
A Dimension-Reducing Fréchet Simplification
Oracle
Boris Aronov #

Department of Computer Science and Engineering, Tandon School of Engineering,
New York University, Brooklyn, NY, USA

Tsuri Farhana #

Department of Computer Science, Ben-Gurion University, Beer Sheva, Israel

Matthew J. Katz #

Department of Computer Science, Ben-Gurion University, Beer Sheva, Israel

Indu Ramesh #

Department of Computer Science and Engineering, Tandon School of Engineering,
New York University, Brooklyn, NY, USA

Abstract
Let P be a polygonal curve with n vertices in the plane. We construct a data structure of
size O(n log n) suited for simplification queries of the following kind. Given a query line ℓ and an
integer k ≥ 1, find a curve Q on ℓ with at most k vertices that minimizes the discrete Fréchet
distance to P , among all such curves. Using our data structure, a query can be handled in
O(k2 log3 n + k log4 n) time.

More generally, a geometric tree T on n vertices in the plane can be preprocessed into a near-
linear-size structure so that, given a pair u, v of its vertices, a line ℓ, and an integer k ≥ 1, one can
find a curve Q on ℓ with at most k vertices that minimizes the discrete Fréchet distance to the path
from u to v in T , in time O(k2 polylog n).

For the general dimension-reduction problem, where P is a curve in Rd (d ≥ 3), 0 < ε0 < 1 is a
real parameter, and a query specifies a g-flat h (1 ≤ g ≤ d − 1) and an integer k ≥ 1, we construct a
data structure of size O(n log n + f(ε0)n), where f(ε0) = (1 + 1/ε0)(d−1)/2, that allows us to find a
curve Q on h with at most k vertices, whose discrete Fréchet distance to P is at most 1 + ε0 times
the distance of Q∗ to P , where Q∗ is such a curve that minimizes the distance to P . The query
handling time is O(f(ε0)k2 log2 n).

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Computational geometry, discrete Fréchet distance, curve simplification
oracle, restricted minimum enclosing disk queries

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2025.6

Funding Boris Aronov: Work partially supported by NSF Grant CCF-20-08551.
Matthew J. Katz: Work partially supported by Grant 2019715/CCF-20-08551 from the US-Israel
Binational Science Foundation/US National Science Foundation.
Indu Ramesh: Work supported by NSF Grant CCF-20-08551.

1 Introduction

Curve simplification is an important and extensively studied problem in computational
geometry and related fields. Here, we restrict our attention to curve simplification with the
quality of the simplification measured using the discrete Fréchet distance between the original
curve and its simplification. See below for a comprehensive survey of research in this area.

In this paper, we introduce a novel class of curve simplification problems, in which the
simplified curve is required to lie within a specified subspace or region. More formally, let P

be a polygonal curve in Rd. We are interested in problems where, in addition to standard
© Boris Aronov, Tsuri Farhana, Matthew J. Katz, and Indu Ramesh;
licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Algorithms and Computation (ISAAC 2025).
Editors: Ho-Lin Chen, Wing-Kai Hon, and Meng-Tsung Tsai; Article No. 6; pp. 6:1–6:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:boris.aronov@nyu.edu
https://orcid.org/0000-0003-3110-4702
mailto:tsurif@post.bgu.ac.il
https://orcid.org/0009-0006-7246-6805
mailto:matya@bgu.ac.il
https://orcid.org/0000-0002-0672-729X
mailto:ir914@nyu.edu
https://orcid.org/0009-0008-9967-0819
https://doi.org/10.4230/LIPIcs.ISAAC.2025.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de


6:2 A Dimension-Reducing Fréchet Simplification Oracle

parameters such as a threshold on the distance between P and the desired simplification Q

or a bound on the length (i.e., number of vertices) of Q, Q must also reside in a designated
subspace or region. Moreover, since it is often desirable to find the optimal simplification
of P for multiple subspaces or regions, we concentrate on the multi-shot formulation of these
problems.

These questions can also be viewed as dimension-reduction problems. That is, we wish
to replace an input d-dimensional curve by a curve in some lower-dimensional space, while
minimizing the Fréchet distance to the input curve.

Specifically, we focus on the following problem. Let P be a polygonal curve in Rd.
Preprocess P into a compact data structure to efficiently support queries that specify a
g-flat1 h (1 ≤ g ≤ d − 1) and an integer k ≥ 1, and request a curve Q on h of length at
most k that minimizes the discrete Fréchet distance to P . For d = 2, the g-flat h is simply
a line ℓ in the plane, and we present an efficient solution to the problem, as well as to the
more general problem in which the input is a geometric tree T rather than a curve P . In the
latter problem, a query also specifies the path in the tree to which the query applies. For
d > 2, we present an efficient solution that provides approximate answers to queries, that is,
given h and k, it returns a curve Q on h with at most k-vertices which is approximately the
best such curve on h, in terms of its discrete Fréchet distance to P .

Basic definitions. In this paper we view a finite sequence of points P = (p1, . . . , pn) in Rd

as a polygonal curve; we refer to n as the size or length of P and the points as its vertices.
Let P = (p1, . . . , pn) and Q = (q1, . . . , qm) be polygonal curves in Rd. A legal walk of P

and Q (or just walk, for short) is a monotonically increasing sequence of pairs (r1, . . . , rl),
where r1 = (p1, q1), rl = (pn, qm), and, in general, when advancing from rk = (pi, qj), rk+1 is
one of the following: (pi+1, qj) (provided i < n), (pi, qj+1) (provided j < m), or (pi+1, qj+1)
(provided i < n and j < m). The cost of a walk is the maximum distance among the distances
between the vertices of each pair rk = (pi, qj) in the walk. The discrete Fréchet distance
ddF(P, Q) between P and Q is the cost of the minimum-cost walk of P and Q.

Given a g-flat h, 1 ≤ g ≤ d− 1, we say that Q is a k-vertex curve on h if Q = (q1, . . . , qk)
is a sequence of k points on h. An at-most-k-vertex curve on h is a k′-vertex curve on h with
1 ≤ k′ ≤ k.

p1

p2

p3 p4

p5

p6

q1

q2

q3

`

Figure 1 A polygonal curve P = (p1, . . . , p6) and a query line ℓ. In this example, k = 3 and
Q = (q1, q2, q3) is the returned curve.

1 That is, a g-dimensional flat – a g-dimensional affine subspace of Rd.



B. Aronov, T. Farhana, M. J. Katz, and I. Ramesh 6:3

Main problem statement. In this paper we study the following problem. Given a curve P

in Rd as above, preprocess it into a near-linear size data structure to efficiently support
queries of the following type: “Given a g-flat h, 1 ≤ g ≤ d− 1, and integer k ≥ 1, find an
at-most-k-vertex curve Q on h minimizing ddF(P, Q).” We first focus on the planar version,
where P is a curve in the plane and queries are lines. See Figure 1 for an example.

We also consider the more general setting, still in the plane, where the input is a geometric
tree T rather than a curve P , and the queries are of the form: “Given two nodes p, q of the
tree, a line ℓ, and integer k, find an at-most-k-vertex curve Q on ℓ minimizing the discrete
Fréchet distance between Q and the path from p to q in T .”

In other words, we first study problems in which we need to preprocess a given curve P

(or tree T ) in the plane, so that one can efficiently handle simplification queries with respect
to a query line. The maximum length k of the desired simplification is also a parameter of
the query.

Next, we further generalize the problem so that a query may specify an arbitrary polygonal
region in which Q must reside; query time will of course depend on the complexity of the
region.

Finally, we consider the problem in three and higher dimensions, where P is a curve in Rd,
d ≥ 3, and queries are g-flats, 1 ≤ g ≤ d−1. Since we are interested in a near-linear size data
structure, we resort to approximate queries (see discussion in Section 6), with a prespecified
error parameter ε0 > 0. That is, the answer to a query is an at-most-k-vertex curve Q on h,
such that ddF(P, Q) ≤ (1 + ε0)ddF(P, Q∗), where Q∗ is such a curve minimizing the distance
to P .

Our results. We present efficient solutions to these problems. Specifically, given P or T in
the plane, we construct a data structure of size O(n log n) that allows us to answer a query
in O(k2 polylog n) time; refer to Theorem 7 in Section 3 and Theorem 8 in Section 4 for the
exact statements. As an intermediate result, we present an algorithm for the corresponding
decision problem (with respect to a curve P or tree T ). For example, given a line ℓ and
distance r, we can determine in O(k log2 n) time whether there exists an at-most-k-vertex
curve on ℓ within discrete Fréchet distance at most r from P , and if so, return such a curve Q

with fewest vertices. In Section 5 we extend the data structure so that a query may specify a
polygonal region in the plane that restricts the location of the curve Q.

