Parameterized Algorithms for the Drone Delivery
Problem

Simon Bartlmae &
University of Copenhagen, Denmark
Institute of Computer Science, University of Bonn, Germany

Andreas Hene &

Institute of Computer Science, University of Bonn, Germany

Joshua Konen &
Institute of Computer Science, University of Bonn, Germany

Heiko Roglin &

Institute of Computer Science, University of Bonn, Germany

—— Abstract

Timely delivery and optimal routing remain fundamental challenges in the modern logistics industry.
Building on prior work that considers single-package delivery across networks using multiple types
of collaborative agents with restricted movement areas (e.g., drones or trucks), we examine the
complexity of the problem under structural and operational constraints. Our focus is on minimizing
total delivery time by coordinating agents that differ in speed and movement range across a graph.
This problem formulation aligns with the recently proposed Drone Delivery Problem with respect to
delivery time (DDT), introduced by Erlebach et al. [[SAAC 2022].

We first resolve an open question posed by Erlebach et al. [ISAAC 2022] by showing that even
when the delivery network is a path graph, DDT admits no polynomial-time approximation within
any polynomially encodable factor a(n), unless P=NP. Additionally, we identify the intersection
graph of the agents, where nodes represent agents and edges indicate an overlap of the movement
areas of two agents, as an important structural concept. For path graphs, we show that DDT
becomes tractable when parameterized by the treewidth w of the intersection graph, and we present
an exact FPT algorithm with running time f(w) - poly(n, k), for some computable function f. For
general graphs, we give an FPT algorithm with running time f(A,w) - poly(n, k), where A is the
maximum degree of the intersection graph. In the special case where the intersection graph is a tree,
we provide a simple polynomial-time algorithm.

2012 ACM Subject Classification Theory of computation — Fixed parameter tractability; Theory
of computation — Graph algorithms analysis

Keywords and phrases Complexity, Delivery, FPT algorithms, Graph Theory

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2025.8

1 Introduction

Drone-based package delivery has the potential to transform the last-mile segment. Recent
studies foretell that utilizing unmanned aerial vehicles (i.e., drones) can have a great sustain-
ability impact while meeting increasing demands of customers [13,17]. Additionally, it is
observed that in the U.S. approximately 10-15% of package deliveries are delayed due to
increasing loads [7]. According to ElSayed et al. [10], recent surveys indicate that a vast
majority of people prefer a same-day delivery, which proves challenging for the logistics
industry. Consequently, large companies focus more and more on developing suitable logistics
models incorporating drones. Apart from monetary benefits, the utilization of drones can be
very helpful in supplying medicine or food in areas struck by war or natural disasters [2].

© Simon Bartlmae, Andreas Hene, Joshua Kénen, and Heiko Réglin;
37 licensed under Creative Commons License CC-BY 4.0

36th International Symposium on Algorithms and Computation (ISAAC 2025).

Editors: Ho-Lin Chen, Wing-Kai Hon, and Meng-Tsung Tsai; Article No. 8; pp. 8:1-8:16

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:simon.bartlmae7@gmail.com
https://orcid.org/0009-0009-6953-8347
mailto:hene@uni-bonn.de
https://orcid.org/0009-0002-0336-374X
mailto:koenen@cs.uni-bonn.de
https://orcid.org/0000-0003-4245-4812
mailto:roeglin@cs.uni-bonn.de
https://orcid.org/0009-0006-8438-3986
https://doi.org/10.4230/LIPIcs.ISAAC.2025.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

8:2

Parameterized Algorithms for the Drone Delivery Problem

In this work, we study a cooperative delivery setting recently introduced by Erlebach
et al. [11] in which drones can hand over packages and work together to achieve the best
possible delivery schedule. Each agent operates within a restricted movement area on the
graph and is assumed to have unlimited battery capacity. In general, this model is inspired by
real-world constraints such as restricted air spaces or environmental circumstances. Restricted
movement areas also capture settings with different kinds of agents, not necessarily only
drones — different types of agents might be eligible to traverse certain parts of a graph while
others might not. Package handover between drones is already implemented in industry;
companies such as IBM have developed and patented parcel transfer methods since 2017 [21].

Our focus is on minimizing total delivery time, a problem referred to as the Drone
Delivery Problem with respect to time (DDT) [3,11]. We study general graphs as well
as the special case of path graphs. For path graphs, we first establish a hardness result,
followed by the first fixed-parameter tractable algorithms for the path as well as the general
settings. For some parameter k, an algorithm is fixed-parameter tractable (FPT) if it runs
in time f(k) - poly(n), where f is a computable function; such algorithms are efficient for
small parameters and useful for fine-grained complexity analysis. We analyze the complexity
of DDT using the intersection graph of the agents, where nodes represent agents and edges
indicate overlapping movement areas. The treewidth and maximum degree A of this graph
serve as natural parameters for characterizing instance complexity — especially since DDT is
already NP-hard on path graphs. These parameters reflect the extent of agent overlap and
potential interference, and are likely to be small in practical settings.

Related Work. For the most part, research regarding collaborative drone delivery focuses
on two main objectives: minimizing fuel consumption and minimizing delivery time. In
this work, we focus exclusively on the latter. Research on minimizing total consumption
differs fundamentally from our analysis, since in our setting there are no battery constraints;
therefore, the results do not translate. For work on minimizing fuel consumption, we refer
to [5,11]. Regarding delivery time, Bértschi et al. [4] and Carvalho et al. [8] show that the
problem of delivering a single package can be solved in polynomial time if the agents are
free to move without restrictions — even with predetermined starting positions. However,
Carvalho et al. [8] also prove that the problem becomes NP-hard if there are at least two
packages involved. For the case of restricted movement areas, Erlebach et al. [11] prove that
it is NP-hard to approximate DDT within a factor of O(min{n'=¢,k'=¢}), even if agents have
equal speeds and fixed starting positions. Here, n denotes the number of vertices in the graph
and k the number of agents. In the problem variant in which the starting positions are not
given but can be chosen by the algorithm, they show that no polynomial-time approximation
algorithm with any finite approximation ratio exists, unless P=NP. They also show that DDT
with fixed starting positions remains NP-hard on path graphs if agents can have arbitrary
speeds.

Bartlmae et al. [3] recently refined these results, showing that the problem on a path
is still NP-hard if only two different speeds are allowed. This closes the gap regarding
speeds as these instances can be solved trivially for only one speed. Additionally, they show
that for the special case of unit grid graphs and only two different speeds, the problem
remains NP-hard for fixed starting positions and is hard to approximate within a factor of
O(n'~¢) for selectable starting positions, as well as agents constrained to movement areas
forming rectangles. They also provide a simple n-approximation algorithm for this setting.
Complementing these hardness results, Luo et al. [16] demonstrated that on a path with
fixed starting positions and exactly two speeds the problem can be solved in polynomial time;
the complexity for three or more speeds, however, remains open.

