
An Introduction to the Tool Ticc?

Luca de Alfaro1, Marco Faella2, and Axel Legay3

1 Department of Computer Engineering, Universitity of California, Santa Cruz, USA
2 Dipartimento di Scienze Fisiche, Università di Napoli “Federico II”, Italy

3 Department of Computer Science, University of Liège, Belgium

Abstract. This paper is a tutorial introduction to the sociable interface model of
[12] and its underlying tool TICC [1]. The paper starts with a survey of the theory
of interfaces and then introduces the sociable interface model that is a game-based
model with rich communication primitives to facilitate the modeling of software
and distributed systems. The model and its main features are then intensivelly
discussed and illustrated using the tool TICC.

1 Introduction

The prevalent trend in software and system engineering is towards component-based
design: systems are designed by combining small components into bigger ones. Com-
ponents offer thus the unit in which complex design problems can be decomposed,
allowing the reduction of a single complex design problem into smaller design prob-
lems, more manageable in complexity, that can be solved in parallel by design teams.
Components also provide a unit of reuse, defining the boundaries in which functionality
can be packaged, documented and reused.

Components are designed to work as parts of larger systems: they make assumptions
on their environment, and they expect that these assumptions will be met in the actual
environment. In other words, a component is typically an open system which has some
free inputs provided by others components and which in turn provides inputs to other
components. It is thus obvious that the effective reuse of software requires adequate
documentation of the component’s behavior and the conditions under which it can be
used along with methods for checking that components are assembled in an appropriate
way. Such a documentation is commonly referred to as the interface of the component.

There have been many works on the design and implementation of good interfaces
for components. Most of those works focus on capturing the data dimension of inter-
faces (“What are the value constraints on data communicated between components?”)
[21]. We describe here interface theories [13–15] a formal notion of component inter-
faces that use games to represent the interaction between the behavior originating within
a component, and the behavior originating from the component’s environment. Such an
interface model is able to capture dynamic aspects of component interaction which
makes it similar to a type system: indeed, it could be termed a “behavioral” type system
for component interaction. In previous works, interface theories have been introduced

? This research was supported in part by the NSF grants CCR-0234690 and CCR-0132780, by
the ARP awards SC2005553 and SC20051123, and by a F.R.I.A Grant.

INTERREG IIIC/e-Bird
Workshop "Trustworthy Software" 2006
http://drops.dagstuhl.de/opus/volltexte/2006/766

for various aspects of component interaction: [13, 8, 7, 15, 12] consider the protocol di-
mension of interfaces (“What are the temporal ordering constraints on communica-
tion events between components?”), [16] considers the timing dimension of interfaces
(“what are the real-time constraints on communication events between components?”),
and [5] deals with constraints on the resource usage of the component.

In this paper, we focus on the sociable interfaces model introduced in [12], and on
the corresponding tool called TICC [1]. We present the underlying ideas of the model,
and show how it can be used to capture the protocol dimension between components.
All the concepts are intensively illustrated with TICC for which this paper constitutes
an introduction.

Two tools for interface theories predate TICC. The asynchronous, action-based in-
terface theories of [13] are implemented as part of the Ptolemy toolset [19]. The tool
CHIC [6] implements synchronous, variable-based interface theories modeled after
[14]. Our goal in developing TICC is to provide an asynchronous model where compo-
nents have rich communication primitives that facilitate the concise, natural modeling
of software and distributed systems. In TICC, components are modeled both via vari-
ables (to describe state) and actions (to describe synchronization); its communication
primitives enable the modeling of complex communication schemes. The implementa-
tion of TICC relies on symbolic methods, yielding efficient algorithms for component
and system analysis.

2 Interface Theories

Before going to the details of the sociable interfaces model, we first summarize and
illustrate the basic features of Interface theories. The reader is referred to [17, 10, 18,
12] for more details.

Interface Specification and Well-formedness

An interface specifies how a component interacts with its environment. It describes the
input assumptions that the component makes on the environment and the output guar-
antees it provides. Interfaces capture the I/O behavior of a component by an automaton
whose syntax is similar to the I/O automata of [21]. In the context of software design,
inputs are used to model procedures or methods that can be called, and the receiving
end of communication channels, as well as the return locations from such a calls. Out-
puts are used to model procedure or method calls, message transmissions, the act of
returning after a call or method terminates, and exceptions that arise during method ex-
ecution. Unlike traditional models of open systems, among which I/O automata, that at
every state must be receptive to every possible input event, in interfaces it is possible
that inputs are illegal (cannot be accepted) at some states. Thus, an interface describes
the behavior of a component only with respect to some environments. In this way, envi-
ronment restrictions can be used to encode restrictions on the order of method calls, and
on the types of return values and exceptions. This is how interfaces capture the proto-
col dimension of components. Another advantage of making explicit assumptions about
the environment is that it gives rise to an optimistic compatibility test when interface

2

are composed: two interfaces are compatible if there exists at least one environment
in which they can work together. Finally, from a practical point of view, the ability to
forbid inputs removes the need to specify “what happens” when taking an undesirable
input. Such a specification has been pointed to as one of the main drawbacks of input-
enabled approaches. Since we can make input assumptions, we have to ensure that the
interface is well-formed, i.e. that there exists at least one environment that satisfies its
input assumptions.

Interfaces as Games

An interface is naturally modeled as a game between the players Input and Output.
Input represents the environment: the moves of Input represent the inputs accepted from
the environment. Output represents the component: the moves of Output represent the
possible outputs generated by the component. Then, an interface is well-formed if the
Input player has a winning strategy in the game, which means that the environment can
meet all input assumptions. Games provides a model for multiple independent sources
of nondeterminism and keep the distinction between inputs and outputs. Hence, even if
the syntax of interfaces is close to the one of I/O automata, they differ in the way that
the operations on the models are defined. In this paper, we will mainly mainly focus on
the operation of composition between two or more interfaces.

