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Abstract
Fairly allocating indivisible goods is a frequently occurring task in everyday life. Given an initial
allocation of the goods, we consider the problem of reforming it via a sequence of exchanges to
attain fairness in the form of envy-freeness up to one good (EF1). We present a vast array of results
on the complexity of determining whether it is possible to reach an EF1 allocation from the initial
allocation and, if so, the minimum number of exchanges required. In particular, we uncover several
distinctions based on the number of agents involved and their utility functions. Furthermore, we
derive essentially tight bounds on the worst-case number of exchanges needed to achieve EF1.
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1 Introduction

Fair division is a research area that studies how to allocate scarce resources to interested
agents in a fair manner. Over the past several decades, a large body of work has developed
on concepts and algorithms for fairly allocating various types of resources [6, 27, 28, 30]. The
developed theory has also been applied to many allocation scenarios in practice [9, 17, 19, 23].

A ubiquitous fair division problem is the allocation of indivisible goods, such as books,
furniture, paintings, and human resources. While numerous fairness notions have been
proposed for allocating indivisible goods, one of the most prominent notions is envy-freeness
up to one good (EF1). This notion requires that if an agent envies another agent, there must
exist a good in the latter agent’s bundle whose removal would make the envy disappear.
Besides its simplicity, a salient feature of EF1 is that an allocation satisfying it always exists
and can be found, e.g., by the round-robin algorithm, which lets the agents pick their favorite
goods in a round-robin fashion. The allocation returned by this algorithm is also balanced,
meaning that the numbers of goods that any pair of agents receive differ by at most one.
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54:2 Reforming an Unfair Allocation by Exchanging Goods

The fair division literature typically assumes that there is a set of unallocated goods and
the objective is to allocate them fairly. In certain scenarios, however, an existing (possibly
unfair) allocation of the goods is already in place, and the goal is to “reform” it in order to
arrive at a fair allocation. This is the case, for instance, in the allocation of personnel among
teams in an organization. As the personnel experience individual growth or decline, and as
the needs of the teams evolve, these changes can necessitate a reevaluation and potential
reformation of the current allocation by the organization leadership. Another example is the
distribution of a museum’s exhibits across its branches – the museum director may decide to
adjust the distribution so as to ensure fairness based on the most recent valuations. Such
scenarios fall under the umbrella of control problems, which assume a central authority with
the power to control the outcome and have been studied extensively in fair division and
computational social choice [11, 15].

In this work, we shall allow agents to exchange pairs of goods in the reformation process,
and use EF1 as our fairness criterion. Exchanges constitute a fundamental type of operation
and preserve the size of each agent’s bundle, thereby ensuring that any cardinality constraints
remain fulfilled.1 Naturally, given an initial allocation, we wish to reach an EF1 allocation
using a small number of exchanges. However, it is sometimes impossible to reach an EF1
allocation via any finite number of exchanges (e.g., if one agent receives many more goods than
another agent in the initial allocation), so we start by exploring whether the corresponding
decision problem can be answered efficiently. Since this problem is equivalent to determining
whether an EF1 allocation with a certain size vector exists in a given instance, it is also
meaningful independently of exchange considerations.2 We also investigate other important
questions in this setting. Namely, if it is possible to reach an EF1 allocation, can we efficiently
determine the smallest number of exchanges required to achieve this goal? And how many
exchanges might we need to make in the worst case in order to attain EF1?

1.1 Our Results
In our model, there is an initial allocation of a set of goods. As is often assumed in fair
division, each agent has an additive utility function over the goods. At each step of the
reformation process, two agents can exchange a pair of goods with each other to obtain
another allocation, and the goal is to reach an EF1 allocation at the end of the process. More
details on our model are provided in Section 2.

In Section 3, we consider the decision problem of determining whether a given initial
allocation can be reformed into an EF1 allocation. As mentioned earlier, this problem is
equivalent to determining whether an EF1 allocation with a given size vector exists, so we
focus on the latter decision problem instead. We demonstrate interesting distinctions in
the complexity based on the number of agents and their utility functions. Specifically, in
the case of two agents, the problem can be solved in polynomial time if the agents have
identical utilities, but becomes (weakly) NP-complete otherwise. For three or more agents,
the problem is NP-complete even with identical utilities; however, it can be solved efficiently
when the utilities are binary3 provided that the number of agents is constant. Finally, for

1 Capacity constraints are prevalent in fair division applications and have accordingly received interest in
the literature [4, 21, 32, 33].

2 A size vector specifies the number of goods that each agent receives in an allocation. When an EF1
allocation is not guaranteed to exist in some instances due to cardinality requirements, an approach
taken by previous work is to relax the EF1 condition (e.g., [33]). However, this leads to unnecessarily
weak guarantees in instances where EF1 can be attained.

3 This means that each agent has utility 0 or 1 for each good.
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Table 1 Computational complexity of Reformability, the problem of deciding whether an EF1
allocation with a given size vector exists in a given instance. The top row represents the class of
utility functions considered. The leftmost column represents the number of agents. “sNP-c” and
“wNP-c” stand for strongly NP-complete and weakly NP-complete respectively.

utilities general identical binary identical & binary

n = 2 wNP-c (Th. 6) P (Th. 5) P (Th. 10) P (Th. 10)
constant n ≥ 3 wNP-c (Th. 8) wNP-c (Th. 8) P (Th. 10) P (Th. 10)

general n sNP-c (Th. 11) sNP-c (Th. 11) NP-c (Th. 12) P (Th. 13)

an arbitrary (non-constant) number of agents, the problem is strongly NP-hard even for
identical utilities and NP-hard for binary utilities,4 but can be solved in polynomial time if
the utilities are identical and binary. The results of this section are summarized in Table 1.

Having determined the reformability of the initial allocation, we next explore in Section 4
the problem of deciding whether the optimal (i.e., minimum) number of exchanges required
to reach an EF1 allocation is at most some given number k. For (a) two agents with identical
utilities, (b) a constant number of agents with binary utilities, and (c) any number of agents
with identical binary utilities, we show that this problem can be solved in polynomial time,
just like the corresponding decision problem in Section 3. For the remaining scenarios, since
deciding whether an allocation is reformable is already NP-complete (from Section 3), we
instead focus on the special case where the allocation is balanced – an EF1 allocation is
guaranteed to be reachable in this case (see Proposition 2). We show that the problem for
this special case remains NP-complete.

Finally, in Section 5, instead of considering specific instances, we derive worst-case bounds
on the number of exchanges necessary to reach an EF1 allocation. We assume that each of
the n agents possesses s goods – this again ensures that an EF1 allocation is reachable. We
show that roughly s(n − 1)/2 exchanges always suffice for instances with general utilities or
with binary utilities; moreover, our bound is essentially tight for any n and s, and exactly
tight when n = 2 as well as when s is divisible by n. For instances with identical binary
utilities, we show that an essentially tight bound for the number of exchanges is sn/4 for
even n and s(n − 1)(n + 1)/4n for odd n.

All omitted proofs can be found in the full version of our paper [34].

1.2 Additional Related Work
As mentioned earlier, the majority of work in fair division assumes that there is no initial
allocation of the resources – we now discuss the key exceptions and their differences from
our model. Boehmer et al. [5] studied the problem of discarding goods from an initial
allocation in order to reach an envy-free or EF1 allocation. As it is possible to reallocate
the goods in several practical situations, discarding them can be unnecessarily wasteful
for the agents involved. In a similar vein, Dorn et al. [14] investigated deleting goods to
attain another fairness notion called proportionality; they assumed that agents have ordinal
preferences (rather than cardinal utilities) over the goods, and considered both the settings
with and without an initial allocation.5 Instead of deleting goods, Bredereck et al. [8] allowed

4 For binary utilities, there is no distinction between weak and strong NP-hardness.
5 When there is no initial allocation, Dorn et al. [14] considered deleting goods so that a proportional

allocation of the remaining goods exists. Aziz et al. [2] examined discarding or adding goods to achieve
envy-freeness, also in the absence of an initial allocation and under ordinal preferences.
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54:4 Reforming an Unfair Allocation by Exchanging Goods

agents to share goods in order to improve their allocations, while Bentert et al. [3] analyzed
the resolution of envy by adding goods. Aziz et al. [1] focused on reallocating goods to
make agents better off, but did not delve into the aspect of fairness. Igarashi et al. [22]
aimed to transition from an initial allocation to a target allocation, both of which are EF1,
while maintaining EF1 throughout the process. Chandramouleeswaran et al. [10] examined
transferring goods starting from a “near-EF1” allocation with the goal of reaching an EF1
allocation. Segal-Halevi [31] considered the reallocation of a divisible good and explored
the trade-off between guaranteeing a minimum utility for every agent and ensuring each
agent a certain fraction of her original utility. Chevaleyre et al. [12] also strived to reach fair
allocations but via exchanges with money.

