Now, we have all that it takes to solve our intermediate problem. The main idea of the
algorithm is to shrink B to a bounded size, by solving the problem recursively. Once B

is bounded, we apply our reduction rules by viewing components of G − B as extensions,
removing redundant equivalent extensions and compressing them. Thereby, we also bound
the size and number of components of G−B in terms of |B| using Lemma 25. By choosing
suitable constants, we can show that this decreases the total size of G, which will make
progress to finally reduce it to the unbreakable case.

▶ Theorem 27 (⋆). Boundaried Max TSSCS can be solved in time 222O(k2)

nO(1).

ISAAC 2025

53:14 A Parameterized Study of Secluded Structures in Directed Graphs

Proof. Let I = (G, I, O, B, ω, k, T) be our Boundaried Max TSSCS instance. See
Algorithm 1 for a more compact description of the algorithm. A high level display of the
approach can be found in Figure 1. Define q = 222ck2

for a constant c. We later show that a
suitable c must exist.

First, we run the algorithm from Lemma 26 on the underlying undirected graph of G

with q and k. If it is ((2q + 1)q2k, k)-unbreakable, we solve the instance directly using the
algorithm from Theorem 12.

Therefore, assume that we have a (q, k)-separation (U, W). Without loss of generality,
since |T | ≤ 2k we can assume that |T ∩W \ U | ≤ k. Thus, we can construct a new instance
to solve the easier side of the separation. Take G̃ = G[W], Ĩ = I ∩W, Õ = O∩W, B̃ = B∩W ,
write ω̃ for the restriction of ω to W , and set T̃ = (T ∩W)∪(U ∩W). Since |U ∩W | ≤ k, also∣∣T̃ ∣∣ ≤ 2k holds and Ĩ := (G̃, Ĩ, Õ, B̃, ω̃, k, T̃) is a valid instance, which we solve recursively.

LetR be the set of solutions found in the recursive call. For R ∈ R, define NR = N(R)∩W .
Define N = T̃ ∪

⋃
R∈R NR.

We now restrict B in W to use only vertices in the neighborhood that have been neighbors
in a solution in R, that is, only vertices in N . Define B̂ = (B ∩ U) ∪ (B ∩ N). We now
replace B in our instance with B̂ and apply all our reduction rules exhaustively to arrive at
the instance (G∗, I∗, O∗, B̂∗, ω∗, k∗, T ∗). Finally, we also solve this instance recursively and
return the solutions after undoing the reduction rules.

Correctness. We already proved that the reduction rules and the algorithm for the un-
breakable case are correct. The main statement we have to show is that we can replace
B with B̂ without throwing away important solutions. That means that the instances
(G, I, O, B, ω, k, T) and Î := (G, I, O, B̂, ω, k, T) are equivalent in the sense that any solu-
tion set for one instance can be transformed to a solution set to the other instance with
at least the same weights. This justifies solving Î instead of I. Consider the boundary
complementation I ′ := (G′, I ′, O′, B′, ω′, k′) and Î ′ := (G′, I ′, O′, B̂′, ω′, k′) that are caused
by the same (X, Y, Z, R). To show the claim, we consider the two directions. Any solution
for Î ′ is immediately a solution for the same boundary complementation for I ′ since the only
difference is that we limit the possible neighborhood to a subset of B.

For the other direction, consider a solution S to I ′, and we want to show that there
is a solution Ŝ to Î ′ using only vertices of B̂′ in the neighborhood with ω(Ŝ) ≥ ω(S). If
S ∩W = ∅, then S is also immediately a solution for Î ′. Therefore, assume S ∩W ≠ ∅.
Define X̃ := T̃ ∩ S, Ỹ := T̃ ∩ NG−(W \U)(S), and Z̃ := T̃ \ (X̃ ∪ Ỹ). Let R̃ be the set of
(a, b) ∈ X̃ × X̃ such that there is an a-b-path in G[S \W \ U]. Finally, let k̃ := |N(S) ∩W |.
Thus, we can construct a boundary complementation instance (G̃′, Ĩ ′, Õ′, B̃′, w̃′, k̃) from
(X̃, Ỹ , Z̃, R̃). One can easily verify that (S ∩V(G̃′)) ∪