S. Bartimae, A. Hene, J. Konen, and H. Roglin

Our Results. In Section 3.1, we provide a hardness result for DDT on path graphs with
selectable starting positions, closing open questions posed by Erlebach et al. [11], Bartlmae
et al. [3] and Luo et al. [16].

» Theorem 1. DDT on a path with selectable starting positions is a(n)-APX-hard for any
function a : N — R that can be computed in polynomial time.

We then present the first FPT algorithm for this setting in Section 3.2, parameterized by
the treewidth of the agents’ intersection graph.

» Theorem 2. DDT on a path with selectable starting positions can be solved in time
02 - u? - k), where w denotes the treewidth of the intersection graph.

In Section 4, we consider the more complex case of general graphs. We design an
FPT algorithm whose running time depends on the treewidth and maximum degree of the
intersection graph.

» Theorem 3. DDT with selectable starting positions can be solved in time f(A, w)-poly(n, k)
on general graphs, where w denotes the treewidth and A denotes the mazimum degree of the
intersection graph and f is a function in w and A.

For the special case where the intersection graph is a tree, we show in Section 4.3 that
DDT can be solved in polynomial time. This result is not implied by the previous theorems;
it allows for arbitrary maximum degree in the intersection graph.

» Theorem 4. DDT on a general graph with selectable starting positions can be solved in
time O(k? - n?) if the underlying graph of the intersection graph is a tree.

2 Preliminaries

In this section, we formally define the Drone Delivery Problem with respect to time (DDT).

Setting. We define an instance of DDT as a tuple I = (G, (s,t), A), where G = (V, E, ()
with n = |V, is an undirected graph with edge lengths ¢ : E'— R>(. The package starting
position, as well as its destination, are given by (s,t), where s € V and ¢ € V. The set

A represents all agents, with & = |A|. There are two settings regarding agents which are

typically considered for DDT:

1. DDT with selectable positions (DDT-SP): Each agent a € A is defined as a tuple
a = (vq,Gy), where v, is the agent’s speed and G, = (V,, E,) is a connected subgraph
of G representing the agent’s movement area. The initial starting position of a can be
chosen freely once before delivery is initiated.

2. DDT with fixed positions (DDT-FP): Each agent a € A is a tuple a = (vg, Gq,Pa),
with v, and GG, defined as above, and the additional parameter p, € V, specifies the fixed
initial starting position of the agent.

W, regardless of whether it is carrying

the package or not. Whenever two agents meet at the same vertex, they can hand over the

An agent a traverses an edge {u,v} € F, in time

package instantaneously. We define the travel time of agent a between two vertices u, v as
the length of the shortest path in G, divided by v, and denote it by d(u,v). If either u or
v is not contained in V,, we define d,(u,v) = co. For any pair of vertices and any possible
agent the values can be precomputed in polynomial time.

We specify a feasible solution to be a schedule S of consecutive trips by agents delivering
the package from s to t. More precisely we want the schedule to consist of two components:
A complete edge-by-edge trip of every agent and a complete edge-by-edge trip for the package

8:3

ISAAC 2025

8:4

Parameterized Algorithms for the Drone Delivery Problem

specifying the current package carrier at any point in time. For the first part we want for
every agent a a set of sorted triples 7,. Every triple (u, v, 7) indicates that agent a moves over
edge {u,v} starting at time 7. It has to hold that {u,v} € E, and that for two consecutive
triples (u,v,7) and (v/,v’,7’) that v’ = v and 7+ W < 71’. Moreover, for DDT-SP we
need to provide the starting position p, for every agent a € A and for DDT-FP we need to
have for the first triple that u = p,. The trip of the package is defined as a sorted set of
tuples T of the form (u,v,a,), indicating that agent a carries the package over edge {u,v}
starting at time 7. A schedule is feasible only if, for every tuple (u,v,a,7) € T, it holds that
(u,v,7) € Ta. Again for two consecutive tuples (u,v,a,7) and (u',v’,d’,7") we also require
v =wvand 7+ %f}) < 7’. Additionally, the first tuple must satisfy v = s, and the last
tuple must satisfy v = t. The total delivery time is defined as ¢(S) := 7 + W
(u,v,a,) is the final tuple in the schedule. '

An instance of DDT-SP is illustrated in Figure la. Throughout this paper we will focus
exclusively on DDT-SP.

, assuming

Useful Properties. There are several useful properties regarding DDT. Erlebach et al. [11]
demonstrated that there exists an optimal schedule in which every involved agent picks up
and drops off the package exactly once. The key insight is that instead of using an agent
multiple times we let that agent carry the package until its final drop-off without increasing
the delivery time.

Another important observation relates to trips made by agents:

» Observation 5. In DDT-SP there exists an optimal schedule such that all involved agents
move if and only if they carry the package.

Placing agents initially at the first vertex of their respective trip immediately leads to
this observation. Unless stated otherwise, this implicit initial positioning is assumed.

Intersection Graph. A useful structural concept is the intersection graph of the agents. We
define the intersection (multi)graph G of a DDT instance (G, (s,t), A) as follows:
The vertex set V(Gr) is the set of agents A.
For any two agents a,a’ € A with corresponding vertex sets V, and V,/ in G, we add
|Vo N V| parallel edges between a and o’ in G — one for each vertex they share in G.
Formally, the edge set F(Gy) is defined as the multiset

E(G)= W {{ad},. .. {ad}}.
a,a’ €A
a#a’

[VanV,/| times

Throughout this paper, we treat E as a multiset and omit explicit edge indices where they
are not relevant. Intuitively, a feasible schedule corresponds to a path in the intersection
graph that starts with an agent intersecting s and ends with an agent intersecting t. If we
assume each agent is used at most once, this path will be simple. Figure 1b illustrates the
intersection graph for a given instance. We denote by A(G) the maximum degree of the
intersection graph Gy. When it is clear from the context, we will write A instead of A(Gy).
For any vertex u, we define B,, as the set of agents that cover u, i.e., B, :={a € A |u € V,}.

Tree Decomposition. For computing the optimal traversal of the agents, we will use
the concept of a tree decomposition. A tree decomposition is used as a measure of how
similar a given graph is to a tree and was first introduced by Robertson and Seymour [18].
Computing the optimal treewidth is NP-hard [1], but finding the optimal tree decomposition
is fixed-parameter tractable if parameterized by treewidth [6].

