
Polynomial Equivalence of Extended Chemical
Reaction Models
Divya Bajaj #

University of Texas Rio Grande Valley,
Edinburg, TX, USA

Jose-Luis Castellanos #

University of Texas Rio Grande Valley,
Edinburg, TX, USA

Ryan Knobel #

University of Texas Rio Grande Valley,
Edinburg, TX, USA

Austin Luchsinger #

University of Texas Rio Grande Valley,
Edinburg, TX, USA

Aiden Massie #

University of Texas Rio Grande Valley,
Edinburg, TX, USA

Adrian Salinas #

University of Texas Rio Grande Valley,
Edinburg, TX, USA

Pablo Santos #

University of Texas Rio Grande Valley,
Edinburg, TX, USA

Ramiro Santos #

University of Texas Rio Grande Valley,
Edinburg, TX, USA

Robert Schweller #

University of Texas Rio Grande Valley,
Edinburg, TX, USA

Tim Wylie #

University of Texas Rio Grande Valley,
Edinburg, TX, USA

Abstract
The ability to detect whether a species (or dimension) is zero in Chemical Reaction Networks
(CRN), Vector Addition Systems, or Petri Nets is known to increase the power of these models
– making them capable of universal computation. While this ability may appear in many forms,
such as extending the models to allow transitions to be inhibited, prioritized, or synchronized, we
present an extension that directly performs this zero checking. We introduce a new void genesis
CRN variant with a simple design that merely increments the count of a specific species when any
other species’ count goes to zero. As with previous extensions, we show that the model is Turing
Universal. We then analyze several other studied CRN variants and show that they are all equivalent
through a polynomial simulation with the void genesis model, which does not merely follow from
Turing-universality. Thus, inhibitor species, reactions that occur at different rates, being allowed to
run reactions in parallel, or even being allowed to continually add more volume to the CRN, does
not add additional simulation power beyond simply detecting if a species count becomes zero.
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1 Introduction

Background. Chemical Reaction Networks [5], Vector Addition Systems [18], and Petri
nets [23] are three formalisms that arose in different disciplines to study distributed/concurrent
systems. Despite their distinct origins, these models are mathematically equivalent in
expressive power [8, 15]. While these models are capable of very complex behavior – e.g.,
deciding if one configuration is reachable from another via a sequence of transitions was
recently shown to be Ackermann-complete [9, 19] – they fall short of Turing-universality.
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7:2 Polynomial Equivalence of Extended Chemical Reaction Models

Even though these base models are not capable of universal computation, they are each
right on the cusp of doing so. It is well known that extending the models in any way that
allows “checking for zero” immediately results in Turing-universality [1, 16, 22]. This has
been shown for model extensions allowing transition inhibition [1, 7, 11, 16], transition
prioritization [16, 24, 25], synchronous (parallel) transitions [6, 28], or even continual volume
increase [2, 3]. These results are typically established by showing how each extended model
can simulate a register (counter) machine [22].

However, Turing equivalence alone is a blunt instrument. It tells us that models can
emulate one another, but not how efficiently this can be done. We often care not just that
two models are Turing-complete, but if they can be easily transformed into one another. For
instance, Hack gave one such transformation between Inhibitory and Priority Petri nets [16],
but discussed their equivalence in terms of languages. For this paper, we focus on the concept
of simulation to draw comparisons between models.

In the literature, several notions of simulation have been proposed to capture structural
or behavioral equivalence between systems. While concepts like strong/weak bisimulation
[4, 10, 12, 17, 21] and pathway decomposition [26, 27] have been used to compare the
expressiveness of different systems, there is typically a tradeoff between reasonably preserving
dynamics and maintaining structural correspondence. Furthermore, efficiency of simulation
is often either implicitly included or sometimes omitted altogether. Part of our work aims to
introduce a more wieldy definition of simulation that explicitly accounts for efficiency. We
give a more detailed discussion on simulation later in the paper.

Our Contributions. In this work, we make two main contributions:
1. We define a general-purpose notion of polynomial efficient simulation that is intended to

capture a broader notion of simulation while still remaining reasonable. Our definition
ensures that the simulation respects a polynomial correspondence in both time (dynamics)
and space (structure). This allows us to formally compare the simulation efficiency of
different CRN variants.

2. We introduce a new model, which we call Void Genesis (VG), that makes zero-testing
explicit: it creates a designated species whenever a tracked species reaches zero. We use
this model as a unifying model that captures the essence of zero-testing in a clean and
modular way. We show that the Void Genesis model is polynomially equivalent to other
known Turing-universal extensions of CRNs.

Since all of these extended models can be simulated by VG (and vice versa) with only
polynomial overhead, our results establish a hub of polynomial simulation equivalence among
them. This yields a stronger and more precise understanding of the relationships between
these CRN variants and highlights VG simulation as a useful proof technique for adding
models to this hub. Figure 1 summarizes the simulation relationships we establish here.

Organization. Given the number of models and results, we have arranged the paper in a
way that systematically builds up understanding and techniques. Section 2 covers the formal
definitions of the models and a simulation of one model with another. Section 3 provides
minimum working examples in the models. The polynomial equivalence between models is
proven through a series of simulations in Section 4. In Section 5, we discuss our results and
some open problems.

2 Preliminaries

In Section 2.1, we define the extended chemical reaction network models considered in this
paper with examples, and in Section 2.2 we define the concept of inter-model simulation.
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Figure 1 CRN Model variants and their connections to Void Genesis CRNs. Theorems 1-5 each
show a polynomial equivalence between two CRN variants. With the Void Genesis model as a central
hub, the implication of these results is a polynomial equivalence between all models.

2.1 Models
Here, we define the six chemical reaction networks considered in this paper: the basic chemical
reaction network model (Section 2.1.1), the Void Genesis model (Section 2.1.2), the Inhibitory
CRN model (Section 2.1.3), the Coarse-Rate CRN model (Section 2.1.4), the Step-Cycle
CRN model (Section 2.1.5), and the Unique Instruction Parallel model (Section 2.1.6).

2.1.1 Chemical Reaction Networks
A chemical reaction network (CRN) C = (Λ, Γ) is defined by a finite set of species Λ, and a
finite set of reactions Γ where each reaction is a pair (−→R,

−→
P ) ∈ NΛ × NΛ, sometimes written

−→
R −→

−→
P , that denotes the reactant species consumed by the reaction and the product species

generated by the reaction. For example, given Λ = {a, b, c}, the reaction ((2, 0, 0), (0, 1, 1))
represents 2a −→ b + c; 2 a species are removed, and 1 new b and c species are created.

A configuration −→
C ∈ NΛ of a CRN assigns integer counts to every species λ ∈ Λ, and we

use notation −→
C [λ] to denote that count. For a species λ ∈ Λ, we denote the configuration

consisting of a single copy of λ and no other species as λ⃗. It is often useful to reference the
set of species whose counts are not zero in a given configuration. In such cases, the notation
{
−→
C } is used. Formally, {

−→
C } = {λ ∈ Λ |

−→
C [λ] > 0}, and when convenient and clear from the

context, we further use {
−→
C } to denote the configuration (vector) representation in which

each element has a single copy. Finally, let |
−→
C | =

∑
λ∈Λ C[λ] denote the total number of

copies of all species in a configuration, sometimes referred to as the volume of −→
C .

A reaction (−→R,
−→
P ) is said to be applicable in configuration −→

C if −→
R ≤

−→
C ; in other words,

a reaction is applicable if −→
C has at least as many copies of each species as −→

R . If the reaction
(−→R,

−→
P ) is applicable, it results in configuration

−→
C ′ = −→

C −
−→
R + −→

P if it occurs, and we write
−→
C →(Λ,Γ)

crn
−→
C ′, or simply −→

C →
−→
C ′ when the model and CRN are clear from context. We use

the same notation as configuration vectors to denote the size (|−→R | and |
−→
P |) and explicit

content ({−→
R} and {

−→
P }) of reactants and products for a reaction.