{
ur

∣∣ r ∈ R̃
}

is a feasible solution to
this instance. Furthermore, the maximum solution S̃ ∈ R to this instance gives a new set
Ŝ := (S̃ ∩W) ∪ (S ∩ U) ⊆ V(G′) that has at least the same weight as S. We also know that
N(Ŝ) ⊆ B̂′ and

∣∣∣N(Ŝ)
∣∣∣ ≤ k. See Figure 2 for a visualization of the construction corresponding

to a solution S.
All that remains is to verify that Ŝ is strongly connected. For v1, v2 ∈ S̃ ∩W , we can

simply use the v1-v2-path in S̃, replacing subpaths via ur for r ∈ R̃ with the actual paths in
S ∩ U . If v1 ∈ S̃ ∩W and v2 ∈ S ∩ U , we can walk to any x ∈ X̃ which must have a path
to v2 in S, in which may need to replace subpaths via W . This can be done, since S̃ ∩W

connects all pairs of x1, x2 ∈ X that are not connected via S ∩ U . The two remaining cases
follow by symmetry, justifying the replacement of B with B̂.

J. Schmidt, S. Verma, and N. Mallek 53:15

Finally, we have to show that the recursion terminates for the right choice of c; that is,
both recursively solved instances have strictly smaller sizes than the original graph. For the
first recursive call, note that the boundary complementation adds at most k2 ≤ q vertices to
G̃. Since |U \W | > q, we have

∣∣V(G̃)
∣∣ < |V(G)|.

For the second recursive call, since
∣∣T̃ ∣∣ ≤ 2k and by Lemma 9, we have |N | ≤ 2k + (k +

1)k2c1k2 ≤ 2c2k2 for constants c1 and c2. After applying all our reduction rules, by Lemma 25
for a suitable choice of c3 and c we get

|W ∗| ≤ |N |+ 22|N |+1+|N |2
(

2|N |+1 + |N |2
)
≤ 2c32|N |

≤ 2c322c2k2

≤ 222ck2

=: q.

Since before the reductions, we had |W \ U | > q, the reduced graph G∗ also has fewer vertices
than G. Therefore, this recursive call also makes progress and the recursion terminates.

Runtime. We follow the analysis of [3]. With Lemma 26, we can test if the undirected

version of G is unbreakable in time 2k log q+knO(1) ≤ 222O(k2)

nO(1). If the graph turns out
to be unbreakable, the algorithm of Theorem 12 solves it in time 2O(k2 log q) ≤ 222O(k2)

nO(1).
Executing the reduction rules takes polynomial time in n by Lemma 25.

All that is left to do is analyze the recursion. Let n′ := |W |. By the separation property,
we know that q < n′ < n− q. From the correctness section, we get |V(G∗)| ≤ |V(G)|−n′ + q.
Note that the recursion stops when the original graph is (q, k)-unbreakable, which must be
the case if |V(G)| ≤ 2q. We arrive at the recurrence

T (n) =

222O(k2)

, for n ≤ 2q;(
maxq<n′<n−q T (n′ + k2) + T (n− n′ + q)

)
+ 222O(k2)

nO(1), otherwise.

Notice that 222O(k2)

appears in every summand of the expanded recurrence and can be
ignored here and multiplied later. Furthermore, nO(1) is bounded from above by a convex
polynomial. Therefore, it is enough to consider the extremes of the maximum expression. For
n′ = q + 1, the first recursive call evaluates to T (q + 1 + k2) ≤ T (2q) ≤ 222O(k2)

. The second
call only introduces an additional factor of n. For n′ = n − q − 1, the second expression
evaluates to T (2q + 1) which is clearly also bounded by 222O(k2)

. Thus, we arrive at the final

runtime of 222O(k2)

nO(1). ◀

Finally, we can use Boundaried Max TSSCS to solve TSSCS. Since in our original
problem every vertex could be part of the solution or its neighborhood, we initially set
I := O := ∅ and B := V(G). Furthermore, we only want to consider the boundary
complementation that changes nothing, which we achieve by setting T := ∅.

▶ Theorem 1. Total-Secluded Strongly Connected Subgraph is solvable in time
222O(k2)

nO(1).