S. Bartimae, A. Hene, J. Konen, and H. Roglin

t Uy Uus
10 1
10 8 2 3
1 5
5 U1 Uz
(a) (b)

Figure 1 Fig. 1la shows a DDT instance with four agents, each restricted to a colored movement
area (bounding boxes). The red agent has speed 10, the blue and green agents have speed 1, and
the purple agent has speed 2. In the optimal schedule, the blue agent starts at s and delivers the
package to u; in time 1. The green agent then transports it via us to w4 in time 2 + 1 = 3. Finally,
the red agent delivers it to the target ¢ in time 1, for a total delivery time of 5. Fig. 1b shows the
corresponding intersection graph.

» Definition 6 (Tree Decomposition). A tree decomposition of a graph G = (V,E) is a
pair T = (T, { X }1ev(r)) where T is a tree with root r € V(T) and every node t € V(T) is
associated with a set of the vertices Xy C V, called bag. Additionally, the following three
conditions must be fulfilled:

Utevm Xt =V(G), i.e., every vertez v € V(G) appears in at least one bag,

for every edge {u,v} € E(G) there must exist a bag t € V(T) such that the vertices u and

v are contained in this bag,

the set of nodes T, = {t € V(T) | u € X;} forms a connected subtree of T for every choice

u e V(QG).
The width of a tree decomposition is the size of its largest bag minus one. The treewidth of a
graph G is the minimum width over all possible tree decompositions of G, denoted by w. To
simplify the algorithm design, we assume the decomposition has a specific structure known
as a nice tree decomposition: a binary tree with root r and leaves [such that X, = () and
X; =0 for all [€ V(T), containing only three types of nodes:

Introduce node: For two nodes tparent; tehild € V(T) where tparent has exactly one child
tehilds tparent 1S an introduce node iff X =X U {v} for some v € V(G).

Forget node: For two nodes tparent, tehild € V(T) where fparent has exactly one child
tehilds tparent 1S @ forget node iff X, U{v} = Xy, for some v € V(G).

Join node: For three nodes tparents tipiigs tonia € V (T) where tparent has exactly two
= Xp .
child child

As in [9] we additionally assume that the edges are also introduced like the vertices in their
respective type of node:

parent child

parent

. 1 2 _
children ¢ 5,4 and 2,14, tparent i @ join node iff X; = X2

Introduce edge node: For every edge e = {u,v} € E there is exactly one introduce

edge node t € V(T) with u,v € X; = Xy for its only child bag ¢’ and X; = Xp.

We assume that for every edge {u,v} the corresponding introduce edge node appears directly
before either u or v is forgotten in an ancestor node.

Using all node types, we define V; and E, as the set of vertices and edges that are either
contained or introduced in bag t or were introduced in some child of ¢. Additionally, we define
Gy = (V4, E) as the subgraph revealed up to node t. As a consequence for the construction
of the introduce edge nodes, for every join node t € V(T) there are no edges with both
endpoints in Xy, i.e. B N {{u,v} |u,v € X3} = 0.

8:5

ISAAC 2025

8:6

Parameterized Algorithms for the Drone Delivery Problem

Based on a tree decomposition of width w for some graph G, we can always compute a
nice tree decomposition (with or without introduce edge nodes) of width w with O(|V(G)|- w)
nodes in polynomial time [9].

3 Drone Delivery on Path Graphs

We consider DDT-SP instances where the underlying graph is a path: a sequence of vertices
connected in a line, with degree two at each internal vertex and degree one at the two
endpoints. For an agent a, we denote its movement area by [s,, fa], where s, and f, are the
leftmost and rightmost vertices that a can access. This setting can also be interpreted as
agents moving along a one-dimensional line, with each movement area corresponding to an
interval on that line, as illustrated in Figure 2. This allows us to interpret DDT-SP on a path
as an instance of the subinterval covering problem introduced by Luo et al. [16], where the
objective is to select, for each agent’s interval, a subinterval such that the union covers [s,],
while minimizing the total cost defined by the length of each selected subinterval divided by
the agent’s speed.

A5 |———
Qa4 b

as

as
ay

az a2
o ®
Qay as

Figure 2 A DDT-SP instance on a line and a corresponding tree decomposition of its intersection
graph. At every start or end position we either add or remove the corresponding agent.

For the setting with fixed initial positions, NP-hardness has been proven [3,11], although
strong NP-hardness remains unresolved. In contrast, for the setting with selectable positions
— which is the primary focus of this paper — Luo et al. [16] presented a polynomial time
algorithm for the case of exactly two speeds; for three or more speeds, however, no results
were known prior to our work.

Before presenting parameterized algorithms for DDT on path graphs, we first establish
hardness results for this setting, which motivates the relevance and necessity of parameterized
approaches.

3.1 Inapproximability

Instead of merely proving NP-hardness, we establish a much stronger result: no polynomial-
time algorithm with any polynomially encodable approximation ratio exists, unless P=NP.

» Theorem 1. DDT on a path with selectable starting positions is a(n)-APX-hard for any
function a : N — Ry that can be computed in polynomial time.

In the following we only present a high-level overview, the complete proof can be found in the
full version of the paper. To prove the inapproximability, we reduce from the PARTITIONINTO-
k problem.

» Definition 7 (PARTITIONINTO-k). Given a set of natural numbers p1, ..., p, and an integer
k, the task is to decide whether the index set {1,...,n} can be partitioned into k disjoint
subsets LU ...UI} such that Yien, Pi == Y icr, Di-

S. Bartimae, A. Hene, J. Konen, and H. Roglin

Note that in this subsection k refers to the number of subsets (and not the agent set). The
NP-hardness of PARTITIONINTO-k follows immediately from the hardness of PARTITION with
k = 2; however for the proof of Theorem 1 we require the stronger result that PARTITIONINTO-
k is also NP-hard in the strong sense, which is included in the full version.

» Theorem 8. PARTITIONINTO-k is NP-hard in the strong sense (even with distinct integers).

This is done by a straightforward reduction from 3-PARTITION, which was originally shown
to be strongly NP-hard by Garey and Johnson [12] and for distinct integers by Hullet et
al. [14]. Tt is particularly important that k is part of the input; for a fixed k, the problem
admits an FPTAS, as shown by Sahni [20].

To show that no approximation algorithm 4 with a polynomially encodable approximation
ratio a(n) can exist (unless P=NP), we demonstrate that such an algorithm could be used
to solve PARTITIONINTO-k in polynomial time. We do so by constructing a DDT instance I’
from a given PARTITIONINTO-k instance I such that:

I is a “yes”-instance of PARTITIONINTO-k if and only if c4(I') < d - a(n), where c4(I")
is the delivery time of the schedule produced by A for the instance I’ and the value d is
determined by the construction.