Interface Composition and Compatibility

The game-like nature of interfaces becomes apparent when we consider the operation
of composition. In their original formulation, interfaces interact through the synchro-
nization of common input and output events. The interpretation of inputs and outputs as
assumptions and guarantees, respectively, implies that, when composing two interfaces
P and Q, we have to ensure that P’s output guarantees satisfy Q’s input assumptions
and vice versa. Concretely, consider the two interfaces P and Q, in one state of the
composition. If P wants to emit an output that cannot be accepted by Q in that state
(i.e. an output guarantee that violates an input assumption), then a local incompatibility
occurs. While many approaches would be pessimistic and consider the two interfaces
to be incompatible, the interface approach is optimistic, by expecting the environment
to steer away from locally incompatible states. Thus, two interfaces are compatible if
there exists an environment to use the components together, and ensure that the assump-
tions of both are met. Component composition thus consists in synthesizing the most
liberal input strategy in the composite system that avoids all locally incompatible states.
This can be done by classical game-theoretic algorithms. The optimistic approach sup-
ports incremental design: the compatibility of two components can be checked without
specifying interfaces for all components of the system, i.e. without closing the system.
Incremental designs also ensure that compatible components can be put together in any
order.

An Example

We illustrate the previous concepts with the help of a simple example: a fire detection
system. The system is composed of a control unit and several smoke detectors. The

3

fire?

call fd!

2

1

0

3

fire?
disable?

disable?

disable?

fire?
disable?

(a) C: Control Unit

fire?

smoke1?

fire!

fire?

fire?

smoke1?

smoke1?

1

0

2

disable?

disable?

disable?

(b) D1: Smoke Detector

fire!

smoke2?

fire?

smoke2?

smoke2?

fire?

fire?

0

1

2

(c) D2: Faulty
Smoke Detec-
tor

Fig. 1. Sociable interface automata for a fire detection system.

interfaces for this example are reported in Figure 1: D1 is one of the smoke detectors
(there could be more), and C is the control unit.

When a detector senses smoke (input event smoke?), it reports it by emitting the
output event fire!. When the control unit receives the input event fire? from any of the
detectors, it issues a call for the fire department (output event call fd!). Additionally,
an input event disable? disables both the control unit and the detectors, so that the
smoke sensors can be tested without triggering an alarm. We also suppose the existence
of faulty smoke detectors, i.e., smoke detectors that ignore the disable message. The
interface for a faulty smoke detector is presented in Figure 1(c).

A particularity in the design is that some (but not all) states are input-enabled. As an
example, state 1 of C is still receptive to the input event fire? after receiving the smoke
alarm. This is because detectors are independent and there is thus no reason for one
detector to be forbidden to send output even fire! if this has already been done by some
other detector. Another example is state 2 of D1 which is receptive to the input events
fire? and smoke1?. Note that the possibility of having the same name for input and output
events is proper of sociable interfaces model and not allowed in other interface models
presented in [13, 8, 7, 15], or even transition based models (such as I/O automata). This
illustrates the multiple ways of communicating that are allowed by the model (see [12]
for a discussion). Note that C, D1, and D2 are well-formed4.

It is easy to see that all the states in the composition between the control unit C and
the fire detector D1 will be compatible if the two interfaces communicate via the event
fire. As an example, if C is in state 1 and D1 in state 2, then the output event fire! emitted
by D1 can be caught by the input event fire? of C. The output event call fd! emitted by

4 In general, checking well-formedness requires solving a safety game [12]

4

C does not need to be caught by D1 since the two interfaces do not synchronize on this
action.

However, the composition between C and D2 goes less smoothly. When the compo-
sition receives the input event disable?, the control unit shuts down (s = 3) and makes
the assumption that the environment cannot emit any output, while the faulty detector
remains in operation. When the faulty detector senses smoke (input event smoke2?), it
emits the output event fire!: if the control unit has been disabled, this causes a local
incompatibility in state (3,1). Hence, a winning strategy for player Input to stay away
from locally incompatible states can be realized by the following input restrictions:

– A restriction preventing the input event disable? if the faulty detector is in state
s = 1, that is, it has detected smoke and is about to issue the output event fire!.

– A restriction preventing the input event smoke2? when ControlUnit is at s = 3
(disabled).

Since the actions disable and smoke2 should be acceptable at any time, the new input
restrictions for these actions are a strong indication that the composition between C and
D2 does not work properly in all environments. However, if we consider an environment
that never issues disable, then the two interfaces can work together in a proper way.

3 The Sociable Interfaces Model

This section sketches the main elements of a sociable interface and the game it induces.
The reader is referred to [12] for more details. A sociable interface M is composed of
the following elements.

– A set of global actions ActG and a set of local actions ActL.
– A set of variables V all which is partitioned into a set of local variables V L and a

set of global variables V G, with V G ∩V L = /0. Local variables are used to describe
the internal states of the interface, while global variables are used to describe the
global state of the system. Among the set of global variables, we distinguish be-
tween history and history-free variables. This distinction, which will be discussed
in Section 5, allows us to limit the number of actions an interface should include.
The set of history variables is denoted by V H .

– A set of input and output transitions. Each global action a ∈ ActG is associated to
an input and an output transition that are respectively denoted by ρ I(a) and ρO(a).
An output transition specifies how variables are updated when the interface emits
the action. An input transition is the conjunction of two parts: (1) an input global
transition ρ IG(a) that specifies constraints on how other interfaces can update the
global variables when emitting a, and (2) an input local transition ρ IL(a) that can
update the local variables of the interface when other interfaces emit a. The reason
to split the input transitions in two parts will be discussed in Sections 4 and 5.

– A set of local transitions. Each local action a ∈ ActL is associated with a transition
ρ I(a), which can modify the value of local variables. Local transitions cannot be
synchronized with transitions of other interfaces. Notice that local transitions were
not present in the original model of [12].

5

– An input and an output invariant, respectively denoted by ψ I and ψO. Invariants
are sets of states that are used to constrain the input and output transitions of the
interface. Precisely, input transitions must maintain the input invariant true, and
output transitions must maintain the output invariant true.

– An initial condition I that describes the initial constraints on the set of local vari-
ables of the interface.