3 Secluded F-Free subgraph and Secluded DAG

In this section, we show that Out-Secluded F-Free Subgraph is W[1]-hard for almost all
choices of F , even if we enforce weakly connected solutions. Except for a few missing cases,
we establish a complete dichotomy when Out-Secluded F-Free Weakly Connected
Subgraph (Out-Secluded F-Free WCS) is hard and when it is FPT. This is a surprising

ISAAC 2025

53:16 A Parameterized Study of Secluded Structures in Directed Graphs

result compared to undirected graphs and shows that out-neighborhood behaves completely
different. The same problem was studied before in undirected graphs, where it admits FPT-
algorithms using recursive understanding [11] and branching on important separators [15].
For total neighborhood, both algorithms still work efficiently since the seclusion condition
acts exactly the same as in undirected graphs. However, the result changes when we look at
out-neighborhood, where we show hardness in Theorem 2 for almost all choices of F . To
formalize for which kind of F the problem becomes W[1]-hard, we need one more definition.

▶ Definition 28 (Inward Star). We say that a directed graph G is an inward star, if there
is one vertex v ∈ V(G) such that E(G) = {(u, v) | u ∈ V(G) \ {v}}, that is, the underlying
undirected graph of G is a star and all edges are directed towards the center.

Due to the nature of the construction, we show that if no inward star contains any F ∈ F
as a subgraph, the problem becomes W[1]-hard. Besides this restriction, the statement holds
for all non-empty F , even families with only a single forbidden induced subgraph. Later, we
explain how some other cases of F can be categorized as FPT or W[1]-hard.

▶ Theorem 2. Let F be a non-empty set of directed graphs such that no F ∈ F is a subgraph
of an inward star. Then, Out-Secluded F-Free Weakly Connected Subgraph is
W[1]-hard with respect to the parameter k + w for unit weights.

Proof Sketch. Let F ∈ F . We give a reduction from Clique, inspired by [9]. Given an
undirected graph G, k, and w, consider the incidence graph, which we modify in the following.
We add k + 2 copies of F and a single vertex s. For every edge e = {u, v} ∈ E, we add the
edges (e, u), (e, v), and (e, s). Furthermore, we add an edge from every vertex v ∈ VV to
every vertex in every copy of F . For two different copies F1 and F2 of F , we add edges in
both directions between every vertex vf1 ∈ F1 and vf2 in F2. Denote this newly constructed
graph by G′. Finally, set k′ := k and w :=

(
k
2
)

+ 1.
The proof follows by showing that a clique of size k corresponds exactly to an out-secluded

F -free weakly connected subgraph in G′ with parameters k′ and w. More details can be
found in the full version [21]. ◀

Note that Theorem 2 is very general and excludes many properties Π immediately from
admitting FPT-algorithms. Another interesting example is finding secluded DAGs, a very
natural extension of secluded trees, studied in [11, 7]. There we choose F to be the set of all
directed cycles. Although this set is not finite, hardness follows from Theorem 2.

▶ Corollary 3. Out-Secluded Weakly Connected DAG is W[1]-hard with parameter
k + w for unit weights.

Finally, we analyze some of the more remaining cases in the following paragraphs.

Trivial Cases. If F contains the graph with only a single vertex, the empty set is the only
F-free solution. If F contains two vertices connected by a single edge, weakly connected
solutions can only consist of a single vertex or contain bidirectional edges (u, v) and (v, u)
for u, v ∈ V(G). Both of these problems are clearly solvable in FPT-time, the second one
via our algorithm for Secluded Clique. Additionally, if F = ∅, we can clearly choose the
maximum weight component of G as the solution.

J. Schmidt, S. Verma, and N. Mallek 53:17

Independent Sets. An independent set is a subgraph of an inward star. One kind of
graph that cannot be included in F such that Theorem 2 shows hardness are independent
sets. Surprisingly, the problem becomes FPT if F includes an independent set of any size.
First, notice that independent sets that are part of F can be ignored if there is a smaller
independent set in F . Suppose the size of the smallest independent set is α + 1. This means
that any solution must be an α-bounded graph, i.e., a graph without an independent set of
size α.

We have shown already how these can be enumerated efficiently with the algorithm in
the proof of Theorem 4. For every enumerated subgraph, we can simply check if it is F -free
in time |F|n∥F∥. Therefore, this case is also FPT with parameter k if F is finite.

