
Using a WCET Analysis Tool in Real-Time Systems Education

Samuel Petersson∗�, Andreas Ermedahl∗�, Anders Pettersson∗, Daniel Sundmark∗, and Niklas Holsti†
∗Dept. of Computer Science and Electronics

Mälardalen University, S-72123 Västerås, Sweden
spn99007@student.mdh.se, andreas.ermedahl@mdh.se

anders.petterson@mdh.se, daniel.sundmark@mdh.se

†Tidorum Ltd
Tiirasaarentie 32

FI-00200 Helsinki, Finland
niklas.holsti@tidorum.fi

Abstract

To reach a more widespread use, WCET analysis tools
need to be a standard part in the education of embedded
systems developers. Many real-time courses in academia
use Lego Mindstorms, an off-the-shelf kit of Lego bricks
for building and controlling small prototype robots. We
describe work on porting the Bound-T WCET analysis
tool to the Lego Mindstorms microprocessor; the Renesas
H8/3292. We believe that this work will make students, and
indirectly the industry of tomorrow, aware of the benefits of
WCET analysis tools.

We also present the real-time laboratory framework in
which this WCET analysis tool will be used. The frame-
work has been developed with schedulability and timing
predictability in mind, and is already used in a number of
real-time courses given at Mälardalen University in Swe-
den. The developed WCET tool and the real-time labora-
tory framework will be freely available for academic use.

1 Introduction

Today, tools for static Worst-Case Execution Time
(WCET) analysis, such as Bound-T [4] and aiT [1], are
starting to be used in embedded system development and
timing verification [9, 10, 14, 15, 18]. We believe that such
tools have a potential to be part of the embedded real-time
developer’s tool chest, in the same way as profilers, hard-
ware emulators, compilers, and source-code debuggers al-
ready are today. By providing easier verification of tim-
ing behavior they should provide improvements in product
quality and safety, as well as reduced development time.

Unfortunately, too few embedded system developers are
yet aware of WCET analysis tools and the functionality they

� This research has been supported by the Advanced Software Tech-
nology Center (ASTEC) in Uppsala [2]. ASTEC is a Vinnova (Swedish
Agency for Innovation Systems) initiative [19].

offer. This article describes an attempt to improve this sit-
uation. We are currently porting an existing WCET analy-
sis tool, Bound-T, to the Renesas H8/3292 microprocessor.
This microprocessor is used in Lego Mindstorms [11], an
off-the-shelf kit of Lego bricks for building and controlling
small prototype robots. This kit is used in many real-time
courses in academia. Thereby static WCET analysis could
be regularly used in the education of the embedded system
developers of tomorrow.

However, for achieving system predictability and to
make best use of calculated WCET estimates, the complete
system needs to be developed with timing predictability in
mind. To make students aware of this fact, the developed
WCET analysis tool will be used in a real-time laboratory
framework targeting such system predictability. This frame-
work is already used in a number of real-time courses given
at Mälardalen University in Sweden. It consists of a small
real-time micro-kernel and an operating system called As-
terix [16], a configuration tool called Obelix, and a GNU
GCC cross-compiler for the H8/3292.

Both the WCET analysis tool and the real-time labora-
tory framework will be freely available for academic use.
This should provide a valuable foundation for teaching stu-
dents how to construct better and safer real-time systems.

2 WCET Analysis for Mindstorms

Lego Mindstorms is an off-the-shelf kit of Lego bricks
for building and controlling small prototype robots. The
simplicity in the design of Lego Mindstorms makes it suit-
able for educational purposes in ages from 12 years and up.
Out of the box, the Mindstorms kit is not considered to be
a platform for real-time systems. However, the set of Lego
bricks includes sensors and actuators such as pressure sen-
sors, a light sensor and small motors, i.e., the fundamental
necessities for real-time systems. Also, the sparse hardware
resources and few interfaces for hardware access places the
Mindstorms construction in the embedded system category.