For an interface M, we say that a state of M is a value assignment to the variables
in V all .
Note that in TICC, the term “sociable interface” is replaced by “module”, but a module
is no more than the description of a sociable interface in the input language of the tool.

Example 1. The Control Unit C of the fire detection system described in the previous
section is a sociable interface with 3 actions: fire, disable, call fd. Its internal state can
be encoded with a local variable s, so that a state of C assigns a value between 0 and 3 to
s. The action fire has input transitions from states s = 0,s = 1,s = 2, but not from s = 3.
The action has no output transition meaning that the interface cannot emit the action fire.
The action call fd has an output transition from s = 1 to s = 2, but no input transition.
Hence, the interface makes the assumption that the environment can never issue call fd.
Notice that we can follow the same reasoning for the (faulty) smoke detectors.

The Game Underlying the Model

As mentioned in the introduction, a sociable interface induces a turn-based game be-
tween the Input and the Output players. The definitions of the moves, outcomes, and
strategies of this game have been described in [12]. In this paper, the reader only needs
to know how moves are defined.

The moves of the Input and Output players are those induced by the input and
the output transitions (the game model supposes that both the input and the output
transitions are conjoined with their corresponding invariants). In addition, each player
owns a stuttering move to ensure that the runs of the game are infinite.

The definition of the stuttering move is straightforward for the Output player: this
is the identity transition. For the Input player the definition is slightly different: the
stuttering move is an additional transition that can modify the value of global history
free variables. The stuttering move of the Input player is often referenced to as the
environment transition; it is automatically added by TICC when specifying a sociable
interface.

Well-Formedness

Given a sociable interface M, it is possible to compute the set of states SI (resp. SO)
from which the Input (resp. Output) player has a strategy to always stay in the set of
states that satisfy the input (resp. output) invariant, whatever the Output (resp. Input)
player does. A sociable-interface is well-formed if each reachable state s of M belongs
to SI∩SO, and moreover ψ I = SI and ψO = SO; see [12] for a detailed explanation.

6

The tool TICC automatically ensures that modules are well-formed before allowing
the user to manipulate them. To this end, TICC may add extra conditions to the initial
condition and the input/output invariants that are defined by the user. Hence, the user
does not need to take care of the notion of well-formedness, and we will not elaborate
on it in the rest of the paper.

The Tool TICC

TICC is a tool that allows users to specify sociable interfaces, called “modules”, us-
ing a textual language based on guarded commands, perform operations on the mod-
ules, and verify properties of modules. TICC is implemented as a set of functions
that extend the capabilities of the OCaml [20] command-line. The tool is released
under the GPL. The code of TICC is freely available and can be downloaded from
http://dvlab.cse.ucsc.edu/dvlab/Ticc. This web site is a Wiki that also contains the docu-
mentation for the tool, as well as several examples including those that will be presented
in this paper. Internally, TICC relies on a representation of modules which is based the
MDD/BDD Glue and Cudd packages [22]. The source files of the tool are organized as
follows:

1. The root contains files with the basic information about the tool. There is a README
file that describes the files of the root.

2. The directory examples contains a series of examples and a tutorial. Again, there
is a README file that can be consulted for more information.

3. The directory src contains the code itself; it is composed of three sub directories:
glu-2.0, mlglu, and ticc. Directories glu-2.0, and mlglu contain the code
needed to adapt the MDD/BDD Glu package to work with tcc. A directory doc

contains automatically-generated documentation for the tool. In particular, the file
doc/api/Ticc.html (automatically generated from src/ticc/ticc.mli) doc-
uments all the commands available to the user.

4 Starting with TICC

This section is an introduction to the use of TICC. It presents very simple examples, to
illustrate the process of entering a program, and running the tool.

To use TICC, first ensure that the executable file “ticc” is in your path. Then, invoke
it in interactive mode simply by typing:

ticc

The result of this operation is an Ocaml prompt5 from where one must type:

open Ticc;;

5 Remember that TICC is implemented as a set of functions that extend the capabilities of Ocaml.

7

At this point the functions in the module of TICC become available at the top level.
These functions are documented in the file ticc/doc/api/Ticc.html. Most of them will be
described in the rest of this paper.

The next operation is to provide TICC with a TICC program. TICC programs are
entered in files with the extension .si that stands for Sociable Interface. The syntax of
TICC programs will be presented in the following sections. Program files are parsed
with the command

parse "MyTiccProgram.si";;

The parse function reads in a .si file describing modules and global variables, and
places these definition into a global namespace. If the .si file does not follow the syntax
of the input language, the function reports an appropriate error message. Parsing multi-
ple files is allowed and viewed as an incremental process: new declarations are added to
the existing ones. This implies that one cannot declare two modules with the same name
in different files, and that one only needs to declare global variables once. After parsing
at least one TICC program, one can perform operations on and between modules of the
program.

Notice that one can also write script files for TICC. A script file is a file that groups
a set of commands that can be executed in one step. Figure 2(b) provides an example of
the content of a script file whose name is example.in. At this point, the reader should
be able to interpret lines 1 and 2. Lines 3 and 4 will be explained later. One can invoke
TICC to execute the script file with the following command from the shell prompt:

ticc example.in

We dedicate the rest of this section to TICC programs that illustrate some of the
main features of the input language of the tool. Operations on and between modules
will be described in the next sections.

4.1 Getting to Know TICC Programs

As a first example, we consider the translation of the fire detection system to a TICC

program. The file for the corresponding TICC program is given in Figure 2(a) and is
named detector.si.

The program consists in the declaration of three modules: Module ControlUnit,
FireDetector1, and Faulty FireDetector2 respectively correspond to interfaces
C, D1, and D2 of Figure 1. Let us consider module ControlUnit. This module shows
some of the very basic elements of a TICC module. It contains:

– Local variable declarations. The module declares a variable s whose value is an
integer between 0 and 3. TICC supports Boolean and integer range variables.