▶ Definition 1 (Discrete Chemical Reaction Network). A discrete chemical reaction network
(CRN) is an ordered pair (Λ, Γ) where Λ is an ordered alphabet of species, and Γ is a set of
rules over Λ.

▶ Definition 2 (Basic CRN Dynamics). For a CRN (Λ, Γ) and configurations −→
A and −→

B , we say
that −→

A →(Λ,Γ)
crn

−→
B if there exists a rule (−→R,

−→
P ) ∈ Γ such that −→

R ≤
−→
A , and −→

A −
−→
R + −→

P = −→
B .

If there exists a finite sequence of configurations such that −→
C →

−→
C 1 → . . . →

−→
C n →

−→
D ,

then we say that −→
D is reachable from −→

C and we write −→
C ⇝

−→
D . A configuration is said to be

terminal if no reactions are applicable. We also define an initial configuration for a CRN as

ISAAC 2025



7:4 Polynomial Equivalence of Extended Chemical Reaction Models

its starting configuration. A CRN System T is then defined as a pair of a CRN model and
its initial configuration. The following sections define extensions of the basic CRN model by
way of defining modified dynamics.

2.1.2 Void Genesis CRNs
A Void Genesis CRN CVG = ((Λ, Γ), z) is a basic CRN with a zero species z ∈ Λ whose count
is incremented whenever the count of any species other than z goes to zero. See Figure 2d
for an example.

▶ Definition 3 (Void-Genesis Dynamics). For a Void-Genesis CRN ((Λ, Γ), z ∈ Λ) and
configurations −→

A , −→
Bt and −→

B , we say that −→
A →(Λ,Γ)

CVG

−→
B if there exists a rule (−→R,

−→
P ) ∈ Γ such

that −→
R ≤

−→
A , −→

A −
−→
R + −→

P = −→
Bt, and −→

B = −→
Bt + n · z⃗ where n is the cardinality of {λ ∈ Λ \ {z}

|
−→
A [λ] ̸= 0 and −→

Bt[λ] = 0}.

It is straightforward to show that the Void Genesis model is Turing-universal via simulating
a register machine, and we do so in Section 4.7.

2.1.3 Inhibitory CRNs
A reaction γ is said to be inhibited by a species λ when the reaction γ may only be applied if
λ is absent in the system. We define an inhibitor mapping I : Γ → P(Λ) that maps a reaction
to a subset of species that inhibit the reaction. An Inhibitory CRN CIC = ((Λ, Γ), I) as
defined by [7] is then a basic CRN along with the mapping I. See Figure 2c for an example.

▶ Definition 4 (Inhibitory Dynamics). For a Inhibitory CRN ((Λ, Γ), I) and configurations
−→
A and −→

B , we say that −→
A →(Λ,Γ)

CIC

−→
B if there exists a rule γ = (−→R,

−→
P ) ∈ Γ such that −→

R ≤
−→
A ,

−→
A −

−→
R + −→

P = −→
B , and A[λ] = 0, ∀λ ∈ I(γ).

2.1.4 Coarse-Rate CRNs
A Coarse-Rate CRN CCR = ((Λ, Γ), rank) as introduced by [25] is a basic CRN along
with a function rank : Γ → N. We define a set of reactions Γl as the set of all reactions
γ where rank(γ) = l. The set of reactions Γ is then defined as an ordered partition set
given by {Γ1, Γ2, . . . , Γn}. Any applicable reaction γℓ

i may only be applied if no reaction
γk

j ∈ Γk, ∀k ∈ [ℓ + 1, n] is applicable. We use (−→R,
−→
P )ℓ to denote a reaction γℓ ∈ Γℓ. In the

context of this paper we focus on models with rank at most 2. For clarity, we will refer to
reactions with rank 2 as fast reactions, and the ones with rank 1 as slow reactions. See
Figure 2b for an example.

▶ Definition 5 (Coarse-Rate Dynamics). For a Coarse-Rate CRN ((Λ, Γ), rank) and config-
urations −→

A and −→
B , we say that −→

A →(Λ,Γ)
CCR

−→
B if there exists a rule (−→R,

−→
P )ℓ ∈ Γ such that

−→
R ≤

−→
A , −→

A −
−→
R + −→

P = −→
B , and ̸ ∃ an applicable reaction γk>ℓ.

2.1.5 Step-Cycle CRNs
A step-cycle CRN is a step CRN [2] that infinitely repeats steps 0 through k −1: that is, once
−→
S k−1 is added to the terminal configuration in the (k − 1)th step, the resulting configuration
is treated as the new initial configuration for the step CRN. More formally, a step-cycle
CRN of k steps is an ordered pair ((Λ, Γ), (−→S 0,

−→
S 1, . . . ,

−→
S k−1)), where the first element is

a normal CRN (Λ, Γ) and the second is a sequence of length-|Λ| vectors of non-negative
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integers denoting how many copies of each species type to add after each step. We define a
step-configuration −→

C i for a step-cycle CRN as a valid configuration −→
C over (Λ, Γ) along with

an integer i ∈ {0, . . . , k − 1} that denotes the configuration’s step.

▶ Definition 6 (Step-Cycle Dynamics). For a step-cycle CRN ((Λ, Γ), (−→S 0,
−→
S 1, . . . ,

−→
S k−1))

and step-configurations −→
A i and −→

B j, we say that −→
A i →(Λ,Γ)

CSC

−→
B j if either

1. i = j, there exists a rule (−→R,
−→
P ) ∈ Γ s.t. −→

R ≤
−→
A i, and −→

A i −
−→
R + −→

P = −→
B j, or

2. (i + 1) mod k = j, −→
A i is terminal, and −→

A i + −→
S i = −→

B j.

2.1.6 Unique Instruction Parallel CRNs
The Unique Instruction Parallel model modifies the dynamics of a normal CRN (Λ, Γ) by
applying a maximal set of compatible rules as a single transition. In this paper, we restrict
this maximal set to contain only one application of any given rule, leaving the study of more
relaxed parallel models for future work.

▶ Definition 7 (Plausibly Parallel Rules). A multiset of n (not necessarily distinct) rules
{(−→R 1,

−→
P 1), . . . , (−→R n,

−→
P n)} are plausibly parallel for a configuration −→

C over Λ if the vector
−→
R =

∑n
i=1

−→
R i is such that −→

R ≤
−→
C .

▶ Definition 8 (Unique-Instruction Plausibly Parallel). A plausibly parallel multiset is said
to be Unique-Instruction if it contains at most one copy of any given rule (i.e., it is a
set). It is considered unique-instruction maximal if it is not a proper subset of any other
unique-instruction plausibly parallel set.

▶ Definition 9 (Unique-Instruction Parallel Dynamics). For a CRN (Λ, Γ) and configurations
−→
A and −→

B , we say that −→
A →(Λ,Γ)

CUI

−→
B if there exists a unique-instruction maximal plausibly

parallel set {(−→R 1,
−→
P 1), . . . , (−→R k,

−→
P k)} for configuration −→

A and rule set Γ such that −→
B =

−→
A −

∑k
i=1

−→
R i +

∑k
i=1

−→
P i.

2.2 Simulation
By way of Petri nets, discrete CRNs have seen various model extensions. To meaningfully
compare the computational capabilities of these variants, we turn to the notion of simulation,
which serves as a tool to compare the relative expressive power of each model. However,
existing definitions in the literature vary in scope and applicability. Some emphasize strict
structural correspondence while others focus purely on dynamic behavior. Thus, it is
worthwhile to discuss why we formulate our own definition of simulation and equivalence.

Borrowed from classical process theory, (strong) bisimulation [21, 12, 4] is perhaps the
most stringent form of equivalence. It requires that for every state and transition in one
system, there exists a matching state and transition in the other, and vice versa. This strong
bidirectional constraint means bisimulation ensures both behavioral and structural fidelity,
and notably also implicitly guarantees efficiency.