Further afield, the idea of improving an initial allocation has also been examined when
each agent receives only one good, a setting sometimes known as a housing market. Gourvès
et al. [18] assumed an underlying social network and allowed beneficial exchanges between
agents who are neighbors in the network – their work led to a series of follow-up papers on
similar models [20, 25, 26, 29]. Damamme et al. [13] also considered exchanges but without
an underlying graph structure, while Brandt and Wilczynski [7] used Pareto-optimality as
their target notion. The papers mentioned so far in this paragraph did not have fairness as
their objective. Ito et al. [24] incorporated fairness in the form of envy-freeness into this
setting – starting with an envy-free allocation, they let each agent exchange her current good
with a preferred unassigned good as long as the exchange keeps the allocation envy-free.

2 Preliminaries

Let N = {1, . . . , n} be a set of n ≥ 2 agents, and M be a set of m ≥ 1 goods typically denoted
by g1, . . . , gm. A bundle is a (possibly empty) subset of goods. An allocation A = (A1, . . . , An)
is an ordered partition of M into n bundles such that bundle Ai is allocated to agent i ∈ N .
An (allocation) size vector s⃗ = (s1, . . . , sn) is a vector of non-negative integers such that∑

i∈N si = m. We say that an allocation A has size vector s⃗ if |Ai| = si for all i ∈ N . A size
vector s⃗ is balanced if |si − sj | ≤ 1 for all i, j ∈ N , and an allocation is balanced if it has a
balanced size vector.

Each agent i ∈ N has an additive utility function ui : 2M → R≥0 that maps bundles to
non-negative real numbers; additivity means that ui(M ′) =

∑
g∈M ′ ui({g}) for all i ∈ N and

M ′ ⊆ M . We write ui(g) instead of ui({g}) for a single good g ∈ M . The utility functions
are identical if ui = uj for all i, j ∈ N – we shall use u to denote the common utility function
in this case. The utility functions are binary if ui(g) ∈ {0, 1} for all i ∈ N and g ∈ M .
Agent i is EF1 towards agent j in an allocation A = (A1, . . . , An) if either Aj = ∅ or there
exists a good g ∈ Aj such that ui(Ai) ≥ ui(Aj \ {g}). An allocation A is EF1 if every agent
is EF1 towards every other agent in A. A (fair division) instance I consists of a set of
agents N , a set of goods M , and the agents’ utility functions (ui)i∈N .

An exchange involves an agent i giving one good from her bundle to agent j and
simultaneously receiving one good from agent j’s bundle. We say that allocations A =
(A1, . . . , An) and B = (B1, . . . , Bn) can be reached via an exchange if there exist distinct
i, j ∈ N , g ∈ Ai, and g′ ∈ Aj such that Bi = (Ai ∪ {g′}) \ {g}, Bj = (Aj ∪ {g}) \ {g′},
and Bk = Ak for all k ∈ N \ {i, j}. An allocation B can be reached from an allocation A
if there exist a non-negative integer T and a sequence of allocations (A0, A1, . . . , AT ) such
that A0 = A, AT = B, and for each t ∈ {0, . . . , T − 1}, At and At+1 can be reached via an
exchange. The optimal number of exchanges required to reach B from A is the smallest T
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across all such sequences of allocations – if no such T exists (i.e., B cannot be reached
from A), then the optimal number of exchanges is defined to be ∞.6 Observe that two
allocations can be reached from each other if and only if they share the same size vector.

▶ Proposition 1. Given an instance, let A and B be allocations in the instance. Then, B
can be reached from A if and only if A and B have the same size vector.

Next, we state a simple proposition that characterizes the existence of EF1 allocations
based on the size vector.

▶ Proposition 2. Let s⃗ = (s1, . . . , sn), and let m =
∑n

i=1 si.
(a) If s⃗ is balanced, then every instance with n agents and m goods admits an EF1 allocation

with size vector s⃗.
(b) If s⃗ is not balanced, then there exists an instance with n agents and m goods that does

not admit any EF1 allocation with size vector s⃗.

Finally, we introduce an NP-hard decision problem called the Balanced Multi-
Partition problem, which we will use later in the proofs of several results. In Balanced
Multi-Partition, we are given positive integers p, q, K and a multiset of positive integers
X = {x1, . . . , xpq} such that K < xj ≤ 2K for all j ∈ {1, . . . , pq}, and the sum of all
the integers in X is p(q + 1)K. The problem is to decide whether X can be partitioned
into multisets X1, . . . , Xp of equal cardinalities and sums, i.e., for each i ∈ {1, . . . , p}, the
cardinality of Xi is q and the sum of all the integers in Xi is (q + 1)K. The NP-hardness
of this problem is based on a reduction from the equal-cardinality version of the NP-hard
problem Partition [16, p. 223].

▶ Proposition 3. For any fixed p ≥ 2, Balanced Multi-Partition is NP-hard.

3 Reformability of Allocations

We start by investigating the decision problem of whether a given initial allocation can be
reformed into an EF1 allocation. By Proposition 1, this reformation is possible if and only if
there exists an EF1 allocation with the same size vector as the initial allocation. Therefore,
in the rest of this section, we shall equivalently focus on the problem of deciding the existence
of an EF1 allocation with a given size vector – this problem can be of interest independently
of reformation considerations, e.g., when space constraints are present.

Now, Proposition 2 tells us that an EF1 allocation with a balanced size vector always
exists. This means that the only time when we may have difficulties in ascertaining whether
an EF1 allocation exists is when the given size vector is not balanced. In fact, as some of
our proofs in this section show, the decision problem is NP-hard even when the sizes of the
agents’ bundles differ by exactly two (e.g., in Theorem 6).

We discuss the cases of two agents, a constant number of agents, and a general number
of agents separately. For each case, we explore how the hardness of the decision problem
varies across different classes of utility functions. Our results are summarized in Table 1.

6 The optimal number of exchanges can be viewed as the distance between the two allocations in the
implicit exchange graph, where the allocations are vertices and the edges connect allocations that can be
reached via an exchange [22]. When there is no path connecting two vertices of a graph, it is common
to define the distance between them as infinity.

ISAAC 2025



54:6 Reforming an Unfair Allocation by Exchanging Goods

For convenience, we refer to as Reformability the problem of deciding whether an EF1
allocation with a given size vector exists in a given instance. Note that Reformability is
in NP regardless of the number of agents, as we can verify in polynomial time whether a
given allocation satisfies the condition by simply checking its size vector and comparing the
bundles of every pair of agents for EF1.

3.1 Two Agents
For two agents, interestingly, the computational complexity of the problem turns out to
be different depending on whether the agents have identical utilities or not. We begin our
discussion with the case of identical utilities.

For two agents with identical utilities, we first provide a characterization for the existence
of a desired EF1 allocation based on the size vector and the utilities of the goods. We show
that an EF1 allocation with a given size vector exists if and only if the agent with fewer
goods (say, agent 1) is EF1 towards the other agent (say, agent 2) in the allocation where
agent 1 receives the most valuable goods. Note that the condition in the lemma only requires
checking that agent 1 is EF1 towards agent 2; in particular, it does not require checking that
agent 2 is EF1 towards agent 1.

▶ Lemma 4. Given an instance with two agents with identical utilities, let s⃗ = (s1, s2) be a
size vector with s1 ≤ s2. Assume that the goods g1, . . . , gm are arranged in non-increasing
order of utility, and let M0 = {g1, . . . , gs1}. Then, there exists an EF1 allocation with size
vector s⃗ if and only if agent 1 is EF1 towards agent 2 in the allocation (M0, M \ M0).

Proof. We say in this proof that for any nonempty set M ′ ⊆ M , the good gi ∈ M ′ is the
most valuable good in M ′ if gi is the good with the smallest index in M ′; likewise, gi is the
least valuable good in M ′ if gi is the good with the largest index in M ′. Note that the most
(resp. least) valuable good in M ′ is the one with the highest (resp. lowest) utility among all
the goods in M ′, with ties broken by index.