In higher dimensions, given P in Rd and 0 < ε0 < 1, we construct a data structure of
size O(n log n + n

ε(d−1)/2 ), where ε = ε0
1+ε0

, that allows us to answer a query approximately
in O(k2 log2 n

ε(d−1)/2 ) time, that is, the discrete Fréchet distance between P and the curve that
we return is at most 1 + ε0 times the distance between P and the optimal curve; refer to
Theorem 12 in Section 6 for the exact statement. Our solution uses coresets.

Related work on curve simplification. We focus here on (global) simplification under the
Fréchet distance in the plane, where the quality of a simplification is the Fréchet distance
between the original curve P and its simplification Q.

There are two main versions of the simplification problem. In the first, we are given a
threshold δ and the goal is to compute a curve Q of minimum length, such that the distance
between P and Q is at most δ. In the second, we are given an integer k ≥ 1 and the goal
is to compute a curve Q of length at most k that minimizes the distance to P . Moreover,
each of the two main versions gives rise to four standard variants, depending on whether
we are using the continuous or discrete Fréchet distance, and whether Q is restricted (i.e., a
subsequence of P ) or unrestricted (i.e., any sequence of points); Van de Kerkhof et al. [18]
also consider an intermediate curve-restricted option.

ISAAC 2025



6:4 A Dimension-Reducing Fréchet Simplification Oracle

The following results are for the first version under the continuous Fréchet distance.
Bringmann and Chaudhury [7] presented an algorithm with running time O(n3) for restricted
simplification and established a conditional cubic lower bound. An algorithm with the
same running time was also proposed by Van de Kerkhof et al. [18] (see also Van Kreveld
et al. [19]). For unrestricted simplification, Guibas et al. [12] provide an algorithm with
running time O(n2 log2 n), and Agarwal et al. [2] provide an O(n log n) algorithm, which
returns a simplification Q′ of length at most the length of an optimal simplification with
threshold δ/8. The latter two statements can be deduced from the corresponding papers, as
observed by Van de Kerkhof et al. [18].

Bereg et al. [4] studied both restricted and unrestricted simplification for each of the
two main versions, under the discrete Fréchet distance in three-dimensional space. For the
first version, they compute an optimal unrestricted simplification in O(n log n) time and an
optimal restricted simplification in O(n2) time. For the second version, they compute an
optimal unrestricted simplification in O(kn log n log(n/k)) time, where k is the length of the
computed simplification, and an optimal restricted simplification in O(n3) time. Also under
the discrete Fréchet distance, Fan et al. [10] considered the so called chain-pair simplification
problem in the plane, where the goal is to simultaneously compute restricted simplifications of
length k for two input curves, such that the distance between the simplifications themselves
is also below some threshold.

Finally, under the continuous Fréchet distance, Driemel and Har-Peled [8] presented a
near-linear time algorithm that computes a permutation of the vertices of P , such that any
prefix of 2k − 1 vertices of this permutation is an approximation (up to a constant factor)
of P compared to any polygonal curve with k vertices. Subsequently, Filtser [11] slightly
improved the approximation factor under the discrete Fréchet distance.

More related work. A series of papers [16, 15, 5] culminates in an algorithm that preprocesses
an n-point set S in the plane in linear space and O(n log n) time to support O(log n) time
queries of the form “What is the smallest circle centered on the query line and enclosing S?”

There is also a substantial amount of work on so-called range-aggregate queries. Given
an n-point set S in the plane, we want to preprocess it for queries of the following type:
compute some aggregate quantity about the points of S contained in an axis-aligned query
rectangle. While range counting, reporting, and more general semigroup queries have been
widely studied [1], some types of queries are not readily decomposable (in the sense of
the answer being easily synthesized from the answer for smaller queries). For example,
Brass et al. [6] discuss computing the area (or perimeter) of the convex hull, width, and
smallest enclosing disk of the points of S in the query rectangle. They describe algorithms for
preprocessing S into a data structure of near-linear size with polylogarithmic-time queries,
for all of the above queries except for the width; the width data structure is more expensive.
Gupta et al. [13] explore several variants of closest-pair-in-range problems. For example, they
show a near-linear-space structure for computing the closest pair of points within the query
rectangle in two dimensions with polylogarithmic query time. Our observation in Remark 4
is a further generalization in this direction: Given a point set in the plane, we can preprocess
it so that, given a query rectangle and a query line, we can determine the smallest enclosing
circle of the points in the rectangle, among all circles centered on the line.

Overview and organization. We first consider the planar version of the dimension-reduction
problem. To answer a decision query of the form “given a line ℓ, an integer k, and a distance
r > 0, determine whether there exists an at-most-k-vertex curve on ℓ within Fréchet distance



B. Aronov, T. Farhana, M. J. Katz, and I. Ramesh 6:5

at most r from P ”, we need to repeatedly perform the primitive operation prefixℓ(P [i, n], r)
for different values of i: Find the longest (contiguous) subcurve of P , beginning at pi, that
fits into a disk of radius r centered at a point of ℓ. In Section 2, we describe our data
structure for the planar version and then use it to implement prefixℓ(P [i, n], r) in O(log2 n)
time. Our data structure is obtained by combining known data structures in a non-trivial
manner. In Section 3, we obtain our first main result, i.e., the solution for the planar version
of the dimension-reduction problem. Using the data structure and primitive operations
developed in Section 2, we present efficient algorithms for handling both decision queries and
“regular” queries, where the algorithm for regular queries is based on the one for decision
queries and on the primitive operation radiusℓ(P [i, j]) (developed in Section 2) which, given
a (contiguous) subcurve of P , returns the radius of the smallest disk centered at a point of ℓ

that contains the subcurve. In Section 6, we obtain our second main result, i.e., the solution
for the d-dimensional version, d ≥ 3, of the dimension-reduction problem. The algorithms in
this general version are similar to those in the planar version, however, we need to replace the
exact primitive operations above by their approximate d-dimensional counterparts. These
latter operations are implemented using coresets. Finally, in Sections 4 and 5, we extend
our result for the planar version in two directions. In Section 4, the input is a geometric
tree T (rather than a curve P ), and queries specify, in addition to ℓ and k, a path in T , by
providing its start and end vertices. In Section 5, queries specify a polygonal region rather
than a line ℓ, to contain the simplified curve.

2 Facts and tools

2.1 Facts

For two points p, q in the plane, let d(p, q) be the Euclidean distance between them; many of
our observations generalize to other norms, but in this version we focus on the Euclidean
metric, for simplicity of presentation.

For a point set Q, let radius(Q) be the radius of the minimum enclosing circle (or mec,
for short) of Q, and let radius(Q, p) be the radius of the mec of Q centered at p. Moreover,
let radiusℓ(Q) be the radius of the mec of Q centered at a point of line ℓ, and let radiusℓ(Q, x)
be the radius of the mec of Q centered at x ∈ ℓ, as a function of x. We give the proof of the
following standard fact below, for completeness.

▶ Fact 1. Both radius(Q, x) and radiusℓ(Q, x) are convex and have a unique minimum.

Proof. Since radius(Q, x) = maxq∈Q d(q, x), and d(q, x) is a convex function of x, radius(Q, x)
is convex. Therefore radiusℓ(Q, x) is also convex, as a restriction of the convex function
radius(Q, x) to a line.

As for uniqueness of minimum, we prove it for radiusℓ(Q, x); it also proves the claim for
radius(Q, x).

For a contradiction, suppose p and q ̸= p are both minima of radiusℓ(Q, x). Then the
disks Dp, Dq of radius r := radiusℓ(Q, p) = radiusℓ(Q, q) centered at p and q, respectively,
each cover Q. Therefore Q is contained in the lens Dp ∩ Dq. Let s be a point on the
open segment pq ⊂ ℓ. Then the disk centered at s and just covering the lens Dp ∩ Dq

contains Q and has a smaller radius, contradicting the assumption that p and q were minima
of radiusℓ(Q, x). ◀

ISAAC 2025



6:6 A Dimension-Reducing Fréchet Simplification Oracle

2.2 Primitives in the plane

We now list the operations that will be useful in solving the two-dimensional problems
addressed in this paper. Each of the operations below depends on the query line ℓ.
diskℓ(Q): The smallest-radius disk centered at a point of ℓ and containing a set Q of points;

let radiusℓ(Q) and centerℓ(Q) denote its radius and center, respectively.
feasibleℓ(Q, r): The interval of ℓ (which may be empty) that is the locus of centers of

disks of radius r containing Q.
fits?ℓ(Q, r): Is there a disk of radius r centered at a point of ℓ and containing a set Q of

points? Equivalent to feasibleℓ(Q, r) ̸= ∅ or to radiusℓ(Q) ≤ r; the former version is
sometimes more efficient.

prefixℓ(S, r): For a sequence S of points, its longest prefix (which may be empty or all
of S) that fits into a disk of radius r centered at a point of ℓ. In practice, prefixℓ(S, r)
returns the length of the prefix, so 0 if it is empty.