Let I = (p1,...,pn) be an arbitrary PARTITIONINTO-k instance with distinct integers.
We assume that the numbers are sorted in decreasing order, i.e., p1 > --- > p,,. We denote
the total sum of all elements by P.

For each object p; we create k drones — one for each partition set. We refer to these
drones as element agents and denote them by e; ;, where e; ; is associated with object p;
and partition set j € {1,...,k}. The speed of a drone e; ; is denoted by v;, meaning that all
drones associated with the same partition set (i.e., with the same index j) share the same
speed. We place several gadgets along the line and aim to ensure that each element agent
can only be placed and transport the package at specific designated positions and not at
arbitrary locations along the path. To achieve this, we employ two key mechanisms: first, we
restrict the movement areas of the agents such that they are clearly unable to assist outside
their interval. Second, we choose the ratios between the speeds vy, ..., v to be sufficiently
large, allowing us to define long intervals that certain agents cannot traverse in their entirety
without exceeding the time bound d - a(n).

For each of the k partition sets, we create a partition gadget, that enforces that the sum
of the weights p; associated with the element agents e; ; placed at that gadget is at least %.
Placing an element agent e; ; at a partition gadget can thus be interpreted as assigning p; to
the corresponding partition set.

Additionally, for each object p; we construct a gadget O; — called an object gadget — that
ensures each object is assigned to at most one partition set. This is done by requiring that
exactly k — 1 of the agents e; 1, ..., e;; must be present at the object gadget, resulting in at
most one of them being placed at a partition gadget. As a result, we can ensure that each
partition gadget ends up with a total weight of exactly %, if such a partition exists. If not,
the construction forces a very large delivery time, causing the bound d - a(n) to be exceeded.

An example layout of the gadgets, ordered as Py, ..., Py,O,,...,01, is shown in Figure 3.
Consecutive gadgets are placed sufficiently far apart so that only specially designated fast
transition agents can traverse the gaps, ensuring that each element agent can contribute to
at most one gadget.

8:7

ISAAC 2025

8:8

Parameterized Algorithms for the Drone Delivery Problem

Py P Ps Oy O3 O, 0,
es4
ey

e£42

3

~a

i

~o

Figure 3 Overview of all gadgets in an example with four objects and three partition sets. The
element agents are shown in gray, with darker shades indicating higher speeds. Transition agents
(marked in red) with speed v* > v1,..., v are placed between gadgets; if these are bypassed and
an element agent is used at multiple gadgets, the time bound d - a(n) is exceeded.

3.2 A Parameterized Algorithm

We now design an FPT algorithm for DDT-SP on path graphs. As a parameter for our
approach, we use the maximum overlap — the thickness o := max,cv(g) |Bul, i.e., the largest
number of agents covering any single vertex.

Since each agent corresponds to an interval on the line, the intersection graph of agents is
an interval graph. In such graphs, agents covering a common point form a clique, and each
maximal clique corresponds to some point on the line [15]. As interval graphs are chordal,
their treewidth equals the size of the largest clique minus one [19], which in our case implies
w= o — 1. Thus, the treewidth of the intersection graph and the thickness parameter are
equivalent. This structural property allows for a dynamic programming algorithm over a tree
decomposition of the intersection graph. We define the event points e; < --- < egy, as the
start and end positions of all agent intervals, i.e., the multiset {sq, fo | @ € A}. We sort these
events from left to right along the path (e; < - < eay), resolving ties by placing start points
before end points; the order among start points or among end points is chosen arbitrarily. In
an optimal schedule, handovers occur only at these event points — specifically at s, or f, for
a handover from a to a’ — since otherwise extending the faster agent’s segment would yield a
strictly better or equally good schedule.

We interpret each event e; as a node in a tree decomposition that forms a path, see Fig.
2. We can consider the set of agents covering e;, Z., as the bag at position i. If e; is the
start vertex of some agent a, we say that a is introduced to the bag, and if e; is the end point
of some agent a, it is forgotten. We define a dynamic program over the path decomposition
induced by this event sequence. At each e;, we maintain:

the bag Z., of agents covering e;,

a subset S C Z,, of agents already used,

a current carrier a € Z,, responsible for transporting the package from e; to e;1.

Since at most o agents cover any point, we have |Z.,| < o, and the number of subsets
S C Z,., (representing already-used agents) is bounded by 2°. The dynamic programming
table stores the minimum delivery time to reach e; under the assumption that agent a will
deliver it to e;+1 and the current set of already used agents is S, denoted by Dle;, S, a]. We
assume no agent starts at ¢t or ends at s, as those movement intervals can be cut off without
affecting the solution. Furthermore, at most one handover occurs per event point, and it
happens only if e; = s,/ or e; = f,, as argued before. While we only store delivery times in
the DP table, the full delivery sequence can be reconstructed via backtracking.

In the following we always assume for some DP entry Dle;, S,a] that a € S, otherwise
the entry is defined as oo. Assume we have already computed all possible entries D[e;—1,5 C
Zei 1,0 € Zg,_,] correctly, and now wish to compute Dle;, S C Z,,,a € Z,,].

S. Bartimae, A. Hene, J. Konen, and H. Roglin

The formal correctness of the following lemmas appears in the full version of the paper.

Introduce Event. For an introduce event e;, it is the start point of an agent a’, so a’ is now
newly contained in Z.,. We differentiate between a’ being included into S, which corresponds
to the package being handed over to a’ and the case where @’ is omitted (for now). Note
that when a’ enters S it will also be the dedicated package carrier.

» Lemma 9. Let e; be an introduce event that introduces some agent a’. Assume that for
all valid combinations the solutions Dle;—1,S" C Z.,_,,a € S'] have been computed correctly,
then we correctly compute Dle;, S C Z.,,a € S| in time O(o).

Forget Event. Tor a forget event e;, an end point for some agent a’ was reached, thus a’ is
removed from Z.,. We consider all possibilities for how a’ could have been involved in an
optimal delivery: Either a’ delivered the package to e; and now hands it over to a different
agent a, or a’ was involved in the optimal delivery but did not carry the package to e;, or o’
never held the package at any point. Out of all of these options we again take the solution
variant with the smallest cost.

» Lemma 10. Let e; be a forget event that forgets some agent a’. Assume that for all valid
combinations the solutions Dle;_1,S" C Z.,_,,a € S'] have been computed correctly, then we
correctly compute Dle;, S C Z.,,a € S| in time O(1).

» Theorem 2. DDT on a path with selectable starting positions can be solved in time
O(2v - u? - k), where w denotes the treewidth of the intersection graph.

