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Abstract
Palindromes are non-empty strings that read the same forward and backward. We study the problem
of recognizing so-called k-palindromic strings, which can be represented as the concatenation of
exactly k palindromes. [Rubinchik and Shur, MFCS 2020] showed that the problem is solvable in
linear space and time. We present a read-only algorithm that recognizes all k-palindromic prefixes
of a string T of length n in O(n · 6k2

· logk n) time and O(6k2
· logk n) space. As a corollary, we also

obtain a read-only algorithm for computing the palindromic length of T , i.e., the smallest k such
that T is k-palindromic, in O(n · 6k2

· log⌈k/2⌉ n) time and O(6k2
· log⌈k/2⌉ n) space.
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1 Introduction

A palindrome is a non-empty string that equals its reversed copy, i.e., a string that reads
the same both forward and backward. Throughout, we denote the language of palindromes
by PAL. Natural variants of PAL include the language of even-length palindromes PALev
and the language of palindromes of length greater than one PAL>1. Recognising PAL∗

ev
(often referred to as “palstar”), PAL∗

>1, and PALk = {P1P2 · · · Pk : Pi ∈ PAL, 1 ≤ i ≤ k} is a
classical problem of formal language theory, introduced by Knuth, Morris, and Pratt [27].1
In this problem, one is given an input string and must decide whether it is in the language.

Languages PAL∗
ev, PAL∗

>1, and PALk are context-free, and Valiant’s parser from 1975
recognizes them in O(nω) time, where n is the length of the input and ω is the matrix
multiplication exponent. Only in 2018, Abboud, Backurs, and Vassilevska Williams showed
that Valiant’s parser is optimal if the current clique algorithms are optimal [1], meaning
that for general context-free languages, there is little hope of achieving a faster recognition
algorithm. The origins of the study of derivatives of the PAL languages are in fact in line
with the result of [1]: At one time, it was popularly believed that PAL∗

ev cannot be recognised
in linear time, and it was considered as a candidate for a “hard” context-free language (see

1 ∗ is a Kleene star.
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9:2 Small Space Encoding and Recognition of k-Palindromic Prefixes

[27, Section 6]). However, [27] refuted this hypothesis by showing an O(n)-time recognition
algorithm for PAL∗

ev. Manacher [32] found another way to recognize PAL∗
ev in linear time,

and Galil [16] derived a real-time recognition algorithm (see also Slisenko [35]). Later, Galil
and Seiferas [17] showed a linear-time recognition algorithm for PAL∗

>1.
Recognition of PALk appeared to be a much more intricate problem. Galil and Seiferas [17]

succeeded to design linear-time recognition algorithms for the cases k = 1, 2, 3, 4, but the
general question remained open for almost 40 years. Only in 2015, Kosolobov, Rubinchik,
and Shur [29] showed an O(nk)-time recognition algorithm for PALk for all k ∈ N+, which
was finally improved to optimal O(n) time by Rubinchik and Shur in 2020 [34]. A related
question is that of computing the palindromic length of a string T , which is defined to be the
smallest integer k such that T ∈ PALk. The first O(n log n)-time algorithms for computing
the palindromic length were presented in [12, 25, 33]. Finally, Borozdin et al. [10] showed an
optimal O(n)-time algorithm for this problem.

Our contributions. In this work, we turn our attention to the space complexity of recognising
PALk and computing the palindromic length. We start by presenting a characterization
of prefixes of a given string that belong to PALk. For k = 1, we refer to these prefixes as
prefix-palindromes, and otherwise as k-palindromic prefixes. A crucial component of the linear
time algorithm by Borozdin et al. [10] is the following property: the prefix-palindromes of a
length-n string can be expressed as O(log n) sets of form {XQa : a ∈ {1, . . . , u}}, where u is
an integer. In order to encode k-palindromic prefixes, we introduce a notion of affine prefix
sets of order k. Intuitively, such a set consists of prefixes of the form XQa1

1 Qa2
2 · · · Qak

k with
∀i ∈ [1, k] : ai ∈ {1, . . . , ui}, where ui are integers. That is, rather than a single repeating
substring Q, we allow multiple different substrings Qi of different lengths. An affine prefix
set of order k can then be encoded in O(k) space. By carefully analyzing the rich structure
of periodic substrings induced by k-palindromic prefixes, we show that they can be expressed
by a small number of affine prefix sets.

▶ Theorem 1.1. Let 0 < ϵ < 1 be constant, T [1. .n] a string, and k ∈ N+. The set of prefixes
of T that belong to PALk is the union of O(6k2/(2−ϵ) · logk n) affine prefix sets of order ≤ k.

The remainder of the paper focuses on the main ideas behind Theorem 1.1. In the
full version [5], apart from explaining all details, we show a lower bound for the size of
the representation (Theorem 1.2), and provide read-only algorithms for computing affine
prefix sets and palindromic length (Theorems 1.3 and 1.4). The lower bound shows that our
representation is within a log n factor of being asymptotically optimal for constant k. It is
obtained by constructing a large family of strings uniquely identifiable by their palindromic
prefixes.

▶ Theorem 1.2. Let T [1. .n] be a string and let k ∈ N+. Encoding the lengths of the prefixes
of T that belong to PALi, for each i ∈ [1, k], requires Ω(k−k · (log3 n)k) bits of space.

The read-only algorithms directly implement the techniques used to show Theorem 1.1.

▶ Theorem 1.3. Let 0 < ϵ < 1 be constant. Given a string T [1. .n] and k ∈ N+, there is a
read-only algorithm that returns a compressed representation of all prefixes of T that belong
to PALi, for each i ∈ [1, k], in O(n · 6k2/(2−ϵ) · logk n) time and O(6k2/(2−ϵ) · logk n) space.

▶ Theorem 1.4. Given a string T [1. .n], there is a read-only algorithm that computes the
palindromic length k of T in O(n · 6k2 · log⌈k/2⌉ n) time and O(6k2 · log⌈k/2⌉ n) space.
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In particular, for k = O(log log n), the algorithm uses n logO(k) n time and logO(k) n space,
and for k = o(

√
log n), it uses n1+o(1) time and sublinear no(1) space. In the regime of small

palindromic length, this is an improvement over all previously-known algorithms [10, 34],
which require Ω(n) space. It remains an intriguing open problem to achieve both linear time
and sublinear space. On the other hand, Theorem 1.2 does not imply a lower bound for the
algorithms of Theorems 1.3 and 1.4 because they have access to the input. This said, proving
an Ω(logf(k) n) space lower bound for such algorithms appears out of reach with current
techniques. The only lower bound method for read-only string processing the authors are
aware of relies on deterministic branching programs [9], and shows that any sublinear-space
algorithm for longest common substring requires slightly superlinear time [28].

Related work. The problem of computing palindromes in small space has received significant
attention: the longest palindromic substring [8, 24], and all approximate prefix-palindromes [3,
6] have been studied. More broadly, small-space recognition of formal languages has been
explored for regular [19, 20, 21, 22, 11], Dyck [26, 30, 31], visibly pushdown [2, 14, 18, 7],
context-free [23], and DLIN/LL(k) languages [4].

2 Preliminaries

Series, strings, and substrings. For i, j ∈ Z, we write [i, j] = [i, j + 1) = (i − 1, j] =
(i − 1, j + 1) to denote {h ∈ Z | i ≤ h ≤ j}. A series a1, b1, c1, a2, b2, c2, . . . , at, bt, ct is
denoted by (ai, bi, ci)t

i=1. The empty series is denoted by ε. We use the dot-product to
denote the concatenation of two series, e.g., for t ≥ 3 one can represent (ai, bi, ci)t

i=1 =
(ai, bi, ci)t−3

i=1 · (ai, bi, ci)t
i=t−2. We may omit the subscript and superscript for series of length

one, e.g., (a1, b1, c1) = (ai, bi, ci)1
i=1.