▶ Theorem 29. Let F be a finite family of directed graphs that contains an independent set.
Then Out-Secluded F-Free WCS is solvable in time |F| (2α + 2)kn∥F∥+α+O(1).

Inward Stars. Consider what happens when F contains an inward star F with two leaves.
Then, the weakly connected F -free graphs are exactly the rooted trees where the root could
be a cycle instead of a single vertex, with potentially added bidirectional edges. For F ∈ F ,
we do not have a solution, but we conjecture that the FPT branching algorithm for Secluded
Tree by [7] can be transferred to the directed setting.

If F = {F} for a star F with more than two leaves, the problem remains W[1]-hard. We
can slightly modify the construction in the proof of Theorem 2 such that there is not one
extra vertex s, but one extra vertex se for every e ∈ E(G). We connect all se internally
in a directed path. A solution for Out-Secluded F-Free WCS can then include the
whole extra path and the edges encoding the clique. This avoids inward star structures
with more than two leaves, showing hardness in this case. For only one single forbidden
induced subgraph F , we therefore conjecture, that Out-Secluded F-Free WCS is FPT
with parameter k if and only if F has no edges or is an inward star with at most two leaves.
For all other cases, we have proven W[1]-hardness with parameter k + w for unit weights.

Remaining Cases. The previous paragraphs resolve almost all possible cases for F , except
for a few cases which are difficult to characterize. For example, we could have {Fs, Fp} ⊆ F ,
where Fs is an inward star and Fp is a path, which makes a new connecting construction
instead of s and the se necessary. The above characterization is still enough to give an
understanding of which cases are hard and which are FPT for all natural choices of F .

4 Secluded Subgraphs with Small Independence Number

In this section, we consider a generalization of the undirected Secluded Clique problem
to directed graphs. We generalize this property in the following way.

▶ Definition 30 (α-Bounded). A directed graph G is called α-bounded if G includes no
independent set of size α + 1, that is, for all S ⊆ V(G) with |S| = α + 1, the graph G[S]
includes at least one edge.

Our problem of interest will be the Out-Secluded α-Bounded Subgraph problem
(Out-Secluded α-BS). Note that α is part of the problem and therefore a constant. In the
directed case, α = 1 is analogous to the Out-Secluded Tournament problem, except
that tournaments cannot include more than one edge between a pair of vertices.

ISAAC 2025

53:18 A Parameterized Study of Secluded Structures in Directed Graphs

In this section, we show how to solve Out-Secluded α-BS with a branching algorithm.
The general nature of these branching rules allows us to transfer and optimize them, to signif-
icantly improve the best known runtime for the Secluded Clique problem to 1.6181knO(1)

in the full version.
Our branching algorithm starts by selecting one part of the solution and then relies on the

fact that the remaining solution has to be close around the selected part. More concretely,
we start by picking an independent set that is part of the solution and build the remaining
solution within its two-hop neighborhood. The following lemma justifies this strategy. The
proof of this lemma was sketched on Mathematics Stack Exchange [14], we give an inspired
proof again for completeness.

▶ Lemma 31. In every directed graph G, there is an independent set U ⊆ V(G), such that
every vertex in V(G) \ U is reachable from an u ∈ U via a path of length at most 2.

Proof. We prove the statement by induction on |V(G)|. For |V(G)| = 1, it clearly holds.
Assume the statement holds for all graphs with fewer than |V(G)| vertices, we want to prove
it for G. Let v ∈ V(G) be a vertex. If v reaches every other vertex via at most 2 edges, {v} is
our desired independent set. Otherwise, T := V(G) \N+[v] is non-empty. Since |T | < |V(G)|,
we can apply the induction hypothesis. So, let T ′ ⊆ T be an independent set in G[T] that
reaches every vertex of T via at most two edges. We consider the edges between v and T ′.

Since T ∩N+(v) = ∅, there cannot be an edge (v, t′) for any t′ ∈ T ′. If there is an edge
(t′, v) for some t′ ∈ T ′, then T ′ is also a solution for G since t′ can reach N+[v] via at most
2 edges. Finally, if there is no edge between v and T ′, then T ′ ∪ {v} is an independent set.
Also T ′ ∪ {v} reaches by definition all of T ∪N+[v] via at most 2 edges. ◀

For α-bounded graphs, all independent set have size at most α, so trying every subset of
V(G) of size at most α allows us to find a set that plays the role of U in Lemma 31 in our
solution. Hence, the first step of our algorithm will be iterate over all such sets. From then
on, we only consider solutions S ⊆ N+[N+[U]].