2.3 Data structures in the plane

We now describe the data structures we employ to implement the above operations. Consider
a polygonal curve P of length n > 1. For clarity of presentation we assume that n is a power
of two; the general case requires minimal straightforward modifications. We denote by P [i, j]
the (contiguous) subcurve (pi, pi+1, . . . , pj), for 1 ≤ i ≤ j ≤ n.

The hierarchical decomposition. The hierarchical decomposition of P is a binary tree,
in which the root corresponds to P = P [1, n], its left and right children to P [1, n/2] and
P [n/2 + 1, n], respectively, and so forth. The leaves correspond to the single-vertex curves.
Each node of the tree corresponds to a canonical subcurve of P (we will use the term
“canonical set” when the ordering of the vertices in the subcurve is immaterial). A general
subcurve P [i, j] corresponds to the concatenation of O(log n) canonical subcurves, which can
be identified from the value of the indices i and j in O(log n) time.

We often build data structures based on the hierarchical decomposition of a curve, where
at each node we store an additional structure tailored to its corresponding canonical subcurve.

Farthest-point Voronoi diagram as a map. For a given set of points Q in the plane, the
farthest-point Voronoi diagram FVD(Q) is a planar map decomposing the plane into convex
regions R(p), one for each p ∈ Q, where R(p) is the locus of all points in the plane for which
p is the farthest point in Q. FVD(Q) is a planar map with O(|Q|) vertices, edges, and faces.
Each face is a convex unbounded polygon. We preprocess the planar map for point location,
so that, given a query point q, one can find the region R(p) containing q, and thereby the
farthest point of q in Q, in O(log |Q|) time.

Centroid decomposition. Consider a free tree T of degree at most three. A centroid edge is
an edge of T whose removal splits T into two trees of almost equal size, with between 1/3 and
2/3 of the vertices of T . It is known to exist in any degree-at-most-three tree. The existence
of a centroid edge naturally induces a centroid decomposition of T : the root is a centroid
edge e. Each subtree left and right of the root is, recursively, a centroid decomposition of
the two trees formed by the removal of e from T . Each internal node corresponds to an edge
of T . Each leaf corresponds to either a single edge or to two edges of T .



B. Aronov, T. Farhana, M. J. Katz, and I. Ramesh 6:7

Farthest-point Voronoi diagram as a tree. Given a set Q in the plane, the 1-skeleton
of FVD(Q) (i.e., the collection of its vertices and edges, viewed as a graph with virtual
vertices at the “ends” of infinite ray edges) is a tree, which, for Q in general position, has
degree three. For simplicity of exposition, we will assume that the points of Q are in general
position; refer to [5] for how to handle degeneracies in Q when constructing the centroid
decomposition.

We now describe what is essentially the centroid-decomposition-based data structure
from [5] for computing the smallest disk enclosing a given set Q of points, with the center on
the query line ℓ, i.e., diskℓ(Q). For a fixed set Q, the centroid decomposition of FVD(Q)
requires linear space and O(|Q| log|Q|) time to build. In our data structure, for a path P ,
we build the centroid decomposition for all canonical subsets of P , which requires O(n log n)
overall space and O(n log2 n) time.

We store the centroid decomposition of FVD(Q) together with some additional geometric
information, as follows: Each internal node x corresponds to an edge ex of FVD(Q), which
is a line segment2 separating regions R(vx) and R(wx). Let m(ex) be the midpoint of ex.
There exist two infinite rays ρ(vx) and ρ(wx)[5] emanating from m(ex), one fully contained
in R(vx) and one in R(wx), respectively. Store these two rays together with the centroid edge
ex and points vx and vw at the current node x of the centroid decomposition tree. Notice
that the polygonal line ρ(vx) ∪ ρ(wx) splits the plane into two regions: one contains the
subtree corresponding to the left child of x and the other – the subtree of its right child.

The full structure TFVD. Let TFVD = TFVD(P ) be the data structure constructed as follows:
We start with the hierarchical decomposition of P . At each node of the decomposition, which
corresponds to a canonical subcurve P [i, j] of P , we store FVD(P [i, j]) both in the planar
map and centroid decomposition form.

2.4 Implementations
We now describe how to efficiently implement the primitives and analyze their running times.

2.4.1 Implementation of diskℓ(Q)
If Q is a canonical set of size n. The algorithm in [5] preprocesses Q in linear space
and O(n log n) time to support such an operation in O(log n) time; see Section 2.3 for a
description of the centroid decomposition data structure. Roughly speaking, the search
proceeds by descending the centroid decomposition of FVD(Q), narrowing down the portion
of the query line ℓ containing the disk center, at a constant cost per level. At a leaf of the
decomposition, at most three farthest neighbors in Q remain, which allows to identify the
center and radius directly. We use a more elaborate version below to solve the two-set version
of the problem.

If Q is a union of two canonical sets. Let Q1 and Q2 be two canonical sets of total size
at most n, and let ℓ be the query line. Put Q := Q1 ∪Q2. We wish to compute diskℓ(Q),
the smallest disk with center on ℓ enclosing Q; let x∗ denote its center, to be computed.
We will need the following information about the sets Q1 and Q2 (already stored in TFVD):
FVD(Q1) and FVD(Q2) viewed both as planar maps, preprocessed for point location, and
as planar trees, stored as centroid decompositions, see Section 2.3.

2 Unbounded edges have to be handled slightly differently; we omit the details.

ISAAC 2025



6:8 A Dimension-Reducing Fréchet Simplification Oracle

For clarity of explanation, identify ℓ with the x-axis and let x denote a generic point
of ℓ. The center of the desired disk is the point x = x∗ minimizing radiusℓ(Q, x) =
max(radiusℓ(Q1, x), radiusℓ(Q2, x)). Each of the three functions are convex on ℓ, with a
unique minimum, by Fact 1.

Note that the following sidedness test can be performed in O(log n) time: Given a point
x ∈ ℓ, we can determine whether x∗ lies before, after, or at x along ℓ. Indeed, after querying
with x in FVD(Q1) and FVD(Q2), we can determine the distance from x to the farthest
points of Q (possibly more than one) and therefore the direction in which this distance
decreases along ℓ – that’s the direction towards x∗; if no such direction exists, then x = x∗.
The bottleneck of this operation is the lookup of x in the planar map FVD(Q1) and FVD(Q2),
at a cost of O(log n).

Finally, we describe the computation of diskℓ(Q). Throughout the search we maintain
the current segment s ⊂ ℓ that is guaranteed to contain x∗. We initially set s := ℓ.

We now descend the centroid decompositions of FVD(Q1) and FVD(Q2). Without loss
of generality, suppose we are currently descending the decomposition of FVD(Q1), with the
current node corresponding to edge e and its two rays ρ1, ρ2 splitting the plane into wedges
W1 and W2; s intersects ρ1 ∪ ρ2 at most twice. At each of the intersection points we perform
our sidedness test and eliminate part of s as the possible position of x∗. The result is an, in
general, smaller updated segment s, contained fully in W1 or in W2 and containing x∗. We
descend the decomposition of FVD(Q1) to the corresponding child of e.

Before terminating the current step, we check if the updated s crosses e. If it does,
we split s at the intersection point, check what side contains x∗ by another sidedness test,
and shrink s further. Notice that the resulting segment s is guaranteed not to meet any of
the edges of the discarded child of e in the centroid decomposition, nor e itself. Thus we
inductively maintain the invariant that the current segment s can only intersect the edges of
FVD(Qi) corresponding to the current subtree in its centroid decomposition.

We continue in this manner, until we reach the bottom of both hierarchies. At a single-
edge leaf (a two-edge leaf is handled similarly) of a centroid decomposition of, say, FVD(Q1),
one edge remains, and we apply the same trick to shrink the segment s to only one side of
the edge, belonging to, say the Voronoi region of q1 ∈ Q1. Similarly, we narrow things down
to one site q2 ∈ Q2. By construction, now x∗ ∈ s, and s intersects no edges of FVD(Q1) nor
of FVD(Q2). In particular, for all points on s, q1 is the furthest point of Q1 and q2 – of Q2.
We check one of three possibilities: (a) q1 could be the only point determining diskℓ(Q):
we project q1 orthogonally to ℓ and check if its projection q′

1 lies in s. If so, check that Q is
contained in the disk of radius d(q1, q′

1) centered at q′
1 (i.e., that d(q2, q′

1) ≤ d(q1, q′
1)) – then

this is diskℓ(Q). (b) We check if q2 is the only point defining diskℓ(Q) similarly. Finally, (c)
we construct the intersection of the bisector b(q1, q2) with s (or, equivalently, with ℓ). This
point q is the center of diskℓ(Q) and its radius is d(q, q1) = d(q, q2). It is easily checked that
the processing at the bottom of the two hierarchies takes O(1) work once the identity of q1
and q2 is known.