Proof. The correctness follows from the correctness of the different types of events and that
the optimal solution must be stored in some entry Dle;, S C Z,, a| for some final end point
event e; = egy. Since for every type of event we have runtime at most O(o) and the set of
instances at an event point e; is upper bounded by 27 - ¢ and 2k event points exist, we get a
final runtime of O(27 - 02 - k) = O(2¥ - w? - k). <

4 Fixed-Parameter Tractability on General Graphs

Before designing an FPT algorithm on general graphs, we argue that, w.l.o.g., the intersection
graph can be assumed to be simple — i.e., agents intersect at most once. Any instance can be
transformed accordingly, increasing degree and treewidth by only a constant.

4.1 Unique Intersections between Agents

Given any DDT instance (G, (s,t), A), we now create an instance (G’, (s',t¢'), A’) that has
equivalent schedules, but its intersection graph G’ is simple and therefore any pair of agents
overlap in at most one vertex. Each agent a € A originally moves on a (possibly overlapping)
subgraph G, of G. To guarantee that no pair of agents share multiple vertices, we create a
disjoint copy of every G, and relabel each vertex u as (u,a). The k original agents are then
confined to their respective copies GI,. Whenever two subgraphs G, and Gy, share a vertex u
in G, the transformed graph G’ now contains two distinct copies, i.e., (u,a) and (u,b). We
connect these copies of the same vertex by edges (of length 0) and introduce a dedicated
auxiliary agent h, with speed 1 and movement area restricted to the newly added edges of
length 0 between the copies. Thus, the package can be transferred instantly between any
two copies of the same original vertex, while original agents share no common vertex. The

8:9

ISAAC 2025

8:10

Parameterized Algorithms for the Drone Delivery Problem

resulting instance preserves all feasible schedules with the same delivery time as the original
one but it also satisfies the new constraint that any pair of agents shares at most one vertex,
as any pair of original agents a’, b’ does not share a common vertex in G’, neither does any
pair of helping agents h,, h,/, and agents o’ and h,, may only intersect in (u,a). In the full
version of the paper, we formally define such a transformation and prove the following lemma.

» Lemma 11. For any DDT instance (G, (s,t),A), there exists an equivalent instance
(G, (s',t), A"), where w(G}) < w(Gr)+ 1, A(GF) < A(Gr) + 1 and G is simple.

4.2 Tree Decomposition Algorithm for Unique Intersections

Let (G, (s,t), A) be a drone delivery instance in which each pair of agents a,a’ € A intersects
in at most one vertex. For an agent u € A, we define N, := {v € V(Gy) | {u,v} € E(Gy)}.
Let D: Ax A— V(G)U{-} be a function that returns for two agents a;, a; their unique
intersection point V; N'V; if it exists and — otherwise. Let Gt be the intersection graph,
and assume we have a nice tree decomposition 7 = (T, {X;}¢cv(r)) of G; of width w and
maximum degree A = maxycv(q,) | Nul-

We now design a dynamic program over 7 that is parameterized by w and A and computes
the optimal agent tour. The algorithm is inspired by standard treewidth-based DP techniques
for TSP!. For each node t € V(T), we process the subgraph Gy = (V;, E).

A delivery tour can be modeled as an ordered sequence (ay,as,...,a;) of agents. Each
contiguous subsequence A; ; = (a;, ..., a;) induces a valid subpath in Gy, if the corresponding
edges {a;,ai11} € E(Gy) for all I € [i,5 — 1], and a;,a; € X;. Intermediate agents a; with
i <l < jincur cost dg, (D(aj—1,a1), D(ai, ai+1))-

However, to determine the cost of agents a;, a; we require knowledge about the corres-
ponding unknown preceding and succeeding agents to determine entry and exit points. Thus,
the DP state additionally stores for the boundary agents in X; their assumed predecessor and
successor. This allows consistent cost computation when merging subpaths at join nodes.

We slightly modify the input instance to streamline boundary cases: we add two artificial
agents as and a, each covering only vertex s and t respectively, and having zero speed. The
unique intersection property extends naturally to these agents. We now additionally require
any valid delivery tour to start with as; and end with a;. Both agents are required to be
always contained in any bag, increasing the treewidth by exactly 2. Note that the actual
delivery can still start at s, since as can immediately hand over the package at no cost.

To simplify boundary handling, we also introduce auxiliary agents a/, and a}, each identical
to as and ag, but always assumed to lie outside the tree decomposition (i.e., they are never
contained in any bag). A delivery tour will now implicitly require the tour to start with
a’, and end with a}. Together, this guarantees that for each boundary agent, which always
includes a5 and ay, its predecessor and successor are explicitly known, enabling us to compute
exact cost for partial solutions.

Each DP state D[t, BY, B}, B?, M, fl, Z] represents the optimal forest of paths in subgraph
G; that connects agents according to the following:

B} C X; for i € {0,1,2} contains all agents with degree exactly i

M C B} x B} encodes directed pairwise path endpoints as a matching

A and Z assign known predecessor /successor agents to agents in Bj:

A maps to a neighbor agent s.t. the corresponding edge is not contained in E;
Z maps to the neighbor s.t. the corresponding edge is contained in F;

1 See e.g. http://www.cs.bme.hu/~dmarx/papers/marx-warsaw-£pt2, page 17.

http://www.cs.bme.hu/~dmarx/papers/marx-warsaw-fpt2

S. Bartimae, A. Hene, J. Konen, and H. Roglin

Each path P; in a feasible forest F' must satisfy the following conditions:

The endpoints of P; lie in B} and every agent a € Bj has degree i in F

For every pair (a,a’) € M, there must be a path P; in F' with both of these as endpoints
The cost of a forest F' is then evaluated using the previously mentioned reasoning of
computing the cost of every individual agent measured by its two neighboring agents in the
corresponding sequence. For convenience we will sometimes represent functions as set of
tuples, i.e. A = {(u, A(u)) | u € V(G)}.

For the root node r the DP entry D[r,0, {as, a:},0, {(as, a:)}, {(as, d.), (ar,a})}, Z] cap-
tures the optimal path from as to ay, if Z correctly encodes the adjacent agents to as and a,
in an optimal sequence. By iterating over all valid candidates for the neighbors u € N,_\ {a,}
and v € N, \ {a}} we determine the optimal solution.

To compute the delivery cost of a sequence of agents, we use the predecessor/successor
assignment A. For an agent a of degree 1 we write A(a) to denote the predecessor (if a is the
start of a path) or successor (if a is the end), and its other adjacent agent by Z(a) and the
partner of a in the matching M by M(a). We will refer to A(a) as the predecessor /successor
partner (or psp for short) and to Z(a) as the next/previous interior partner (or npip).