Then, our algorithm uses two branching rules. Both rules have in common that in contrast
to many well-known branching algorithms [5, Chapter 3], we never include vertices into a
partial solution. Instead, due to our parameter, we only decide that vertices should be part of
the final neighborhood. This means that we remove the vertex from the graph and decrease
the parameter by 1. Our first branching rule branches on independent sets of size α + 1 in
N+[N+[U]], to ensure that N+[N+[U]] becomes α-bounded. The second rule is then used to
decrease the size of the neighborhood of N+[N+[U]], until it becomes secluded.

To formalize which vertices exactly to branch on, we use some new notation. For a vertex
v ∈ V(G) and a vertex set U ⊆ V(G), pick an arbitrary shortest path from U to v if there
exists one. Define PU (v) to be the vertices on that path including v but excluding the first
vertex u ∈ U . Note that after removing vertices from the graph, PU (v) might change.

Now, we can give our algorithm for finding secluded α-bounded graphs.

▶ Theorem 4. Out-Secluded α-Bounded Subgraph is solvable in time (2α+2)knα+O(1).

Proof. Let (G, ω, w, k) be an instance of Out-Secluded α-BS. We guess a vertex set
U ⊆ V(G) that should be part of a desired solution S. Furthermore, we want to find a
solution S to the instance such that S ⊆ N+[N+[U]], that is, every v ∈ S should be reachable
from U via at most two edges. We give a recursive branching algorithm that finds the optimal
solution under these additional constraints. The algorithm is also described in Algorithm 2.

J. Schmidt, S. Verma, and N. Mallek 53:19

Algorithm 2 The branching algorithm for Out-Secluded α-BS that returns a solution
including the set U ⊆ V(G).

def α-BS(G, ω, w, k, U):
if k < 0 then

abort
else if N+[N+[U]] is a solution then

return N+[N+[U]]
else if there is an independent set I ⊆ N+[N+[U]] of size |I| = α + 1 then

foreach v ∈
⋃

w∈I PU (w) do
Call α-BS(G− v, ω, w, k − 1, U)

end
else if there is w ∈ N+(N+[N+[U]]) then

foreach v ∈ PU (w) do
Call α-BS(G− v, ω, w, k − 1, U)

end
end

When deciding that a vertex should be part of the final neighborhood, we can simply
delete it and decrease k by one. In case k decreases below 0, there is no solution. If N+[N+[U]]
is a solution to the instance, we return it. Otherwise we apply the following branching rules
and repeat the algorithm for all non-empty independent sets U ⊆ V(G) of size at most α.

Case 1. N+[N+[U]] is not α-bounded. In this case, there must be an independent set
I ⊆ N+[N+[U]] of size α + 1. Clearly, not all of I can be part of the solution, so there
is a vertex w ∈ I \ S. This means that either w or a vertex on every path from U to w

must be in N+(S). The set PU (w) is one such path of length at most 2. Thus, one of⋃
w∈I PU (w) must be part of the out-neighborhood of S and we branch on all of these

vertices. For one vertex, delete it and decrease k by 1.

Case 2. N+[N+[U]] is α-bounded, but has additional neighbors. Consider one of these
neighbors w ∈ N+(N+[N+[U]]). Since w is not reachable from U via at most two edges,
we should not include it in the solution. Now, PU (w) is a path of length 3, and one of
its vertices must be in N+(S). We again branch on all options, delete the corresponding
vertex and decrease k by 1.

By Lemma 31, there is a suitable choice of U for every solution. Therefore, if we can
find the maximum solution containing U if one exists in every iteration with our branching
algorithm, the total algorithm is correct. Also notice that the branching rules are a complete
case distinction; if none of the rules apply, the algorithm reaches a base case. The remaining
proof of correctness follows from a simple induction.