A string T of length |T | = n is a sequence of n symbols from a set Σ, which we call
the alphabet. The input string is also called the text. We denote the set of all length-n
strings by Σn, and we set Σ≤n =

⋃n
m=0 Σm as well as Σ∗ =

⋃∞
n=0 Σn. The empty string

is denoted by ε. For i, j ∈ [1, n], the i-th symbol in T is denoted by T [i]. The substring
T [i. .j] = T [i. .j + 1) = T (i − 1. .j] = T (i − 1. .j + 1) is the empty string ε if j < i, and the
string T [i]T [i + 1] · · · T [j] otherwise. We may call a substring T [i. .j] a fragment of T to
emphasize that we mean the specific occurrence of T [i. .j] that starts at a position i. For
example, in the string T = abcabc, the substrings T [1. .3] and T [4. .6] are identical, but
T [1. .3] and T [4. .6] are distinct fragments. A string S is a prefix of T if there is i ∈ [1, n] such
that S = T [1. .i], in which case we may simply write T [. .i]. Similarly, S is a suffix of T if
there is i ∈ [1, n] such that S = T [i. .n], in which case we may simply write T [i. .]. We extend
this notion to the empty suffix T [n + 1. .n] = T [n + 1. .] and the empty prefix T [1. .0] = T [. .0].
A substring (hence also a suffix or prefix) of T is proper if it is shorter than T . When
introducing a string S, we may simply say that S[1. .m] is a string rather than saying that S

is a string of length m. The concatenation of two strings S[1. .m] and T [1. .n] is the string
S[1]S[2] · · · S[m]T [1]T [2] · · · T [n], denoted by either S · T or simply ST . For non-negative
integer a, we write T a to denote the length-(an) string obtained by concatenating a copies
of T . We extend this idea to non-negative rational exponents α ∈ Q, for which we write T α

to denote T ⌊α⌋ · T [1. .(αn mod n)]. We only use this notation if αn ∈ N.

Palindromes and periodicities. For a string T [1. .n], we write rev(T ) to denote its reverse,
i.e., rev(T ) = T [n]T [n − 1] · · · T [1]. We then say that T is a palindrome if and only if T is
non-empty and T = rev(T ). The set of all palindromes is denoted by PAL. For a positive

ISAAC 2025
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integer k, the set PALk contains all the strings that can be written as the concatenation of
exactly k palindromes. We refer to such strings as k-palindromic. If k = 1, and a string is a
one-palindromic prefix of another string, we also refer to it as prefix-palindrome.

We define the forward cyclic rotation rot(T ) = T [2. .n]T [1]. More generally, a cyclic
rotation rots(T ) with shift s ∈ Z is obtained by iterating rot (if s is positive) or the inverse
operation rot−1 (if s is negative) exactly |s| times. A non-empty string T [1. .n] is primitive if
it is distinct from its non-trivial rotations, i.e., if T = rots(T ) holds only when n divides s. If
a string X can be represented as Y a for some primitive string Y and integer a, then Y is
called the primitive root of X.

A string T [1. .n] has period p ∈ N+ if ∀i ∈ [1, n − p] : T [i] = T [i + p], or equivalently if
T [1. .n − p] = T (p. .n]. The string T [1. .n − p] = T (p. .n] is a border of T . If T has period
p ≤ n/2, then we say that T is p-periodic. If T has period p ≤ n, then it can be written as
T = P ⌊n/p⌋P [1. .n mod p], where P = T [1. .p]. We may alternatively use a rational exponent
and write T = P n/p. Below, we provide some simple auxiliary lemmas regarding periodic
strings and palindromes (with proofs in the full version).

▶ Fact 2.1 (Periodicity Lemma [13]). If p and q are distinct periods of a string of length at
least p + q − gcd(p, q), then gcd(p, q) is a period of the string.

▶ Corollary 2.2 (Folklore). For a primitive string Q, the minimal period of Q2 is |Q|.

▶ Lemma 2.3. Assume that a palindrome P has a q-periodic prefix of length m ≥ 3q/2. If
|P | ≤ 2m − q, then P is q-periodic.

Model of computation. We assume the word-RAM model of computation [15], using words
of size Θ(log n) when processing an input string of length n. The presented algorithms are
deterministic and read-only, i.e., they cannot write to the memory occupied by the input.
Space complexities are stated in number of words, ignoring the space occupied by the input.

3 Combinatorial Properties of Affine Prefix Sets

In this section, we study the combinatorial structure of k-palindromic prefixes of T . We start
with the definition of affine sets, which we will use as a scaffolding for our analysis.

▶ Definition 3.1 (Affine sets). A set of strings A is affine if there exist t ∈ N0, a string X,
primitive strings Q1, . . . , Qt, and positive integers ℓ1, . . . , ℓt and u1, . . . , ut such that

∀i ∈ [1, t] : ℓi ≤ ui and A = {XQa1
1 · · · Qat

t | ∀r ∈ [1, t] : ar ∈ [ℓr, ur]}.

The tuple ⟨X, (Qi, ℓi, ui)t
i=1⟩ is a representation of A, and t is the order of the representation.

The order of A is the minimal order achieved by any of its representations. We call {Qi} the
components of a representation, and ℓi (resp., ui) the exponent lower (resp., upper) bounds.

A representation generates (the strings of) the corresponding affine string set. If
⟨X, (Qi, ℓi, ui)t

i=1⟩ generates A and ⟨X ′, (Q′
i, ℓ′

i, u′
i)

t′

i=1⟩ generates B, then their concate-
nation is defined as ⟨X, (Qi, ℓi, ui)t

i=1 · (Y, a, a) · (Q′
i, ℓ′

i, u′
i)

t′

i=1⟩, where Y is a primitive string
and a is a positive integer such that Y a = X ′ (i.e., Y is the primitive root of X ′). The
concatenation generates A · B = {A · B : A ∈ A ∧ B ∈ B}. (If X ′ = ε, then the concatenation
is ⟨X, (Qi, ℓi, ui)t

i=1 · (Q′
i, ℓ′

i, u′
i)

t′

i=1⟩.)
In what follows, we consider affine prefix sets, i.e., affine sets that contain only prefixes

of the given input string T . We will show that a small number of affine prefix sets suffices
to represent the k-palindromic prefixes of T . The case where k = 1, i.e., the structure of
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X ′

Q′
1

Q′ Q2 Q2 Q2 Q2

Q′
1

Q′ Q2 Q2 Q2 Q2 Q3

T =

X

Q1

Q2 Q2 Q2

Q1

Q2 Q2 Q2 Q3

(a) An affine prefix set A of a string T with representation ⟨X, (Q1, , ) · (Q2, , ) · (Q3, , )⟩ (drawn above T ).
This representation is irreducible. The set A contains all the prefixes of T that end at positions drawn
in dotted lines. In this example, the set A has the alternative representation ⟨X ′, (Q′

1, 1, 2) · (Q′, 1, 1) ·
(Q2, 2, 4) · (Q3, 1, 2)⟩. This representation is reducible because Q′ has the same exponent upper and lower
bound, and because Q2 has an exponent lower bound larger than 1.

X

Q1 Q1 Q2 Q1 Q1 Q1 Q1 Q1
Q2

T =

(b) An affine prefix set A of a string T with representation ⟨X, (Q1, 1, 2) · (Q2, 1, 3)⟩ (drawn in black). If
this representation is strongly affine, then its expansion ⟨X, (Q1, 1, 7) · (Q2, 1, 8)⟩ is also a representation
of an affine prefix set of T (drawn in gray).

Figure 1 Affine prefix sets.

prefix-palindromes, is well-understood: there are O(log n) groups of such palindromes, where
each group can be expressed as an arithmetic progression and a corresponding periodic prefix
of T (see [10, Lemma 5]). Below, we restate this result in the framework of affine prefix sets.

▶ Lemma 3.2. The prefix-palindromes of a string T [1. .n] can be partitioned into O(log n)
affine sets of order at most 1. Each set of order 1 has representation ⟨U(V U)ℓ, (V U, 1, u)⟩
for some U ∈ PAL ∪ {ε}, V ∈ PAL and integers ℓ ≥ 1 and u > 1.

3.1 Reducing affine prefix sets

A single affine set may have multiple equivalent representations. For example, the affine set
S = {caba, cababa, cabababa} is represented by ⟨c, (ab, 1, 3) and (a, 1, 1)⟩, ⟨ca, (ba, 1, 3)⟩.
Arguably, the latter representation is preferable, as it has a lower order and can thus be
encoded more efficiently. Hence we propose a way of potentially decreasing the order of a
representation by reducing it.

▶ Definition 3.3 (Irreducible representation). A representation ⟨X, (Qi, ℓi, ui)t
i=1⟩ of an affine

string set is irreducible if and only if ∀r ∈ [1, t] : 1 = ℓr < ur and ∀r ∈ [1, t) : |Qr| > |Qr+1|.