Since the descent of the two logarithmic-height hierarchies takes O(log n) time for one
step (the bottleneck in the sidedness test is consulting a point with known position in one
of the FVDs for its furthest point in the other set: in each sidedness test we already know
where we are in one diagram, but not in the other), we reach the bottom and the solution in
O(log2 n) time. We conclude that

▶ Lemma 2. The operation diskℓ(Q1 ∪Q2), where Q1, Q2 are two canonical sets of total
size n, can be performed in O(log2 n) time.



B. Aronov, T. Farhana, M. J. Katz, and I. Ramesh 6:9

If Q is a union of m ≥ 2 canonical sets.

▶ Lemma 3. Let Q1, . . . , Qm be m ≥ 2 canonical subsets of P of total size at most n, let
their union be Q, and let ℓ be a line. We can compute diskℓ(Q) in O(m2 log2 n) time.

Proof. For each pair (i, j), with 1 ≤ i < j ≤ m, we compute diskℓ(Qi∪Qj) by an application
of the two-set procedure above and return the largest disk. The runtime bound is immediate,
so we focus on correctness.

Since diskℓ(Q) is determined by at most two points of Q (refer to [16, Observation 1]),
it follows that the desired disk is indeed diskℓ(Qk ∪Ql), if one of the defining points comes
from Qk and the other from Ql with l ̸= k; if the two points come from the same set Qk,
then for every l ̸= k, diskℓ(Qk ∪Ql) = diskℓ(Q). If m = 2, we are done. Otherwise, notice
that only the largest of the disks diskℓ(Qi ∪ Qj), i < j, can be diskℓ(Q), as any smaller
disk would not enclose Qk ∪Ql, by definition of diskℓ(Qk ∪Ql) and Fact 1. ◀

▶ Remark 4. Lemma 3 is interesting in its own right, since it allows us to solve problems
such as the following. Let S be a set of n points in the plane. Construct a data structure of
near-linear size to support, in O(polylog n) time, queries of the form: Given an axis-aligned
rectangle R and a line ℓ, return the smallest enclosing circle of S ∩R with center on ℓ.

2.4.2 Implementation of feasibleℓ(Q, r)

If Q is a single canonical set. Let s := feasibleℓ(Q, r) be the desired locus of candidate
centers x ∈ ℓ such that radiusℓ(Q, x) ≤ r; it is a contiguous interval on ℓ, if non-empty,
since radiusℓ(Q, x) is convex; see Fact 1. This interval is empty if r < radiusℓ(Q), consists
of a single point if r = radiusℓ(Q), and is a positive-length interval with two endpoints if
r > radiusℓ(Q). Since radiusℓ(Q, x) is convex and monotone along each of the two half-lines
into which l is split by centerℓ(Q), we can binary search along each half-line to determine
the endpoints of s. Using the same data structure as in [5] allows us to conduct the binary
search in O(log n) time. We omit the easy details.

If Q is the union of m canonical sets Q1, . . . , Qm. Compute si := feasibleℓ(Qi, r), for
i = 1, . . . , m, and return

⋂
si. Running time is dominated by the cost of computing the m

feasible intervals, so it is O(m log n).

If Q is the union of a dynamic collection of canonical sets. The goal is to maintain the
feasibility interval subject to addition and removal of canonical sets. For each set, store its
feasible interval and, using two heaps HL and HR, maintain the rightmost left endpoint
and leftmost right endpoint of the intervals. (i) On insertion of a new set Q′, compute
[ai, bi] := feasibleℓ(Q′, r), add ai to HL, and bi to HR. (ii) On deletion of Q′, remove
the endpoints of the stored interval feasibleℓ(Q′, r) from HL and HR. (iii) The current
feasible interval is always [max(HL), min(HR)], unless max(HL) > min(HR), in which case
it is empty.

If we use a standard binary heap to implement HL and HR, insertion costs O(log n +
log m) = O(log n), deletion O(log m), and current feasible region is available in time O(1),
where m is the current number of sets in Q and n is the total number of points involved.

ISAAC 2025



6:10 A Dimension-Reducing Fréchet Simplification Oracle

2.4.3 Implementation of fits?ℓ(Q, r)
This test is logically equivalent to feasibleℓ(Q, r) ̸= ∅ or to radiusℓ(Q) ≤ r. The former is
more efficient unless Q is a single canonical set (in which case the latter is more straightforward,
but equally efficient asymptotically).

2.4.4 Implementation of prefixℓ(S, r)
This operation can be implemented as a binary search along S, using fits?(S′, r) as a
blackbox for candidate prefixes S′ as the decision procedure, at the cost of a multiplicative
logarithmic factor in running time. However, sometimes we can do better, as detailed below.

If S is a canonical subcurve. At any moment during a binary search in the hierarchical
decomposition of S (which itself is a canonical subcurve of P ), there are O(log n) canonical
sets S1, . . . , Si comprising the current prefix being tested. As binary search progresses down
the hierarchy, either a new canonical set Si+1 is added to the current prefix (if the prefix
is too short), or Si is replaced by a new, smaller S′

i (if the prefix is too long). We use the
dynamic structure for feasible interval maintenance from Section 2.4.2 to keep track of this
information and check if the current feasible interval is empty. Since the total number of
insertions into and deletions from our collection of canonical sets is O(log n), the overall cost
is O(log2 n).

If S is a subcurve of P . Using the hierarchical decomposition of P , we express S as a
concatenation S1 · . . . · Sm of m = O(log n) canonical subcurves S1, . . . , Sm. In O(m log n)
time, we compute the feasible intervals s1, ..., sm ⊂ ℓ for all subcurves Si. Then in time
O(m), we compute the largest index j such that S1 · . . . · Sj fits into a disk of radius r, but
S1 · . . . · Sj+1 does not, by computing the largest j ≤ m such that

⋂
1≤i≤j si ̸= ∅ (if j = m,

prefixℓ(S, r) returns all of S). We then binary search within Sj+1 to identify the longest
prefix of Sj+1 that can be concatenated to Si · . . . · Sj and still fit into a disk of radius r in
O(log2 n) time, using a slight modification of the above single-canonical-subcurve algorithm.
The overall time complexity is O(m log n + m + log2 n) = O(log2 n).

3 Discrete Fréchet distance simplification on a line

In this section we present an algorithm for answering queries, which refer to the already
preprocessed input curve P = (p1, . . . , pn), of the following type: Given a line ℓ and an
integer k ≥ 1 find an at-most-k-vertex curve Q on ℓ minimizing ddF(P, Q); that is, find a
curve Q = (q1, . . . , qk′), where k′ ≤ k and q1, . . . , qk′ ∈ ℓ, that realizes the expression

min
k′∈[1,k]

q1,...,qk′ ∈ℓ

{ddF(P, (q1, . . . , qk′))}.

We assume that k < n, since otherwise the curve Q = (p1, . . . , pn) clearly achieves the
minimum, where pi is the orthogonal projection of pi on ℓ.

Recall that we write P [i, j], for 1 ≤ i ≤ j ≤ n, to denote the (contiguous) subcurve
(pi, . . . , pj) of P . For a point q in the plane, the distance from q to the vertex of P [i, j]
farthest from (nearest to) it, is denoted by dmax(P [i, j], q) (dmin(P [i, j], q)). Notice that

min
q∈ℓ
{ddF(P [i, j], (q))} = min

q∈ℓ
{dmax(P [i, j], q)} = radiusℓ(P [i, j]),

where radiusℓ(P [i, j]) is the radius of diskℓ(P [i, j]) (see Section 2.2).



B. Aronov, T. Farhana, M. J. Katz, and I. Ramesh 6:11

Let Q = (q1, . . . , qk′) be the desired curve and let W be a walk of P and Q of cost
ddF(P, Q). We may assume that W does not match two consecutive points in Q to the same
point in P . That is, W does not contain two consecutive pairs of the form (pi, qj), (pi, qj+1),
since, if it does, we may delete the pair (pi, qj+1) from W (and the point qj+1 from Q, if it
was only matched to pi) to obtain a legal walk W ′ (and a curve Q′) of the same cost.

This assumption implies that, in order to compute ddF(P, Q), we need to find an optimal
partition of P into k′ subcurves. That is,

ddF(P, (q1, . . . , qk′)) = min
1≤i1<i2<···<ik′−1<n

max



dmax(P [1, i1], q1)
...

dmax(P [ik′−2 + 1, ik′−1], qk′−1)
dmax(P [ik′−1 + 1, n], qk′)


.

We conclude that, given ℓ and k, our task is to find k′ ≤ k and a sequence of indices
1 ≤ i1 < i2 < · · · < ik′−1 < n that minimize the expression

max{radiusℓ(P [1, i1]), . . . , radiusℓ(P [ik′−2 + 1, ik′−1]), radiusℓ(P [ik′−1 + 1, n])}.