Weak bisimulation [10, 17], on the other hand, relaxes the strict step-by-step matching
of bisimulation. Instead, a transition in one system may correspond to a macrotransition
in the other: a sequence of transitions possibly allowing “hidden” or “silent” intermediate
steps. This makes bisimulation more flexible and applicable to realistic implementations,
but it is not without its own limitations. Pathway decomposition, as presented in [26, 27],
takes a different approach. Rather than comparing reactions directly, they identify a CRN’s

ISAAC 2025



7:6 Polynomial Equivalence of Extended Chemical Reaction Models
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Figure 2 Example systems for the 5 CRN models. The blurred portions of the figure represent
invalid reaction sequences. (a) Step-cycle with 2 steps. Species are added when configurations reach
a terminal state. (b) Coarse-rate. The numbers next to each reaction denote the rank. The bottom
reaction sequence is invalid as the reaction with rank 2 must occur first. (c) Inhibitory. The top
reaction sequence is invalid as there exists a b in the initial configuration, which is an inhibitor
for the rule a → ∅. (d) Void Genesis. Once the a species reaches a count of 0, the z species is
created. In the bottom reaction sequence, the z species reacts with the b species, and another z

species is created. (e) Unique-Instruction Parallel. The bottom reaction sequence is invalid as the
rule a + b → ∅ is not a maximal set.

formal basis – a set of “indivisible” formal pathways that collectively define its behavior.
This allows pathway decomposition to capture phenomena such as delayed choice, in which
nondeterministic behavior is distributed across multiple steps.

Our framework seeks to strike a middle ground. We define simulation in terms of a config-
uration map and macrotransitions, retaining the core idea of weak bisimulation but allowing
for a more general structural correspondence between systems. Since this correspondence
is so general, we explicitly include a measure of efficiency with our definition. We define
polynomial efficient simulation that permits abstraction and internal nondeterminism, like
weak bisimulation and pathway decomposition, but captures both dynamic behavior and
bounded structural transformation. We say two systems are polynomially equivalent if they
can each simulate each other via our definition. This is analogous to bisimilarity [21], but in
the context of efficient, weak simulation.

Simulation Definition. To define the concept of one CRN system T ′ simulating another
CRN system T we introduce configuration maps and representative configurations. A
configuration map is a polynomial-time computable function M : configsT ′ → configsT

⋃
{⊥}
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⊥

Figure 3 (Left) A system T with states −→
A and −→

B , and transition −→
A →T

−→
B . (Right) A state-space

diagram for system T ′ that simulates T . Here, each arrow represents some transition −→
X →T ′

−→
Y

under the dynamics of T ′. Observe how T follows T ′ and T ′ models T .

mapping at least one element in configsT ′ to each element in configsT , and the representative
configurations for a configuration −→

C ∈ configsT are [[−→C ]] = {
−→
C ′ |

−→
C = M(

−→
C ′)}, also

computable in polynomial time.1 Finally, we define the concept of single-step transition,−→
A →T

−→
B , to mean that −→

A transitions to −→
B in system T . And, the concept of macro

transitionable,
−→
A′ ⇒T ′

−→
B′, to mean that

−→
B′ is reachable from

−→
A′ in system T ′ through

a sequence of k intermediate configurations ⟨
−→
A′,

−→
X ′

1, . . . ,
−→
X ′

k,
−→
B′⟩ such that M(

−→
A′) ̸= ⊥,

M(
−→
B′) ̸= ⊥, and each M(

−→
X ′

i) ∈ {M(
−→
A′), ⊥}. Note that k can be zero, resulting in the

sequence ⟨
−→
A′,

−→
B′⟩.

Intuition. Each representative configuration set [[−→C ]] is a particular collection (of at least 1
configuration) that adheres to the strictest modeling of system T within system T ′. That is,
any

−→
C ′ ∈ [[−→C ]] must be able to grow into anything that −→

C = M(
−→
C ′) can grow into, and no

−→
C ′ ∈ [[−→C ]] may grow into something that −→

C = M(
−→
C ′) cannot grow into.

For a given configuration map and collection of representative configurations, we define
the concepts of following and modeling, followed by our definition of simulation.

▶ Definition 10 (It Follows). We say system T follows system T ′ if whenever
−→
A′ ⇒T ′

−→
B′ and

M(
−→
A′) ̸= M(

−→
B′), then M(

−→
A′) →T M(

−→
B′).

▶ Definition 11 (Models). We say system T ′ models system T if −→
A →T

−→
B implies that

∀
−→
A′ ∈ [[−→A ]], ∃

−→
B′ ∈ [[−→B ]] such that

−→
A′ ⇒T ′

−→
B′.

▶ Definition 12 (Simulation). A system T ′ simulates a system T if there exists a polynomial
time computable function M : configsT ′ → configsT and polynomial time computable set
[[−→C ]] = {

−→
C ′ | M(

−→
C ′) = −→

C } for each −→
C ∈ configsT , such that:

1. T follows T ′.
2. T ′ models T .

Polynomial Simulation. We say a simulation is polynomial efficient if the simulating system
adheres to the following:

polynomial species and rules. The number of species and rules is at most polynomial in the
number of species and rules of the simulated system.

polynomial rule size. The maximum rule size (number of products plus number of reactants)
is polynomial in the maximum rule size of the simulated system.

1 We write M(
−→
C′) = ⊥ to mean that the mapping is undefined, which is not the same as M(

−→
C′) = −→0 .

ISAAC 2025



7:8 Polynomial Equivalence of Extended Chemical Reaction Models

polynomial transition sequences. For all B such that A →T B, the expected number of
transitions taken to perform a macro transition from M(A) ⇒T ′ M(B), conditioned that
M(A) does macro transition to M(B), has expected number of transitions polynomial in
the number of rules and species of the simulated system based on a uniform sampling of
applicable rules.

polynomial volume. Each
−→
C ′ ∈ [[−→C ]] has a volume that is polynomially bounded by the

volume of C, and for any macro transition A′ ⇒T ′ B′, any intermediate configuration
within this macrotransition has volume polynomially bounded in the volume of M(A′)
and M(B′).

▶ Theorem 13 (Transitivity). Given three CRN systems T1, T2 and T3 such that T2 simulates
T1 under polynomial simulation, and T3 simulates T2 under polynomial simulation, then T3
simulates T1 under polynomial simulation.

Proof. Given three CRN systems T1, T2 and T3 such that T2 simulates T1 under polynomial
simulation, and T3 simulates T2 under polynomial simulation. Let M21 : configsT2 → configsT1

and M32 : configsT3 → configsT2 be the polynomial-time computable configuration mappings.
We define a configuration mapping function M31 : configsT3 → configsT1 by composing
functions M21 and M32 as follows.

M31(−→C3) =
{

(M21 ◦ M32)(−→C3) if M32(−→C3) ̸= ⊥ ∧ M21(M32(−→C3)) ̸= ⊥
⊥ otherwise

And the set of representative configurations for a configuration −→
C1 ∈ configsT1 as [[−→C1 ]] =

{
−→
C3 |

−→
C1 = M31(−→C3)}. If the configuration −→

C1 has a non-empty set of representative
configurations in T2, and each of those configurations have representative configurations in
T3, then this set will contain all such configurations. Therefore, if both M21 and subsequently
M32 are defined, this set will be non-empty.

We now show that T3 simulates T1 by proving that T1 follows T3 and T3 models T1 for
the configuration mapping and representative configurations defined above. We then show
that the simulation is polynomial efficient.