(⇒) Let (A1, A2) be an EF1 allocation with size vector s⃗. Let g and g′ be the most
valuable good in A2 and M \ M0 respectively. Since M0 is the set containing the s1 most
valuable goods, we have u(M0) ≥ u(A1). Since (A1, A2) is an EF1 allocation, we have
u(A1) ≥ u(A2 \ {g}). Moreover, since M \ M0 is the set containing the s2 least valuable
goods, we have u(A2 \ {g}) ≥ u((M \ M0) \ {g′}). Combining the three inequalities, we get
u(M0) ≥ u((M \ M0) \ {g′}). It follows that agent 1 is EF1 towards agent 2 in the allocation
(M0, M \ M0).

(⇐) Suppose that agent 1 is EF1 towards agent 2 in the allocation (M0, M \ M0).
If agent 2 is also EF1 towards agent 1 in (M0, M \ M0), then we are done; therefore,
assume that agent 2 envies agent 1 by more than one good. For notational simplicity,
let hj = gs1+j for j ∈ {1, . . . , s1}, so that the goods arranged in non-increasing order of
utility are g1, g2, . . . , gs1 , h1, h2, . . . , hs1 , g2s1+1, . . . , gm. Let A1

1 = M0 = {g1, . . . , gs1} and
A1

2 = M \ M0 = {h1, . . . , hs1} ∪ {g2s1+1, . . . , gm}.
Let t = 1. In the allocation (At

1, At
2), agent 1 is EF1 towards agent 2, but agent 2

envies agent 1 by more than one good. Since gt is the most valuable good in At
1, we have

u(At
2) < u(At

1 \ {gt}). Let At+1
1 = (At

1 ∪ {ht}) \ {gt} and At+1
2 = (At

2 ∪ {gt}) \ {ht} be the
bundles after exchanging gt and ht. Then, we have

u(At+1
1 ) = u((At

1 ∪ {ht}) \ {gt})
≥ u(At

1 \ {gt}) > u(At
2) = u((At+1

2 ∪ {ht}) \ {gt}) ≥ u(At+1
2 \ {gt}),
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so agent 1 is EF1 towards agent 2 in (At+1
1 , At+1

2 ). If agent 2 is also EF1 towards agent 1,
then (At+1

1 , At+1
2 ) is an EF1 allocation and we are done. Otherwise, agent 2 envies agent 1

by more than one good, and we increment t by 1 and repeat the discussion in this paragraph.
If we still have not found an EF1 allocation after t = s1, then agent 1 is EF1 towards

agent 2 in (As1+1
1 , As1+1

2 ), where As1+1
1 = {h1, . . . , hs1} ⊆ A1

2 and As1+1
2 = {g1, . . . , gs1} ∪

{g2s1+1, . . . , gm} ⊇ A1
1, and g1 is the most valuable good in As1+1

2 . This implies that

u(As1+1
1 ) ≤ u(A1

2) < u(A1
1 \ {g1}) ≤ u(As1+1

2 \ {g1}),

which means that agent 1 is not EF1 towards agent 2 in (As1+1
1 , As1+1

2 ). This is a contradiction;
therefore, (At

1, At
2) must be EF1 for some t ∈ {1, . . . , s1}. ◀

Since the condition in Lemma 4 can be checked in polynomial time, we can derive the
following result.

▶ Theorem 5. Reformability is in P for two agents with identical utilities.

While deciding whether an EF1 allocation with a given size vector exists can be done
efficiently for two agents with identical utilities, we remark here that deciding whether an
envy-free allocation exists is NP-hard for two agents with identical utilities even if we allow
any size vector – this follows directly from a reduction from Partition.7

We now proceed to general utilities. Lemma 4 assumes identical utilities, and there is
no obvious way to generalize it to non-identical utilities. In fact, perhaps surprisingly, we
show that the decision problem becomes NP-hard when we drop the assumption of identical
utilities. The proof follows from a reduction from Balanced Multi-Partition with p = 2,
an NP-hard problem by Proposition 3.

▶ Theorem 6. Reformability is weakly NP-complete for two agents.

Proof. Clearly, this problem is in NP. The “weak” aspect is demonstrated later in Lemma 7,
which says that there exists a pseudopolynomial-time algorithm that solves this problem for
any constant number of agents. Therefore, it suffices to show that this problem is NP-hard.

To demonstrate NP-hardness, we shall reduce from the NP-hard problem Balanced
Multi-Partition with p = 2 (see Proposition 3). Let a Balanced Multi-Partition
instance be given with p = 2. Without loss of generality, assume that q ≥ 2. Let Y =
{y1, . . . , y2q+2} be a multiset such that yj = xj for j ∈ {1, . . . , 2q}, y2q+1 = 2K, and
y2q+2 = 0. We claim that Y can be partitioned into two multisets Y1 and Y2 of equal
cardinalities (i.e., of size q + 1 each) with sums (q + 3)K and (q + 1)K respectively if and
only if X can be partitioned into two multisets X1 and X2 of equal cardinalities and sums.
If the latter condition holds, then let Y1 (resp. Y2) contain the corresponding elements in
X1 (resp. X2), and let y2q+1 ∈ Y1 and y2q+2 ∈ Y2 – this gives an appropriate partition
of Y . Conversely, if the former condition holds, then we show that X can be partitioned
appropriately. Note that if y2q+1 ∈ Y2, then there are at least q − 1 > 0 integers in
{y1, . . . , y2q} that are also in Y2. Since every integer in {y1, . . . , y2q} is more than K, the
sum of Y2 will be more than (q − 1)K + 2K = (q + 1)K, which is a contradiction. This means
that y2q+1 ∈ Y1. Similarly, if y2q+2 ∈ Y1, then there are exactly q +1 integers in {y1, . . . , y2q}
that are in Y2. The sum of Y2 will be more than (q + 1)K, which is a contradiction. Hence,
y2q+2 ∈ Y2. Now, this means that {y1, . . . , y2q} must be partitioned into two multisets of
equal cardinalities with sum (q + 1)K each. This induces an appropriate partition of X.

7 If we require both agents to receive the same number of goods, the problem for envy-freeness remains
NP-hard by a reduction from the equal-cardinality version of Partition.

ISAAC 2025



54:8 Reforming an Unfair Allocation by Exchanging Goods

Next, define a fair division instance as follows. There are n = 2 agents and a set of
goods M = {g1, . . . , g2q+6}. Agent 2’s utility is such that u2(gj) = yj for j ∈ {1, . . . , 2q + 2},
u2(g2q+3) = u2(g2q+4) = 0, and u2(g2q+5) = u2(g2q+6) = 2K. Agent 1’s utility is such that
u1(g) = u2(g) + 4K for all g ∈ M . The size vector s⃗ is (q + 2, q + 4). This reduction can be
done in polynomial time. We claim that there exists an EF1 allocation with size vector s⃗

in this instance if and only if Y can be partitioned into two multisets Y1 and Y2 of equal
cardinalities (i.e., of size q + 1 each) with sums (q + 3)K and (q + 1)K respectively.

(⇐) Let J ′
1 and J ′

2 be a partition of {1, . . . , 2q + 2} of equal cardinalities such that∑
j∈J′

1
yj = (q + 3)K and

∑
j∈J′

2
yj = (q + 1)K. Let A1 = {gj | j ∈ J ′

1} ∪ {g2q+5} and
A2 = M \ A1 be the two agents’ bundles respectively. From agent 1’s perspective, agent 1’s
bundle has utility ((q + 3)K + 2K) + (q + 2)(4K) = (5q + 13)K, agent 2’s bundle has
utility ((q + 1)K + 2K) + (q + 4)(4K) = (5q + 19)K, and a most valuable good in agent 2’s
bundle (e.g., g2q+6) has utility 6K, so agent 1 is EF1 towards agent 2. From agent 2’s
perspective, agent 2’s bundle has utility (q + 1)K + 2K = (q + 3)K, agent 1’s bundle has
utility (q + 3)K + 2K = (q + 5)K, and a most valuable good in agent 1’s bundle (e.g., g2q+5)
has utility 2K, so agent 2 is EF1 towards agent 1. Accordingly, (A1, A2) is an EF1 allocation
with size vector (q + 2, q + 4).