The desired sequence is then Q = (centerℓ(P [1, i1]), . . . , centerℓ(P [ik′−1 + 1, n])), where
centerℓ(P [i, j]) is the center of diskℓ(P [i, j]).

3.1 The Algorithm
Given the supporting data structures and set of primitive operations, the query algorithm is
pretty simple. We first present an algorithm for the decision problem, i.e., given ℓ, k, and r,
determine if there exists an at-most-k-vertex curve Q on ℓ such that ddF(P, Q) ≤ r.

The decision algorithm. The function Decision in Algorithm 1 uses a simple greedy
recursive approach for solving the decision problem.

Algorithm 1 The decision algorithm: Given a distance r > 0, determine if there exists a sequence
of at most k points on line ℓ at discrete Fréchet distance at most r from P [i, n].

function Decision(i, ℓ, k, r)
if i = n + 1 then

return true
if k = 0 then

return false
l← prefixℓ(P [i, n], r)
if l = 0 then ▷ pi is too far from ℓ

return false
return Decision(i + l, ℓ, k − 1, r)

▶ Lemma 5. Let ℓ be a line in the plane, k ≥ 1 an integer, and r > 0. The call
Decision(1, ℓ, k, r) returns true if and only if there exist k′ ≤ k points on ℓ, Q =
(q1, . . . , qk′), such that ddF(P, Q) ≤ r. The running time is k′ times the cost of a call
to prefixℓ with a subcurve of P , i.e., O(k log2 n).

Proof. The time bound is obvious. Moreover, it is clear that, if the call Decision(1, ℓ, k, r)
returns true, then there exist k′ ≤ k such points – namely, the centers of the disks
corresponding to the computed prefixes. We now prove the other direction by induction on k.

ISAAC 2025



6:12 A Dimension-Reducing Fréchet Simplification Oracle

If there exists a point q1 on ℓ such that ddF(P, (q1)) ≤ r, then the call prefixℓ(P [1, n], r)
at the top level of the recursion will return n and the algorithm will return true just at the
beginning of the next level (since i = n + 1).

Assume now that for any preprocessed curve P ′, if there exist fewer than k points on ℓ,
Q′ = (q′

1, . . . , q′
k−1), such that ddF(P ′, Q′) ≤ r, then the call Decision(1, ℓ, k− 1, r) (applied

to P ′) returns true. Moreover, assume there exist k points on ℓ, Q = (q1, . . . , qk), such that
ddF(P, Q) ≤ r. We need to show that the call Decision(1, ℓ, k, r) returns true. Indeed,
consider a walk W of P and Q of cost ddF(P, Q), and let l′ be the largest index such that
W matches q1 to pl′ . By definition, the index l returned by the call prefixℓ(P [1, n], r) at
the top level of the recursion is at least as large as l′. Now, since the cost of W is ddF(P, Q)
and W matches q1 to the prefix P [1, l′], we know that ddF(P [l′ + 1, n], (q2, . . . , qk)) ≤ r and
therefore there exists a sequence Q′ of at most k − 1 points on ℓ, which is (q2, . . . , qk) or a
suffix of it, such that ddF(P [l + 1, n], Q′) ≤ r. Therefore, by the induction hypothesis, the
call Decision(l + i, ℓ, k − 1, r) at the top level of the recursion (where i = 1) returns true,
and thus Decision(1, ℓ, k, r) returns true. ◀

▶ Note. A minor modification of the Decision function, with the same preprocessing of P ,
can solve the problem of finding, given line ℓ and distance r, the shortest sequence of points
Q on ℓ lying within discrete Fréchet distance r of P . (No such set exists if r is smaller
than the maximum distance from a point of P to ℓ; this can be efficiently checked with
no asymptotic slowdown.) The query can be answered in time O(k log2 n), where n is the
length of P and k is the length of the shortest such curve Q. Performing the same query on
a subcurve P [i, j] of P can be done at the same asymptotic cost.

The optimization algorithm. We now present the query algorithm. That is, given ℓ and k,
find an at-most-k-vertex curve Q on ℓ minimizing ddF(P, Q). The function Optimization
in Algorithm 2 actually returns the distance ddF(P, Q), but it can be easily modified (within
the same bounds) to return Q as well.

Algorithm 2 The optimization algorithm: Find the smallest distance r, for which there exists a
sequence Q of at most k points on ℓ such that ddF(P [i, n], Q) ≤ r.

function Optimization(i, ℓ, k)
if k = 0 then return ∞
Binary search for the smallest index j, i ≤ j ≤ n, such that

Decision(i, ℓ, k, radiusℓ(P [i, j])) returns true
d1 ← radiusℓ(P [i, j])
if j > i then

d2 ← Optimization(j, ℓ, k − 1)
else

d2 ←∞
return min{d1, d2}

▶ Lemma 6. Let ℓ be a line in the plane, and let k ≥ 1. The call Optimization(i, ℓ, k)
returns the smallest r, for which there exists a sequence Q of at most k points on ℓ such that
ddF(P, Q) ≤ r. The running time is O(k2 log3 n + k log4 n).

Proof. If k = 1, then the algorithm returns min
q1∈ℓ

ddF(P [i, n], (q1)) = radiusℓ(P [i, n]). Indeed,

let j be the smallest index such that Decision(i, ℓ, 1, radiusℓ(P [i, j])) returns true, so the
algorithm sets d1 ← radiusℓ(P [i, j]) ≤ radiusℓ(P [i, n]). But since k = 1, the latter inequality



B. Aronov, T. Farhana, M. J. Katz, and I. Ramesh 6:13

must be an equality, so d1 = radiusℓ(P [i, n]). As for d2, it is set to ∞ either by the recursive
call with k = 0 (if j > i) or by the else clause (if j = i). Hence, the algorithm returns
d1 = min

q1∈ℓ
ddF(P [i, n], (q1)) as claimed.

Assume now that k > 1 and that the algorithm returns the correct value for k − 1. Let

d := min
k′∈[1,k]

q1,...,qk′ ∈ℓ

ddF(P [i, n], (q1, . . . , qk′)),

and let Q = (q1, . . . , qk′) be a sequence of k′ points on ℓ such that ddF(P [i, n], Q) = d. Finally,
let W be a minimum-cost walk of P and Q (i.e., a walk of cost d). Let P [i, j] be the shortest
prefix for which Decision(i, ℓ, k, radiusℓ(P [i, j])) returns true. Then d1 = radiusℓ(P [i, j])
and by definition d1 ≥ d. Notice that the inductive assumption implies that the value d2
returned by the recursive call (if such a call is needed) is correct. We consider the cases j = i

and j > i separately.
If j = i, radiusℓ((pi)) is feasible. This radius is equal to the distance from pi to ℓ.

Notice that, for each point p of P [i, n], the distance between p and ℓ is a lower bound on
d = radiusℓ(P [i, n]), so we must have d1 = d. Moreover, since j ̸> i, the algorithm sets d2 to
∞ and therefore returns the correct value.

Assume therefore that j > i and let d′ := radiusℓ(P [i, j − 1]). We know that the call
Decision(i, ℓ, k, radiusℓ(P [i, j− 1])) returned false, so d′ < d ≤ d1. We distinguish between
two subcases.

If d1 = d, we claim that the value d2 returned by the recursive call must be greater or equal
than d1, and therefore the algorithm returns the correct value, d1. Indeed, if d2 < d1, then
we found k′ ≤ k points q′

1, . . . , q′
k′ , where q′

1 = centerℓ(P [i, j − 1]) and q′
2, . . . , q′

k′ are the
centers induced by the recursive call, such that ddF(P [i, n], (q′

1, . . . , q′
k′)) ≤ max{d′, d2} <

d1, contradicting the assumption that d1 = d = min
k′∈[1,k]

q1,...,qk′ ∈ℓ

ddF(P [i, n], (q1, . . . , qk′)).

If d1 > d, then let P [i, j′] be the prefix assigned to q1 by the minimum-cost walk W .
Notice that j′ ≤ j−1, since otherwise d would be greater or equal than d1. So d (which as
we recall is greater than d′) is the smallest distance between P [j′ + 1, n] and a curve on ℓ

of length at most k−1, while d2 is the smallest distance of either P [j′ +1, n] (if j′ = j−1)
or a proper suffix of P [j′ + 1, n] (if j′ < j − 1) and such a curve on ℓ. Thus, d ≥ d2. But,
since max{d′, d2} = d2 is feasible, we conclude that d = d2 and the algorithm returns the
correct value (since d2 = d < d1).

As for the running time, at each level of the recursion we issue O(log n) calls to the decision
algorithm, where each of them is preceded by a call to diskℓ(P [i, j]), with the appropriate
index j, to obtain radiusℓ(P [i, j]). Since the running time of the decision algorithm is
O(k log2 n) and the running time of diskℓ(P [i, j]) is O(log4 n), and the number of levels is
O(k), we conclude that the total running time is O(k2 log3 n + k log5 n).