– Input and output transitions. The transitions are specified using guarded commands
guard ⇒ command, where guard and command are Boolean expressions over the
local and global variables; as usual, primed variables refer to the values after a
transition is taken. For instance, the output transition call fd can be taken only
when s has value 1; the transition leads to a state where s = 2. The declaration of

8

1 module ControlUnit:

2 var s: [0..3] // 0=waiting, 1=alarm raised, 2=fd called, 3=disabled

3
4 input fire: { local: s = 0 | s = 1 ==> s’ := 1

5 else s = 2 ==> }

6 input disable: { local: true ==> s’ := 3 }

7 output call_fd: { s = 1 ==> s’ = 2 }

8 endmodule

9
10 module FireDetector1:

11 var s: [0..2] // 0=idle, 1=smoke detected, 2=inactive

12
13 input smoke1: { local: s = 0 | s = 1 ==> s’ := 1

14 else s = 2 ==> } // do nothing if inactive

15 output fire: { s = 1 ==> s’ = 2 }

16 input fire: { } // accepts (and ignores) fire inputs

17 input disable: { local: true ==> s’ := 2 }

18 endmodule

19
20 module Faulty_FireDetector2:

21 var s: [0..2] // 0=idle, 1=smoke detected, 2=inactive

22
23 input smoke2: { local: s = 0 | s = 1 ==> s’ := 1

24 else s = 2 ==> } // do nothing if inactive

25 output fire: { s = 1 ==> s’ = 2 }

26 input fire: { } // accepts (and ignores) fire inputs

27 // does not listen to disable action

28 endmodule

(a) TICC modeling of a fire detector system: detector.si.

1 open Ticc;;

2 parse "detector.si";;

3 let controlunit = mk_sym "ControlUnit";;

4 let faulty = mk_sym "Faulty_FireDetector2";;

(b) A script file that parses detector.si.

Fig. 2.

9

1 (* open the functionnalities of the tool *)

2 open Ticc;;

3
4 (* parse the file in where modules are described *)

5 parse "detector.si";;

6
7 (* create the symbolic representations for the three modules declared

in fire-detector.si *)

8 let fire1 = mk_sym "FireDetector1";;

9 let faulty = mk_sym "Faulty_FireDetector2";;

10 let controlunit = mk_sym "ControlUnit";;

11
12 (* print the input and output invariants of symbolic module fire1 *)

13 print_symmod_iinv fire1;;

14 print_symmod_oinv fire1;;

15
16 (* print the transition rule corresponding to action "fire" in module

fire1 *)

17 print_symmod_rules fire1 "fire" ;;

18
19 (* print the entire symbolic module fire1 *)

20 print_symmod fire1;;

Fig. 3. The TICC script detector.in for the fire detector system.

the local part of an input starts with the keyword local (and so the global starts
with global). This declaration has a particular structure, to ensure that the local
part of the rule is deterministic (see next section for clarification).

The code of detector.si presents other features that will be extensively discussed
in other examples.

An example of a script file for the fire detection system is given in Figure 3. The
name of this file is detector.in. Let us briefly describe what happens when executing
ticc detector.in from the shell.

Code between lines 1 and 5 has already been described earlier: we open the tool
and parse a TICC program specified in a file called fire-detector.si. At this point, TICC

contains an enumerative representation of the modules and the global variables that
have been declared.

The command mk sym used in lines 8, 9, and 10 converts the enumerative repre-
sentation of modules into a symbolic representation based on MDDs [23]. An MDD is
similar to a BDD [4], extended to work on integer ranged variables instead of Boolean
ones. Given a constraint on a set of integer ranged variables, an MDD is a representation
of all the values of the variables that satisfy the constraints.

The initial condition and the input/output invariants of a module are sets of con-
straints on its variables; they can thus be represented with MDDs. Since transition
relations express constraints between the values of the variables before and after the

10

transitions have been applied, they can also be represented with MDDs. The symbolic
representation is in general more compact and efficient than an enumerative one; TICC

operations can be easily implemented symbolically, as explained in [12].
The rest of the file detector.si illustrates some of the printout functions available

in TICC. As an example, in lines 13 and 14 the user asks TICC to print out the input and
output invariants of the symbolic module fire1. In this example, both invariants have
value true. In line 17 the user asks TICC to print the transition rule corresponding to
action fire of module FireDetector1. The printout produced by this command is:

PRINTING the rule(s) for the action fire of

SYMBOLIC MODULE: FireDetector1.

[input part]:

modified vars:

{ }

[input global part]:

(1)

[input local part]:

(1)

[output part]:

Owned by module FireDetector1

modified vars:

{ FireDetector1.s }

(

(FireDetector1.s = 1)(

(FireDetector1.s’ = 2)))

When performing a printout, TICC describes the input and output transitions corre-
sponding to the action, as well as the variables that are involved. Notice that a condition
which is true is denoted by TICC as “(1)”. For more printout functions, consult the
documentation file ticc/doc/api/Ticc.html.

4.2 A More Elaborate Example

We now present a more elaborate example of TICC module, that makes use of most
features of the input language. An Anti-blocking System (ABS) is an automotive com-
ponent that tries to prevent wheel slippage by modulating the braking force. In Fig-
ure 4, we present a model of an abstract ABS, comprising two modules. Module
ABS controller is intended to be periodically invoked by the environment using
the action tick. When it receives that action, the module moves to the internal state
state=1 and sets the global variable abs on to true. Then, it checks the current ac-
celeration of the vehicle against the current pressure of the user on the brake pedal.
If the module establishes that the situation requires ABS intervention, it emits action
do it, otherwise it goes back to internal state state=0 via the action reset.

Module ABS actuator, instead, accepts an input signal do it. At that time, it
moves to a different internal state characterized by state=true. When state=true,
the module controls the brakes according to a simplified anti-blocking algorithm.

In the following, let M be the sociable interface corresponding to module
ABS actuator.