(⇒) Let (A1, A2) be an EF1 allocation with size vector s⃗. From agent 1’s perspective,
u1(M) = (10q + 32)K and a most valuable good (e.g., g2q+5) has utility 6K. For agent 1 to
be EF1 towards agent 2, we must have u1(A1) ≥ ((10q + 32)K − 6K)/2 = (5q + 13)K and
u2(A1) = u1(A1) − (q + 2)(4K) ≥ (q + 5)K. This means that u1(A2) = u1(M) − u1(A1) ≤
(5q +19)K and u2(A2) = u1(A2)−(q +4)(4K) ≤ (q +3)K. On the other hand, from agent 2’s
perspective, u2(M) = (2q + 8)K and a most valuable good has utility 2K. For agent 2 to be
EF1 towards agent 1, we must have u2(A2) ≥ ((2q + 8)K − 2K)/2 = (q + 3)K and u1(A2) =
u2(A2) + (q + 4)(4K) ≥ (5q + 19)K. This means that u2(A1) = u2(M) − u2(A2) ≤ (q + 5)K
and u1(A1) = u2(A1) + (q + 2)(4K) ≤ (5q + 13)K. By combining these inequalities, we
conclude that these inequalities are tight, i.e., agent 1’s utilities for both agents’ bundles
are exactly (5q + 13)K and (5q + 19)K respectively so that the sum is (10q + 32)K, and
agent 2’s utilities for both agents’ bundles are exactly (q + 5)K and (q + 3)K respectively so
that the sum is (2q + 8)K. Additionally, both agents must each have a most valuable good
worth 6K and 2K to them respectively. Without loss of generality, we may assume that
g2q+5 ∈ A1 and g2q+6 ∈ A2 (note that g2q+1 is also a most valuable good, but we use g2q+5
and g2q+6 for simplicity).

Since g2q+6 ∈ A2, there are q + 3 goods in A2 \ {g2q+6} and u2(A2 \ {g2q+6}) = (q +
3)K − 2K = (q + 1)K. These goods are chosen from M1 = {g1, . . . , g2q+1} and M0 =
{g2q+2, g2q+3, g2q+4}. Recall from the construction that u2(g) > K for all g ∈ M1, and
u2(g) = 0 for all g ∈ M0. If A2 \ {g2q+6} contains at least q + 1 goods from M1, then
u2(A2 \ {g2q+6}) > (q + 1)K, a contradiction. Therefore, A2 \ {g2q+6} contains at most q

goods from M1, and at least 3 goods from M0. Since |M0| = 3, we must have M0 ⊆ A2. Note
that u2(M0) = 0, so u2((A2 \ {g2q+6}) \ M0) = (q + 1)K. Therefore, the q goods from M1 in
agent 2’s bundle have a total utility of (q + 1)K. These goods, together with g2q+2, induce
the set Y2 with cardinality q + 1 and sum (q + 1)K. Then, Y1 = Y \ Y2 and Y2 give a required
partition of Y . ◀

The proof of Theorem 6 suggests that the problem is NP-hard even when the sizes of the
two agents’ bundles differ by exactly two. Note that this problem is in P when the sizes of
the agents’ bundles differ by at most one (in fact, every such instance is a Yes-instance by
Proposition 2). For two agents with binary utilities, we shall show later that the decision
problem is in P (see Theorem 10).
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3.2 Constant Number of Agents
Next, we discuss the complexity of the decision problem for a constant number of agents. In
this case, we devise a pseudopolynomial-time algorithm for deciding the existence of an EF1
allocation with a given size vector. This algorithm uses dynamic programming to check for
such an allocation.

▶ Lemma 7. Let an instance with n agents and a size vector be given, where n is a constant.
Suppose that the utility of each good is an integer, and let R = maxi∈N ui(M). Then, there
exists an algorithm running in time polynomial in m and R that decides whether the instance
admits an EF1 allocation with the size vector.

Proof. The algorithm uses dynamic programming. We construct a table with m columns and
L rows, where L will be specified later. The index of each row is represented by a tuple contain-
ing ai,j , bi,j , and ci for each i, j ∈ N , i.e., (a1,1, a1,2, . . . , an,n, b1,1, b1,2, . . . , bn,n, c1, . . . , cn).
The value of ai,j is the utility of agent j’s bundle from agent i’s perspective, i.e., ai,j = ui(Aj);
the value of bi,j is the utility of a most valuable good in agent j’s bundle from agent i’s
perspective, i.e., bi,j = maxg∈Aj

ui(g) (note that this value is zero if Aj = ∅); and the
value of ci is the number of goods in agent i’s bundle. Note that ai,j , bi,j ∈ {0, . . . , R} and
ci ∈ {0, . . . , m}, so there are L = (R + 1)2n2(m + 1)n rows, which is polynomial in m and R.
An entry in column q represents whether an allocation involving {g1, . . . , gq} is possible for
the tuple representing the row, and is either positive or negative.

Initialize every entry to negative. Consider the n possibilities of adding g1 to each of
the agents’ bundles respectively, and set the corresponding entries in the first column of the
table to positive. In particular, for each j ∈ N , the row represented by the tuple such that
ai,j = bi,j = ui(g1) and cj = 1 for all i ∈ N , and zero for all other values in the tuple, has
the entry (in the first column) set to positive.

Now, for each q ∈ {2, . . . , m} in ascending order, for each positive entry in column q − 1,
consider the n possibilities of adding gq into each of the n agents’ bundles respectively, and
set the corresponding entry for each of these possibilities in column q to positive. Once
this procedure is done, consider all positive entries in column m. If some positive entry
corresponds to an EF1 allocation with the required size vector, then the instance admits
such an EF1 allocation; otherwise, no such allocation exists.

Since n is a constant, the number of entries in the table is polynomial in m and R. At
each column, there is a polynomial number of rows with positive entries, and hence the
update is polynomial. Finally, checking for a feasible EF1 allocation at the last column can
also be done in polynomial time. ◀

We now move to polynomial-time algorithms that determine the existence of an EF1
allocation with a given size vector. Recall that such an algorithm exists for two agents with
identical utilities (Theorem 5). However, it turns out that such an algorithm does not exist
for three or more agents with identical utilities, unless P = NP. In particular, we establish
the NP-hardness of the decision problem via a reduction from Balanced Multi-Partition
with p = 2, an NP-hard problem by Proposition 3.

▶ Theorem 8. Reformability is weakly NP-complete for n ≥ 3 agents with identical
utilities, where n is a constant.

Proof. Clearly, this problem is in NP. The “weak” aspect is demonstrated in Lemma 7.
Therefore, it suffices to show that this problem is NP-hard.

To show NP-hardness, we shall reduce from the NP-hard problem Balanced Multi-
Partition with p = 2 (see Proposition 3). Let a Balanced Multi-Partition instance
with p = 2 be given. Define a fair division instance as follows. There are n ≥ 3 agents with

ISAAC 2025



54:10 Reforming an Unfair Allocation by Exchanging Goods

identical utilities, and a set of goods M = {g1, . . . , g2q, h1, . . . , hn} such that u(gj) = xj for
j ∈ {1, . . . , 2q} and u(hk) = (q + 1)K for k ∈ {1, . . . , n}. The size vector s⃗ is such that
s1 = s2 = q + 1 and sk = 1 for all k ∈ {3, . . . , n}. This reduction can be done in polynomial
time. We claim that there exists an EF1 allocation with size vector s⃗ in this instance if and
only if X can be partitioned into multisets X1, X2 of equal cardinalities and sums.

(⇐) Let (X1, X2) be such a partition. Define an allocation such that agent k receives
hk for k ∈ N , agent 1 additionally receives the q goods corresponding to the integers in X1,
and agent 2 additionally receives the q goods corresponding to the integers in X2. We show
that this allocation is EF1. The utilities of agent 1’s and agent 2’s bundles are 2(q + 1)K
each, and the utilities of the other agents’ bundles are (q + 1)K each, so agents 1 and 2 do
not envy anyone else. Therefore, it remains to check that agent k is EF1 towards agents 1
and 2 for k ∈ {3, . . . , n}. Upon the removal of the single good h1 (resp. h2) from agent 1’s
(resp. agent 2’s) bundle, the remaining bundle has utility (q + 1)K, so agent k is EF1 towards
agent 1 (resp. agent 2). Therefore, the allocation is EF1, as desired.