This bound can be slightly improved by splitting the search into two stages: First find the
canonical subcurve St that contains the point pj that we are looking for, by adding subcurves
one by one. Then, look for pj within St by binary search using the tree of the canonical
subcurve St. The search consists of log n steps, but in each step the set of canonical subcurves
to which we need to apply diskℓ either grows by one, or we replace the last subcurve with a
shorter one. Hence, diskℓ does not need to recompute the smallest disk for all O(m2) pairs
of subcurves, but only for the O(m) pairs involving the new curve. This effectively speeds
up diskℓ by a logarithmic factor, resulting in total query time of O(k2 log3 n + k log4 n). ◀

The following theorem summarizes our main result.

ISAAC 2025



6:14 A Dimension-Reducing Fréchet Simplification Oracle

▶ Theorem 7. Let P be a polygonal curve with n vertices in the plane. One can preprocess P in
time O(n log2 n) into a data structure of size O(n log n), so that given a line ℓ and a positive
integer k, an at-most-k-vertex curve on ℓ minimizing ddF(P, Q) (and the corresponding
distance) can be found in O(k2 log3 n + k log4 n) time.

4 Extension to geometric trees

A geometric tree is a tree whose vertices are points in the plane and whose edges are line
segments connecting the corresponding points. In this section, we expand the data structure
to support preprocessing a geometric tree T so that, given two vertices u, v of the tree, an
arbitrary line ℓ, and an integer k > 0, one can find an at-most-k-vertex curve Q on ℓ that
minimizes the Fréchet distance to the path Πuv from u to v in T . We use ideas similar to
those in [3], which in turn use heavy-path decomposition of T [17].

More specifically, the heavy-path decomposition of T is a collection {πi} of vertex-
disjoint paths in T which collectively cover all the vertices of T . Any path Πuv in T is
a concatenation of O(log n) subpaths of (some of) the paths πi and, this information can
be extracted from the heavy-path decomposition data structure in time O(log2 n) [17] (in
fact, a faster implementation is possible, but would not help us, as it is not the bottleneck
here). We then construct the data structure TFVD(πi), for each curve πi, as above. Since the
paths πi are disjoint, the total size of the data structures involved is O(n log n), where n is
the number of vertices in T .

Given a decomposition of Πuv as above, we simply run Algorithm 2 (which, in turn, invokes
Algorithm 1), on a concatenation of l = O(log n) subpaths P1, . . . , Pl of preprocessed heavy
paths. Decision algorithm requires an implementation of prefixℓ for such a concatenation.
Since we can partition the subpaths further, each into O(log n) canonical subpaths, we
are effectively running the prefixℓ algorithm for a subpath, as in Section 2.4.4, but with
m = l ·O(log n) = O(log2 n) canonical subpaths, resulting in running time of O(log3 n) for
prefixℓ and O(k log3 n) for Decision.

As for Optimization, conceptually we run Algorithm 2 with minor modifications to
speed it up. There are at most k levels of recursion. We will describe and analyze one level
and multiply the runtime by k.

At a fixed level of recursion, we need to find the shortest prefix of the concatenation of
O(log n) subpaths P1, P2, . . . , Pl that satisfies the Decision condition. We first find j so
that P1 · . . . · Pj satisfies it, but P1 · . . . · Pj−1 does not (or j = 1, in which case we are done),
adding one subpath at a time, sequentially. This takes at most l invocations of Decision,
for a total of O(k log4 n) time. Now we subdivide Pj into a logarithmic number of canonical
subcurves and apply the same logic to find the canonical subcurve P ′ that contains the (still
unknown) point pj we want. This involves O(log n) more invocations of Decision, for a
total of O(k log4 n) time.

However, we did not account for the work of the radiusℓ algorithm. It is easily checked
that during these first two steps, over all the calls to radiusℓ, it is enough to compute the
minimum enclosing radius with center on ℓ for at most

(
m
2
)

= O(log4 n) pairs of canonical
subpaths constituting the subpaths P1, . . . , Pl, at a cost of O(log2 n) per pair; so the total
cost of all the radiusℓ runs at the current level of recursion up to now is at most O(log6 n).

Finally, we use the hierarchical decomposition of P ′ to find desired point pj , essentially
as in the proof of Theorem 7. We observe that descending the hierarchy in binary search, we
always either add the last canonical subpath or replace the last canonical subpath, so the
number of pairs of subpaths that need to be recomputed by the radiusℓ algorithm on each
descent step is only O(m) = O(log2 n) (rather than O(m2)) and therefore each radiusℓ call
takes O(m log2 n) = O(log4 n) time, for a total of O(log5 n) over the entire binary search.



B. Aronov, T. Farhana, M. J. Katz, and I. Ramesh 6:15

To summarize, each level of recursion in this implementation of Optimization takes
O(k log4 n + log6 n) time. We conclude that that the full running time of Optimization is
O(k2 log4 n + k log6 n), which finishes the proof of the following theorem:

▶ Theorem 8. Let T be a geometric tree on n vertices. One can preprocess T in time
O(n log2 n) into a data structure of size O(n log n), so that given vertices u and v in T , a
line ℓ, and a positive integer k, the at-most-k-vertex curve Q on ℓ minimizing the discrete
Fréchet distance between Q and the path Πuv between u and v in T , can be found in
O(k2 log4 n + k log6 n) time.

5 Extension to polygonal regions in the plane

Let R be a (topologically closed) polygonal region in the plane bounded by m edges and
P be an n-vertex curve. Given an integer k > 0, we show how to find an at-most-k-vertex
curve Q ⊆ R that minimizes the discrete Fréchet distance ddF (P, Q). That is, we find a
curve Q = (q1, . . . , qk′), with k′ ≤ k and q1, . . . , qk′ ∈ R, that realizes the expression

min
k′∈[1,k]

q1,...,qk′ ∈R

{ddF(P, (q1, . . . , qk′))}.

Note that Q need not be unique.
Observe that we only need to implement one new primitive, which we refer to as diskR(S),

that computes the smallest-radius disk centered at a point of R for a subcurve S of P (and
its corresponding radius and center). Using diskR(S) one can perform binary search over P

to implement prefixR(S, r) at the cost of a logarithmic factor in the running time. The
decision and optimization functions (Algorithms 1 and 2) will use the new primitive and
otherwise remain the same.

We now sketch how to implement diskR(S) for a subcurve S = P [i, j]. Let c be the
center of the mec containing the subcurve P [i, j] and centered at a point of R.

First we find the center of the unconstrained mec of P [i, j], using the data structure
in [9] for the mec of a planar point set. We partition P [i, j] into t = O(log n) canonical
subcurves (as in Section 2.3) and preprocess each subcurve as in [9]. Using the algorithm
from Section 3 of [9], we can compute the mec of the union of the subcurves, that is, of
P [i, j] in deterministic time O(t3 log3 n) = O(log6 n) (refer to the discussion after Lemma 2
in that paper). Alternatively, Theorem 2 in [9] provides an algorithm for finding the mec
in expected time O(t log t log n +

√
t log t log3 n) = O(log3.5 n log log n).3 If the center of the

resulting mec lies in R, we are done: we found diskR(S).
Otherwise, since dmax(P [i, j], x) is a convex function of x, the center c lies on the boundary

of R. For each bounding segment s of R, we compute diskℓ(P [i, j]) for the supporting
line ℓ of s in time O(t2 log2 n) = O(log4 n); refer to Lemma 3. Once again, if the center
c(s) := centerℓ(P [i, j]) lies in s, this gives a candidate mec, otherwise the endpoint of s

closest to c(s) provides such a candidate. After repeating the process for each boundary edge
of R, we return (the center of) the smallest disk found. The total cost is thus O(m log4 n).

To summarize, diskR(P [i, j]) can be computed in deterministic time O(log6 n + m log4 n)
or in expected time O(log3.5 n log log n + m log4 n) = O(m log4 n), assuming m ̸= 0.

3 The statements are phrased in terms of solving an LP over an intersection of polyhedra in R3, but a
later discussion points out that the same logic, with minor modifications, applies to finding the mec of a
discrete point set in the plane as well [9].

ISAAC 2025



6:16 A Dimension-Reducing Fréchet Simplification Oracle

We now implement prefixR by binary search over the prefix length using diskR(S) in
expected time O(m log5 n). Expected running time of decision will be O(km log5 n) and
that of optimization will be O(k2m log6 n) (see the time analysis of Lemma 6 for details).

We did not optimize the logarithmic factors.