11

1 var b_pedal, b_force: [0..5]

2 var accel: [0..10]

3 var abs_on: bool

4
5
6 module ABS_controller:

7 var state: [0..2]

8
9 stateless accel, b_pedal

10
11 initial: state = 0

12
13 input update_b_force: { global: abs_on ==> b_force’ = b_force }

14 input tick: { global: abs_on ==> b_force’ = b_force

15 local: state = 0 ==> state’ := 1

16 else true ==> }

17 output do_it: {

18 state = 1 & (b_pedal > 0 & accel > 4) ==> state’ = 2 & abs_on’

19 }

20 output reset: {

21 state = 1 & (b_pedal = 0 | accel <= 4) ==> state’ = 0 & ~abs_on’

22 }

23 input done: { local: state = 2 ==> state’ := 0 }

24
25 endmodule

26
27
28 module ABS_actuator:

29 var turn, state: bool

30
31 stateless b_pedal, b_force

32
33 initial: turn = false & state = false

34
35 oinv: true

36 iinv: true

37
38 input do_it: { local: ~state ==> state’ := true }

39 output done: {

40 state & turn ==> b_force’ = b_pedal & ~turn’ & ~state’;

41 state & ~turn ==> b_force’ = 0 & turn’ & ~state’

42 }

43 endmodule

Fig. 4. TICC modeling of an Anti-blocking System.

12

Global variables. Global variables are declared outside modules. As we will see, mul-
tiple modules can read and modify the value of global variables.

In our case, the system comprises four global variables: abs on indicates whether
the ABS is currently controlling the brakes, b pedal is the amount of pressure that
the driver is currently applying on the brake pedal, b force is the amount of pressure
that the brake pads are currently applying to the brake rotors, and accel is the current
acceleration of the vehicle. Since TICC does not support negative ranges, we assume
that values of accel smaller than 4 represent negative accelerations.

In TICC, the set of global variables used by a module is automatically built by
collecting all global variables that are mentioned in any transition rule. Thus, as far as
module ABS actuator is concerned, we obtain V G

M = {b pedal,b force}.

History-free variables. By default, a module remembers the value of its global vari-
ables, and expects to know all actions that can modify them. More precisely, by default,
global variables in a module are history variables. The module assumes that, unless
some input or output action modifies their value, these global history variables retain
their value through time. To enable reasoning about their value, if a global variable is
a history variable in a module M, all the actions that can modify this variable must be
known to M (declared as input).

This requirement can potentially require a module to possess very many input ac-
tions. There are two solutions to this problem. One, wildcard actions, will be described
later. The other solution consists in declaring some variables to be history-free. In this
case, the module does not track their value, and does not need to know (declare) all
actions that modify their value.

In the case of module ABS actuator, both b pedal and b force are declared to
be history-free. b pedal is naturally history-free, since we can make no assumptions
on how the driver is going to use the brake pedal. b force is also left history-free, as
we assume that the actuator does not care if other modules change its value. Since no
other global variable is mentioned by the module, we obtain V H

M = /0.

Local variables. Local variables are declared inside a module, using the same syntax
of global ones. A local variable is only visible in the module it is declared in.

Module ABS actuator declares two local variables of type bool, so that V L
M =

{state,turn}. state is true when the module is ready to emit its output action. turn
is used to implement the following simplified anti-blocking algorithm: when turn is
true, the actuator lets the driver decide the amount of braking, when turn is false, the
actuator sets the braking force to zero.

Actions. In TICC, actions are not specifically declared. One can directly declare a tran-
sition rule and label it with a new or pre-existing action name. The tool collects all the
actions used by a module in a set of module actions.
For module ABS actuator, we have ActG

M = {do it,done} and ActL
M = /0.

Initial condition. A module can declare its initial condition using the keyword
initial. The initial condition is expressed by a Boolean expression over the set of
local variables.

In our case, module ABS actuator starts with turn and state equals to false.

13

var x, y: [0..10]

module Test:

oinv: x + y <= 15

output a: { true ==> x’ = x + 1 }

endmodule

Fig. 5. A module with a non-trivial output invariant.

Invariants. An invariant is a condition over the state space of a module, that is con-
stantly satisfied. Following the input/output duality which is proper of interfaces, mod-
ules can have two invariants: an input invariant and an output invariant. The output
invariant defines a set of states that will not be left by any local or output transition.
In practice, each local or output transition rule is implicitly conjoined with the output
invariant of the module. Dually, a module assumes that its environment does not violate
its input invariant. In practice, all input transition rules are implicitly conjoined with
the input invariant of the module. Note that, since modules are well-formed, the Input
(resp. Output) player can ensure that the input (resp. output) invariant is never left. This
indicates that no output transition leads from a state satisfying both invariants to a state
satisfying the output, but not the input, invariant. Symmetrically, no input transition can
lead from a state satisfying both invariants to a state satisfying the input, but not the
output, invariant.

The invariants of ABS actuator are both equals to true. In fact, specifying a
true invariant is equivalent to specifying no invariant at all, as done by module
ABS controller. Invariants are useful to express certain relationships between vari-
ables. As instance, consider the example in Figure 5, comprising a module Test, to-
gether with two global variables.

The output invariant expresses the property that this module will always enforce that
the sum of x and y is at most 15. This implies that module Test will not emit action
a when the current sum of x and y is at least 15. As we will see later, the main use of
invariants is in composition: input invariants will be used to express the constraints on
the environment that guarantee the compatibility of the modules being composed.

Transition rules. TICC supports three types of transition: input, output and local transi-
tions. Output transitions are the ones that users are most likely to be familiar with. They
describe a possible behavior of the module, consisting in emitting an action, while pos-
sibly changing the value of global and local variables. Local transitions can be thought
of as a special type of output transition, where the module is only allowed to update its
local variables. Moreover, local transitions are invisible to other modules, so that the
name of the action labeling a local transition is irrelevant. They can be declared using
the syntax:

local a: { guard ==> command }

Module ABS actuator can only emit one output action, called done. As previ-
ously said, the corresponding transition rule is expressed by a sequence of guarded

14

commands. In this case, the first guarded command (line 17) states that if both state

and turn are true, action done can be performed. As a consequence, the next value of
b force will be equal to the current value of b pedal, and both state and turn will
have value false. The second guarded command (line 18) states that the transition can
also be taken if state is true and turn is false. In this case, the next value of the global
variable b forcewill be zero, while the local variables turn and statewill have value
true and false, respectively. In this case, the two guards are mutually exclusive. In gen-
eral, more than one guard can be true at a given time: at run-time, any of those guards
can be selected nondeterministically.