(⇒) Let (A1, . . . , An) be an EF1 allocation with size vector (q + 1, q + 1, 1, . . . , 1). If
agent 1’s bundle has at least two goods from {h1, . . . , hn}, then her bundle without the most
valuable good has utility more than (q + 1)K since her bundle also contains other goods with
positive utility. Agent 3, having a bundle of utility at most (q + 1)K, will not be EF1 towards
agent 1, contradicting the assumption that the allocation is EF1. Therefore, agent 1’s bundle
has at most one good from {h1, . . . , hn}; likewise for agent 2’s bundle. This means that every
agent receives exactly one good from {h1, . . . , hn}. Having established this, agent 3’s bundle
has a utility of (q + 1)K, and agent 3 is EF1 towards agent 1. This means that agent 1’s
bundle without a most valuable good (say, some hk) must have utility at most (q + 1)K.
The same argument can be used to show the same statement for agent 2’s bundle. This
means that the goods {g1, . . . , g2q} must be divided between agents 1 and 2 with each agent
receiving a utility of exactly (q + 1)K. Such a division of {g1, . . . , g2q} induces a partition
of X into two multisets of equal cardinalities and sums, as desired. ◀

Since the decision problem is NP-hard even for identical utilities, it must also be NP-hard
for general utilities. We now consider another class of utilities: binary utilities. When
there are n agents, every good g belongs to one of 2n types of goods represented by the
vector (u1(g), . . . , un(g)). For the purpose of determining whether an EF1 allocation exists,
it suffices to consider different goods of the same type as indistinguishable. We say that two
allocations are in the same equivalence class if the number of goods of each type that each
agent has is the same in both allocations. If A is an EF1 allocation, then all allocations in
the same equivalence class as A are also EF1 and are reachable from A. We shall proceed
with a result which enumerates all (essentially equivalent) EF1 allocations in time polynomial
in the number of goods, provided that the number of agents is a constant.

▶ Lemma 9. Let an instance with n agents with binary utilities and a size vector be given,
where n is a constant. Then, there exists an algorithm running in time polynomial in m that
outputs all equivalence classes of EF1 allocations with the size vector.

Proof. An agent’s bundle can be represented by a 2n-vector where each component of the
vector is the number of goods of that type in her bundle. Since the number of goods of each
type is an integer between 0 and m, there are m + 1 possible values for each component,
and hence at most (m + 1)2n possible vectors to represent each agent’s bundle. Allocations
in an equivalence class can be represented by an ordered collection of n such vectors – one
for each agent – and there are at most ((m + 1)2n)n such collections. Since ((m + 1)2n)n is
polynomial in m whenever n is a constant, there is at most a polynomial number of possible
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equivalence classes of allocations in the instance. For each of these equivalence classes of
allocations, we can check whether an allocation in the equivalence class is EF1 and has the
required size vector in polynomial time, and output the equivalence class if so. Therefore,
the overall running time is polynomial in m, as claimed. ◀

Lemma 9 implies that the decision problem can be solved efficiently for binary utilities.

▶ Theorem 10. Reformability is in P for a constant number of agents with binary
utilities.

3.3 General Number of Agents
For any constant number of agents, the problem of determining the existence of an EF1
allocation with a given size vector is weakly NP-hard by Theorem 8 (even for identical
utilities). For a general number of agents, the pseudopolynomial-time algorithm as described
in Lemma 7 does not work, since that algorithm is at least exponential in the number of
agents. Therefore, the decision problem for a general number of agents might not be weakly
NP-hard. We show that the problem is indeed strongly NP-hard, even for identical utilities,
by a reduction from 3-Partition, a strongly NP-hard problem [16, p. 224].

▶ Theorem 11. Reformability is strongly NP-complete for identical utilities.

The reduction in Theorem 11 requires us to check whether the set of agents holding
the goods with utilities equal to the integers in the partition problem is EF1 towards the
remaining agents. This stands in contrast to the reduction in Theorem 8, which entails
checking whether the complementary set of agents is EF1 towards the remaining agents.

For binary utilities, the decision problem for a constant number of agents is in P
(Theorem 10). The crucial reason is that in this case, the number of different types of
goods is also a constant, which allows us to enumerate all the (essentially equivalent) EF1
allocations in polynomial time (Lemma 9). This is no longer possible when the number of
agents is non-constant. In fact, we show that the decision problem is NP-hard for a general
number of agents with binary utilities. To this end, we reduce from Graph k-Colorability,
which is NP-hard for any fixed k ≥ 3 [16, p. 191].

▶ Theorem 12. Reformability is NP-complete for binary utilities.

Proof. Clearly, this problem is in NP. Therefore, it suffices to show that it is NP-hard.
To this end, we shall reduce from Graph k-Colorability with k ≥ 3. In Graph

k-Colorability, we are given a graph G = (V, E) and a positive integer k, and the problem
is to decide whether G is k-colorable, i.e., whether each of the vertices in V can be assigned
one of k colors in such a way that no two adjacent vertices are assigned the same color. This
decision problem is known to be NP-hard for any fixed k ≥ 3 [16, p. 191].

Let an instance of Graph k-Colorability be given with a fixed k ≥ 3, where V =
{v1, . . . , vp} and E = {e1, . . . , eq}. Define a fair division instance as follows. There are
n = q + k agents where the first q agents are called edge agents and the last k agents are
called color agents. There are m = kp goods. Each color agent assigns zero utility to every
good. For r ∈ {1, . . . , q}, if er = {vi, vj}, then the rth edge agent assigns a utility of 1 to
each of gi and gj , and zero utility to every other good. Note that only the first p goods
correspond to vertices and are valuable to the edge agents whose corresponding edges are
incident to the vertices; the remaining (k − 1)p goods are not valuable to any agent. The size
vector s⃗ is such that sr = 0 for each edge agent r and sc = p for each color agent c. This
reduction can be done in polynomial time. We claim that there exists an EF1 allocation
with size vector s⃗ in this instance if and only if G is k-colorable.

ISAAC 2025



54:12 Reforming an Unfair Allocation by Exchanging Goods

(⇐) Let a proper k-coloring of G be given. For t ∈ {1, . . . , p}, if vertex vt is assigned the
color c, then allocate gt to the color agent c. Since there are p such goods and each color
agent is supposed to have p goods in her bundle, it is possible to allocate all of these goods.
Subsequently, allocate the remaining goods arbitrarily among the color agents until every
color agent has exactly p goods. We claim that this allocation is EF1. Every color agent
assigns zero utility to every good and is thus EF1 towards every other agent. Each edge
agent assigns a utility of 1 to only two goods, so we only need to check that these two goods
are in different bundles. Indeed, these two goods correspond to vertices which are adjacent to
each other in G, and proper coloring of G implies that the vertices are of different colors, so
the corresponding goods are in different color agents’ bundles. Hence, the allocation is EF1.

(⇒) Let an EF1 allocation with size vector s⃗ be given. For t ∈ {1, . . . , p}, if the good gt

is with color agent c, assign vt to color c. We claim that this coloring is a proper k-coloring
of G. Since there are k color agents, at most k colors are used. Therefore, it suffices to
check that adjacent vertices are assigned different colors. Let vi, vj ∈ V be adjacent vertices.
Then, there exists an edge er = {vi, vj}. The edge agent r assigns a utility of 1 to each of gi

and gj . Since agent r’s bundle is empty, gi and gj must be in different (color agents’) bundles
in order for agent r to be EF1 towards every other agent. This implies that vi and vj are
assigned different colors. ◀

Even though the decision problem is NP-hard for identical or binary utilities, we prove
next that it can be solved in polynomial time for identical and binary utilities. Indeed, this
can be done by checking whether the total number of valuable goods is within a certain
threshold which can be computed in polynomial time. This threshold is in fact the sum over
all agents j ∈ N of the minimum between sj and 1 + mini∈N si. If the number of valuable
goods is within this threshold, then we can distribute the valuable goods in a round-robin
fashion first, thereby ensuring EF1. Conversely, if the number of valuable goods is beyond
this threshold, then some agent i with the minimum si will not be EF1 towards another
agent who receives at least si + 2 valuable goods.

▶ Theorem 13. Reformability is in P for identical binary utilities.

4 Optimal Number of Exchanges

In this section, we consider the complexity of computing the optimal number of exchanges
required to reach an EF1 allocation from an initial allocation.