For a feasible forest S = {S1,...,Sp} C E¢, each component S; = (ay,...,as) corresponds

PN

to a path of agents starting and ending at agents in B}. Using A, we extend each such
path to the sequence S; = (ag, a1, ..., as, Ggy1), where ag = A(ay) and a1 = A(ay). These
agents define the handover points at the start and end of the path that involves agents a;
and ag, which is necessary to compute the full cost contribution of each agent.

The cost of the extended sequence S; is given by ¢(S) =
Zé;l da;(D(aj_1,a;), D(a;,a;41)). Setting the predecessor of a, as aj and the suc-
cessor of a; as a} ensures sequences starting at as or ending at a; are correctly computed as
well. In this case we will incur an additional cost of 0, since these agents must immediately
handover the package at their respective vertex.

The total cost of the solution S is the sum over all component sequences, i.e., ¢(S) :=
Z?Zl ¢(S;). In the following we write A(S;) for the extended sequence S;. Finally, for any
solution S C F(G;) and node t € V(T) we define S[t] := S N E; and say that S induces the
instance (¢, B, B}, B2, M, A, Z) if

each a € B} has degree i in S[t],

each pair (u,v) € M is connected by a path in S[t] with A(u), A(v) as their psp agents,

and

for each npip agent a on a path, the adjacent agent corresponds to Z (a).

For an example instance and corresponding agent degrees, see Figure 4. In the following
arguments we will for simplicity assume that any DP entry contains the actual forest. If
each DP entry only contains its cost one can, by simple recursive pointer-logic, compute the
optimal solution in the end recursively. Therefore, we will argue correctness of each entry
by considering the actual forest, but derive the computational runtime as if only the cost is
saved in every DP entry.

The following lemma shows that indeed it is enough to prove correctness for every
subinstance in the DP to derive the optimal solution. The proof is provided in the full version
of the paper.

» Lemma 12. For every node t € V(T) and optimal tour OPT C E(Gy) that starts with
agent as and ends with a;, the partial solution OPTIt] is optimal for the induced instance.

8:11

ISAAC 2025

8:12

Parameterized Algorithms for the Drone Delivery Problem

Figure 4 Example instance G with corresponding sets of intersections between agents. Agents
as,a; are always contained in X; and al,a} are always contained in A\ V;. Possible solution ordering
of agents shown in green. Red agents have degree 1 in V;, blue agents have degree 2 and violet
agents degree 0. Dashed lines correspond to edges not introduced so far.

We now describe how to handle the different node types in the dynamic program. We will
assume that the instance to solve corresponds to a valid specification, otherwise we assign it
cost 0o. The proof of correctness for the different node types can be found in the full paper.

Leaf node: At a leaf node ¢, only as, a; are present and no edges exist. The only valid forest
is the empty one with cost 0, so we set D[t, BY, B}, B2, M, A, Z] = {0}.

Introduce node: Let ¢ be an introduce node with child ¢’ and X; = X U {v}. Since v has no
incident edges at this point, it must have degree 0 in any valid solution, i.e., v € BY. Therefore
v does not influence any solution derived for ¢’ and we set D[t, BY, B}, B2, M, A, Z] =
D[t', B\ {v}, B}, B, M, A, Z].

» Lemma 13. Let node t introduce an agent v, and let t' be its child. Assume that for
all valid combinations the sets D[t’, B, BY | B2 M’ A’ 2] have been computed, then we
correctly compute D[t, BY, B}, B, M, A, Z] in time O(1).

Forget node: Let ¢ be a forget node with child ¢’ and X, = X/ \ {v}. Since v ¢ X; and
v # al,a}, it must have degree either 0 or 2 in any feasible solution, depending on whether v
was used in the respective optimal solution. Therefore, we check both corresponding entries
at the child node ¢’ and choose the one with minimum cost.

» Lemma 14. Let node t € V(T) remove some vertex v, and let t' be its child. Assume that
for all valid combinations, the sets D[t', Btol, Btll, Bf/, M A Z’] have been computed, then
we correctly compute D[t, BY, B!, B}, M, A, Z] in time O(1).

Introduce edge node: Let ¢ be an introduce-edge node with child ¢ and let e = {u, v} be the
newly introduced edge. If e is not used in the optimal solution, we reuse the solution from ¢'.
Otherwise, we consider the instance where the degrees of u and v are decreased by 1 and
consider all valid choices for their next potential npip agent via Z. Additionally, we update
M accordingly to reflect all possible new pairings that are possible for solutions containing e.

» Lemma 15. Let node t € V(T) introduce an edge e = {u, v}, and let t’ be its child. Assume
that for all valid combinations, the sets D[t’, B?/, B}/7 Bf/7 M A Z’] have been computed,
then we correctly compute D[t, BY, B}, B2, M, A, Z] in time O((w+ 1) - A?).

Join node: Let ¢ be a join node with children ¢; and ¢5. To compute an optimal solution,
we combine compatible solutions from both children while ensuring degrees, matching, psp
agents and npip agents correctly align, and take the solution with minimal cost.

S. Bartimae, A. Hene, J. Konen, and H. Roglin

» Lemma 16. If node t € V(T) is a join node with two children t1,ta € V(T) and we
correctly computed all solutions for all child instances for nodes t1 and ta, then we correctly
compute D[t, B, B!, B2, M, A, Z] in time O((w+ 2)C(A+w)).

Using these lemmata, we establish the final theorem, with the complete proof included in
the full version of this work.

» Theorem 3. DDT with selectable starting positions can be solved in time f(A, w)-poly(n, k)
on general graphs, where w denotes the treewidth and A denotes the mazimum degree of the
intersection graph and f is a function in w and A.

4.3 A Polynomial-Time Algorithm for Intersection Trees

We now briefly describe an exact algorithm for computing optimal schedules when the
intersection graph of the underlying graph forms a tree. While this may seem similar to the
setting previously considered, it does not follow directly, as the treewidth may be constant,
but the vertex degrees can be unbounded.

We first show how to compute an optimal solution for any instance, given a fixed order
of agents (a1, ...,ap) in the optimal schedule.

For this, we build a layered directed graph G’ whose layers represent successive handovers:

Layer 0: single vertex v, representing the source s.

Layer i (1 < i < b): one vertex for every intersection point of the movement areas of a;

and a;11 (for i = b the region of a4 is the sink region containing t).

Layer b+ 1: single vertex v; for the destination ¢.
Edges connect every vertex in layer ¢ — 1 to every vertex in layer ¢; the weight equals the
travel time of agent a; between these two points. Thus each s—t path in G’ selects exactly
one handover point per layer and has length equal to the total delivery time for that sequence
of drones. Conversely, any schedule that uses these agents in this particular order defines
such a path. Hence, the shortest path in G’ yields the optimal schedule for the given order,
which can easily be computed.