Notice that action done occurs only as output in ABS actuator. This implies that
the module does not accept it as input.

One feature of TICC guarded commands that might surprise at first is that the dis-
tinction between guard and command is purely conventional. A guard and its corre-
sponding command are internally conjoined, so that

guard ==> command

is always equivalent to:

true ==> guard & command

This holds for output rules, local rules, and the global section of input rules. The local
section of input rules follows a different syntax, as explained later in this section.

For instance, consider again module Test in Figure 5. The transition rule corre-
sponding to action “a” seems to state that module Test can always emit “a”, whose
effect will be to increase the value of x. However, according to the principle we just
stated, the action cannot in fact be emitted when x=10.

Input transition rules are split in two sections. The global section describes assump-
tions about how other modules can change the value of global variables when emitting
certain outputs. The local section describes how this module reacts when receiving a
certain action. The reaction of the module to an input has two important restrictions: (i)
it can only update local variables, and (ii) it must do so in a deterministic fashion. These
restrictions are due to the theoretical assumption that each step is driven by the module
carrying out the output action. In turn, this ensures that the semantics of the model is a
turn-based game rather than a concurrent one. As a consequence, we have the following
special syntax for the local part of input rules:

guard1 ==> var11’ := expr11, var12’ := expr12, ...

else guard2 ==> var22’ := expr21, var22’ := expr22, ...

...

To ensure determinism, commands can only include assignments to local variables.
Moreover, the else keyword is inserted to remind the user that in this context guarded
commands will be evaluated in the order in which they are written, (i.e., guard2 is
evaluated only if guard1 is false, and so on).

The only input action that module ABS actuator can accept is called do it. The
corresponding transition rule has no global section, meaning that the module makes no
assumptions on the current and next value of global variables when do it is received.
The local section states that, when state is false and abs on is true, the next value

15

of state will be true. We may wonder what happens when the conditions set by
the guard fail (i.e., state is true or abs on is false). The answer is that the condition
expressed by the guard becomes an input assumption and as such it migrates to the
global part of the rule, as witnessed by a printout of the module. In other words, the
input rule corresponding to action do it is equivalent to the following:

input do_it: {

global: ~state ==> true

local: true ==> state’ := true

}

4.3 Arithmetic in TICC

TICC allows the declaration of Boolean and integer range variables. Both of those dec-
laration have previously been illustrated. However, due to the bounded size of the vari-
ables, dealing with integer range variables implies some implementation choices that
are worth summarizing.

From the previous section, we learned that integer range variables allow to build
numerical expressions, while Boolean variables allow to build Boolean expressions.
The two types of expressions are combined in guarded commands with the classical
Boolean and numerical comparison operators. The question arises of how to interpret
the arithmetical operators + and − on a finite range type. A common choice is to im-
plement modulo arithmetic: for instance,if x and y have range [0.. m − 1], then the
expression x+y is evaluated to x+y mod m. This is the choice followed, for instance,
in Mocha [3, 11]. There are two drawbacks in following this choice. The first is that
comparisons behave in a counterintuitive way, making the system prone to modeling
errors. For instance, the two comparisons x + 1 ≥ y and x ≥ y− 1 are not equivalent:
the first returns an unexpected result with x = 3, the second when y = 0. The second
drawback is that it is difficult to come up with consistent and intuitive typing rules for
expressions including variables with different ranges; for instance, it is not clear how
to evaluate x + y + z = w if all of x, y, z, and w have different ranges. Indeed, the tool
Mocha avoided this problem by forcing expressions to consist of one range type only,
which is a rather restrictive requirement.

In TICC, we follow a different choice, based on the following two principles:

1. Numerical expressions are always evaluated in a range that is large enough so that
no roll-over, or overflow, occurs.

2. Negative numbers are not considered.

Let us illustrate the consequences of these principles. Consider the expression:

x’ = y + z - 3

and assume that the ranges are as follows:

var x: [0..4]

var y: [0..5]

var z: [0..5]

16

The design decisions imply that:

1. The sum of y and z is evaluated in a temporary range type that is at least [0..10], so
that no overflow can occur.

2. If the result of the expression is negative, it is considered different from the result
of any other expression, and in particular x′, so that the overall expression will be
false.

The expression is thus evaluated as follows:

– If x is 4, y is 4, and z is 3, then the expression x′ = y+z−3 will be true, as expected.
In fact, 4+3 will give 7, and 7−3 = 4: no overflow occurs.

– If x is 1, y is 4, and z is 5, the expression is false, as 4+5−3= 6, which is different
from 1. Note in particular that roll-over does not occur: even though 6 mod 5 = 1,
the expression on the right hand side is considered to have value 6, not 1, in spite
of the left hand side having range [0..4].

– If y is 1, and z is 1, the expression will be false, since the right hand side gives rise
to a negative number.

The evaluation of an expression proceeds by evaluating sub-expressions and by com-
bining the obtained results. In general, one could suppose that if a sub-expression is
evaluated to false, then the entire expression is evaluated to false. As an example, con-
sider the following expression:

x’ = y - z + 3

If x′ is 2, y is 2, and z is 3, then the expression would yield value false because y−
z represents a negative number. However, we have that 2 = 2− 3 + 3, meaning that
the evaluation of the whole expression is true! To mitigate (but not eliminate) this,
after parsing, TICC tries to reorder the expressions, so that whenever possible, negative
results are avoided. For instance, the above expression would be internally transformed
into the following expression:

x’ = y + 3 - z

so that a negative result would occur only if the total result is negative. TICC can do
basic expression simplification, and it reorders the terms of a sum so that positive terms
occur before negative terms. A good way for the user to know if reordering occurred is
to print the syntactic representation of a module after parsing it.