We initially have to consider all subsets of V(G) of size at most α while rejecting subsets
that are not an independent set in time nα+1. To bound the runtime of the branching
algorithm, notice that in each case we branch and make progress decreasing k by 1. In the
first cases, the independent set I has size α + 1 for every w ∈ I, the path PU (w) includes
at most 2 vertices. Hence, there are at most 2(α + 1) branches in this case. The second
case gives exactly 3 branches and is thus dominated by the first rule. This gives the claimed
runtime and concludes the proof. ◀

ISAAC 2025

53:20 A Parameterized Study of Secluded Structures in Directed Graphs

References
1 Shiri Chechik, Matthew P Johnson, Merav Parter, and David Peleg. Secluded connectivity

problems. Algorithmica, 79:708–741, 2017. doi:10.1007/s00453-016-0222-z.
2 Jianer Chen, Yang Liu, Songjian Lu, Barry O’sullivan, and Igor Razgon. A fixed-parameter

algorithm for the directed feedback vertex set problem. Journal of the ACM, 55:1–19, 2008.
doi:10.1145/1411509.1411511.

3 Rajesh Chitnis, Marek Cygan, Mohammad Taghi Hajiaghayi, Marcin Pilipczuk, and Michał
Pilipczuk. Designing fpt algorithms for cut problems using randomized contractions. SIAM
Journal on Computing, 45:1171–1229, 2016. doi:10.1137/15M1032077.

4 Rajesh Chitnis, MohammadTaghi Hajiaghayi, and Dániel Marx. Fixed-parameter tractability
of directed multiway cut parameterized by the size of the cutset. SIAM Journal on Computing,
42:1674–1696, 2013. doi:10.1137/12086217X.

5 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

6 Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh.
Minimum bisection is fixed-parameter tractable. SIAM Journal on Computing, 48:417–450,
2019. doi:10.1137/140988553.

7 Huib Donkers, Bart M.P. Jansen, and Jari J.H. de Kroon. Finding k-secluded trees faster.
Journal of Computer and System Sciences, 138:103461, 2023. doi:10.1016/j.jcss.2023.05.
006.

8 Fedor V. Fomin, Petr A. Golovach, Nikolay Karpov, and Alexander S. Kulikov. Parameterized
complexity of secluded connectivity problems. Theory of Computing Systems, 61:795–819,
2017. doi:10.1007/s00224-016-9717-x.

9 Fedor V Fomin, Petr A Golovach, and Janne H Korhonen. On the parameterized complexity
of cutting a few vertices from a graph. In Mathematical Foundations of Computer Science,
pages 421–432, 2013. doi:10.1007/978-3-642-40313-2_38.

10 Alexandra Fradkin and Paul Seymour. Edge-disjoint paths in digraphs with bounded in-
dependence number. Journal of Combinatorial Theory, Series B, 110:19–46, 2015. doi:
10.1016/j.jctb.2014.07.002.

11 Petr A. Golovach, Pinar Heggernes, Paloma T. Lima, and Pedro Montealegre. Finding
connected secluded subgraphs. Journal of Computer and System Sciences, 113:101–124, 2020.
doi:10.1016/j.jcss.2020.05.006.

12 Martin Grohe, Ken-ichi Kawarabayashi, Dániel Marx, and Paul Wollan. Finding topological
subgraphs is fixed-parameter tractable. In Proceedings of the Forty-Third Annual ACM
Symposium on Theory of Computing (STOC 2011), pages 479–488, 2011. doi:10.1145/
1993636.1993700.

13 Meike Hatzel, Lars Jaffke, Paloma T Lima, Tomáš Masařík, Marcin Pilipczuk, Roohani
Sharma, and Manuel Sorge. Fixed-parameter tractability of directed multicut with three
terminal pairs parameterized by the size of the cutset: twin-width meets flow-augmentation.
In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 3229–3244, 2023. doi:10.1137/1.9781611977554.ch123.

14 Sera Gunn (https://math.stackexchange.com/users/437127/sera gunn). Independent set of
vertices in a directed graph. Mathematics Stack Exchange, 2017. URL: https://math.
stackexchange.com/q/2292101.

15 Bart M. P. Jansen, Jari J. H. de Kroon, and Michał Włodarczyk. Single-exponential FPT
algorithms for enumerating secluded f-free subgraphs and deleting to scattered graph classes.
In 34th International Symposium on Algorithms and Computation (ISAAC 2023), pages
42:1–42:18, 2023. doi:10.4230/LIPIcs.ISAAC.2023.42.