T1 follows T3. T1 follows T3 if for any two configurations −→
A3 and −→

B3 in T3 where M31(−→A3)
and M31(−→B3) are defined, such that −→

A3 ⇒T3

−→
B3, and M31(−→A3) ̸= M31(−→B3), then M31(−→A3) →T1

M31(−→B3). For these configurations if M32(−→A3) ̸= M32(−→B3) then M32(−→A3) →T2 M32(−→B3). This
is true because T2 follows T3.
Because T1 follows T2, for any two configurations −→

A2 and −→
B2 in T2, if −→

A2 ⇒T2

−→
B2, and

M21(−→A2) ̸= M21(−→B2), then M21(−→A2) →T1 M21(−→B2). A single-step transition is simply
a macro-transition with one step. Therefore, if M21(M32(−→A3)) ̸= M21(M32(−→B3)), then
M21(M32(−→A3)) →T1 M21(M32(−→B2)). When M31 is defined we can infer based on the definition
of M31 that, if M31(−→A3) ̸= M31(−→B3) then M31(−→A3) →T1 M31(−→B3). Therefore, T1 follows T3.

T3 models T1. T3 models T1 if for any two configurations −→
A1 and −→

B1 in T1 such that−→
A1 →T1

−→
B1, ∀

−→
A3 ∈ [[−→A1 ]], ∃

−→
B3 ∈ [[−→B1 ]] under M31 such that −→

A3 ⇒T3

−→
B3. For all such

configurations −→
A1 and −→

B1 in T1, ∀
−→
A2 ∈ [[−→A1 ]], ∃

−→
B2 ∈ [[−→B1 ]] under M21 such that −→

A2 ⇒T2

−→
B2

because T2 models T1. This macro transition −→
A2 ⇒T2

−→
B2 is represented as a sequence of

single-step transitions −→
X2

i →T2

−→
X2

i+1 where M21(−→X2
i), M21(−→X2

i+1) ∈ {
−→
A1, ⊥} for 0 ≤ i < k

as shown in Figure 4. Furthermore, ∀
−→
Xj

3 ∈ [[−→X2
i ]], ∃

−→
X3

ℓ ∈ [[−→X2
i+1 ]] under M32 such that

−→
X3

j ⇒T3

−→
X3

ℓ because T3 models T2.



D. Bajaj et al. 7:9

Figure 4 A single-step transition −→
A1 →T1

−→
B1 is simulated using a sequence of transitions starting

at −→
A2 through −→

B2 in T2. Each of these single-step is represented using a sequence of transitions in
T3.

Because M32(−→X3
j) = −→

X2
i and M32(−→X3

ℓ) = −→
X2

i+1 and M21(−→X2
i), M21(−→X2

i+1) ∈ {
−→
A1, ⊥},

therefore, M31(−→X3
j), M31(−→X3

ℓ) ∈ {
−→
A1, ⊥} for 0 ≤ j < k and j < ℓ ≤ k. As shown in

Figure 4, the sequence of macro-transitions −→
X3

j ⇒T3

−→
X3

ℓ can be represented as a single
macro-transition ⟨

−→
A3,

−→
X3

1, . . . ,
−→
X3

k,
−→
B3⟩, where M31(−→X3

j) ∈ {
−→
A1, ⊥} for 0 ≤ j ≤ k. Also,

M32(−→A3) = −→
A2 and M32(−→B3) = −→

B2. We know that M21(−→A2) = −→
A1 and M21(−→B2) = −→

B1,
therefore, M31(−→A3) = −→

A1 and M31(−→B3) = −→
B1 when both M21 and M32 are defined. Hence,

such a macro-transition −→
A3 ⇒T3

−→
B3 models the single-step transition −→

A1 →T1

−→
B1 when

−→
A3 ∈ [[−→A1 ]] and −→

B3 ∈ [[−→B1 ]]. Therefore, T3 models T1.

Polynomial Simulation. Given that T2 simulates T1 under polynomial simulation, and
T3 simulates T2 under polynomial simulation, we now show that T3 simulates T1 under
polynomial simulation. Let Λi and Γi be the set of species and reactions for the model Ti for
1 ≤ i ≤ 3.
1. polynomial species and rules: We know that |Λ2| = O(|Λ1|) = |Λ1|c1 and |Λ3| =

O(|Λ2|) = |Λ2|c2 , therefore, |Λ3| = |Λ1|c1·c2 . Similarly, |Γ3| = |Γ1|c1·c2 . Therefore,
|Λ3| = O(|Λ1|) and |Γ3| = O(|Γ1|).

2. polynomial rule size: Let Ri be the largest rule in the model Ti. We know that
|R2| = O(|R1|) and |R3| = O(|R2|), therefore, |R3| = O(|R1|).

3. polynomial transition sequences: The length of the transition sequence for a macro-
transition in T3 is bounded by O(|Λ2| + |Γ2|). Given that |Λ2| = |Λ1|c1 and |Γ2| = |Γ1|c1 ,
therefore, each macro-transition in T3 simulating a single-step in T1 uses O(|Λ1| + |Γ1|)
single-step transitions.

4. polynomial volume: For a macro-transition −→
A2 ⇒T2

−→
B2 representing a transition

−→
A1 →T1

−→
B1, the volume of representative configurations −→

A2 and −→
B2 is polynomial in

the volume of configurations −→
A1 and −→

B1 respectively. Similarly, for a macro-transition−→
A3 ⇒T3

−→
B3 as shown in Figure 4, the volume of −→

A3 and −→
B3 is polynomial in volume of

−→
A2 and −→

B2 respectively. Therefore, the volume of representative configurations −→
A3 and−→

B3 is polynomial in the volume of configurations −→
A1 and −→

B1, where −→
A3 ⇒T3

−→
B3 models

−→
A1 →T1

−→
B1. The volume of all intermediate configurations are bound by −→

A3 and −→
B3. ◀

ISAAC 2025
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3 Detecting Zero: Examples in Each Model

The power each extended CRN model has over the basic CRN model stems from the ability
to detect when a species has reached a count of zero. Thus, the focus of this section is
twofold: to detail how each model is capable of detecting zero and to provide minimum
working examples (MWEs) for ease of comprehension. For all examples, we want to check if
species s is in the system. The idea is that there is a species cs that turns to ns if there are
no s’s and ys if there are s’s in the system while nothing else in the system changes.

Void Genesis. Detecting zero is explicitly done by the model. For the simplest version of
the model, we assume we have no z species. To check whether s is zero, simply use either as
a catalyst (examples on the left side). For this to work, you must maintain a single z. Thus,
when producing any species s, continue to check with s as a catalyst and z as a reactant. As
an example, the rule x → s would be modified to be implemented with the two rules on the
right side.

cs + s → ys + s x + s → 2s

ss + z → ns + z x + z → s

Inhibitory CRNs. We can use an inhibited rule and a catalyst to detect whether a species s

exists or not.
cs

s−→ ns runs when s does not exist
cs + s → ys + s runs when s does exist

Course-Rate CRNs. Detecting a species s only requires that there is a fast rule that uses it
and a slow rule that does not.

Fast Reaction cs + s → ys + s (will always execute first)
Slow Reaction cs → ns (will only execute if no s exists in the system)

Step-Cycle CRNs. Detecting zero is simple by using s in a reaction and then going to
another step. Since each step reaches a terminal configuration, it must not exist if the
reaction did not occur.

Step Description Add Rules
1 Add something that only reacts with s a single cs s + cs → y

2 Check if it reacted a single w w + y → ys + s (s exists)
w + cs → ns (s not exists)

Unique-Instruction Parallel CRNs. The parallel model UI takes advantage of how rules
are applied to force reactions to run in a specific order depending on whether the count of a
certain species is zero or not. Since we are limiting the possible rules that can run by our
species selection, detecting zero can be done in this manner. The intuition is to run two
independent rules, followed by a rule that uses the output of both. The “Round” indicates
that all rules in this round would execute before the next round due to the maximal selection.

Round Description Rules
1 Create a timing/clock species (ti)

and a species to use s with.
cs → rc + t1

2 Try to use s and use the timer t in
another rule.

rc + s → rs (can only run if s exists)
t1 → t2 (runs even if the other rule can

not)
3 Now we use the timer to see if the

other rule ran
t2 +rs → ys +s (there is an s in the system)
t2+rc → ns (there are no s’s in the system)
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4 Equivalence

This section shows equivalence between the CRN models, represented as the purple bi-
directional arrows in Figure 1. We first introduce a more general Void Genesis model, along
with some useful notation and techniques, before presenting our equivalence results. A full
version of the paper, including construction details and formal proofs, is available on arXiv.