▶ Theorem 9. Let P be a polygonal curve with n vertices in the plane. One can preprocess P in
time O(n log2 n) into a data structure of size O(n log n), so that given a polygonal domain R

bounded by m segments, an at-most-k-vertex curve Q ⊆ R that minimizes the discrete
Fréchet distance ddF (P, Q) and the corresponding distance can be found in expected time
O(k2m log6 n). Alternatively, it can be found in deterministic time O(k2m log6 n + k2 log8 n).

6 Discrete Fréchet distance simplification on a g-flat

In this section we address the general version of the dimension-reduction problem mentioned
in the introduction. That is, P is a polygonal curve in Rd, for some constant d > 2, and
we need to preprocess P into a compact data structure to efficiently support queries that
specify a g-flat h (1 ≤ g ≤ d− 1) and an integer k ≥ 1, and request a curve Q on h of length
at most k that minimizes the discrete Fréchet distance to P .

It is unlikely that there exists a solution to this problem with bounds similar to those
that we obtained in Section 3, since it seems that, on the one hand, a primitive analogous
to diskℓ(Q), where “disk” is replaced by “ball” and ℓ is replaced by h, is essential, but on
the other hand, it is probably impossible to implement such a primitive efficiently in higher
dimensions, i.e., in polylogarithmic time after near-linear time preprocessing of Q.

Therefore, since we are interested in a solution to the general dimension-reduction problem
with near-linear time preprocessing and polylogarithmic time query, we resort to approximate
queries. Specifically, we present such a solution (for a prespecified parameter 0 < ε0 < 1)
that given h returns a curve Q on h of length at most k that minimizes the discrete Fréchet
distance to P up to a factor of 1 + ε0 (i.e., ddF(P, Q) ≤ (1 + ε0)ddF(P, Q∗), where Q∗ is such
a curve that minimizes the discrete Fréchet distance to P ).

Set ε := ε0
1+ε0

; then, 0 ≤ ε ≤ 1/2 and 1
1−ε = 1+ε0. We first define the primitive ballε

h(Q),
which returns a (1 − ε)-approximation of the smallest ball centered at a point of h and
containing a set Q of points. That is, let radiusε

h(Q) denote the radius of the returned ball,
then (1 − ε) radiush(Q) ≤ radiusε

h(Q) ≤ radiush(Q), where radiush(Q) is the radius of the
smallest ball with center on h.

We use coresets to implement ballε
h(Q), assuming Q is the set of points corresponding

to a subsequence of P . More precisely, we preprocess P so that given a subsequence P [i, j],
for 1 ≤ i ≤ j ≤ n, one can compute ballε

h(P [i, j]) in O(cε log n) time, where cε = cε(ε)
is a constant, see below. Before presenting the details, we provide a brief overview of the
coreset-related definitions and results that we use.

Coresets. Let S be a compact set in Rd. Let θ ∈ Sd−1 be a direction. The directional
width width(S, θ) of S in direction θ is the minimum distance between a pair of hyperplanes
with normal θ containing S between them. Fix a number ε, 0 < ε < 1. A subset C

of S is an ε-coreset for S with respect to directional width, if it has the property that
width(C, θ) ≥ (1− ε) width(S, θ), for all directions θ; since C ⊂ S, width(C, θ) ≤ width(S, θ).
We say that a subset C of S is an ε-coreset for S for farthest neighbors if, for any point q,
dmax(C, q) ≥ (1− ε)dmax(S, q). It follows that if B is any ball containing C, then the ball

B
1−ε , obtained by scaling B around its center by a factor of 1/(1− ε), contains S.



B. Aronov, T. Farhana, M. J. Katz, and I. Ramesh 6:17

The following facts are known (refer for example to [14, Section 23.1]):
A compact set in Rd has an ε-coreset for directional width of size cε := O(1/ε(d−1)/2).
Such an ε-coreset for a set of n points can be constructed in time O(n + c3

ε).
An (ε/4)-coreset for directional width is an ε-coreset for farthest neighbors.
If C1, C2, . . . , Ct are ε-coresets for S1, S2, . . . , St for width or farthest neighbors, then⋃

Ci is an ε-coreset for
⋃

Si for width or farthest neighbors.

As we are interested in coresets for farthest neighbors, with a slight abuse of terminology,
we will use unqualified “coreset” to denote them hereafter.

Smallest ball with a center on a flat. We recall the classical randomized LP-type algorithm
of Welzl [20] for finding the smallest enclosing ball of an n-point set S in Rd in Od(n) expected
time (with the implied constant depending on d). An inspection of the algorithm reveals
that it can be used essentially unmodified to compute the smallest enclosing ball of S whose
center is constrained to lie in a given g-flat; such a ball will be defined by at most g + 1
points.

Implementation of ballε
h(P [i, j]). We now explain how to implement ballε

h(P [i, j]),
which is the basic building block of the approximation algorithm described above. As in
Section 2.3 we once again construct a hierarchical decomposition of P , storing P of length n,
then P [1, n/2] and P [n/2 + 1, n] as its children and so forth, thereby creating a hierarchy of
canonical subcurves. With each canonical subcurve P [i, j] we associate its coreset Cij for
farthest neighbors, of size at most cε. An arbitrary subcurve P ′ of P is the union of O(log n)
canonical subcurves. If we collect the points of the corresponding coresets, we obtain a
coreset C ′ for P ′ of size cε log n. Running the exact minimum-enclosing-ball with center
on a g-flat algorithm on the set C ′, by the above discussion, gives an ε-approximation of
corresponding ball for P ′. Indeed, we obtain the smallest possible ball B with the center
constrained to the flat and enclosing C ′. By the coreset property B

1−ε contains P ′. There
cannot be a substantially smaller ball with center on the flat and containing P ′, as such a
ball would also contain C ′ and would contradict minimality of B.

The expected running time is dominated by that of the ball-finding routine, which is
Od(cε log n) = Od(log n/ε(d−1)/2), concluding our description of an implementation of ballε

h.

The decision algorithm. We now wish to devise a decision algorithm, similar to the one in
Section 3. Given r > 0, our decision algorithm will return true if there exists a sequence Q

of at most k points on h such that ddF(P, Q) ≤ r
1−ε . It will return false otherwise, in which

case we may only conclude that for any sequence Q of at most k points on h, ddF(P, Q) > r.
For this purpose, we define the primitive prefixϵ

h(S, r) for a sequence S of points and a
radius r. It returns a prefix S[1, k] of S, such that ballε

h(S[1, k]) returns a radius that is
at most r where as ballε

h(S[1, k + 1]) returns a radius that is greater than r. In practice,
prefixε

h(S, r) returns the length of the prefix, so 0 if it is empty. Thus, if prefixε
h(S, r) = k,

0 < k < n, then radiush(S[1, k]) ≤ r
1−ε and radiush(S[1, k + 1]) > r. (If prefixε

h(S, r) = 0,
then radiush(S[1, 1]) > r, and if prefixε

h(S, r) = n, then radiush(S[1, n]) ≤ r
1−ε .)

▶ Observation 10. If prefixh(S, r) returns the largest k′ for which radiush(S[1, k′]) ≤ r,
then prefixh(S, r) ≤ prefixε

h(S, r) ≤ prefixh(S, r
1−ε ).

To implement prefixϵ
h(S, r) we perform a binary search. That is, we set i = ⌊ |S|

2 ⌋ and
call ballε

h(S[1, i]). Now, if radiusε
h(S[1, i]) ≤ r, then we increase i, and otherwise we decrease

i, etc. Thus, the cost of a call to prefixϵ
h with a subcurve of P is O(cε log2 n) time.

ISAAC 2025



6:18 A Dimension-Reducing Fréchet Simplification Oracle

We now present the decision algorithm (see Algorithm 3).

Algorithm 3 The decision algorithm: Given a distance r > 0, determine if there exists a sequence
of at most k points on h at discrete Fréchet distance at most r

1−ε
from P [i, n].

function ApproxDecision(i, h, k, r)
if i = n + 1 then

return true
if k = 0 then

return false
l← prefixϵ

h(P [i, n], r)
if l = 0 then ▷ pi is too far from h

return false
return ApproxDecision(i + l, h, k − 1, r)

The following lemma follows from Observation 10.

▶ Lemma 11. Let h be a g-dimensional flat in Rd, k ≥ 1 an integer, and r > 0. If the call
AproxDecision(1, h, k, r) returns true, then there exists a sequence Q of k′ ≤ k points
on h, such that ddF(P, Q) ≤ r

1− ε
. If it returns false, then for any sequence Q of k′ ≤ k

points on h, ddF(P, Q) > r. The running time is k′ times the cost of a call to prefixε
h with

a subcurve of P .

Finally, we run the optimization algorithm in Section 3, using the decision algorithm
above (and replacing radiusℓ by radiusε

h). The following theorem summarizes the section’s
main result.