Recall that the decision problem in Section 3 is to determine whether there exists an
EF1 allocation that can be reached from a given initial allocation. This is equivalent to
determining whether the optimal number of exchanges to reach an EF1 allocation is finite
or not. We have established a few scenarios where there exist polynomial-time algorithms
for this task: (a) two agents with identical utilities (Theorem 5), (b) any constant number
of agents with binary utilities (Theorem 10), and (c) any number of agents with identical
binary utilities (Theorem 13). For these scenarios, we can run the respective polynomial-time
algorithms to decide whether such an EF1 allocation exists – if none exists, then the optimal
number of exchanges is ∞. Therefore, for the proofs in this section pertaining to these
scenarios, we proceed with the assumption that such an EF1 allocation exists. We will show
that the problem of computing the optimal number of exchanges for these scenarios is also
in P; our algorithms can be modified to compute an optimal sequence of exchanges as well.

For the remaining scenarios where the decision problem in Section 3 is NP-hard, it is
NP-hard to even decide whether the optimal number of exchanges to reach an EF1 allocation
is finite or not. Therefore, for these scenarios, we shall focus on the special case where the
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given size vector is balanced, so that the optimal number of exchanges is guaranteed to be
finite (see Proposition 2). Even with this assumption, we will show that the computational
problem for these scenarios remains NP-hard.

For convenience, we refer to as Optimal Exchanges the problem of deciding – given an
instance, an initial allocation in the instance, and a number k – whether the optimal number
of exchanges required to reach an EF1 allocation is at most k. Note that the optimal number
of exchanges in the scenarios mentioned above are finite. By the proof of Proposition 1, the
optimal number of exchanges in these scenarios is polynomial in the number of agents and
the number of goods. As a result, Optimal Exchanges is in NP regardless of the number
of agents, as we can easily verify whether an exchange path starting from the given initial
allocation indeed reaches an EF1 allocation using at most k exchanges.

We begin with the case of two agents. For two agents with identical utilities, we show that
there exists a polynomial-time algorithm that computes the optimal number of exchanges.
This algorithm performs the exchanges until an EF1 allocation is reached, while keeping track
of the number of exchanges required. The algorithm is “greedy” in the sense that at each
step, it performs an exchange involving the most valuable good from the agent whose bundle
has the higher utility, and the least valuable good from the other agent. We demonstrate
that this choice is the best for the number of exchanges required to reach an EF1 allocation.

▶ Theorem 14. Optimal Exchanges is in P for two agents with identical utilities.

Proof. We show that we can compute the optimal number of exchanges in polynomial
time. We assume that an EF1 allocation with the given size vector exists. If the initial
allocation A is EF1, we are done. Otherwise, assume without loss of generality that agent 2
has a higher utility than agent 1 in A. Let s⃗ = (s1, s2) be the size vector. By rearranging
the labels of the goods, assume that the goods are in non-increasing order of utility, i.e.,
u(g1) ≥ u(g2) ≥ · · · ≥ u(gm). The algorithm proceeds as follows: repeatedly exchange the
most valuable good in agent 2’s bundle with the least valuable good in agent 1’s bundle
until agent 1 is EF1 towards agent 2. The optimal number of exchanges required is then the
number of exchanges made in this algorithm.

First, we claim that in each exchange, a good from {g1, . . . , gs1} in agent 2’s bundle is
always exchanged with a good from {gs1+1, . . . , gm} in agent 1’s bundle. Suppose on the
contrary that this is not true. Let A′ be the allocation just before we make the exchange that
violates this claim. The only way for the claim to be violated is when A′

1 = {g1, . . . , gs1} and
A′

2 = {gs1+1, . . . , gm}. If s1 ≤ s2, then by Lemma 4, there does not exist an EF1 allocation
with size vector s⃗ – this would contradict our assumption that an EF1 allocation with size
vector s⃗ exists. Otherwise, s1 > s2, and every good in A′

1 has a higher utility than every
good in A′

2, so agent 1 is EF1 towards agent 2. This would contradict our assumption that
the algorithm has not terminated. Hence, the claim is true.

By the claim in the previous paragraph, the total number of exchanges made is at most
min{s1, s2} ≤ m. Each exchange can be performed in polynomial time, and so the algorithm
terminates in polynomial time. We show next that an EF1 allocation is obtained when the
algorithm terminates. It suffices to show that agent 2 is EF1 towards agent 1 in the final
allocation. To this end, we show that agent 2 is EF1 towards agent 1 at every step of the
algorithm. Let the initial allocation be A0 = A, and let At be the allocation after t steps of
the algorithm. Note that A0 satisfies the condition that agent 2 is EF1 towards agent 1, since
agent 2 has a higher utility than agent 1 in A. We show that if At has the property that
agent 2 is EF1 towards agent 1 and agent 1 is not EF1 towards agent 2, then At+1 has the
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property that agent 2 is EF1 towards agent 1. Suppose that g ∈ At
2 is exchanged with h ∈ At

1;
note that g is a good with the highest utility in At

2. This means that u(At
1) < u(At

2 \ {g}).
Then,

u(At+1
2 ) ≥ u(At+1

2 \ {h}) = u(At
2 \ {g}) > u(At

1) ≥ u(At
1 \ {h}) = u(At+1

1 \ {g}),

showing that agent 2 is EF1 towards agent 1 in At+1.
Finally, we show that the optimal number of exchanges required to reach an EF1 allocation

is at least the number of exchanges made in this algorithm. Let T be the number of
exchanges made in this algorithm. For each t ∈ {1, . . . , T}, let gt ∈ A2 (resp. ht ∈ A1)
be the good in agent 2’s bundle (resp. agent 1’s bundle) that is exchanged at the tth step
of the algorithm. Note that u(g1) ≥ · · · ≥ u(gT ) ≥ u(hT ) ≥ · · · ≥ u(h1). Also, we have
u(AT −1

1 ) < u(AT −1
2 \ {gT }), where gT is a good with the highest utility in agent 2’s bundle

in AT −1. Suppose on the contrary that only k ≤ T − 1 exchanges are required to reach an
EF1 allocation. Since A is not EF1, we have 1 ≤ k < T . Let (B1, B2) be the EF1 allocation
after the k exchanges. The utility of B1 is upper-bounded by the utility of A1 after adding k

goods of the highest utility from A2 and removing k goods of the lowest utility from A1, so

u(B1) ≤ u((A1 ∪ {g1, . . . , gk}) \ {h1, . . . , hk})

= u(A1) +
k∑

t=1
(u(gt) − u(ht))

≤ u(A1) +
T −1∑
t=1

(u(gt) − u(ht))

= u((A1 ∪ {g1, . . . , gT −1}) \ {h1, . . . , hT −1}) = u(AT −1
1 ).

On the other hand, the utility of B2 without the most valuable good is lower-bounded by
the utility of A2 after adding k goods of the lowest utility from A1 and removing k + 1 ≤ T

goods of the highest utility from A2, so we have

u(B2 \ {g}) ≥ u((A2 ∪ {h1, . . . , hk}) \ {g1, . . . , gk+1})

= u(A2) − u(g1) −
k∑

t=1
(u(gt+1) − u(ht))

≥ u(A2) − u(g1) −
T −1∑
t=1

(u(gt+1) − u(ht))

= u((A2 ∪ {h1, . . . , hT −1}) \ {g1, . . . , gT }) = u(AT −1
2 \ {gT })

for every g ∈ B2. This gives the inequality u(B1) ≤ u(AT −1
1 ) < u(AT −1

2 \{gT }) ≤ u(B2 \{g})
for all g ∈ B2. Hence, agent 1 is not EF1 towards agent 2 in (B1, B2), contradicting the
assumption that (B1, B2) is EF1. It follows that at least T exchanges are required to reach
an EF1 allocation. ◀

However, if the utilities are not identical, then computing the optimal number of exchanges
is NP-hard, even for balanced allocations. To show this hardness, we modify the construction
from the proof of Theorem 6.

▶ Theorem 15. Optimal Exchanges is NP-complete for two agents, even when the initial
allocation is balanced.
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Proof. Clearly, this problem is in NP. To demonstrate NP-hardness, we modify the con-
struction from the proof of Theorem 6. Recall that we have Y = {y1, . . . , y2q+2} with
K < yj ≤ 2K for j ∈ {1, . . . , 2q}, y2q+1 = 2K, and y2q+2 = 0. A fair division instance I ′

is defined with n = 2 agents and a set of goods M ′ = {g1, . . . , g2q+6}. Agent 2’s util-
ity is such that u2(gj) = yj for j ∈ {1, . . . , 2q + 2}, u2(g2q+3) = u2(g2q+4) = 0, and
u2(g2q+5) = u2(g2q+6) = 2K. Agent 1’s utility is such that u1(g) = u2(g) + 4K for all g ∈ M .
The size vector s⃗ ′ is (q + 2, q + 4). In Theorem 6, it was proven that there exists an EF1
allocation with size vector s⃗ ′ in this instance if and only if Y can be partitioned into two
multisets Y1 and Y2 of equal cardinalities (i.e., of size q + 1 each) with sums (q + 3)K and
(q + 1)K respectively. Both problems were proven to be NP-hard.