From now on, we say that Qr with r ∈ [1, t] is fixed if ℓr = ur, and flexible otherwise.
If there is some r ∈ [1, t) such that |Qr| ≤ |Qr+1|, then we say that there is an inversion
between Qr and Qr+1. Thus, a representation is irreducible if and only if all components
are flexible and have unit lower bounds, and there are no inversions. As per this definition,
⟨ca, (ba, 1, 3)⟩ is the only irreducible representation of S from the previous example. (See
also Figure 1a.)

ISAAC 2025



9:6 Small Space Encoding and Recognition of k-Palindromic Prefixes

Properties of flexible components. Now we show how to make an arbitrary representation
irreducible, possibly decreasing (but never increasing) its order. The reduction exploits the
structure of periodic substrings induced by flexible components.

▶ Lemma 3.4. Let ⟨X, (Qi, ℓi, ui)t
i=1⟩ be a representation of an affine prefix set, and consider

any r ∈ [1, t) such that Qr is flexible. Then |Qr| is a period of every string Qar
r Q

ar+1
r+1 · · · Qat

t

that satisfies ar ∈ N0 and ∀j ∈ (r, t] : aj ∈ [ℓj , uj ].

Proof. Let P = Qℓ1
1 Qℓ2

2 · · · Qℓr
r and S = Q

ar+1
r+1 Q

ar+2
r+2 · · · Qat

t . By the definition of an affine
prefix set, XPS is a prefix of the underlying string T . Since Qr is flexible, it holds ℓr < ur,
and thus XPQrS is also a prefix of T . If both XPS and XPQrS are prefixes of T , then S

is a prefix of QrS. Hence QrS and S have periods |Qr|. Consequently, Qar
r S, for all ar ∈ N0,

also has period |Qr|. ◀

If two adjacent components Qr and Qr+1 are flexible, then the lemma allows us to obtain
the following lower bound on the length of Qr.

▶ Lemma 3.5. Let ⟨X, (Qi, ℓi, ui)t
i=1⟩ be a representation of an affine prefix set, and let

r ∈ [1, t). If both Qr and Qr+1 are flexible, then either Qr = Qr+1 or

|Qr| > |Qur+1−1
r+1 | +

 t∑
j=r+2

|Quj

j |

 + gcd(|Qr|, |Qr+1|).

Proof. For flexible Qr and Qr+1, let qr = |Qr|, qr+1 = |Qr+1|, and p = gcd(qr, qr+1). Let
Q′

r+1 = Q
ur+1
r+1 Q

ur+2
r+2 · · · Qut

t . By Lemma 3.4, both qr and qr+1 are periods of Q′
r+1, and qr is

a period of QrQ′
r+1. Since qr is a period of QrQ′

r+1, it is also a period of QrQr+1. Hence
Qr = Qr+1 if and only if qr = qr+1. For the sake of contradiction, assume that the lemma
does not hold, i.e., qr ̸= qr+1 and qr ≤ |Q′

r+1| − qr+1 + p. We make two observations.
First, Q′

r+1 is of length |Q′
r+1| ≥ qr + qr+1 − p, and it has distinct periods qr and qr+1.

The periodicity lemma (Fact 2.1) implies that p is a period of Q′
r+1, and thus also a period of

its prefix Qr+1. If p < qr+1, then Qr+1 = Qr+1[1. .p]qr+1/p, which contradicts the primitivity
of Qr+1. Second, Q′

r+1 is of length |Q′
r+1| ≥ qr + qr+1 − p ≥ qr. Since qr is a period of

QrQ′
r+1, we know that Qr is a prefix of Q′

r+1. Hence p is also a period of Qr. If p < qr,
then Qr = Qr[1. .p]qr/p, which contradicts the primitivity of Qr.

We have shown that gcd(qr, qr+1) ≥ max(qr, qr+1). This is only possible if gcd(qr, qr+1) =
qr = qr+1, which contradicts the assumption that qr ̸= qr+1. Therefore, the lemma holds. ◀

▶ Lemma 3.6. Let ⟨X, (Qi, ℓi, ui)t
i=1⟩ be an irreducible representation of an affine prefix

set A of a string of length n. Then it holds |A| =
∏t

i=1 ui and t ≤ log2 n.

Proof. Let E = {(ai)t
i=1 | ∀i ∈ [1, t] : ai ∈ [1, ui]} of cardinality |E| =

∏t
i=1 ui be the set of

exponent configurations admitted by the representation (where [1, ui] = [ℓi, ui] because the
representation is irreducible). Then A = {XQa1

1 Qa2
2 · · · Qat

t | (ai)t
i=1 ∈ E}. In order to show

|A| = |E|, it suffices to show that no two elements in E generate the same string.
For the sake of contradiction, assume that there are distinct sequences (ai)t

i=1, (bi)t
i=1 ∈ E

that generate the same string S = XQa1
1 Qa2

2 · · · Qat
t = XQb1

1 Qb2
2 · · · Qbt

t . Let r ∈ [1, t] be the
minimal index such that ar ̸= br, and assume w.l.o.g. that ar > br. Then S has the prefix
XQa1

1 · · · Q
ar−1
r−1 Qbr

r = XQb1
1 · · · Q

br−1
r−1 Qbr

r , and we can factorize the corresponding suffix in
two different ways as Qar−br

r Q
ar+1
r+1 · · · Qat

t = Q
br+1
r+1 · · · Qbt

t . However, the two factorizations
have different lengths |Qar−br

r Q
ar+1
r+1 · · · Qat

t | > |QrQr+1| > |Qur+1
r+1 · · · Qut

t | ≥ |Qbr+1
r+1 · · · Qbt

t |,
where the second inequality is due to Lemma 3.5. Because of this contradiction, there cannot
be distinct sequences (ai)t

i=1, (bi)t
i=1 ∈ E that define the same string.
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Finally, it holds ∀i ∈ [1, t] : ui ≥ 2 for any irreducible representation, and thus |A| =∏t
i=1 ui ≥ 2t. Since trivially |A| ≤ n, it follows 2t ≤ n or equivalently t ≤ log2 n. ◀

Transforming representations. Now we use the properties of flexible components to trans-
form an arbitrary representation into an irreducible one. We use the following operations.

▶ Lemma 3.7. Let ρ = ⟨X, (Qi, ℓi, ui)t
i=1⟩ be a representation of an affine prefix set A.

1. If there is r ∈ [1, t) such that Qr is flexible and Qr+1 is fixed, then let y = |Qℓr+1
r+1 | mod |Qr|.

A has representation

switchr(ρ) = ⟨X, (Qi, ℓi, ui)r−1
i=1 · (Qr+1, ℓr+1, ur+1) · (roty(Qr), ℓr, ur) · (Qi, ℓi, ui)t

i=r+2⟩.

2. If there is r ∈ [1, t) such that both Qr and Qr+1 are flexible and |Qr| ≤ |Qr+1|, then
Qr = Qr+1 and A has representation

merger(ρ) = ⟨X, (Qi, ℓi, ui)r−1
i=1 · (Qr, ℓr + ℓr+1, ur + ur+1) · (Qi, ℓi, ui)t

i=r+2⟩.

3. If there is r ∈ [1, t] such that ℓr > 1, then A has representation

splitr(ρ) = ⟨X, (Qi, ℓi, ui)r−1
i=1 · (Qr, ℓr − 1, ℓr − 1) · (Qr, 1, ur − ℓr + 1) · (Qi, ℓi, ui)t

i=r+1⟩.

4. If Q1 is fixed, then A has representation truncate(ρ) = ⟨XQℓ1
1 , (Qi+1, ℓi+1, ui+1)t−1

i=1⟩.

Proof. Statements (3) and (4) are trivial. For (2), if |Qr| ≤ |Qr+1| and both Qr and Qr+1
are flexible, then Lemma 3.5 implies Qr = Qr+1. Hence the statement follows.