5 Composing Sociable Interfaces in TICC

In TICC, the main operation on modules is composition. Composition synchronizes
two modules on their shared actions, and returns a new module, representing the joint
behavior of the two original modules, along with the environment assumptions required
to guarantee the correct functioning of the original modules. While composing modules,
TICC checks their composability and compatibility:

17

open Ticc;;

parse "fire-detector-disable.si" ;;

let controlunit = mk_sym "ControlUnit";;

let fire1 = mk_sym "FireDetector1";;

let wfire2 = mk_sym "Faulty_FireDetector2";;

let c = compose fire1 controlunit;;

let d = compose wfire2 controlunit;;

print_symmod c;;

print_symmod d;;

print_input_restriction c "disable";;

print_input_restriction d "disable";;

print_input_restriction c "smoke1";;

print_input_restriction d "smoke2";;

Fig. 6. A script file illustrating the composition of the modules for the fire detector example of
Figure 2(a).

– Composability is a condition involving the sets of variables and actions of a mod-
ule, and that can be checked statically, and extremely efficiently. Essentially, two
modules are composable if it makes sense to consider the effect of their communi-
cation.

– Compatibility is a condition about the behavior of the modules. Two modules are
compatible if there is some environment in which they can work jointly together,
with all their input assumptions being satisfied. Checking compatibility requires
solving a game between the Input and Output player; the solution of the game
yields the input assumptions for the composition of the two modules.

The TICC command compose checks composability and compatibility of two modules,
and if both tests are positive, computes a symbolic module corresponding to their com-
position. If incompatibilities arise, TICC can provide diagnostic information to detect
the reason.

Example 2. The script file given in Figure 6 illustrates the composition operation for
the fire detector example mentioned in Section 2 and Figure 2(a).

In the sociable interface model, and thus in TICC, the composition is done in four
steps. First, one checks that the modules can be composed (see Section 5.1). If the
modules are composable, then the next step is to build the product between them (see
Section 5.2). At this point, the product can contains bad states, i.e. states that exhibit
a local incompatibility (see Section 5.3). The last step of the composition consists in

18

synthesizing a strategy for the Input player to stay away from the set of bad states
whatever the Output player does (see Section 5.4).

This section describes how those four steps are conducted in TICC. More informa-
tion about the theory behind the operations can be found in [12].

We remark that the composition of two modules in TICC only works on their sym-
bolic representation. In what follows, we consider two symbolic modules M1 and M2

where Mi = (ActGi ,ActL
i ,V

G
i ,V L

i ,V H
i ,ρ I

i ,ρO
i ,ρL

i ,ψ I
i ,ψO

i), and we implicitly refer to their
corresponding sociable interfaces.

5.1 The Composability Condition

To facilitate composition, TICC ensures that modules have distinct local actions and
local variables by automatically renaming local variables and local actions: a local vari-
able x of module M is renamed to M.x upon parsing the module M.

We say that the two modules M1 and M2 are composable if they satisfy the following
non-interference condition: if an action a ∈ ActG

1 (respectively ActG
2) of module M1

(resp. M2) can modify a history variable of module M2 (resp. M1), then a ∈ ActG
2 (resp.

ActG1).
Since output transitions are the only ones that can modify the value of a global vari-

able6, the condition boils down to checking that if module M1 has an output transition
for action a that modifies7 a history global variable of module M2, then module M2 must
have an input transition for action a.

The non-interference condition is the main motivation for distinguishing between
history and history-free variables. The non-interference condition states that a mod-
ule should know all actions of other modules that modify its history variables. If we
dropped the distinction, requiring that a module knows all actions of other modules that
can change any of its variables (history or history-free), we could greatly increase the
number of actions that must be known to the module. Wildcard actions, as described
later, is another method.

Example 3. Consider the composition of the modules in the Anti-blocking System
(ABS) described in Section 4.2. The global variable b force is a history variable
for module ABS controller. Since module ABS actuator has an output transition
for action done that modifies this variable, module ABS controller must accept
done as input. In this case, the input transition of action done states that module
ABS controller agrees on all modifications that could be done to the variable.

Another consequence of the non-interference condition is the following. Denote
ABS the module obtained by composing the two ABS modules. If another module wants
to modify variable b force and be composed with ABS, it is forced to do so using one
of the remaining inputs of ABS, namely tick and update b force. Both those input
transitions impose the condition that if abs on is true, the value of b force is not
modified. Thus, the non-interference condition allows modules to effectively control a
global variable, when needed.

6 Input transitions only make assumptions on those values.
7 Where “modifies” means that the the variable appears primed in the command of the output

transition.

19

5.2 The Product

The product describes how elements of M1 and M2 are combined to give rise to a new
module M12 representing their joint behavior.

First, the set of local, global, and history variables are obtained by taking the unions
of those of the two modules: V all

12 =V all
1 ∪V all

2 , V L
12 =V L

1 ∪V L
2 , and V H

12 =V H
1 ∪V H

2 . The
same stands for the set of actions: ActG

12 = ActG1 ∪ActG
2 and ActL12 = ActL1 ∪ActL

2 . The
input and output invariants of M12 are obtained by conjoining those of M1 and M2, and
so for the initial condition.

The most crucial part in the definition of the product concerns the transitions associ-
ated to the actions of M12. Those transitions are a suitable combination of the transitions
of M1 and M2.

Similarly to other interface models, for each shared action, the output transition of
M1 synchronizes with the input transition of M2, and symmetrically, the output transi-
tion of M2 is synchronized with the input transition of M1. This models communication,
and gives rise to output transitions in the product. The input transitions of M1 and M2

corresponding to the same shared action are also synchronized, and lead to an input
transition in the product. Output transitions, on the other hand, are not synchronized be-
tween them: if both M1 and M2 can emit a shared action a, they do so asynchronously, so
that their output transitions interleave. As usual, the modules interleave asynchronously
on transitions labeled by non-shared actions. We now describe in more details the inter-
leaving on shared actions.