4.1 Equivalence Preliminaries
4.1.1 k-Void Genesis
Due to the complexity of some of the simulations, we first provide a more general version of
the VG model that makes simulation easier. We will prove that the standard Void Genesis
model can still simulate the more general model with at most a polynomial blow-up in rules,
species, and expected rule applications. Essentially, the only difference is that rather than a
single zero species z, there can be a different zero species for every species.

Formally, a k-Void Genesis CRN CKVG = ((Λ, Γ), Z∅) is a CRN with a partial mapping
function Z∅ : Λ1 → Λ2, such that Λ1 ∪ Λ2 = Λ and Λ1 ∩ Λ2 = ∅, that indicates which species
is created whenever another species count goes to zero (if mapped). The partition creates a
distinction between normal species and the special zero-counting species, which eliminates
chaining effects that could arise with zero-species being created from the elimination of other
zero-species. For convenience, we use the notation Z∅(λ) → zλ to indicate that if the count
of species λ in the system goes to zero, a zλ species is created.

▶ Definition 14 (k-Void-Genesis Dynamics). For a k-Void-Genesis CRN ((Λ, Γ), Z∅) and
configurations −→

A , −→
Bt and −→

B , we say that −→
A →(Λ,Γ)

CKVG

−→
B if there exists a rule (−→R,

−→
P ) ∈ Γ

such that −→
R ≤

−→
A , −→

A −
−→
R + −→

P = −→
Bt, and −→

B = −→
Bt + −→

Z where −→
Z =

∑
λ∈C z⃗λ, and

C = {λ ∈ Λ|
−→
A [λ] ̸= 0 and −→

Bt[λ] = 0}.

4.1.2 Notation and Techniques
Notation. To simplify the proofs and for consistency, we use the following notation for
rules. For rule i, we have Gi = (−→Ri,

−→
Pi). We make use of the {R} and |R| notation defined in

the preliminaries, as well the difference between a configuration with many species −→
X versus

a configuration with only a single species X⃗ by the over arrow used.
One technique that is used in our simulations is to maintain a single global leader species

G that selects which rule Gi to execute, and then a sequence of rules to either sequentially
consume the reactants or sequentially break down the product of the other models’ rules to
execute zero-checking before managing zero species.

Sequential Reactants. Some of the results also benefit from processing the reactants of
a rule one at a time as well. This is needed when consuming a species might result in its
count as zero and some action needs to be taken. In order to verify that all reactants exists
(and thus the rule could be executed), we use all reactants as a catalyst with a global leader
species G. Table 1a describes the necessary rules for consuming reactants sequentially. For
rule i, this creates R1

i that will begin the chain of consuming one species at a time. We
create a Cj

i species in order to check whether rj is now zero or not. This step can be skipped
if no check is needed. We create the species Rj

i sequentially, which is then consumed if rj

is in the system. Systems that use this technique will have one copy of G in the initial
configuration and no R or C species. For shorthand, we will represent this series of rules as
G⃗ + −→

Ri 99K G⃗ + −→
Pi.
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Table 1 An overview of two techniques. (a) A procedure to consume the reactants of some rule
sequentially in order to test whether a rule can be applied and whether zero species are (or need
to be) created. This is abbreviated for rule i as −→

Ri 99K
−→
Pi. (b) Creating products sequentially by

consuming all reactants and then using counter species to create each product with a different rule
until all have been created. This may be needed to decrease the number of rule combinations while
handling zero species. Note that the zero species zpj is consumed when pj is created. If pj still
exists, then it is used as a catalyst. This process is denoted for some rule i as −→

Ri
−→
Pi.

G⃗ + −→
Ri → R⃗1

i + −→
Ri

R⃗j
i + r⃗j → C⃗j

i (check for zero)

∀rj ∈ Ri :C⃗
j
i + z⃗rj → R⃗j+1

i + z⃗rj (rj is zero)
C⃗j

i + r⃗j → R⃗j+1
i + r⃗j (rj is not zero)

R⃗
|Ri|+1
i → G⃗ + −→

Pi

(a) Using reactants sequentially −→
Ri 99K

−→
Pi.

G⃗ + −→
Ri → P⃗ 1

i

∀pj ∈ Pi :z⃗pj + P⃗ j
i → p⃗j + P⃗ j+1

i (remove zero)
p⃗j + P⃗ j

i → p⃗j + p⃗j + P⃗ j+1
i (no zero)

P⃗
|Pi|+1
i → G⃗

(b) Creating products sequentially −→
Ri

−→
Pi.

Sequential Products. This technique only allows a single G species to exist in the system
at a time. Table 1b describes the necessary rules where a rule Gi = (−→Ri,

−→
Pi) is chosen if the

reactants exist in the system. If this is the case, then each product is created sequentially
by having the species P 1

i , . . . , P
|Pi|
i in the system (one at a time, starting from P 1

i ), then
consuming each species P j

i to create the product pj and the next P j+1
i until all products

have been produced. If species P j
i exists in the system, it means that for rule Gi, the first

j − 1 products have been created, and either the next pj will be created or the process will
end (return G) if there are no more products.

In a simulating system, this requires an additional number of rules and species on the
order of the largest number of products in any rule. The final rule returns the single leader
species. Note that we make use of a zero species zpj

for every product species pj , i.e.,
Z∅(pj) = zpj

. For shorthand, we will represent this set of rules for rule i as −→
Ri

−→
Pi. Thus,

the entire set of rules and species from Table 1b, that initiate with a global leader G, would
be given in shorthand as G⃗ + −→

Ri G⃗ + −→
Pi.

4.2 k-Void Genesis equivalence with Void Genesis
▶ Lemma 15. The k-Void Genesis model can simulate the Void Genesis model.

Construction. Given a Void Genesis model CVG = ((Λ, Γ), z), let Z∅(λ) = z, ∀λ ∈ Λ \ {z}.
Then the k-Void Genesis model CKVG = ((Λ, Γ), Z∅) is equivalent.

▶ Lemma 16. The Void Genesis model can simulate the k-Void Genesis model.

Construction. This result is straightforward using the methods to sequentially consume
reactants as previously defined. We slightly modify them with specifics as shown in Table 2.
Whenever we consume a reactant rj , we check if the single z species exists and if it does,
create the specific zrj

species if rj is mapped in Z∅.
Given a k-Void Genesis model CKVG = ((Λ, Γ), Z∅), we create a VG CRN CVG =

((Λ′, Γ′), z). We let Λ′ = Λ ∪ {G} ∪ {zλ : λ ∈ Λ \ {z}} ∪ SR where SR = {Rj
i : 1 ≤

i ≤ |Γ|, 1 ≤ j ≤ |Ri| + 1}. We can simulate having specific zj species for all j species by
keeping the z species count at 0, and checking whether we consumed the last j.
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Table 2 (a) The rules for the simulation of k-Void Genesis by Void Genesis. For each applicable
rule, we create a set of rules that sequentially consume each reactant rj , and if its count is now zero,
it creates the zrj species (unless it is unmapped, then z is simply consumed). Only one of the zero
check rules is added based on the mapping, which is why they are grouped. (b) The reactions that
simulate the rule a⃗ + 2⃗b → 2a⃗ + c⃗ from the k-VG model within the VG model.