The RCX, illustrated in Figure 1, is the processing unit

Proceedings of the 5th Intl Workshop on Worst-Case Execution Time (WCET) Analysis Page 29 of 49

ECRTS 2005
5th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2007/812



Figure 1. The Lego Mindstorms RCX unit

of Lego Mindstorms. The RCX is based on the single-chip
H8/3292 [8], a RISC microcomputer running at 16 MHz. It
features a H8/300 CPU core and a complement of on-chip
supporting modules. The H8/3292 has 16 kBytes of read-
only memory (ROM) and 512 bytes of on-chip random-
access memory (RAM) and an additional 16 kBytes of ex-
ternal RAM in a separate circuit. The ROM includes sev-
eral functions for reading of sensors, controlling the motors,
display segments and numbers on a LCD-display. Located
on-chip are one 16-bit timer, two 8-bit timers, a watchdog-
timer, a serial communication interface and an 8-channel
10-bit analog-digital converter. The RCX also contains an
IR-transceiver, useful for downloading programs and for
communicating with other RCX units.

2.1 H8/300 Hardware Timing

Instructions in the H8/300 architecture generally have
a fixed execution time, the exception being the EEPMOV
instruction that copies a block of data in memory. There
is no cache (at least not on-chip) and no visible pipeline.
The fastest instructions take two clock cycles; for example
an ADD.B or ADD.W executed from the on-chip memory
using register operands. Complex instructions that access
external memory may have execution times of 20 or more
cycles, depending on the length of the instruction, the ad-
dressing mode, the data width and the memory areas that
are accessed. The time does not depend on execution his-
tory. Two instructions, MOVFPE and MOVTPE, synchronize
with the ”peripheral” clock and have somewhat variable ex-
ecution time.

The simple instruction timing means that the high-level
flow-path analysis becomes the main problem in WCET
analysis for Lego Mindstorms. We chose the Bound-T
WCET tool [4] as the basis for our work because its low-

�������
	
����

������
����

	
���
���

�������

��� ������ �����	�����

������	�����

Figure 2. The Bound-T WCET analysis tool

level analysis is sufficient for the H8/300, it has a fairly
powerful high-level analysis, and its modular structure let
us divide the porting work between the WCET analysis
group at Mälardalen University and the company behind
Bound-T, Tidorum Ltd [4].

2.2 The Bound-T WCET Analysis Tool

Bound-T, see Figure 2, performs WCET analysis from
machine code (binary, linked executables). To find loop
bounds Bound-T models the computations and branch con-
ditions with Presburger arithmetic. Bound-T examines the
model to find loop-counter variables and computes a bound
on loop iterations from the counter’s initial value, its final
value implied by the exit condition, and its change (step) in
the loop body.

Loop bounds can be context-sensitive, i.e., dependent on
the call-path. The Presburger model is used also to resolve
dynamic jumps, for example from switch/case statements,
and to compute stack usage bounds. The worst-case path is
found with implicit path enumeration (IPET).

Bound-T is implemented as a single Ada program with a
strict division into modules specific to the target processor
(e.g., instruction decoding) and modules independent of the
target processor (e.g., analysis of loop bounds). For Pres-
burger analysis Bound-T uses the Omega Calculator [13].
For IPET the lp solve program [3] is used. Control-flow and
call graphs can be emitted in DOT form [6]. The automatic
loop analysis can be supported or replaced by user asser-
tions in a separate input file (not as source annotations).

Target processors supported by Bound-T include Intel
8051 [9], SPARC V7 (in its ERC32 implementation) and
Analog Devices 21020 DSP [10]. Ports to ATMEL AVR
and ARM7 are under way.

2.3 Porting Bound-T to the H8/300

Bound-T is based on an internal model of the target pro-
gram as a set of control-flow graphs (one for each subpro-
gram) connected into a call-graph. The flow-graph nodes
have attributes for the execution time and the arithmetic
(computational) effect of the node. The structure of the
program model is independent of the target processor but
the model is parameterized by target-specific types and op-
erations that are defined in target-specific Ada packages.