Finally, we show that statement (1) holds. Assume that Qr is flexible and Qr+1 is fixed.
Then Lemma 3.4 implies that |Qr| is a period of QrQ

ℓr+1
r+1 , and thus Q

ℓr+1
r+1 = Qx

r Qr[1. .y]
with x = ⌊|Qℓr+1

r+1 |/|Qr|⌋ and y = |Qℓr+1
r+1 | mod |Qr|. (Either x or y might be zero, but this is

irrelevant for the proof.) Let P = Qr[1. .y] and S = Qr(y. .|Qr|]. Any rotation of a primitive
string is primitive, and hence roty(Qr) = SP is primitive. For any exponent a ∈ [ℓr, ur],
it holds Qa

rQ
ℓr+1
r+1 = (PS)a(PS)xP = (PS)xP (SP )a = Q

ℓr+1
r+1 (roty(Qr))a. Hence the stated

transformation does not change the represented affine prefix set. ◀

The leftmost (i.e., lowest index) fixed component Qr of a representation can either be
removed with truncate (if r = 1), or it can be moved further to the left with switchr−1 (if
r > 1). By repeatedly applying truncate and switch, we obtain the following lemma.

▶ Lemma 3.8. Let ρ = ⟨X, (Qi, ℓi, ui)t
i=1⟩ be a representation of an affine prefix set, and

let F = {j ∈ [1, t] | ℓj < uj} = {j1, . . . , j|F |} with j1 < j2 < · · · < j|F | be the indices of the
flexible components. Then the affine prefix set has a representation ⟨X̂, (Q̂ji

, ℓji
, uji

)|F |
i=1⟩

such that Q̂ji is a rotation of Qji for every i ∈ [1, |F |]. Both X̂ and all the Q̂ji are functions
of X, Q1, . . . , Qt, and ℓ1, . . . , ℓt, i.e., they are independent of u1, . . . , ut.

After applying Lemma 3.8, we repeatedly apply merge to remove all inversions. Then, we
apply split until all flexible components have exponent lower bound 1. This may result in
new fixed components, which we remove with Lemma 3.8, resulting in the following lemma.

▶ Lemma 3.9. An affine prefix set represented by ⟨X, (Qi, ℓi, ui)t
i=1⟩ has an irreducible

representation of order |L| ≤ t, where L = {|Qr| | r ∈ [1, t] : ℓr < ur}.
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3.2 Strongly affine representations
To analyze the intricate structure of repetitive fragments induced by affine prefix sets, it is
helpful to assume that periodicity extends slightly beyond the region in question. To this end,
we define a strongly affine representation of an affine prefix set of T , in which the exponent
upper bound of each (flexible) component can be increased by five and still yield an affine
prefix set of T . A supplementary drawing is provided in Figure 1b.

▶ Definition 3.10 (Strongly affine representations). A representation ρ = ⟨X, (Qi, ℓi, ui)t
i=1⟩

of an affine prefix set of a string T is strongly affine if and only if its periodic expansion
expand(ρ) = ⟨X, (Qi, ℓi, u′

i)t
i=1⟩ is also the representation of an affine prefix set of T , where u′

i,
i ∈ [1, t], is defined as follows: u′

i = ui if ui = ℓi and u′
i = ui + 5 otherwise.

▶ Definition 3.11 (Canonical representation). A representation of an affine prefix set is
canonical if and only if it is both strongly affine and irreducible.

It can be readily verified that, if ρ is strongly affine, then also truncate(ρ), splitr(ρ),
merger(ρ), and switchr(ρ) are strongly affine (for any r, assuming that the respective operation
is indeed applicable). We obtained Lemma 3.9 by applying a sequence of these operations,
and hence we have the following immediate corollary.

▶ Corollary 3.12. An affine prefix set with strongly affine representation ⟨X, (Qi, ℓi, ui)t
i=1⟩

has a canonical representation of order |L| ≤ t, where L = {|Qr| | r ∈ [1, t] : ℓr < ur}.

Whether a representation ρ of an affine prefix set A of T is strongly affine does not only
depend on ρ, it also depends on what T looks like beyond the end of the longest prefix
represented by ρ. Therefore, one cannot hope to transform an arbitrary representation into
an equivalent strongly affine representation. However, by “removing” the last five copies of
each component and treating them separately, we show that we can cover an affine prefix set
of order t with at most 6t canonical representations.

▶ Lemma 3.13. An affine prefix set of order t can be partitioned into at most 6t affine prefix
sets, each of which has a canonical representation of order at most t.

Proof. Let ⟨X, (Qi, ℓi, ui)t
i=1⟩ be a representation of an affine prefix set. We produce a set

of representations R = {⟨X, (Qi, ℓ′
i, u′

i)t
i=1⟩ | ∀r ∈ [1, t] : (ℓ′

r, u′
r) ∈ Br}, where ∀r ∈ [1, t], we

define Br = {(u, u) | u ∈ [max(ℓr, ur − 4), ur]}∪{(ℓr, max(ℓr, ur − 5))}. It is easy to see that
the affine sets generated by representations in R form a partition of the affine set generated
by ⟨X, (Qi, ℓi, ui)t

i=1⟩. By design, for any representation in R, and for any component Qr, we
know that Qr is either fixed, or it has exponent lower bound ℓr and exponent upper bound
ur − 5. Hence the instances in R are strongly affine, and it follows from Corollary 3.12 that
each of them has an equivalent canonical representation of order at most t. Finally, it holds
∀i ∈ [1, t] : |Bi| ≤ 6 and thus |R| =

∏t
i=1|Bi| ≤ 6t. ◀

By applying the technique from the proof above to the prefix-palindromes, i.e., to each of
the representations of order 1 produced by Lemma 3.2, we obtain the following result.

▶ Corollary 3.14. The set of prefix-palindromes of a string T [1. .n] can be partitioned into
O(log n) affine sets of order at most 1. Each set of order 1 has canonical representation
⟨U(V U)ℓ, (V U, 1, u)⟩ for some U ∈ PAL ∪ {ε}, V ∈ PAL and integers ℓ ≥ 1 and u > 1.

▶ Corollary 3.15. Let ⟨X, (Qi, ℓi, ui)t
i=1⟩ be a canonical representation of an affine prefix set.

Then it holds ∀r ∈ [1, t] : |Qr| >
∑t

j=r+1|Quj+4
j |.



G. Bathie, J. Ellert, and T. Starikovskaya 9:9

Q1

Q2

Q3 Q3

Q2

Q3 Q3

Q2

Q3 Q3 Q3 Q3

Q1

Q2

Q3 Q3

Q2

Q3 Q3

Q2

Q3 Q3 Q3 Q3

Q2

Q3 Q3

Q2

Q3 Q3

Q2

Q3 Q3 Q3 Q3

Q1

Q2 Q2

Q3

Q1 Q2 Q2 Q3 Q̂3 Q̂2 Q̂1S =

Q̂1

Q̂2

Q̂3Q̂3

Q̂2

Q̂3Q̂3

Q̂2

Q̂3Q̂3Q̂3Q̂3

Q̂1

Q̂2

Q̂3Q̂3

Q̂2

Q̂3Q̂3
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Q̂1
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Figure 2 Lemma 3.18 applied to an irreducible representation ⟨X, (Q1, 1, 2) · (Q2, 1, 3) · (Q3, 1, 2)⟩.
The drawing shows the longest prefix S = Q2

1Q3
2Q2

3 generated by the representation. By the lemma,
for any a1 ∈ [0, 2], a2 ∈ [0, 3] and a3 ∈ [0, 2], it holds S = Q2−a1

1 Q3−a2
2 Q2−a3

3 · Q̂a3
3 Q̂a2

2 Q̂a1
1 , where

each Q̂j is the length-|Qj | suffix of S. The drawing highlights the case where a1 = a2 = a3 = 1.

Proof. If ρ = ⟨X, (Qi, ℓi, ui)t
i=1⟩ is canonical, then clearly expand(ρ) = ⟨X, (Qi, ℓi, ui +5)t

i=1⟩
is irreducible. Thus, the statement follows from Lemma 3.5 applied to expand(ρ). ◀

▶ Lemma 3.16. Let ⟨X, (Qi, 1, ui)t
i=1⟩ be a canonical representation of an affine prefix set,

and let h ∈ [0, 5]. Then ⟨ε, (Qi, 1, ui + h)t
i=2⟩ is an irreducible representation of an affine

prefix set of the string Q2
1, and, if h < 5, also of the string Q1.

Proof. Consider any h ∈ [0, 5]. Due to the strong affinity, ⟨X, (Qi, 1, ui + h)t
i=1⟩ represents

an affine prefix set. Let (ai)t
i=2 be a sequence of exponents with ∀j ∈ [2, t] : aj ∈ [1, ui + h].