G⃗ + −→
Ri → R⃗1

i + −→
Ri G⃗ + a⃗ + 2⃗b → R⃗1

1 + a⃗ + 2⃗b

∀rj ∈ Ri :

R⃗j
i + r⃗j → C⃗j

i (check for zero) R⃗1
1 + a⃗ → C⃗1

1 C⃗2
1 + b⃗ → R⃗3

1 + b⃗{
C⃗j

i + z⃗ → R⃗j+1
i (unmapped species)

C⃗j
i + z⃗ → R⃗j+1

i + z⃗rj (zero species)

C⃗1
1 + z⃗ → R⃗2

1 + z⃗a R⃗3
1 + b⃗ → C⃗3

1

C⃗1
1 + a⃗ → R⃗2

1 + a⃗ C⃗3
1 + z⃗ → R⃗4

1 + z⃗b

C⃗j
i + r⃗j → R⃗j+1

i + r⃗j (count not zero) R⃗2
1 + b⃗ → C⃗2

1 C⃗3
1 + b⃗ → R⃗4

1 + b⃗

R⃗
|Ri|+1
i → G⃗ + −→

Pi C⃗2
1 + z⃗ → R⃗3

1 + z⃗b R⃗4
1 → G⃗ + 2a⃗ + c⃗

(a) Zero checking reactants −→
Ri 99K

−→
Pi. (b) Example reaction set.

Table 3 (a) Reactions for an Inhibitory CRN to simulate any given k-VG CRN. (b) Reactions
for a k-VG CRN to simulate any given Inhibitory CRN.

∀γi ∈ Γ : 1.
−→
Ri

I−→ −→e {Ri}+−→
P i+|{Ri}|·I⃗

∀γi ∈ Γ : 1. G⃗+−→
Ri +−→

Zi → G⃗i +−→
Ri +−→

Zi

∀λi ∈ Λ1 : 2. e⃗λi + I⃗ + λ⃗i → λ⃗i 2. G⃗i + −→
Ri G⃗ + −→

Pi

3. e⃗λi + I⃗
λi−→ z⃗λi

(a) iCRN simulating k-VG. (b) k-VG simulating iCRN.

▶ Theorem 17. The Void Genesis model is equivalent under polynomial simulation to the
k-Void Genesis model.

4.3 Inhibitory CRNs
▶ Lemma 18. Inhibitory CRNs can simulate any given k-VG CRN under polynomial
simulation.

Construction. Given a k-VG CRN CKVG = ((Λ, Γ), Z∅), we construct an Inhibitory CRN
CIC = ((Λ′, Γ′), I). We let Λ′ = Λ ∪ {I, eλ1 , · · · , eλ|Λ1|} where I and eλ1 , . . . , eλ|Λ1| check if
any species of Λ1 used in a simulated reaction have a resulting count of zero. Recall that Λ1
is the set of non-zero species in Λ. Each reaction in Γ γi is simulated using Reaction 1 from
Table 3a. Reactions 2 and 3 check if any reactants of γi reached a count of zero following
γi’s simulation. If so, then a corresponding zero species is produced. Figure 5a shows an
example of an Inhibitory CRN simulating a k-VG CRN with Λ = {a, b} and a reaction that
consumes the species a.

▶ Lemma 19. k-VG CRNs can simulate any Inhibitory CRN under polynomial simulation.

Construction. Given an Inhibitory CRN CIC = ((Λ, Γ), I), we construct a k-VG CRN
CKVG = ((Λ′, Γ′), Z∅). We let Λ′ = Λ ∪ {G, G1, . . . , G|Γ|, P 1

i , . . . , P
|P|Γ||+1
|Γ| , zλ1 , . . . , zλ|Λ|}

where the global species G is consumed to produce Gi when selecting a reaction γi ∈ Γ.
The z species are the zero-species, and the species P 1

i . . . P
|Pi|+1
i are produced for the

sequential product generation as described in Table 1b. Let Zi represent the set of z species
corresponding to inhibitors of γi. Each reaction γi in Γ is represented by the two reactions
given in Table 3b, where Reaction 1 checks if γi is applicable (indicated by the presence of
reactants of γi and Zi) and Reaction 2 applies the reaction by generating products sequentially.
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2ba

a+b b

ea+eb+b+2Ia+b
I ea+I a za eb+I+b b

2b
2Iea

eb I
2b

eb
za 2b

za

2ba 2b

(a) CIC → CKVG

b ∅
a

G+b+za G1+b+za

2b b

2bGza bGza

G1+b G

2bG1za

(b) CKVG → CIC

Figure 5 (a) A rule application in the simulated k-void genesis CRN CKVG and the equivalent rule
application sequence in the simulating inhibitory CRN CIC . The dashed arrows represent mapping
a configuration of CIC to a configuration of CKVG . (b) The other direction.

Table 4 (a) Reactions for a Coarse-Rate CRN to simulate any given k-VG CRN. (b) Reactions
for a k-VG CRN to simulate any given Coarse-Rate CRN.

1. G⃗ + g⃗i + −→
Ri → r⃗1 + −→

Pi

Fast Reactions (Rank 2) ∀γ2
i ∈ Γ2, 1b. G⃗ + g⃗i + z⃗k → G⃗ + z⃗k

∀ γi ∈ Γ : 1. G⃗ + −→
Ri → x⃗ + −→e {Ri} + −→

Pi zk ∈ {Ri}:2. r⃗j + g⃗j → r⃗j+1 + g⃗j

∀λi ∈ Λ1 :2. x⃗ + e⃗λi + λ⃗i → x⃗ + λ⃗i 3. r⃗j + z⃗gj → r⃗j+1 + g⃗j

3. y⃗ + e⃗λi → y⃗ + z⃗λi 4. r⃗|Γ2|+1 → G⃗

Slow Reactions (Rank 1) 5. G⃗ + z⃗g1 + . . . + z⃗g|Γ2|
→ s⃗

4. x⃗ → y⃗ 6. t⃗ → G⃗ + g⃗1 + . . . + g⃗|Γ2|

5. y⃗ → G⃗ ∀γ1
i ∈ Γ1: 7. s⃗ + −→

Ri t⃗ + −→
Pi

(a) Coarse-Rate CRN simulating k-VG CRN. (b) k-VG CRN simulating Coarse-Rate CRN.

Figure 5b shows an example of a k-VG CRN simulating an Inhibitory CRN with Λ = {a, b}
and a reaction that consumes b if a is absent.

▶ Theorem 20. The Void Genesis model is equivalent under polynomial simulation to the
Inhibitory model.

4.4 Coarse-Rate CRNs
▶ Lemma 21. Coarse-Rate CRNs can simulate any given k-VG CRN under polynomial
simulation.

Construction. Given a k-VG CRN CKVG = ((Λ, Γ), Z∅), we construct a Course-Rate CRN
CCR = ((Λ′, Γ′), rank). Let Λ′ = Λ ∪ {x, y, G, eλ1 , · · · , eλ|Λ1|} where G is used to select
a reaction and species x and y check if any non-zero species in Λ have a count of zero.
Additionally, eλ1 , · · · , eλ|Λ1| are used to check the counts of the λi ∈ Λ1 that are relevant
to the simulated reaction, where Λ1 is the set of non-zero species in Λ. As shown in Table
4a, each reaction γi ∈ Γ is simulated using 3 fast reactions which check if any involved
reactant reached a count of zero and generates the corresponding zero species if so, along
with applying the original reaction. Finally the 2 slow reactions use up any x or y species in
the system to produce G. This allows the system to apply another reaction in Γ. Figure 6
shows an example of a Coarse-Rate CRN simulating a k-VG CRN with Λ = {a, b} and a
reaction that consumes a, hence, producing za.

▶ Lemma 22. k-VG CRNs can simulate any given Coarse-Rate CRN under polynomial
simulation.
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bba

b ba G bbea ebx bbeax

a+b b

x+eb+b x+b

b beay

x y

za bby
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y+ea y+zaG+a+b x+ea+eb+b

Figure 6 A rule application in the simulated k-void genesis CRN CKVG and the equivalent rule
application sequence in the simulating Coarse-Rate CRN CCR.

ba

baG g1 bza r1 zg1
bza r2 g1 bza G g1

a ∅

G+g1+a r1+∅ r2+g1r1+zg 1
Gr2

b

Figure 7 A rule application in the simulated Coarse-Rate CRN CCR and the equivalent rule
application sequence in the simulating k-void genesis CRN CKVG .