Proceedings of the 5th Intl Workshop on Worst-Case Execution Time (WCET) Analysis Page 30 of 49



��������
���
������
���
�����

�����
�
������
����

����
�
���
��
������
����

�����
����
�����
��

������
����

������

�������	�������

�����	���������
�����������������
���

 �!�"�����
�����	������������#���

���������
���
���� ���
�����

!!!


��"

��������#

������
����

����������	
	������
��	
	�������
����	������	�
		����������	
	�����
		�������	����	�
				 ��!���		
	����	""#�$%��	�%��
				�&&���					
	��
				�������			
	���
				'�������			
	���
				�� �						
	���
				�������				
	�����$�(�%)��
				�*������		
	+�,	�,	-+�
				�����������
	������$$�$�(�%)��.�
		�������	����	�
				 ��!���		
	���	""#�$%��	�%��
				�&&���					
	��
				�������			
	���
				'�������			
	���
				�� �						
	���
				�������				
	�����$�(�%)��.�
		��&�����	/���	�
				 ��!���		
	/%0���	""�$%00�$
				�&&���					
	��
				�������			
	���
				'�������			
	���
				�� �						
	���
				�������				
	/����$�(�%)��.�
		��*��	/%0��	�
				����							
	�����
				����							
	/����.�
		���'����	/����	�
				����							
	�����
				����							
	�����.�
.�

1%)23(��	4�/�5�$)6�7
1%)23(��	4/8/�/#�26�7
9�%�	�����$�(�%)�:9�%�	;%0)�$�<
�
					0�����=#��$�:	/����	<�
					�(�#(�� �:	2�()��$�	<�
					2�()��$�>>�
					$�3�=/����=#��$�:	/����	<�
					%?:	2�()��$�	7	-�	<�
									0�����=#��$�:	/����	<�
									2�()��$�	
	��
									$�3�=/����=#��$�:	/����	<�
					.
.

 	!�������������
�����
��

 �!������������������

Figure 3. The real-time laboratory framework

To port Bound-T to a new target processor, one must
implement these target-specific types and operations. The
main operation is the one that decodes instructions and in-
serts them in the program model. This operation is given
the address of an instruction and must ”fetch” the binary in-
struction from the program’s memory image (a COFF file
from GCC in our case), decode the instruction to find out
the instruction type and the operands, and call Bound-T op-
erations that create new nodes and edges in the control-flow
graph.

The porting of the H8/300 to Bound-T took about five
months and was performed by the first author, Samuel Pe-
tersson, as an MSc project in his computer science stud-
ies [12]. The instruction decoding process was divided into
two steps: first from the binary instruction to an ”abstract”
instruction, and then from the abstract instruction to the
Bound-T model. The abstract instruction is a model of the
H8/300 architecture built from Ada types. This model de-
pends only on the H8/300, not on Bound-T.

The decoding from binary instructions to abstract in-
structions included a lot of processor manual reading. It
was a considerable job because there are 57 different in-
structions which can execute in eight different addressing
modes. Furthermore, no instructions allow all the address-
ing modes.

The next step was the conversion of abstract instructions
to the Bound-T model. This included creation of flow-graph
nodes with timing information and arithmetic effects of the
included instructions. The decoding process expands the

(abstract) EEPMOV instruction into three flow-graph nodes
that model the block-copy loop. Bound-T’s usual loop-
bound analysis applies here. For the MOVFPE and MOVTPE
instructions we assume the worst-case execution time.

The first version of Bound-T for the H8/300 supports the
H8/3297 chip series (which includes the 3292). Tidorum
plans to support other H8/300 chips and perhaps other mem-
bers of the H8 family such as the 32-bit H8/300H processor.