Define a new fair division instance I as follows. There are n = 2 agents and a set of goods
M = {g1, . . . , g4q+12}. For j ∈ {1, . . . , 2q + 6}, the utility of gj for each agent is identical to
that in the original fair division instance I ′. For j ∈ {2q + 7, . . . , 4q + 12}, we have ui(gj) = 0
for i ∈ {1, 2}. The size vector s⃗ is (2q + 6, 2q + 6). In the initial allocation A, agent 1 has
A1 = {g2q+7, . . . , g4q+12} and agent 2 has A2 = {g1, . . . , g2q+6}. This reduction can be done
in polynomial time. We claim that the optimal number of exchanges required to reach an
EF1 allocation from A is at most q + 2 in I if and only if there exists an EF1 allocation
with size vector s⃗ ′ in I ′.

(⇐) Let (A′
1, A′

2) be an EF1 allocation with size vector s⃗ ′ in I ′. Note that A′
1 ⊆ A2 and

|A′
1| = q + 2. In A, exchange the q + 2 goods from A′

1 with any q + 2 goods in A1. This
requires a total of q + 2 exchanges. The new allocation has exactly the same goods as that
in (A′

1, A′
2) along with other goods with zero utility, and so is EF1. Therefore, the optimal

number of exchanges to reach an EF1 allocation from A is at most q + 2.
(⇒) Suppose that an EF1 allocation B is reached from A after t ≤ q + 2 exchanges in I.

We may assume that every good is not exchanged more than once. By the same reasoning as
in the proof of Theorem 6, we must have u1(B1) ≥ (5q+13)K and u2(B1) ≤ (q+5)K. Since t

goods are transferred from A2, we have u1(B1) = u2(B1)+ t(4K) ≤ (q +5)K +(q +2)(4K) =
(5q+13)K. This means that the inequalities for u1(B1) are tight, and we have u1(B1) = 5q+13
and t = q + 2. Letting M1 = A2 ∩ B1, we have |M1| = q + 2 and M1 ⊆ A2 ⊆ M ′. Since
(B1, B2) is an EF1 allocation, the allocation that removes all goods with zero utility is also
EF1, namely, (M1, M ′ \ M1). This induces an EF1 allocation with size vector s⃗ ′ in I ′. ◀

While a polynomial-time algorithm to compute the optimal number of exchanges exists for
two agents with identical utilities, this is not the case for three or more agents unless P = NP.
Indeed, we establish the NP-hardness of this problem via a reduction from Balanced
Multi-Partition with p ≥ 2, an NP-hard problem by Proposition 3.

▶ Theorem 16. Optimal Exchanges is NP-complete for n ≥ 3 agents with identical
utilities, where n is a constant, even when the initial allocation is balanced.

Next, we consider binary utilities. We have shown that deciding whether the optimal
number of exchanges to reach an EF1 allocation is finite can be done in polynomial time
(Theorem 10). We now establish that the same is true for computing this exact number.

▶ Theorem 17. Optimal Exchanges is in P for a constant number of agents with binary
utilities.

Let us now consider a non-constant number of agents. We have shown that computing
the optimal number of exchanges required to reach an EF1 allocation is NP-hard, even for
identical utilities (Theorem 16). We thus consider binary utilities.

Although this problem belongs to P when the number of agents is a constant (Theorem 17),
we show that it is NP-hard for a general number of agents, even for the special case where
the initial allocation is balanced. To this end, we reduce from Exact Cover by 3-Sets.
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▶ Theorem 18. Optimal Exchanges is NP-complete for binary utilities, even when the
initial allocation is balanced.

Finally, we consider identical binary utilities. We show that for this class of utilities, the
computational problem can be solved efficiently regardless of whether the size vector of the
initial allocation is balanced or not. To show this, we demonstrate that the greedy algorithm
allows an EF1 allocation to be reached using the smallest number of exchanges.

▶ Theorem 19. Optimal Exchanges is in P for identical binary utilities.

5 Worst-Case Bounds

In this section, instead of instance-specific optimization, we turn our attention to the worst-
case number of exchanges required to reach an EF1 allocation from some initial allocation.
Since an EF1 allocation may not always be reachable (as can be seen from Section 3), we
shall focus on the special case where the number of goods in each agent’s bundle is the same.
We say that a size vector s⃗ = (s1, . . . , sn) is s-balanced for a positive integer s if si = s for all
i ∈ N , and an allocation is s-balanced if it has an s-balanced size vector. We shall consider
the worst-case number of exchanges starting from an s-balanced allocation for n agents.

Given n and s, let f(n, s) be the smallest integer such that for every instance with n

agents and ns goods and every s-balanced allocation A in the instance, there exists an EF1
allocation that can be reached from A using at most f(n, s) exchanges. We shall examine
the bounds for f(n, s).

We first derive an upper bound for f(n, s). At a high level, we use an algorithm by Biswas
and Barman [4] to find an EF1 allocation under cardinality constraints such that every agent
retains roughly s/n of her goods from her original bundle. The algorithm also distributes
the goods in each agent’s initial bundle to the other agents as evenly as possible in order to
maximize the number of goods that can be exchanged one-to-one, thereby minimizing the
total number of exchanges. One can check that roughly s(n − 1)/2 exchanges are required to
reach this EF1 allocation from the initial allocation.

▶ Theorem 20. Let n and s be positive integers, and let q = ⌊s/n⌋ and r = s − qn be the
quotient and remainder when s is divided by n respectively. Then,

f(n, s) ≤

{
s(n − 1)/2 if r = 0;
s(n − 1)/2 + r(n − 3)/2 + 1 otherwise.

Moreover, we have f(2, s) ≤ (s − r)/2 for all s.

Proof. Let A be an s-balanced allocation. It suffices to find an EF1 s-balanced allocation B
such that the optimal number of exchanges to reach B from A is at most the expression
given in the theorem statement.

When n = 2, allocate the goods in A1 to the two agents in a round-robin fashion with
agent 1 going first, and allocate the goods in A2 to the two agents in a round-robin fashion
with agent 2 going first. Call this new allocation B. Note that B is clearly s-balanced. We
have Ai ∩ B3−i = (s − r)/2 for i ∈ {1, 2}, so the optimal number of exchanges required to
reach B from A is (exactly) (s − r)/2. To see that B is EF1, observe that agent 1 does not
envy agent 2 with respect to the goods chosen from A1 and is EF1 towards agent 2 with
respect to the goods chosen from A2, so agent 1 is EF1 towards agent 2 in B; likewise, agent 2
is EF1 towards agent 1 in B. This shows that f(2, s) ≤ (s − r)/2.
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When n ≥ 3, we shall find an EF1 s-balanced allocation B by generalizing the method
for two agents. We define n + r categories of goods C1, . . . , Cn, D1, . . . , Dr as follows. For
i ∈ N , category Ci contains qn goods arbitrarily selected from Ai only; note that r goods
remain unselected in Ai. Next, we form Dw recursively as follows: let w ∈ {1, . . . , r} be the
smallest index such that Dw does not have n goods yet, let i ∈ N be the smallest index such
that Ai still has unselected goods, arbitrarily select a good in Ai, and add it to Dw. At the
end of this process, every category Ci has exactly qn goods from Ai, and every category Dw

has exactly n goods from consecutive agents’ bundles, say, Aiw , Aiw+1, . . . , Ajw .
We now proceed to form B using the algorithm by Biswas and Barman [4] which finds an

EF1 allocation under cardinality constraints. In particular, there exists an EF1 allocation
B = (B1, . . . , Bn) such that |Ci∩Bj | = |Ci|/n = q for all i, j ∈ N and |Dw∩Bj | = |Dw|/n = 1
for all w ∈ {1, . . . , r}, j ∈ N . Also, B is s-balanced because |Bj | = qn + r = s for all j ∈ N .
We shall bound the number of exchanges required to reach B from A.