Construction. Given a Coarse-Rate CRN CCR = ((Λ, Γ), rank), we construct a k-VG CRN
CKVG = ((Λ′, Γ′), Z∅). Let Λ′ = Λ ∪ {G, g1, · · · , g|Γ2|, zg1 , · · · , zg|Γ2|

, zλ1 , · · · , zλ|Λ| , P 1
1 , · · · ,

P
|P|Γ1||+1
|Γ1| , s, t} as follows. G and a random gi species is consumed to select a random

fast reaction γ2
i ∈ Γ2 as illustrated in Table 4b. We additionally add P 1

1 , · · · , P
|P|Λ||+1
|Λ| for

generating the products of any slow reaction. We add species s to signify that no fast
reactions are applicable and species t to signify that a slow reaction has been applied. Finally,
we add a zero species for all gi species. Figure 7 shows an example of a k-VG CRN simulating
a Course-Rate CRN with Λ = {a, b} and a fast reaction that deletes a and a slow reaction
that deletes b.

▶ Theorem 23. The Void Genesis model is equivalent under polynomial simulation to the
Course-Rate model.

4.5 Step-Cycle CRNs
▶ Lemma 24. Step-Cycle CRNs can simulate any given k-VG CRN under polynomial
simulation.

Construction. Given a k-VG CRN CKVG = ((Λ, Γ), Z∅), we construct a Step-Cycle CRN
CSC = ((Λ′, Γ′), −→

S 0). We let Λ′ = Λ ∪ {G, y, x, w, eλ1 , . . . , eλ|Λ1| , zλ1 , . . . , zλ|Λ2|} and −→
S 0 = y⃗.

The G species is used to select a reaction, and y is used to check if any non-zero species in Λ
have a count of zero. Finally, eλ1 , · · · , eλ|Λ1| are used to check the counts of the λi ∈ Λ1 that
are relevant to the simulated reaction, where Λ1 is the set of non-zero species in Λ. Each
reaction γi ∈ Γ is simulated by Reaction 1 as given in Table 5a. Reactions 2 consumes e

species for any reactant whose count does not reach zero. Once the system is terminal, a y is
added so as to generate z species corresponding to the remaining reactants using Reaction
3. Another y is added to enable Reaction 4. Once no reaction is applicable in Γ, another y

is added to enable Reaction 5, which allows Reaction 6 to execute infinitely. Finally, the
system reaches a terminal configuration and prevents the volume from growing infinitely.
Figure 8 shows an example of a Step-Cycle CRN simulating a k-VG CRN with Λ = {a, b}
and a reaction that consumes the species a.
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Table 5 (a) Reactions for a Step-Cycle CRN to simulate any given k-VG CRN. (b) Reactions for
a k-VG CRN to simulate any given Step-Cycle CRN.

1.G⃗ + g⃗i 99K r⃗1 + −→
Pi

∀γi ∈ Γ, zk ∈ {Ri}:2.r⃗j + g⃗j → r⃗j+1 + g⃗j

∀γi ∈ Γ : 1.G⃗ + −→
Ri → −→e {Ri} + −→

Pi 3.r⃗j + z⃗gj → r⃗j+1 + g⃗j

∀λi ∈ Λ1 :2.λ⃗i + e⃗λi → λ⃗i 4.r⃗|Γ|+1 → G⃗

3.y⃗ + e⃗λi → y⃗ + z⃗λi 5.G⃗ + z⃗g1 + . . . + z⃗g|Γ| → s⃗

4.y⃗ + y⃗ → G⃗ 6.⃗t → G⃗ + g⃗1 + . . . + g⃗|Γ|

5.G⃗ + y⃗ ↔ G⃗ + w⃗ ∀Si ∈ S \ {Sk−1} : 7.s⃗ + s⃗i t⃗ + s⃗i+1 + −→
S i

6.w⃗ ↔ x 8.s⃗ + s⃗k−1 t⃗ + s⃗0 + −→
S k−1

(a) Step-Cycle CRN sim. k-VG CRN. (b) k-VG CRN simulating a Step-Cycle CRN.

Table 6 (a) Checking reactants sequentially −→
Ri 99K

−→
Pi (b) Undoing reaction selection if not

enough reactants exist for rule i.

R⃗k
i + z⃗λj → R⃗k−

i + z⃗λj

G⃗ + g⃗i → R⃗1
1 + z⃗gi ∀λj ∈ Ri : R⃗k−

i + z⃗λj → R⃗k−1−

i + λ⃗j

∀λj ∈ Ri : R⃗k
i + λ⃗j → R⃗k+1

i + λ⃗′
j R⃗k−

i + λ⃗′
j → R⃗k−

i + λ⃗j

R⃗
|Ri|+1
i + −→

Ri
′ r⃗1 + −→

P i R⃗1−
1 → G⃗

(a) Check reactants. (b) Undo reactants.

▶ Lemma 25. k-VG CRNs can simulate any given Step-Cycle CRN under polynomial
simulation.

Construction. Given a Step-Cycle CRN CSC = ((Λ, Γ), (−→S 0,
−→
S 1, . . . ,

−→
S k−1),

we construct a k-VG CRN CKVG = ((Λ′, Γ′), Z∅). We let Λ′ = Λ ∪
{G, λ′

1, . . . , λ′
|Λ|, zλ1 , . . . , zλ|Λ| , r1, . . . , r|Γ|+1, s, s0, . . . , sk−1, t} ∪ {gi, zgi

, Rj
i , Rj−

i , P l
i :

1 ≤ i ≤ |Γ|, 1 ≤ j ≤ |Ri| + 1, 1 ≤ l ≤ |Pi| + 1}. The G species is used to select a reaction
represented by gi. The reactants are checked sequentially, converting each reactant into
λ′

i. Species ri reintroduce each consumed gi into the system. Species si represent step i,
with species s and t used to transition between steps. Reaction 1 in Table 5b attempts to
apply γi by checking if enough of each reactant exists, as shown in Table 6. If it is successful,
then it simulates the reaction and begins the process of adding g1, . . . , g|Γ| back into the
system (which is carried out in reactions 2, 3, and 4). If a species in γi does not exist in the
system, then the reactants are reintroduced into the system as shown in Table 6, which
also removes gi from the system, producing zgi

. If there are no executable reactions, then
reaction 5 is executed to produce an s species. This s species then reacts with the current
“step” of the system, denoted by species si. Reaction 7 or 8 then runs, introducing the
species corresponding to the step. These reactions also introduce the species t, which then
reintroduces G along with each gi through reaction 6. Figure 9 shows an example of a k-VG
CRN simulating a Step-Cycle CRN with Λ = {a, b} and reaction a + b → b.

▶ Theorem 26. The Void Genesis model is equivalent under polynomial simulation to the
Step-Cycle model.

Extension to deletion-only rules. Given the recent result in [20], these results extend to
give the following corollary.

▶ Corollary 27. Even when restricted to at most (3, 1) void rules, the Step-Cycle model is
equivalent under polynomial simulation to the Void Genesis model.
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za b b

bba bb bb

a+b b

ea+eb+bG+a+b b+eb b y+ea za+y

eaebG

Step 0
+ y

y zabbyea

a b b

ea b b

Figure 8 A rule application in the simulated k-VG CRN CKVG and the equivalent rule application
sequence in the simulating Step-Cycle CRN CSC .

b

ba

ba

r1+bG+g1 r1+ r2+g1
r2 G

b
r1

zg
1

za

a+b b

zg1

G s0 s0g1
b

r2
g1

za
s0

bG
za s0g1

Figure 9 A rule application in the simulated Step-Cycle CRN CSC and the equivalent rule
application sequence in the simulating k-VG CRN CKVG .

Table 7 (a) Reactions for a UI parallel CRN to simulate any given VG CRN. Here, −−−→e{Ri} is an
eλj species created for each of the j different reactants in Ri (only one e is created if multiple copies
of that species are used). (b) Reactions for a kVG CRN to simulate any given UI parallel CRN.