16 Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi. Reducing CMSO
Model Checking to Highly Connected Graphs. In 45th International Colloquium on Automata,
Languages, and Programming (ICALP 2018), volume 107, pages 135:1–135:14, 2018. doi:
10.4230/LIPIcs.ICALP.2018.135.

https://doi.org/10.1007/s00453-016-0222-z
https://doi.org/10.1145/1411509.1411511
https://doi.org/10.1137/15M1032077
https://doi.org/10.1137/12086217X
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1137/140988553
https://doi.org/10.1016/j.jcss.2023.05.006
https://doi.org/10.1016/j.jcss.2023.05.006
https://doi.org/10.1007/s00224-016-9717-x
https://doi.org/10.1007/978-3-642-40313-2_38
https://doi.org/10.1016/j.jctb.2014.07.002
https://doi.org/10.1016/j.jctb.2014.07.002
https://doi.org/10.1016/j.jcss.2020.05.006
https://doi.org/10.1145/1993636.1993700
https://doi.org/10.1145/1993636.1993700
https://doi.org/10.1137/1.9781611977554.ch123
https://math.stackexchange.com/q/2292101
https://math.stackexchange.com/q/2292101
https://doi.org/10.4230/LIPIcs.ISAAC.2023.42
https://doi.org/10.4230/LIPIcs.ICALP.2018.135
https://doi.org/10.4230/LIPIcs.ICALP.2018.135

J. Schmidt, S. Verma, and N. Mallek 53:21

17 Max-Jonathan Luckow and Till Fluschnik. On the computational complexity of length-and
neighborhood-constrained path problems. Information Processing Letters, 156:105913, 2020.
doi:10.1016/j.ipl.2019.105913.

18 Pranabendu Misra, Saket Saurabh, Roohani Sharma, and Meirav Zehavi. Sub-exponential time
parameterized algorithms for graph layout problems on digraphs with bounded independence
number. Algorithmica, 85:2065–2086, 2023. doi:10.1007/s00453-022-01093-w.

19 Marcin Pilipczuk and Magnus Wahlström. Directed multicut is W[1]-hard, even for four
terminal pairs. ACM Transactions on Computation Theory, 10:1–18, 2018. doi:10.1145/
3201775.

20 Abhishek Sahu and Saket Saurabh. Kernelization of arc disjoint cycle packing in α-bounded di-
graphs. Theory of Computing Systems, 67:221–233, 2023. doi:10.1007/s00224-022-10114-8.

21 Jonas Schmidt, Shaily Verma, and Nadym Mallek. A parameterized study of secluded structures
in directed graphs. arXiv preprint arXiv:2502.06048, 2025. doi:10.48550/arXiv.2502.06048.

22 René van Bevern, Till Fluschnik, George B. Mertzios, Hendrik Molter, Manuel Sorge, and
Ondřej Suchý. The parameterized complexity of finding secluded solutions to some classical
optimization problems on graphs. Discrete Optimization, 30:20–50, 2018. doi:10.1016/j.
disopt.2018.05.002.

23 René van Bevern, Till Fluschnik, and Oxana Yu Tsidulko. Parameterized algorithms and
data reduction for the short secluded s-t-path problem. Networks, 75(1):34–63, 2020. doi:
10.1002/NET.21904.

ISAAC 2025

https://doi.org/10.1016/j.ipl.2019.105913
https://doi.org/10.1007/s00453-022-01093-w
https://doi.org/10.1145/3201775
https://doi.org/10.1145/3201775
https://doi.org/10.1007/s00224-022-10114-8
https://doi.org/10.48550/arXiv.2502.06048
https://doi.org/10.1016/j.disopt.2018.05.002
https://doi.org/10.1016/j.disopt.2018.05.002
https://doi.org/10.1002/NET.21904
https://doi.org/10.1002/NET.21904

	1 Introduction
	2 Total-Secluded Strongly Connected Subgraph
	2.1 Boundaries and boundary complementations
	2.2 Unbreakable Case
	2.3 Compressing Graph Extensions
	2.4 Solving Boundaried Max TSSCS

	3 Secluded F-Free subgraph and Secluded DAG
	4 Secluded Subgraphs with Small Independence Number