For each unordered pair of distinct i, j ∈ N , exchange the q goods from Ci ∩Bj (which are
in Ai) with the q goods from Cj ∩ Bi (which are in Aj). This requires a total of qn(n − 1)/2
exchanges. Call this intermediate allocation A′ = (A′

1, . . . , A′
n). At this point, the only goods

that are possibly in the wrong bundles in A′ (as compared to B) are the goods in all the Dw,
and there are at most rn such goods. For each i ∈ N , let Xi = A′

i ∩ (D1 ∪ · · · ∪ Dr).
If r = 0, then A′ = B, and we are done since the total number of exchanges is qn(n−1)/2 =

s(n − 1)/2. Else, r > 0. Consider the directed graph where the vertices are the agents and
each edge eg represents a good g ∈ M such that if g ∈ A′

i ∩ Bj , then eg = (i, j). Igarashi
et al. [22, Prop. 4.1] showed that the number of exchanges required to reach B from A′ is
m − c∗, where c∗ is the maximum possible cardinality of a partition of the edges of the
graph into (directed) circuits. In A′, qn2 goods from all the Ci are in the correct bundle
by the previous process, and each of the edges representing these goods has its own circuit,
say, (i, i) if the good is in A′

i. We shall show that the edges representing the rn goods in
all the Dw can be partitioned into at least 2r − 1 disjoint circuits. This will give at least
qn2 + (2r − 1) = sn − (rn − 2r + 1) as the cardinality of one such partition of the edges of
the graph into circuits. Accordingly, c∗ ≥ sn − (rn − 2r + 1), and the number of exchanges
required to reach B from A′ is m − c∗ ≤ rn − 2r + 1. Then, the number of exchanges required
to reach B from A (via A′) is at most qn(n−1)/2+(rn−2r+1) = s(n−1)/2+r(n−3)/2+1,
establishing the theorem.

Let w ∈ {1, . . . , r} be given. We shall show that there exists a cycle formed with a subset
of the edges representing the goods in Dw. The goods in Dw come from consecutive agents’
bundles in A′, say, agents iw to jw. Every agent receives exactly one good from Dw in B; in
particular, agents iw to jw receive exactly one good from Dw each. Consider the good g in
Dw ∩ Biw

. If g is in Xiw
, then the edge eg = (iw, iw) is a desired cycle. Otherwise, g belongs

to some agent i′ ∈ {iw + 1, . . . , jw} in A′. Then, the edge eg is (i′, iw). Next, we consider
the good g′ in Dw ∩ Bi′ , and find the agent that has g′ in A′. The edge representing g′

then points to i′ from that agent. By repeating this, we eventually find a cycle formed with
some of these edges and with a subset of the agents iw to jw as vertices. Let Mw ⊆ Dw

be the set of goods that are represented by the edges in this cycle. Note that each Xi for
i ∈ {iw, . . . , jw} contains at most one good in Mw, and each Xi for i ∈ N \ {iw, . . . , jw} does
not contain any good in Mw.

Now, consider the goods represented by the edges of the r cycles – one for each w. Note
that these cycles are disjoint since the sets Mw are pairwise disjoint. Let M0 =

⋃r
w=1 Mw.

We claim that |M0| < 2n. Since the r goods in X1 are entirely contained in D1, we have
|X1∩M1| ≤ 1 and |X1∩Mw| = 0 for w ∈ {2, . . . , r}, which implies that |

⋃r
w=1(X1∩Mw)| ≤ 1.
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Now, for each i ∈ N \{1}, the r goods in Xi can only be contained in at most two Dw – to see
this, observe that if the r goods are contained in Dw′ , Dw′+1, and Dw′+2, then Dw′+1 ⊆ Xi,
which implies that r = |Xi| ≥ |Dw′+1| = n, a contradiction. Thus, we have |Xi ∩ Mw| ≤ 1
for all w ∈ {1, . . . , r}, and |Xi ∩ Mw| = 1 for at most two w, and so |

⋃r
w=1(Xi ∩ Mw)| ≤ 2.

Since M0 =
⋃

i∈N

⋃r
w=1(Xi ∩ Mw), we have |M0| ≤ 1 + (n − 1) · 2 < 2n, proving the claim.

Finally, consider the edges representing the rn goods in all the Dw. We have shown that
fewer than 2n of these edges can be used to form r disjoint circuits (in fact, cycles). There
are more than rn − 2n = (r − 2)n edges remaining. Since we can always require every circuit
to have length at most n, there exists a partition of the remaining edges into more than
r − 2 disjoint circuits, i.e., at least r − 1 disjoint circuits. The total number of circuits in this
partition is at least r + (r − 1) = 2r − 1. This completes the proof. ◀

If no good is involved in more than one exchange, then s(n − 1)/2 exchanges means that
a total of s(n − 1) = m(1 − 1/n) goods are exchanged. When n is large, the fraction of goods
involved in the exchanges becomes close to 1. While this bound might not seem impressive,
we show next that it is, in fact, already essentially tight. Specifically, we establish a lower
bound for f(n, s) by constructing an instance (with binary utilities) and an s-balanced
allocation A in the instance such that roughly s(n − 1)/2 exchanges are necessary to reach
an EF1 allocation from A.

▶ Theorem 21. Let n and s be positive integers, and let q = ⌊s/n⌋ and r = s − qn be the
quotient and remainder when s is divided by n respectively. Then,

f(n, s) ≥

{
s(n − 1)/2 if r = 0;
s(n − 1)/2 − (n − r)/2 otherwise.

For two agents, Theorems 20 and 21 give a tight bound of f(2, s) = (s−r)/2 = m/4−r/2 =
⌊m/4⌋. This means that in the worst-case scenario, the number of exchanges required to
reach an EF1 allocation is roughly one-quarter of the total number of goods between the
two agents, or equivalently, roughly half of the goods need to be exchanged between the two
agents to reach an EF1 allocation.

Theorems 20 and 21 also give a tight bound of f(n, s) = s(n−1)/2 whenever s is divisible
by n. By observing the proof of Theorem 20, we can achieve an EF1 allocation with f(n, s)
exchanges without involving each good in more than one exchange. This means that a
(1 − 1/n) fraction of all goods need to be exchanged in the worst-case scenario. Intuitively,
this happens when each agent only values the goods in the bundle of every agent except
her own in the initial allocation, and therefore needs to ensure that these goods are evenly
distributed among all agents including herself.

Define fbin(n, s) as the smallest integer such that for every binary instance with n agents
and ns goods and every s-balanced allocation A in the instance, there exists an EF1 allocation
that can be reached from A using at most fbin(n, s) exchanges. The proof of Theorem 21
uses a binary instance, which means that the lower bound of the theorem works for fbin
as well. Clearly, the upper bound of Theorem 20 works for fbin, so the discussion in the
preceding paragraphs also applies to binary instances too.

Given n and s, let fid,bin(n, s) be the smallest integer such that for every instance with n

agents with identical binary utilities and ns goods and every s-balanced allocation A in the
instance, there exists an EF1 allocation that can be reached from A using at most fid,bin(n, s)
exchanges. We show that fid,bin(n, s) is roughly sn/4 for even n and s(n − 1)(n + 1)/4n for
odd n – note that this is approximately half of the bound f(n, s) for arbitrary utilities, which
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is roughly s(n − 1)/2 as seen earlier. The upper bounds (of sn/4 and s(n − 1)(n + 1)/4n

respectively) correspond to the case where half of the agents have all the valuable goods
while the remaining half have all the non-valuable goods.

▶ Theorem 22. Let n and s be positive integers. If n is even, then n
2

⌊
s
2
⌋

≤ fid,bin(n, s) ≤ sn
4 .

If n is odd, then n+1
2

⌊
s(n−1)

2n

⌋
≤ fid,bin(n, s) ≤ s(n−1)(n+1)

4n .

6 Conclusion and Future Work

We have studied the reformability of unfair allocations and the number of exchanges required
in the reformation process. We uncovered several distinctions in the complexity of these
problems based on the number of agents and their utility functions, and showed that the
number of exchanges required to reach an EF1 allocation is relatively high in the worst case.

While our worst-case bounds for general utilities are already exactly tight in certain
scenarios and almost tight generally, an open question is to tighten them for more than
two agents when the number of goods in each agent’s bundle is not divisible by the number
of agents. Another interesting direction is to require each exchange to be beneficial for
both agents involved. One could also consider the model of transferring goods instead of
exchanging them – an EF1 allocation is always reachable from any allocation in this model,
so a natural question is to determine the optimal number of exchanges needed for this goal.
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