By Lemma 3.4, the string Q1Qa2
2 Qa3

3 · · · Qat
t has period |Q1|. Due to Lemma 3.5, it holds

|Qa2
2 Qa3

3 · · · Qat
t | < |Q1Q2| < |Q2

1|. Hence we have shown that Qa2
2 Qa3

3 · · · Qat
t is a prefix

of Q2
1, and ⟨ε, (Qi, 1, ui + h)t

i=2⟩ is a representation of an affine prefix set of Q2
1. Since

⟨X, (Qi, 1, ui)t
i=1⟩ is irreducible, it is easy to see that also ⟨ε, (Qi, 1, ui + h)t

i=2⟩ is irreducible.
If h < 5, then Lemma 3.5 invoked with ⟨X, (Qi, 1, ui + 5)t

i=1⟩ implies |Qa2
2 Qa3

3 · · · Qat
t | <

|Q1|, and ⟨ε, (Qi, 1, ui + h)t
i=2⟩ indeed only generates strings of length less than |Q1|. ◀

▶ Corollary 3.17. Let ⟨X, (Qi, 1, ui)t
i=1⟩ be a canonical representation of an affine prefix set.

Then ⟨ε, (Qi, 1, ui)t
i=2⟩ is a canonical representation of an affine prefix set of the string Q2

1.

Proof. By Lemma 3.16, ⟨ε, (Qi, 1, ui + 5)t
i=2⟩ is an irreducible representation of an affine

prefix set of Q2
1. Hence ⟨ε, (Qi, 1, ui)t

i=2⟩ is a canonical representation for Q2
1. ◀

3.3 Reversing the structure of affine prefix sets
We first show that a periodic fragment of T induced by an affine prefix set can be covered by
a combination of a forward and a “backward” affine prefix set (see Figure 2):

▶ Lemma 3.18. Let ⟨X, (Qi, 1, ui)t
i=1⟩ be an irreducible representation of an affine prefix

set, let S = Qu1
1 Qu2

2 · · · Qut
t , and for j ∈ [1, t] let Q̂j be the length-|Qj | suffix of S. For any

sequence (ai)t
i=1 with ∀j ∈ [1, t] : aj ∈ [0, uj ], it holds

S = Qu1−a1
1 Qu2−a2

2 · · · Qut−at
t · Q̂at

t Q̂
at−1
t−1 · · · Q̂a1

1 .
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Proof. If t = 1, then S = Qu1
1 = Q̂u1

1 = Qu1−a1
1 Q̂a1

1 . Inductively assume that the lemma
holds for representations of order t − 1. Now we show that it holds for representations of
order t. If ⟨X, (Qi, 1, ui)t

i=1⟩ is an irreducible representation of an affine prefix set, then
clearly ⟨XQu1

1 , (Qi, 1, ui)t
i=2⟩ is an irreducible representation of another affine prefix set. This

representation is of order t − 1, and hence the inductive assumption implies

S = Qu1
1 · Qu2−a2

2 Qu3−a3
3 · · · Qut−at

t · Q̂at
t Q̂

at−1
t−1 · · · Q̂a2

2 .

If a1 = 0, then there is nothing left to do. Hence assume a1 > 0. Since ⟨X, (Qi, 1, ui)t
i=1⟩ is

an irreducible representation, Lemma 3.4 implies that |Q1| and therefore also q = a1 · |Q1| is
a period of S. Hence S has a border of length s − q, where s = |S|, and it holds

S[1. .s − q] = S[1 + q. .s] = Qu1−a1
1 · Qu2−a2

2 Qu3−a3
3 · · · Qut−at

t · Q̂at
t Q̂

at−1
t−1 · · · Q̂a2

2 .

Finally, as mentioned before, S[s − q + 1. .s] of length q = a1 · |Q1| has period |Q1|. Hence
S[s − q + 1. .s] = (S[s − |Q1| + 1. .s])a1 = Q̂a1

1 , which concludes the proof. ◀

We now build on this characterization to convert irreducible representations of affine
prefix sets of S into irreducible representations of affine prefix sets of rev(S).

▶ Corollary 3.19. Let ⟨X, (Qi, 1, ui)t
i=1⟩ be a canonical representation of an affine prefix set,

let s =
∑t

i=2(ui + 1) · |Qi|, and for j ∈ [1, t] let Q̂j be the length-|Qj | suffix of rots(Q1). Then
⟨ε, (rev(Q̂i), 1, ui)t

i=2⟩ represents an affine prefix set of rev(rots(Q1)).

Proof. Consider any sequence (ai)t
i=2 of exponents admitted by the representation, i.e.,

∀j ∈ [2, t] : aj ∈ [1, uj ]. By Lemma 3.16, ⟨ε, (Qi, 1, ui + 1)t
i=2⟩ is an irreducible representation

of an affine prefix set of Q1, which implies Q1[1. .s] = Qu2+1
2 Qu3+1

3 · · · Qut+1
t . For this

representation, Lemma 3.18 implies that Q̂at
t Q̂

at−1
t−1 · · · Q̂a2

2 is a suffix of Q1[1. .s]. Thus, its
reversal rev(Q̂at

t Q̂
at−1
t−1 · · · Q̂a2

2 ) = rev(Q̂a2
2 )rev(Q̂a3

3 ) · · · rev(Q̂at
t ) is a prefix of rev(Q1[1. .s]),

which is a prefix of rev(rots(Q1)). ◀

4 Appending a Palindrome to an Affine Prefix Set

In this section, we show how to extend an affine prefix set A with a palindrome. This
amounts to computing the union of affine prefix sets where each new prefix is formed by
concatenating a prefix from A with a palindrome. We distinguish two cases, depending
on whether the appended palindrome lies within a periodic fragment of T . In either case,
we may temporarily overextend A, producing sets that are not affine prefix sets. We then
restore validity by truncating the sets using the lemma below. For a set of strings A, denote
A|m = {S ∈ A : |S| ≤ m}.

▶ Lemma 4.1. Let ⟨X, (Qi, ℓi, ui)t
i=1⟩ be a representation of an affine prefix set A. For

m ∈ N, we can express A′ = A|m as a union of at most t′ ≤ t affine prefix sets A′ =
⋃t′

j=1 Aj ,
each with a representation of order at most t.

Proof Sketch. The proof is by induction. For the base case t = 1, it is enough to reduce
the upper bound on the exponent of Q1. For t > 1, the proof proceeds by finding a minimal
exponent a1 ≥ ℓ1 such that |XQa1

1 Qu2
2 · · · Qut

t | > m. If a1 > u1, then A′ = A. Otherwise,
we assume w.l.o.g. that A is irreducible (see Lemma 3.9). It follows that we do not need
to consider prefixes generated with an exponent larger than a1 for Q1. We partition the
remaining prefixes into two sets, one of which can be further broken down using the inductive
hypothesis, reducing the problem to problems of smaller sizes until the result follows. ◀
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4.1 Appending a long palindrome
Assume that the affine prefix set to be extended is given in a canonical representation
⟨X, (Qi, 1, ui)t

i=1⟩. We first focus on appending long palindromes of length at least 2|Q1|,
and then we show that the shorter palindromes can be handled recursively. Note that, for
a canonical representation, T has a prefix XQu1+5

1 . At the same time, the longest prefix
in the affine set is of length less than XQu1+1

1 by Corollary 3.15. This leads us to a case
distinction based on the center of the palindrome to be appended. If the center is before
position |XQu1+3

1 |, then we can show that the entire palindrome is within the |Q1|-periodic
prefix of T [|X|+ 1. .n]. Otherwise, the left half of the palindrome contains position |XQu1+2

1 |,
and we can use this position as an anchor point for the extension.

4.1.1 Appending a long palindrome within a run of Q1

We now focus on the case where the long palindrome to be appended is entirely within the
|Q1|-periodic prefix of T [|X| + 1. .n]. We proceed in two steps. First (in Theorem 4.2), we
show how to append a palindrome under the assumption that the entire string has the form
XQx

1 for some integer x. Secondly (Corollary 4.3), we truncate the result of the first step so
that it corresponds to XQα

1 , where α ∈ Q is the largest value such that XQα
1 is a prefix of T .

▶ Theorem 4.2. Let ⟨X, (Qi, 1, ui)t
i=1⟩ be a canonical representation of an affine prefix set A.