3 Mindstorms in RT Systems Education

The Bound-T tool will be used in a real-time laboratory
framework, see Figure 3(a), developed at Mälardalen Uni-
versity. The framework replaces the software architecture
and programming environment that are delivered together
with the Lego Mindstorms kit. It consists of a small real-
time micro-kernel and operating system called Asterix [16],
a configuration tool called Obelix, and a GNU GCC cross-
compiler for the H8/3292.

3.1 Asterix - the Real-Time Kernel

The Asterix real-time kernel handles execution strategies
ranging from strictly statically scheduled systems via fixed
priority scheduled systems to event-triggered systems, or
any combination of these. To fulfill the needs for embedded
systems we have minimized the kernel and the application
memory footprints.

A built-in monitoring function facilitates the use of state-
of-the-art testing and debugging tools like deterministic
testing, replay debugging, and visualization [17]. The ker-
nel also provides on-line facilities for measuring execu-
tion times (via testing). For every system reconfiguration
the kernel must be recompiled, leading to an efficient us-
age of memory and other limited resources. Task proper-
ties (e.g., deadline, priority, offset) are defined outside the
source code in an Obelix configuration file.

3.2 Obelix - the System Configuration Tool

The Obelix system configuration tool allows static off-
line definition of system resource demands. The de-
mands are set in a configuration file separated from the
source code, clearly separating the system functionality
from the system configuration and requirements. Further-
more, Obelix allows cleaner source code in the sense that
no special tags and system calls are needed for initialisa-
tion and system set up. This gives the possibility of moving
the code to the target development environment after testing
without modifications.

The configuration files include descriptions of all neces-
sary resource requirements as well as configuration infor-
mation for e.g., the task schedule, synchronization of tasks,
inter-task communication and inter-node communication.

Proceedings of the 5th Intl Workshop on Worst-Case Execution Time (WCET) Analysis Page 31 of 49



In addition, the configuration files contain all necessary in-
formation of task attributes and time resolution. Examples
of a configuration file and implemented task functionality
are depicted in Figure 3(b) and Figure 3(c) respectively.

3.3 The Real-Time System Student Assignments

On a yearly basis, the laboratory framework is used
in two real-time courses (a regular course and a distance
course) given at Mälardalen University. For each course,
two student assignments are given: a preparatory assign-
ment and a robot project. Because of the straightforward
programming (basic C-programming) the preparatory as-
signments are easily done in a few hours, giving the pro-
gramming knowledge required for the subsequent robot
project. Since the start approximately 500 students have
performed 200 robot projects using Lego Mindstorms and
Asterix.

Due to the separation of functionality and configuration
in the Asterix framework, the students may implement their
application in a late stage, and focus more on the theoretical
aspects of designing a robust real-time system (e.g., tim-
ing analysis, scheduling, etc.). Furthermore, the simplic-
ity of configuring and programming leaves room for proper
software design. However, students have previously expe-
rienced difficulties to estimate proper execution times by
measurements. By instead using Bound-T for this purpose,
we believe that the students will be able to derive more ac-
curate timing bounds.

In order to perform response-time analysis and to derive
overall system timing guarantees the students need WCET
bounds both for tasks and for OS services. To simplify the
assignment, WCET bounds for all OS calls will be derived
beforehand, and presented in an off-line table. However, the
students will be required to use Bound-T to derive WCET
bounds for their own robot application task code.

4 Conclusions, Related and Future Work

We have described work on porting the Bound-T WCET
analysis tool to the Lego Mindstorms and the H8/3292 mi-
croprocessor. The tool will initially be used in assignments
in real-time systems courses given at Mälardalen Univer-
sity. This should allow students to get familiar with WCET
analysis and should provide valuable feedback on the func-
tionality required for WCET tools to be applicable in real-
time system development. The developed WCET tool and
the real-time laboratory framework will be freely available
for academia and under license for industry.