∀γi ∈ Γ, G⃗i + z⃗rj → N⃗i + X⃗i + z⃗rj (can not run)
∀rj ∈ Ri :
seq. G⃗i + r⃗1 → R⃗2

i

∀γi ∈ Γ : 1.G⃗+−→
Ri → G⃗i +−−−→e{Ri} +−→

Pi reacts. R⃗j
i + r⃗j → R⃗j+1

i

∀λj ∈ Λ1 :2.e⃗λj → r⃗1
j + t⃗1

j R⃗j
i + z⃗rj → N⃗i + X⃗i + r⃗1 + . . . + r⃗j−1 + z⃗rj

3.r⃗1
j + λ⃗i → r⃗2

j j = |Ri| R⃗j
i + r⃗j → I⃗i + X⃗i (rule selected)

t⃗1
j → t⃗2 X1 + . . . + X|Γ| → F⃗ (rules selected)

4.⃗t2 + r⃗2
j → λ⃗i + E⃗ ∀γi ∈ Γ I⃗i + F⃗ → F⃗i + F⃗ + −→

P i (output)
t⃗2 + r⃗1

j → z⃗ + E⃗ N⃗i + F⃗ → F⃗i + F⃗ (not run)
5.G⃗i + |{Ri}| · E⃗ → G⃗ reset F⃗ + F⃗1 + . . . + F⃗|Γ| → G⃗i + . . . + G⃗|Γ|

(a) UI parallel CRN simulating a VG CRN. (b) k-VG simulating UI parallel CRN.

4.6 Unique-Instruction Parallel Model
▶ Lemma 28. UI parallel CRNs can simulate any given VG CRN.

Construction. Given a Void-Genesis CRN CVG = ((Λ, Γ), z), we construct the UI parallel
CRN CUI = (Λ′, Γ′). We create Λ′ = Λ ∪ {G, E, t2} ∪ {eλj

, t1
j , r1

j , r2
j , Gi : i ∈ {1, . . . , |Γ|}, j ∈

{1, . . . , |{Ri}|}}. The global species G selects a rule γi ∈ Γ non-deterministically, and
produces Gi to disallow Reaction 1 from running again prematurely, a set of species eλ, and
the products of γi, as shown in Table 7a. The eλ species then creates a timer species ti

j , and
a checker species r1

j , which is used to check if a species exists in the system. In Reaction 3,
the rules run in parallel, so the timer species goes down, and at the same time, we check if
any checker species have incremented. Reaction 4 either reintroduces the consumed species
or creates the zero species z, based on the checker species. Both reactions produce the species
E, which is later used in Reaction 5 to reintroduce the G species, allowing the system to
run another reaction. Figure 10 shows an example of a UI CRN simulating a VG CRN with
Λ = {a, b} and the rule a + b → b. .

▶ Lemma 29. k-VG CRNs can simulate any given UI Parallel CRN.
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Figure 10 A rule application in the simulated void genesis CRN CVG and the equivalent rule
application sequence in the simulating Unique Instruction CRN CUI .

b

ba

ba

I1+X1G1 X1 F+I1 F+F1+b

a+b b

G1 I1 X1

F

I1 F F1F

F+F1 G1

bG1b

Figure 11 A rule application in the simulated Unique Instruction CRN CUI and the equivalent
rule application sequence in the simulating k-void genesis CRN CKVG .

Construction. Given a UI parallel CRN CUI = (Λ, Γ), we construct a k-Void-Genesis CRN
CKVG = ((Λ′, Γ′), Z∅) as described. Let Λ′ = Λ∪{F}∪{Gi, Ni, Ii, Fi, Rj

i : i ∈ {1, . . . , |Γ|}, j ∈
{1, . . . , |Ri|}} ∪ {zrj

: rj ∈ Ris.t.1 ≤ i ≤ |Γ|}. For each reaction γi ∈ Γ, a Gi species exists
which attempts to sequentially consume the reactants of γi. If this is successful, it is indicated
by the production of an Ii species. If some reactant is missing, it returns any previously
consumed reactants and creates an Ni species instead. Both procedures create an Xi species,
and when a copy of Xi exists for each reaction, this indicates a maximal set of simulated
reactions has been chosen and the F species is created. The Ni or Ii species then turn into
a Fi species, as well as produce the products of γi if Ii was converted. Once a Fi species
exists for each reaction, they combine to reset the rule selection process by creating all the
Gi species again. The full reaction set is shown in Table 7b, and Figure 11 shows an example
of a k-VG CRN simulating a UI CRN with Λ = {a, b} and reaction a + b → b.

▶ Theorem 30. The Void Genesis model is equivalent under polynomial simulation to the
Unique-Instruction parallel model.

4.7 Register Machine
In this section, we show that Void Genesis CRNs are Turing Universal by constructing a
simulation of a standard register machine.

▶ Theorem 31. k-VG CRNs are Turing Universal.

Proof. Given a Register Machine (RM) with s1, . . . , sn states–each with either a inc(rl, sj)
or dec(rl, sj , sk) instruction–and r1, . . . , rm registers, we construct the k-VG CRN as follows.
Each register and state will be represented by a species, and the instructions will be encoded
in the rules. The initial configurations should have one copy of s1 (assume s1 is the RM’s
starting state) and the register species’ counts should be equal to the registers they represent.

Table 8 shows what rules should be made for each state of a given RM. Because k-VG
CRNs can simulate any given RM, k-VG CRNs are Turing Universal. ◀

Although it can be inferred from this result and the simulation equivalence results that
all the models studied here are Turing Universal, we do not give formal proofs of this due to
space.
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Table 8 Rules for a Void Genesis CRN to simulate a given Register Machine.

Instruction Relevant Rules Instruction Relevant Rules

sj : inc(ri, sk)
s⃗j + r⃗i → s⃗k + r⃗i + r⃗i

sj : dec(ri, sk, sl)
s⃗j + r⃗i → s⃗k

s⃗j + z⃗ri → s⃗k + r⃗i s⃗j + z⃗ri → s⃗l + z⃗ri

Z∅(ri) = zri

5 Conclusion

In this paper, we demonstrate equivalence through polynomial simulation between 5 natural
extensions to the CRN model. We centralize these simulations around the Void Genesis
CRN model, as this model’s ability to detect zero is one of the simplest augmentations to a
regular CRN. We then show that Void Genesis CRNs are Turing Universal, implying that
Step-Cycle CRNs, Inhibitory CRNs, Parallel CRNs, and Coarse-Rate CRNs are also Turing
Universal. While this work is complete in proving equivalence between these models, there
are still several interesting open problems to consider (some of which are shown in Figure 1):

We aim to explore constrained versions of our simulation definition that recover existing
notions as special cases. Does restricting the configuration map to be consistent with an
underlying species-species mapping immediately results in weak bisimulation? If that
underlying map is a total bijective function, does that yield strong bisimulation?
For iCRNs, a rule is inhibited by the existence of one or more species. Our definition
effectively uses a logical OR (inhibition is only false when all inhibitor counts are zero).
A natural extension is to consider inhibition functions using other logic (e.g., AND – a
reaction is inhibited only when all of its inhibitors are present).
Coarse-Rate CRNs are limited to 2 ranks for reactions. A natural generalization of this
model is to allow for k different ranks (k-rate CRNs). What is the relationship between
Coarse-Rate CRNs and k-rate CRNs?
Even when limited to only void reactions (rules where no species are created), step CRNs
are able to compute threshold circuits [2, 3]. Does this suggest that Step-Cycle CRNs,
even when limited to only void reactions (void Step-Cycle), are still Turing Universal?
Are there more efficient ways to simulate these augmented CRNs using VG CRNs?
What is the complexity of reachability in restricted instances of each model, such as
[13, 14]? As mentioned, we know the complexity with step-cycles [20], but deletion-only
rules have not been explored in detail in the other models.
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