Let s =
∑t

i=2(ui + 1) · |Qi|, and for j ∈ [1, t] let Q̂j be the length-|Qj | suffix of rots(Q1). If
rotr(Q1) = rev(Q1) for some r ∈ [s, s + |Q1|), then

⟨X · Q1 · Q1[1. .r − s], (rotr−s(Q1), 1, x) · (rev(Q̂i), 1, ui)t
i=2⟩ (1)

represents an affine prefix set A′ of XQx+3
1 , for any positive integer x. Furthermore:

1. If Y ′ ∈ A′, then there is a string Y ∈ A and a palindrome P such that Y ′ = Y P .
2. For Y ∈ A and P ∈ PAL, if |P | ≥ 2|Q1| and Y P is a prefix of XQx+1

1 , then Y P ∈ A′.

Proof Sketch. The keystone of the proof is Corollary 3.19 which implies that a string
Q′ = rev(Q̂2)a2rev(Q̂3)a3 · · · rev(Q̂t)at , where ∀j ∈ [2, t] : aj ∈ [1, uj ], is a prefix of

rev(rots(Q1)) = rot−s(rev(Q1)) = rot−s(rotr(Q1)) = rotr−s(Q1).

Using this fact, we first establish that a string XS′ generated by the canonical representation
in Equation (1) is a prefix of XQx+3

1 . Next, we show that S′ can be decomposed as SP ,
where XS ∈ A and P is a palindrome. It follows that P is a substring of a power of Q1,
and the condition rotr(Q1) = rev(Q1) ensures P is a palindrome. Finally, we conclude by
considering any string S ∈ A and a sufficiently long palindrome P such that SP is a prefix
of Qx+1

1 . Due to XS ∈ A, there is some sequence ∀j ∈ [1, t] : aj ∈ [1, uj ] of exponents such
that S = Qu1−a1+1

1 Qu2−a2+1
2 · · · Qut−at+1

t . From this and the fact that P is a palindrome, we
show that XSP fits the structure required for membership in A′, completing the proof. ◀

By combining Theorem 4.2 and Lemma 4.1, we obtain:

▶ Corollary 4.3. Let ⟨X, (Qi, 1, ui)t
i=1⟩ be a canonical representation of an affine prefix set A.

Let α ∈ Q be the largest possibly fractional exponent such that XQα
1 is a prefix of T , and

define S = {S · P : S · P is a prefix of XQα
1 , S ∈ A, P ∈ PAL, |P | ≥ 2|Q1|}. There are t′ ≤ t

affine prefix sets Bi, i ∈ [1, t′], each of order ≤ t, such that for B =
⋃t′

i=1 Bi we have S ⊆ B
and for every Y ′ ∈ B, there is a string Y ∈ A and a palindrome P such that Y ′ = Y P .

ISAAC 2025



9:12 Small Space Encoding and Recognition of k-Palindromic Prefixes

4.1.2 Appending a long palindrome outside a run of Q1

▶ Theorem 4.4. Let ⟨X, (Qi, 1, ui)t
i=1⟩ be a canonical representation of an affine prefix set A

and s =
∑t

i=2(ui + 1) · |Qi|. For j ∈ [1, t], let Q̂j be the length-|Qj | suffix of rots(Q1). For
any string P , ⟨X · Qu1+2

1 · P · rev(Q1)[1. .|Q1| − s], (rev(Q̂i), 1, ui)t
i=1⟩ represents an affine

prefix set A′ of the string X · Qu1+2
1 · P · rev(Qu1+2

1 ), where A′ = {SWP · rev(W ) | S ∈
A and SW = X · Qu1+2

1 }.

Proof Sketch. Let q = |Q1|. We can split the output representation into a concatenation

⟨X · Qu1+2
1 · P · rev(Q1)[1. .q − s], (rev(Q̂1), 1, u1)⟩ · ⟨ε, (rev(Q̂i), 1, ui)t

i=2⟩. (2)

We first apply Corollary 3.19 to deduce that Equation (2) represents an affine prefix set of the
string X ·Qu1+2

1 ·P ·rev(Qu1+2
1 ). Secondly, we show that every element in A contributes exactly

one element to A′, and hence |A′| = |A|. It thus suffices to show that any string generated by
Equation (2) is in A′. It then readily follows that Equation (2) generates exactly A′. To do
so, we consider any string S′ generated by Equation (2). Such a string must be of the form
S′ = XQu1+2

1 P · rev(W ), where rev(W ) = rev(Q1)[1. .q − s] · rev(Q̂1)a1rev(Q̂2)a2 · · · rev(Q̂t)at

for some exponents ∀i ∈ [1, t] : ai ∈ [1, ui]. By our previous observations, rev(W ) is a
prefix of rev(Q1)u1+2, and thus there is a unique string S such that SW = XQu1+2

1 and
S′ = SWP · rev(W ). It remains to be shown that S ∈ A, which then implies S′ ∈ A′. For
this purpose, we carefully analyze the length of S and show that a prefix of length |S| indeed
belongs to A, concluding the proof. ◀

For a fragment P = T [x. .y] of T , denote its center (x + y)/2 by cen(P ).

▶ Corollary 4.5. Let ⟨X, (Qi, 1, ui)t
i=1⟩ be a canonical representation of an affine prefix set A,

and consider the set of strings A′ = {S · P : S · P is a prefix of T, S ∈ A, P ∈ PAL, cen(P ) >

|XQu1+3
1 |}. There are t′ = O(t log n) affine prefix sets Bi, i ∈ [1, t′], each of order ≤ t + 1,

such that both of the following properties hold for B =
⋃t′

i=1 Bi:
1. A′ ⊆ B.
2. For every Y ′ ∈ B, there is a string Y ∈ A and a palindrome P such that Y ′ = Y P .

Proof Sketch. Consider any SP ∈ A′, where SP is a prefix of T , S ∈ A, P ∈ PAL,
cen(P ) > |XQu1+3

1 |. Due to S ∈ A, Corollary 3.15 implies |S| < |XQu1+1
1 |. Let P ′ = T [x. .y],

where x = 1 + |XQu1+2
1 | and y = 2 · cen(P ) − x. We claim that P ′ ∈ PAL. Indeed, the

starting position |S| + 1 of P is less than the starting position x of P ′, and the centers of P

and P ′ coincide with cen(P ) − x = y − cen(P ). We call P ′ the core palindrome of SP . Note
that every core palindrome is a prefix of T [x. .n] (which is independent of SP ). Therefore,
by Corollary 3.14, the set of core palindromes can be represented as the union of O(log n)
affine prefix sets. Let C be any of these sets. We now describe how to compute the part of
A′ that contains strings of the form SP = SWP ′ · rev(W ), where S ∈ A, P ∈ PAL, and the
core palindrome of SP is some P ′ ∈ C. The procedure depends on the representation of C,
which, by Corollary 3.14, is covered by one of the following cases. Let q = |Q1|.

Case 1: C is given in strongly affine representation ⟨U · (V U)ℓ, (V U, 1, u)⟩, where V U is
primitive and |V U | > q. In this case, we consider one fixed core palindrome in C and
apply Theorem 4.4 and Lemma 4.1 to obtain an affine prefix set generated by it. We then
show that the sets generated by other core palindromes have a similar representation,
which allows to union them and to obtain the final affine prefix set.

Case 2: C is given in representation ⟨P ′, ε⟩ of order 0, i.e., it contains a single core palin-
drome P ′. We proceed exactly like in Case 1, but with a single palindrome.



G. Bathie, J. Ellert, and T. Starikovskaya 9:13

Case 3: C has strongly affine representation ⟨U · (V U)ℓ, (V U, 1, u)⟩, where V U is primitive
and |V U | = q. For i ∈ [1, u], let Pi = U · (V U)ℓ+i. We show that, if A′ contains some
SP = S · W · Pi · rev(W ) = XQu1+2

1 Pi · rev(W ) with S ∈ A, then the entire SP can be
written as XQα

1 for some α ∈ Q. Hence we can simply apply Corollary 4.3 and obtain
that the affine prefix set generated by C is the union of at most t affine prefix sets of
order at most t.

Case 4: C has strongly affine representation ⟨U · (V U)ℓ, (V U, 1, u)⟩, where V U is primitive
and |V U | < q. We show that this case is impossible due to primitivity of Q1.