An alternative OS for Lego Mindstorms, and the de-
veloped WCET analysis tool, is BrickOS from Source-
forge [5]. BrickOS supports preemptive multitasking, dy-
namic memory management, POSIX semaphores, as well

as native to display, buttons, IR communication, motors and
sensors. However, compared to Asterix, BrickOS is not a
hard real-time OS, making it more difficult to provide over-
all system timing guarantees.

The H8/300 has previously been ported to the Heptane
WCET tool [7] and the BrickOS. However, we have not
seen any reports on using the tool in education.

Future work includes a systematic validation of the de-
veloped Bound-T H8/300 timing model using measurement
tools such as oscilloscopes and logic analyzers. This will
minimize the possibility of implementation faults and ver-
ify that the timing given in the H8/300 processor manual [8]
actually corresponds to the real hardware timing.

References

[1] AbsInt company homepage, 2005. www.absint.com.

[2] ASTEC homepage, 2005. www.astec.uu.se.

[3] M. Berkelaar. lp solve: (Mixed Integer) Linear Programming Prob-
lem Solver, 2004. ftp://ftp.es.ele.tue.nl/pub/lp solve.

[4] Bound-T tool homepage, 2005. www.tidorum.fi/bound-t/.

[5] BrickOS homepage, 2005. brickos.sourceforge.net.

[6] Homepage for the Graphviz tool, Aug 1997. www.graphviz.org.

[7] Homepage for the Heptane WCET analysis tool, 2005.
www.irisa.fr/aces/work/heptane-demo/heptane.html.

[8] Hitachi. Hitachi Single-Chip Microcomputer H8/3297 series. Hard-
ware manual, 3rd edition, 2000.

[9] N. Holsti, T. Långbacka, and S. Saarinen. Using a Worst-Case
Execution-Time Tool for Real-Time Verification of the DEBIE soft-
ware. In Proc. of the DASIA 2000 Conference (Data Systems in
Aerospace 2000, ESA SP-457), Sep 2000.

[10] N. Holsti, T. Långbacka, and S. Saarinen. Worst-Case Execution-
Time Analysis for Digital Signal Processors. In Proc. of the EU-
SIPCO 2000 Conference (X European Signal Processing Confer-
ence), Sep 2000.

[11] Lego Mindstorms homepage, 2005.
www.legomindstorms.com.

[12] S. Petersson. Porting the Bound-T WCET tool to Lego Mindstorms
and the Asterix RTOS. Master’s thesis, Mälardalens University,
Västerås, Sweden, May 2005.

[13] William Pugh. The Omega test: a Fast and Practical Integer Pro-
gramming Algorithm for Dependence Analysis. In Supercomputing,
pages 4–13, 1991.

[14] S. Byhlin, A. Ermedahl, J. Gustafsson, B. Lisper. Applying Static
WCET Analysis to Automotive Communication Software. In Proc.
17th Euromicro Conference of Real-Time Systems, (ECRTS’05), July
2005.

[15] D. Sandell, A. Ermedahl, J. Gustafsson, and B. Lisper. Static Timing
Analysis of Real-Time Operating System Code. In Proc. 1st Inter-
national Symposium on Leveraging Applications of Formal Methods
(ISOLA’04), Oct 2004.

[16] H. Thane, A. Pettersson, and D. Sundmark. The Asterix Real-Time
Kernel. In Proc. 13th Euromicro Conference of Real-Time Systems,
(ECRTS’01), June 2001.

[17] Henrik Thane. Monitoring, Testing and Debugging of Distributed
Real-Time Systems. PhD thesis, Royal Institute of Technology,
Stockholm, May 2000.

[18] S. Thesing. Safe and Precise WCET Determination by Abstract In-
terpretation of Pipeline Models. PhD thesis, Saarland University,
2004.

[19] Vinnova homepage, 2005. www.vinnova.se.

Proceedings of the 5th Intl Workshop on Worst-Case Execution Time (WCET) Analysis Page 32 of 49