» Lemma 17. Given any ordered sequence of agents (a1, ..., ap), we can compute the optimal
route to deliver the package from s to t using the agents in this order in O(b* - n?).

Proof. We construct a directed weighted delivery graph G' = (V', E’), w : E' — R>q. The
vertex set V' consists of b+ 1 layers. In layer 0 we have a vertex v,,, in layer b + 1 we have
a vertex v; and in layer ¢ € [b] we have all intersection points between agent a; and a; 41, i.e.,
Va, NV, In the following, we refer to these vertices as V; = {vi, ... ,v}'m}. We connect vg,
with every vertex v} for j € [m] and set its weight as dq, (s,v}). This connection represents
the case that agent a; transports the package from s to agent ay via some intersection point
;jrl, j e [mi+1], if
. For each such edge we again set its

vjl-. Similarly, we connect a vertex 112 , J € [m;] in layer ¢ with a vertex v
there exists a path in G,, that connects v;- with U;JH
weight to the time it takes to get from the first intersection point to the next using agent
o
the second last layer b to v; in the same manner, i.e., we set its weight to d,, (11;-’, t), where
jE€ [mb]

We want to argue, that the shortest path in this graph has to correspond to an optimal

delivery tour of the agents in the specified order. Let Popt C E be the optimal tour and
(pOPT OPT OPT , OPT

= 5D5 ,.-,P; Py = t) be the set of vertices at which an exchange of the
package happens, including s and ¢. We can see that for each section p;’* *, p;f;" , the delivery

a;, i.e., we set the weight of the edge as d,, (v). At last, we set the connections from

OPT _OPT

8:13

ISAAC 2025

8:14

Parameterized Algorithms for the Drone Delivery Problem

happens using agent a; to agent a;y1. Since the delivery points are specified by pPTT, pg_PlT,

we can upper bound the optimal travel time of a; for this section by d,, (pPF7, pg_PlT). At

last, for the final section pbOPT, pboflT = t, the delivery time of agent a; is upper bounded by
da (OPT OPT _ t)
. .

Py s Poya
We can see that the optimal path (p = 5, pdFT ... ,p?PT,p,?_flT = t) is always a

feasible shortest s — ¢ path solution in graph G’, and since its cost is at most the cost of the
optimal solution we know that the cost of the shortest path tour will be at most the shortest
delivery time in the original instance when using the agents in the specified order. On the
other hand, every feasible path in our graph corresponds to a unique tour using the same set
of agents in the same order and exchanging the package at vertices p1 = s,pa2, ..., Pp, Pp+1 = t.
If one such tour would have delivery time strictly less than OPT, this would contradict its
optimality assumption, since the vertices on the shortest path also define a feasible drone
delivery routing that delivers the package from s to ¢ using the same set of agents in the
given order. Therefore it follows, that the shortest path gives us the optimal delivery tour.

Our graph G’ consists of at most (n — 1) - b+ 2 vertices and at most 2 -n + (b — 2) - n?
edges. Using Dijkstra’s algorithm with lists, which has runtime O(n?), we get a final runtime
of O(b? - n?). <

OPT
1

One could use this property to calculate the optimal schedule for general graphs in time
O(k - k!'- k% -n?). Tt also allows us to solve DDT-SP efficiently, if the underlying simple graph
of the intersection graph is a tree, in time O(k? - n?). We conclude by proving Theorem 4.

» Theorem 4. DDT on a general graph with selectable starting positions can be solved in
time O(k? - n?) if the underlying graph of the intersection graph is a tree.

Proof. Any delivery schedule corresponds to a path in the intersection graph. If this graph
is a tree, there always exists a unique simple path between any two agents in G;. Given
the first and last agents used in an optimal schedule, the order of all participating drones
can be determined by this path, as each agent appears at most once. Using this order and
Lemma 17, we can efficiently compute the delivery schedule. To identify the first and last
agents, we consider all valid combinations of agents that can pick up the package at s and
drop it off at ¢. Since each vertex in the graph belongs to at most two agents — otherwise, a
clique of size at least three would be present in G, contradicting the tree property — there are
at most four such combinations. Simply enumerating all four candidate pairs and evaluating
each leads to an overall runtime of O(k? - n?). <

5 Concluding Remarks and Future Work

We first proved that the Drone Delivery Problem with selectable starting positions (DDT-SP)
is a(n)-APX-hard even on path graphs, thereby resolving an open question posed by Erlebach
et al. and Bartlmae et al. [3,11]. On the algorithmic side, we showed that DDT-SP on a path
is fixed-parameter tractable when parameterized solely by the treewidth w of the agents’
intersection graph. Employing more sophisticated techniques and parameterizing by both w
and the maximum degree A of the intersection graph, we further obtained an FPT algorithm
for general graphs. When the intersection graph is a tree, a layered-graph formulation yields
a polynomial-time exact algorithm.

We believe that the introduction of the intersection graph and its properties is therefore
of great value when analyzing the complexity of DDT.

The question of whether DDT on a path is strongly NP-hard remains open for both
DDT-FP and DDT-SP. For DDT-SP on a path the complexity for any fixed number of
speeds greater than two also remains unresolved. Future work could tighten our parameter

S. Bartimae, A. Hene, J. Konen, and H. Roglin

dependencies, or establish stronger lower bounds such as W-hardness. Another promising
direction is to analyze DDT under smoothed and semi-random input models, where small
random perturbations of worst-case instances provide a more realistic measure of expected
computational complexity and can guide the development of practical algorithms.

—— References

1

10

11

12

Stefan Arnborg, Derek G Corneil, and Andrzej Proskurowski. Complexity of Finding Em-
beddings in a k-Tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277-284, 1987.
doi:10.1137/0608024.

Dane Bamburry. Drones: Designed for Product Delivery. Design Management Review,
26(1):40-48, 2015. doi:10.1111/drev.10313.

Simon Bartlmae, Andreas Hene, and Kelin Luo. On the Hardness of the Drone Delivery
Problem. In Irene Finocchi and Loukas Georgiadis, editors, Algorithms and Complezity
- 14th International Conference, CIAC 2025, Rome, Italy, June 10-12, 2025, Proceedings,
Part II, volume 15680 of Lecture Notes in Computer Science, pages 200-215. Springer, 2025.
d0i:10.1007/978-3-031-92935-9_13.

Andreas Bértschi, Daniel Graf, and Matis Mihaldk. Collective Fast Delivery by Energy-
Efficient Agents. In Igor Potapov, Paul G. Spirakis, and James Worrell, editors, 43rd
International Symposium on Mathematical Foundations of Computer Science, MFCS 2018,
volume 117 of LIPIcs, pages 56:1-56:16. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik,
2018. doi:10.4230/LIPICS.MFCS.2018.56.