We call the created affine prefix sets Bi. There are O(log n) core palindrome sets, each
handled by a single case. Each case creates ≤ t representations of order ≤ t + 1. Hence,
there are O(t log n) affine prefix sets Bi in total, each of order ≤ t + 1 Furthermore, the four
cases cover all possibilities, and hence A′ ⊆ B =

⋃t′

i=1 Bi. The second property holds by
construction of the sets Bi. ◀

4.1.3 Appending all long palindromes and recursion
▶ Lemma 4.6. Let ⟨X, (Qi, 1, ui)t

i=1⟩ be a canonical representation of an affine prefix set A
and A′ = {S · P | S ∈ A, P ∈ PAL, |P | ≥ 2|Q1|, and S · P is a prefix of T}. There are
t′ = O(t log n) affine prefix sets Bi, 1 ≤ i ≤ t′, each of order ≤ t + 1, such that A′ ⊆ ∪t′

i=1Bi

and for each string S′ ∈ ∪t′

i=1Bi, there is a string S ∈ A and P ∈ PAL such that S′ = S · P .

Proof. We consider the sets from Corollaries 4.3 and 4.5, defined by

A1 = {S · P : S · P is a prefix of XQα
1 , S ∈ A, P ∈ PAL, |P | ≥ 2|Q1|} and

A2 = {S · P : S · P is a prefix of T, S ∈ A, P ∈ PAL, cen(P ) > |X| + (u1 + 3) · |Q1|},

where α is the largest (possibly fractional) exponent such that XQα
1 is a prefix of T . Due to

Corollaries 4.3 and 4.5, we can express (a superset of) A1 ∪ A2 as the union of O(t log n)
affine prefix sets, each of order ≤ t + 1, where every string in each of the prefix sets is the
concatenation of a string from A and a palindrome. It remains to be shown that A′ ⊆ A1 ∪A2.
For the sake of contradiction, assume that there is some string SP ∈ A′ \ (A1 ∪ A2), where
S ∈ A, P ∈ PAL and |P | ≥ 2|Q1|. Due to SP /∈ A1, SP is not a prefix of XQα

1 and hence
it must be longer than XQα

1 . Let m = |XQα
1 | − |S|. We show a lower bound on m. Since

the given representation is strongly affine, it holds α ≥ u1 + 5. It is also irreducible, and
hence Corollary 3.15 implies |S| < |XQu1+1

1 |. Therefore, it holds m > 4|Q1|. Note that P

does not have period |Q1|, but its length-m prefix, which is a suffix of Qα
1 , does. Hence, by

Lemma 2.3, it follows that P is of length over 2m − |Q1|, and therefore

cen(P ) ≥ |S| + |P |/2 > |S| + m − |Q1|/2 = |XQα
1 | − |Q1|/2 > |XQu1+4

1 |.

This implies SP ∈ A2, which contradicts the initial assumption. ◀

We have shown that appending palindromes of length at least 2|Q1| results in O(t log n)
affine prefix sets of order ≤ t+1. For appending shorter palindromes, we exploit properties of
strongly affine prefix sets that allow us to apply the previously described approach recursively.

▶ Lemma 4.7. Let ⟨X, (Qi, 1, ui)t
i=1⟩ be a canonical representation of an affine prefix set A

and A′ = {S · P : S · P is a prefix of T, S ∈ A, P ∈ PAL} a set of strings. Then A′ is a union
of O((t + 1)2 log n) affine prefix sets, each of order ≤ t + 1.

ISAAC 2025
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▶ Theorem 1.1. Let 0 < ϵ < 1 be constant, T [1. .n] a string, and k ∈ N+. The set of prefixes
of T that belong to PALk is the union of O(6k2/(2−ϵ) · logk n) affine prefix sets of order ≤ k.

Proof. We start with the empty affine prefix set representing PAL0. We proceed in k levels
k′ ∈ [0, k). The union of the affine prefix sets of level k′ is exactly the set of all k′-palindromic
prefixes of T . For each affine prefix set of the current level k′, we first apply Lemmas 3.9
and 3.13 to obtain at most 6k′ canonical representations of order ≤ k′. Then, for each
of the representations, we append a palindrome using Lemma 4.7, resulting in at most
c · (k′ + 1)2 log n affine prefix sets of order at most k′ + 1, which we move to level k′ + 1.
Here, c is a positive constant that depends on the precise complexity analysis of Lemma 4.7.
Hence, after processing level k − 1, the total number of affine prefix sets is bounded by∏k−1

k′=0(6k′ ·c · (k′ +1)2 log n) ≤ (k!)2 ·ck ·6(k2/2) · logk n. For all sufficiently large k (depending
only on ϵ and c), the bound simplifies to 6k2/(2−ϵ) · logk n. (And for the remaining values of
k, we have (k!)2 · ck · 6(k2/2) = O(1).) ◀

▶ Remark 4.8. Lemmas 3.9 and 3.13 only work with the lengths of the components in the
representations of affine prefix sets and the exponents bounds. Since all affine prefix sets
are of small order, it is not difficult to see that these lemmas can be implemented efficiently.
To implement Lemma 4.7, we make use of two procedures: The first one computes the
longest prefix of a string of form XQα, where ⟨X, (Qi, 1, ui)t

i=1⟩ is a representation of one
of the sets, and the second computes a representation of the set of prefix-palindromes of
a string. In the read-only model, both procedures can be implemented in O(n) time and
O(log n) space. Bounding the number of calls by the number of the generated affine prefix
sets, we finally obtain Theorem 1.3. The algorithm of Theorem 1.3 can then be used to test
if the palindromic length of T is at most k by checking whether T is a k-palindromic prefix,
however, to achieve even better complexity, we run two copies of the algorithm, one from the
left and the other from the right, and then combine their results to obtain Theorem 1.4.

References
1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. If the current clique

algorithms are optimal, so is Valiant’s parser. SIAM J. Comput., 47(6):2527–2555, 2018.
doi:10.1137/16M1061771.

2 Rajeev Alur and P. Madhusudan. Visibly pushdown languages. In STOC, pages 202–211,
2004. doi:10.1145/1007352.1007390.

3 Amihood Amir and Benny Porat. Approximate on-line palindrome recognition, and applications.
In CPM, pages 21–29, 2014. doi:10.1007/978-3-319-07566-2_3.

4 Ajesh Babu, Nutan Limaye, Jaikumar Radhakrishnan, and Girish Varma. Streaming algorithms
for language recognition problems. Theor. Comput. Sci., 494:13–23, 2013. doi:10.1016/J.
TCS.2012.12.028.

5 Gabriel Bathie, Jonas Ellert, and Tatiana Starikovskaya. Small space encoding and recognition
of k-palindromic prefixes. CoRR, abs/2410.03309, 2024. doi:10.48550/arXiv.2410.03309.

6 Gabriel Bathie, Tomasz Kociumaka, and Tatiana Starikovskaya. Small-space algorithms for
the online language distance problem for palindromes and squares. In ISAAC, pages 10:1–10:17,
2023. doi:10.4230/LIPICS.ISAAC.2023.10.

7 Gabriel Bathie and Tatiana Starikovskaya. Property testing of regular languages with ap-
plications to streaming property testing of visibly pushdown languages. In ICALP, pages
119:1–119:17, 2021. doi:10.4230/LIPICS.ICALP.2021.119.

8 Petra Berenbrink, Funda Ergün, Frederik Mallmann-Trenn, and Erfan Sadeqi Azer. Palindrome
recognition in the streaming model. In STACS, pages 149–161, 2014. doi:10.4230/LIPICS.
STACS.2014.149.

https://doi.org/10.1137/16M1061771
https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1007/978-3-319-07566-2_3
https://doi.org/10.1016/J.TCS.2012.12.028
https://doi.org/10.1016/J.TCS.2012.12.028
https://doi.org/10.48550/arXiv.2410.03309
https://doi.org/10.4230/LIPICS.ISAAC.2023.10
https://doi.org/10.4230/LIPICS.ICALP.2021.119
https://doi.org/10.4230/LIPICS.STACS.2014.149
https://doi.org/10.4230/LIPICS.STACS.2014.149


G. Bathie, J. Ellert, and T. Starikovskaya 9:15

9 Allan Borodin and Stephen A. Cook. A time-space tradeoff for sorting on a general sequential
model of computation. In STOC, pages 294–301, 1980. doi:10.1145/800141.804677.

10 Kirill Borozdin, Dmitry Kosolobov, Mikhail Rubinchik, and Arseny M. Shur. Palindromic
length in linear time. In CPM, pages 23:1–23:12, 2017. doi:10.4230/LIPIcs.CPM.2017.23.