▶ Theorem 12. Let P be a polygonal curve with n vertices in Rd. Let 0 < ε0 < 1, and
set ε = ε0

1+ε0
. One can preprocess P in time O(n log n + n

ε3(d−1)/2 ) into a data structure of
size O(n log n + n

ε(d−1)/2 ), so that given a g-dimensional flat h and a positive integer k, an
at-most-k-vertex curve Q on h such that ddF(P, Q) ≤ ddF(P,Q∗)

1−ε = (1 + ε0)ddF(P, Q∗) (and
the corresponding distance) can be found in O( k2 log2 n

ε(d−1)/2 ) time, where Q∗ is such a curve that
minimizes the discrete Fréchet distance to P .

7 Discussion and open problems

We mention several open problems:
We did not strive to optimize the query time. How far can it be reduced, without
substantially increasing the space and preprocessing time, in Theorems 7, 8, 9, and 12?
Can the factor k2 in the query time in these theorems be made linear in k? Or at least
subquadratic?

References
1 Pankaj K Agarwal. Range searching. In Handbook of Discrete and Computational Geometry,

pages 1057–1092. Chapman and Hall/CRC, 2017.
2 Pankaj K. Agarwal, Sariel Har-Peled, Nabil H. Mustafa, and Yusu Wang. Near-linear

time approximation algorithms for curve simplification. Algorithmica, 42(3-4):203–219, 2005.
doi:10.1007/S00453-005-1165-Y.

https://doi.org/10.1007/S00453-005-1165-Y


B. Aronov, T. Farhana, M. J. Katz, and I. Ramesh 6:19

3 Boris Aronov, Tsuri Farhana, Matthew J. Katz, and Indu Ramesh. Discrete Fréchet distance
oracles. In Wolfgang Mulzer and Jeff M. Phillips, editors, 40th International Symposium on
Computational Geometry (SoCG 2024), pages 10:1–10:14, 2024. doi:10.4230/LIPIcs.SoCG.
2024.10.

4 S. Bereg, M. Jiang, W. Wang, B. Yang, and B. Zhu. Simplifying 3D polygonal chains under
the discrete Fréchet distance. In LATIN 2008: Theoretical Informatics, 8th Latin American
Symposium, Búzios, Brazil, April 7-11, 2008, Proceedings, volume 4957 of Lecture Notes in
Computer Science, pages 630–641. Springer, 2008. doi:10.1007/978-3-540-78773-0_54.

5 Prosenjit Bose, Stefan Langerman, and Sasanka Roy. Smallest enclosing circle centered on a
query line segment. In Proceedings of the 20th Annual Canadian Conference on Computational
Geometry, Montréal, Canada, August 13-15, 2008, 2008.

6 Peter Brass, Christian Knauer, Chan-Su Shin, Michiel H. M. Smid, and Ivo Vigan. Range-
aggregate queries for geometric extent problems. In Anthony Wirth, editor, Nineteenth
Computing: The Australasian Theory Symposium, CATS 2013, Adelaide, Australia, February
2013, volume 141 of CRPIT, pages 3–10. Australian Computer Society, 2013. URL: http:
//crpit.scem.westernsydney.edu.au/abstracts/CRPITV141Brass.html.

7 Karl Bringmann and Bhaskar Ray Chaudhury. Polyline simplification has cubic complexity. J.
Comput. Geom., 11(2):94–130, 2020. doi:10.20382/JOCG.V11I2A5.

8 A. Driemel and S. Har-Peled. Jaywalking your dog: Computing the Fréchet distance with
shortcuts. SIAM J. Comput., 42(5):1830–1866, 2013. doi:10.1137/120865112.

9 David Eppstein. Dynamic three-dimensional linear programming. ORSA Journal on Computing,
4(4):360–368, 1992. doi:10.1287/IJOC.4.4.360.

10 Chenglin Fan, Omrit Filtser, Matthew J. Katz, Tim Wylie, and Binhai Zhu. On the chain
pair simplification problem. In Frank Dehne, Jörg-Rüdiger Sack, and Ulrike Stege, editors,
Algorithms and Data Structures - 14th International Symposium, WADS 2015, Victoria, BC,
Canada, August 5-7, 2015. Proceedings, volume 9214 of Lecture Notes in Computer Science,
pages 351–362. Springer, 2015. doi:10.1007/978-3-319-21840-3_29.

11 O. Filtser. Universal approximate simplification under the discrete Fréchet distance. Inf.
Process. Lett., 132:22–27, 2018. doi:10.1016/j.ipl.2017.10.002.

12 Leonidas J. Guibas, John Hershberger, Joseph S. B. Mitchell, and Jack Snoeyink. Approxi-
mating polygons and subdivisions with minimum link paths. Int. J. Comput. Geom. Appl.,
3(4):383–415, 1993. doi:10.1142/S0218195993000257.

13 Prosenjit Gupta, Ravi Janardan, Yokesh Kumar, and Michiel H. M. Smid. Data structures
for range-aggregate extent queries. Comput. Geom., 47(2):329–347, 2014. doi:10.1016/J.
COMGEO.2009.08.001.

14 Sariel Har-Peled. Geometric approximation algorithms. Number 173 in Mathematical Surveys
and Monographs. American Mathematical Soc., 2011.

15 Arindam Karmakar, Sasanka Roy, and Sandip Das. Fast computation of smallest enclosing
circle with center on a query line segment. Inf. Process. Lett., 108(6):343–346, 2008. doi:
10.1016/J.IPL.2008.07.002.

16 Sasanka Roy, Arindam Karmakar, Sandip Das, and Subhas C. Nandy. Constrained minimum
enclosing circle with center on a query line segment. Comput. Geom., 42(6-7):632–638, 2009.
doi:10.1016/J.COMGEO.2009.01.002.

17 D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. J. Comput. Syst. Sci.,
26(3):362–391, 1983. doi:10.1016/0022-0000(83)90006-5.

18 Mees van de Kerkhof, Irina Kostitsyna, Maarten Löffler, Majid Mirzanezhad, and Carola
Wenk. Global curve simplification. In Michael A. Bender, Ola Svensson, and Grzegorz Herman,
editors, 27th Annual European Symposium on Algorithms, ESA 2019, September 9-11, 2019,
Munich/Garching, Germany, volume 144 of LIPIcs, pages 67:1–67:14. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPICS.ESA.2019.67.

ISAAC 2025

https://doi.org/10.4230/LIPIcs.SoCG.2024.10
https://doi.org/10.4230/LIPIcs.SoCG.2024.10
https://doi.org/10.1007/978-3-540-78773-0_54
http://crpit.scem.westernsydney.edu.au/abstracts/CRPITV141Brass.html
http://crpit.scem.westernsydney.edu.au/abstracts/CRPITV141Brass.html
https://doi.org/10.20382/JOCG.V11I2A5
https://doi.org/10.1137/120865112
https://doi.org/10.1287/IJOC.4.4.360
https://doi.org/10.1007/978-3-319-21840-3_29
https://doi.org/10.1016/j.ipl.2017.10.002
https://doi.org/10.1142/S0218195993000257
https://doi.org/10.1016/J.COMGEO.2009.08.001
https://doi.org/10.1016/J.COMGEO.2009.08.001
https://doi.org/10.1016/J.IPL.2008.07.002
https://doi.org/10.1016/J.IPL.2008.07.002
https://doi.org/10.1016/J.COMGEO.2009.01.002
https://doi.org/10.1016/0022-0000(83)90006-5
https://doi.org/10.4230/LIPICS.ESA.2019.67


6:20 A Dimension-Reducing Fréchet Simplification Oracle

19 Marc J. van Kreveld, Maarten Löffler, and Lionov Wiratma. On optimal polyline simplification
using the Hausdorff and Fréchet distance. J. Comput. Geom., 11(1):1–25, 2020. doi:10.
20382/JOCG.V11I1A1.

20 Emo Welzl. Smallest enclosing disks (balls and ellipsoids). In Hermann A. Maurer, editor, New
Results and New Trends in Computer Science, Graz, Austria, June 20-21, 1991, Proceedings
[on occasion of H. Maurer’s 50th birthday], volume 555 of Lecture Notes in Computer Science,
pages 359–370. Springer, 1991. doi:10.1007/BFB0038202.

https://doi.org/10.20382/JOCG.V11I1A1
https://doi.org/10.20382/JOCG.V11I1A1
https://doi.org/10.1007/BFB0038202

	1 Introduction
	2 Facts and tools
	2.1 Facts
	2.2 Primitives in the plane
	2.3 Data structures in the plane
	2.4 Implementations
	2.4.1 Implementation of disk(Q)
	2.4.2 Implementation of feasible(Q,r)
	2.4.3 Implementation of fits?(Q,r)
	2.4.4 Implementation of prefixS,r


	3 Discrete Fréchet distance simplification on a line
	3.1 The Algorithm

	4 Extension to geometric trees
	5 Extension to polygonal regions in the plane
	6 Discrete Fréchet distance simplification on a g-flat
	7 Discussion and open problems