Lotte Blank, Kien C. Huynh, Kelin Luo, and Anurag Murty Naredla. Algorithms for the
Collaborative Delivery Problem with Monitored Constraints. In Shin-ichi Nakano and Mingyu
Xiao, editors, WALCOM: Algorithms and Computation - 19th International Conference and
Workshops on Algorithms and Computation, WALCOM 2025, Chengdu, China, February 28 -
March 2, 2025, Proceedings, volume 15411 of Lecture Notes in Computer Science, pages 62-78.
Springer, 2025. doi:10.1007/978-981-96-2845-2_5.

Hans L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth.
In S. Rao Kosaraju, David S. Johnson, and Alok Aggarwal, editors, Proceedings of the Twenty-
Fifth Annual ACM Symposium on Theory of Computing, May 16-18, 1993, San Diego, CA,
USA, pages 226-234. ACM, 1993. doi:10.1145/167088.167161.

Heleen Buldeo Rai, Sara Verlinde, and Cathy Macharis. Unlocking the failed delivery problem?
Opportunities and challenges for smart locks from a consumer perspective. Research in
Transportation Economics, 87:100753, 2021. E-groceries, digitalization and sustainability.
doi:10.1016/j.retrec.2019.100753.

Tago A. Carvalho, Thomas Erlebach, and Kleitos Papadopoulos. On the fast delivery problem
with one or two packages. Journal of Computer and System Sciences, 115:246-263, 2021.
do0i:10.1016/J.JCSS.2020.09.002.

Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Déniel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

Mo ElSayed, Ahmed Foda, and Moataz Mohamed. The impact of civil airspace policies on the
viability of adopting autonomous unmanned aerial vehicles in last-mile applications. Transport
Policy, 145:37-54, 2024. doi:10.1016/j.tranpol.2023.10.002.

Thomas Erlebach, Kelin Luo, and Frits C. R. Spieksma. Package Delivery Using Drones with
Restricted Movement Areas. In Sang Won Bae and Heejin Park, editors, 33rd International
Symposium on Algorithms and Computation, ISAAC 2022, December 19-21, 2022, Seoul, Korea,
volume 248 of LIPIcs, pages 49:1-49:16. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik,
2022. doi:10.4230/LIPICS.ISAAC.2022.49.

M. R. Garey and David S. Johnson. Complexity Results for Multiprocessor Scheduling under
Resource Constraints. SIAM J. Comput., 4(4):397-411, 1975. doi:10.1137/0204035.

8:15

ISAAC 2025

https://doi.org/10.1137/0608024
https://doi.org/10.1111/drev.10313
https://doi.org/10.1007/978-3-031-92935-9_13
https://doi.org/10.4230/LIPICS.MFCS.2018.56
https://doi.org/10.1007/978-981-96-2845-2_5
https://doi.org/10.1145/167088.167161
https://doi.org/10.1016/j.retrec.2019.100753
https://doi.org/10.1016/J.JCSS.2020.09.002
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/j.tranpol.2023.10.002
https://doi.org/10.4230/LIPICS.ISAAC.2022.49
https://doi.org/10.1137/0204035

8:16

Parameterized Algorithms for the Drone Delivery Problem

13

14

15

16

17

18

19

20

21

Anne Goodchild and Jordan Toy. Delivery by drone: An evaluation of unmanned aerial
vehicle technology in reducing CO2 emissions in the delivery service industry. Transportation
Research Part D: Transport and Environment, 61:58—67, 2018. Innovative Approaches to
Improve the Environmental Performance of Supply Chains and Freight Transportation Systems.
doi:10.1016/j.trd.2017.02.017.

Heather Hulett, Todd G. Will, and Gerhard J. Woeginger. Multigraph realizations of degree
sequences: Maximization is easy, minimization is hard. Oper. Res. Lett., 36(5):594-596, 2008.
doi:10.1016/J.0RL.2008.05.004.

Cornelis Lekkeikerker and Johan Boland. Representation of a finite graph by a set of intervals
on the real line. Fundamenta Mathematicae, 51(1):45-64, 1962.

Kelin Luo, Chenran Yang, Zonghan Yang, and Yuhao Zhang. The subinterval cover problem. In
Vincent Chau, Christoph Diirr, Minming Li, and Pinyan Lu, editors, Frontiers of Algorithmics
- 19th International Joint Conference, IJTCS-FAW 2025, Paris, France, June 30 - July 2, 2025,
Proceedings, volume 15828 of Lecture Notes in Computer Science, pages 152—165. Springer,
2025. doi:10.1007/978-981-96-8312-3_12.

Almodather Mohamed and Moataz Mohamed. Unmanned Aerial Vehicles in Last-Mile Parcel
Delivery: A State-of-the-Art Review. Drones, 9(6), 2025. doi:10.3390/drones9060413.

Neil Robertson and Paul D. Seymour. Graph Minors. II. Algorithmic Aspects of Tree-Width.
J. Algorithms, 7(3):309-322, 1986. doi:10.1016/0196-6774(86)90023-4.

Donald J. Rose, Robert Endre Tarjan, and George S. Lueker. Algorithmic Aspects of Vertex
Elimination on Graphs. SIAM J. Comput., 5(2):266-283, 1976. doi:10.1137/0205021.
Sartaj Sahni. Algorithms for Scheduling Independent Tasks. J. ACM, 23(1):116-127, 1976.
doi:10.1145/321921.321934.

Frank Schroth. IBM granted patent for package transfer between drones. https://dronelife.
com/2017/04/30/ibm-granted-patent-package-transfer-drones/, 2017. [Accessed 23-06-
2025].

https://doi.org/10.1016/j.trd.2017.02.017
https://doi.org/10.1016/J.ORL.2008.05.004
https://doi.org/10.1007/978-981-96-8312-3_12
https://doi.org/10.3390/drones9060413
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1137/0205021
https://doi.org/10.1145/321921.321934
https://dronelife.com/2017/04/30/ibm-granted-patent-package-transfer-drones/
https://dronelife.com/2017/04/30/ibm-granted-patent-package-transfer-drones/

	1 Introduction
	2 Preliminaries
	3 Drone Delivery on Path Graphs
	3.1 Inapproximability
	3.2 A Parameterized Algorithm

	4 Fixed-Parameter Tractability on General Graphs
	4.1 Unique Intersections between Agents
	4.2 Tree Decomposition Algorithm for Unique Intersections
	4.3 A Polynomial-Time Algorithm for Intersection Trees

	5 Concluding Remarks and Future Work