11 Bartlomiej Dudek, Pawel Gawrychowski, Garance Gourdel, and Tatiana Starikovskaya. Stream-
ing regular expression membership and pattern matching. In SODA, pages 670–694, 2022.
doi:10.1137/1.9781611977073.30.

12 Gabriele Fici, Travis Gagie, Juha Kärkkäinen, and Dominik Kempa. A subquadratic algorithm
for minimum palindromic factorization. J. Discrete Algorithms, 28:41–48, 2014. doi:10.1016/
J.JDA.2014.08.001.

13 Nathan Fine and Herbert Wilf. Uniqueness theorems for periodic functions. Proceedings of
the American Mathematical Society, 16(1):109–114, 1965. doi:10.2307/2034009.

14 Nathanaël François, Frédéric Magniez, Michel de Rougemont, and Olivier Serre. Streaming
property testing of visibly pushdown languages. In ESA, pages 43:1–43:17, 2016. doi:
10.4230/LIPICS.ESA.2016.43.

15 Michael L. Fredman and Dan E. Willard. BLASTING through the information theoretic
barrier with FUSION TREES. In STOC, pages 1–7, 1990. doi:10.1145/100216.100217.

16 Zvi Galil. On converting on-line algorithms into real-time and on real-time algorithms
for string-matching and palindrome recognition. SIGACT News, 7(4):26–30, 1975. doi:
10.1145/990502.990505.

17 Zvi Galil and Joel I. Seiferas. A linear-time on-line recognition algorithm for "palstar". J.
ACM, 25(1):102–111, 1978. doi:10.1145/322047.322056.

18 Moses Ganardi. Visibly pushdown languages over sliding windows. In STACS, pages 29:1–29:17,
2019. doi:10.4230/LIPICS.STACS.2019.29.

19 Moses Ganardi, Danny Hucke, Daniel König, Markus Lohrey, and Konstantinos Mamouras.
Automata theory on sliding windows. In STACS, pages 31:1–31:14, 2018. doi:10.4230/
LIPICS.STACS.2018.31.

20 Moses Ganardi, Danny Hucke, and Markus Lohrey. Querying regular languages over sliding
windows. In FSTTCS, pages 18:1–18:14, 2016. doi:10.4230/LIPICS.FSTTCS.2016.18.

21 Moses Ganardi, Danny Hucke, and Markus Lohrey. Randomized sliding window algorithms for
regular languages. In ICALP, pages 127:1–127:13, 2018. doi:10.4230/LIPICS.ICALP.2018.
127.

22 Moses Ganardi, Danny Hucke, Markus Lohrey, and Tatiana Starikovskaya. Sliding window
property testing for regular languages. In ISAAC, pages 6:1–6:13, 2019. doi:10.4230/LIPICS.
ISAAC.2019.6.

23 Moses Ganardi, Artur Jez, and Markus Lohrey. Sliding windows over context-free languages.
In MFCS, pages 15:1–15:15, 2018. doi:10.4230/LIPICS.MFCS.2018.15.

24 Pawel Gawrychowski, Oleg Merkurev, Arseny M. Shur, and Przemyslaw Uznanski. Tight trade-
offs for real-time approximation of longest palindromes in streams. Algorithmica, 81(9):3630–
3654, 2019. doi:10.1007/S00453-019-00591-8.

25 Tomohiro I, Shiho Sugimoto, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. Com-
puting palindromic factorizations and palindromic covers on-line. In CPM, pages 150–161,
2014. doi:10.1007/978-3-319-07566-2_16.

26 Rahul Jain and Ashwin Nayak. The space complexity of recognizing well-parenthesized
expressions in the streaming model: The index function revisited. IEEE Trans. Inf. Theory,
60(10):6646–6668, 2014. doi:10.1109/TIT.2014.2339859.

27 Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast pattern matching in
strings. SIAM J. Comput., 6(2):323–350, 1977. doi:10.1137/0206024.

28 Tomasz Kociumaka, Tatiana Starikovskaya, and Hjalte Wedel Vildhøj. Sublinear space
algorithms for the longest common substring problem. In ESA, pages 605–617, 2014. doi:
10.1007/978-3-662-44777-2_50.

ISAAC 2025

https://doi.org/10.1145/800141.804677
https://doi.org/10.4230/LIPIcs.CPM.2017.23
https://doi.org/10.1137/1.9781611977073.30
https://doi.org/10.1016/J.JDA.2014.08.001
https://doi.org/10.1016/J.JDA.2014.08.001
https://doi.org/10.2307/2034009
https://doi.org/10.4230/LIPICS.ESA.2016.43
https://doi.org/10.4230/LIPICS.ESA.2016.43
https://doi.org/10.1145/100216.100217
https://doi.org/10.1145/990502.990505
https://doi.org/10.1145/990502.990505
https://doi.org/10.1145/322047.322056
https://doi.org/10.4230/LIPICS.STACS.2019.29
https://doi.org/10.4230/LIPICS.STACS.2018.31
https://doi.org/10.4230/LIPICS.STACS.2018.31
https://doi.org/10.4230/LIPICS.FSTTCS.2016.18
https://doi.org/10.4230/LIPICS.ICALP.2018.127
https://doi.org/10.4230/LIPICS.ICALP.2018.127
https://doi.org/10.4230/LIPICS.ISAAC.2019.6
https://doi.org/10.4230/LIPICS.ISAAC.2019.6
https://doi.org/10.4230/LIPICS.MFCS.2018.15
https://doi.org/10.1007/S00453-019-00591-8
https://doi.org/10.1007/978-3-319-07566-2_16
https://doi.org/10.1109/TIT.2014.2339859
https://doi.org/10.1137/0206024
https://doi.org/10.1007/978-3-662-44777-2_50
https://doi.org/10.1007/978-3-662-44777-2_50


9:16 Small Space Encoding and Recognition of k-Palindromic Prefixes

29 Dmitry Kosolobov, Mikhail Rubinchik, and Arseny M. Shur. Palk is linear recognizable online.
In SOFSEM, pages 289–301, 2015. doi:10.1007/978-3-662-46078-8_24.

30 Andreas Krebs, Nutan Limaye, and Srikanth Srinivasan. Streaming algorithms for rec-
ognizing nearly well-parenthesized expressions. In MFCS, pages 412–423, 2011. doi:
10.1007/978-3-642-22993-0_38.

31 Frédéric Magniez, Claire Mathieu, and Ashwin Nayak. Recognizing well-parenthesized
expressions in the streaming model. SIAM J. Comput., 43(6):1880–1905, 2014. doi:
10.1137/130926122.

32 Glenn K. Manacher. A new linear-time “on-line” algorithm for finding the smallest initial
palindrome of a string. J. ACM, 22(3):346–351, 1975. doi:10.1145/321892.321896.

33 Mikhail Rubinchik and Arseny M. Shur. EERTREE: an efficient data structure for processing
palindromes in strings. Eur. J. Comb., 68:249–265, 2018. doi:10.1016/J.EJC.2017.07.021.

34 Mikhail Rubinchik and Arseny M. Shur. Palindromic k-factorization in pure linear time. In
MFCS, pages 81:1–81:14, 2020. doi:10.4230/LIPICS.MFCS.2020.81.

35 Anatol O. Slisenko. A simplified proof of the real-time recognizability of palindromes on
Turing machines. J. Sov. Math., 15:68–77, 1981. doi:10.1007/BF01404109.

https://doi.org/10.1007/978-3-662-46078-8_24
https://doi.org/10.1007/978-3-642-22993-0_38
https://doi.org/10.1007/978-3-642-22993-0_38
https://doi.org/10.1137/130926122
https://doi.org/10.1137/130926122
https://doi.org/10.1145/321892.321896
https://doi.org/10.1016/J.EJC.2017.07.021
https://doi.org/10.4230/LIPICS.MFCS.2020.81
https://doi.org/10.1007/BF01404109

	1 Introduction
	2 Preliminaries
	3 Combinatorial Properties of Affine Prefix Sets
	3.1 Reducing affine prefix sets
	3.2 Strongly affine representations
	3.3 Reversing the structure of affine prefix sets

	4 Appending a Palindrome to an Affine Prefix Set
	4.1 Appending a long palindrome
	4.1.1 Appending a long palindrome within a run of Q_1
	4.1.2 Appending a long palindrome outside a run of Q_1
	4.1.3 Appending all long palindromes and recursion