If M1 has an input transition ρ I
1(a), and M2 has an input transition ρ I

2(a), then M12

has an input transition ρ I
12(a). The local and global part of ρ I

12(a) are obtained by con-
joining those of ρ I

1 and ρ I
2, i.e., ρ IL

12(a) = ρ IL
1 (a)∧ρ IL

2 (a) and ρ IG
12 (a) = ρ IG

1 (a)∧ρ IG
2 (a).

This models the fact that M1 and M2 can react jointly to inputs from the environment.
The situation is more complicated for output transitions. Suppose that M1 has an

output transition ρO
1 (a), and M2 has an input transition ρ I

2(a). The result of the two
transitions is an output transition ρO

12(a) in M12, obtained by conjoining ρ IL
2 (a) with

ρO
1 (a).

The reader could wonder why the new output transition is not obtained by conjoin-
ing also ρ IG

2 (a) with ρO
1 (a). The reason is the definition of input and output transitions:

output transitions can modify global variables, while input transitions can only make
assumptions on them. The assumptions expressed by the global section of input rules
will be taken into account in the next phase of composition.

5.3 Locally Incompatible States

The product defined in the previous section can contain locally incompatible states.
In a locally incompatible state, one of the modules being composed wants to issue
an output transition labeled by a shared action, while the other module does not have
a corresponding global input transition from that state which agrees with the output
transition on the updates of global variables. In practice, TICC computes the set of good
states Good, which is simply the complement of the set of locally incompatible states.

Example 4. Consider the fire detector example of Section 2, illustrated in Figure 2(a).
In the composition of ControlUnit and Faulty FireDetector2, the state where

20

ControlUnit.s = 3 and Faulty FireDetector2.s = 1 is locally incompatible:
module Faulty FireDetector2 can issue the output action fire, which module
ControlUnit, being disabled, cannot accept.

5.4 Synthesizing a Strategy

After computing the product of the two modules and the set of good states, the next
operations is to compute the set of states Win from which the Input player of M12

has a strategy to always stay in Good. This is done by playing a safety game whose
objective is Good. The result of the game is used to restrict the input invariant of the
product (use the command print input restriction to see how the new invariant
restrict the Input transitions of the composition). Hence the composition of the two
modules can only works in environments that satisfy the restricted input invariant. This
can be considered an optimistic approach, since two modules are not considered to be
incompatible if they cannot work in one particular environment.

The set Win is also conjoined with the initial condition of the product, giving rise
to the initial condition of the composition. If the resulting initial condition is empty, the
two modules are definitely incompatible.

Example 5. Consider again the fire detector example of Section 2, illustrated in Fig-
ure 2(a). The modules ControlUnit and Faulty FireDetector2 are compatible: in
fact, there is an environment that avoids all locally incompatible states. For instance, to
avoid the state where ControlUnit.s = 3 and Faulty FireDetector2.s = 1, the
environment can simply avoid issuing the action smoke2 if disable has already been
issued, or can avoid to issue action disable if smoke2 has already been issued.

Of course, such a compatibility masks the fact that it does not make sense to restrict
the environment’s ability to issue actions smoke2 — a fire can start at any time! The
user can discover the problem by asking TICC to print the restriction of action smoke2,
via the command

print_input_restriction d "smoke2";;

which generates the following output:

Restriction of input action smoke2:

(

(Faulty_FireDetector2.s = 0)(

(ControlUnit.s = 3)))

This indicates that, after the composition, action smoke2 can no longer be accepted if
no smoke has been detected yet (Faulty FireDetector2.s = 0) and the controller
has been disabled (ControlUnit.s = 3).

Similarly, the user can print the restriction of action disable in the composition of
ControlUnit and Faulty FireDetector2 to discover how the ability of accepting
disable has been restricted by the composition.

21

6 Composition: A Concrete Example

In this section we present a concrete example of the use of TICC on a large program.
We consider a model of the interaction among contractors fixing a house. The example
illustrates how TICC can verify the compatibility of the interaction protocol among
communicating entities.

The example models a house with four rooms: a K(itchen), a L(iving), a B(athroom),
and a (Bed) R(oom). Each room can suffer from electrical and plumbing problems
that can be fixed by a plumb(er) and an electr(ician). Depending of the problem that
occurred, contractors are also needed to repair the damages caused on the wall and on
the floor. After the repairs, the room has to be cleaned. As rooms are small, only one
contractor at a time can work in a room.

We wish to know if the contractors can work together and fix the problems. This
question can be answered in TICC by modeling each contractor as a module, and by
considering additional modules that simulate faults, and that call the contractors to fix
things. The contractors can work together if the composition of all the modules is com-
patible.

The TICC program corresponding to the example is as follows. Each room may have
ongoing repair work; this is tracked by the following global variables:

var K_busy, L_busy, B_busy, R_busy: bool

In each room, four items might need repair: plumb(ing), electr(ical), floor, and wall.
Moreover, the room may need to be clean(ed). For the kitchen, the need for repair and
the need to clean are tracked by the following global variables (where a truevariable
means that the corresponding item is broken):

var K_plumb, K_electr, K_floor, K_wall, K_clean: bool

Similar variables track the state of L(iving room), B(athroom), and (bed)R(oom). The
activity state of the five contractors is tracked by the following global variables:

var plumb_active, electr_active, floor_active,

wall_active, clean_active: bool

At the start, one supposes that there is no ongoing work in the room, meaning that the
contractors are not working.

stateset initcond: ~K_busy & ~L_busy & ~B_busy & ~R_busy & ~plumb_active

& ~electr_active & ~floor_active & ~wall_active & ~clean_active

After these declarations, we declare the modules. The module Breaksmodels plumbing
and electrical failures. The code for this module is given in Figure 7. The body of
the module contains a series of declarations of output transitions. As an example, the
following transition models the fact that, when the plumbing in the kitchen is not broken
(~ means “not”, and K plumb tracks whether the kitchen plumbing works), then it can
break, generating the output transition break K plumb, and signaling that the kitchen
plumbing, floor, and walls need repair. Moreover, the room needs to be cleaned.

22

1 module Breaks:

2 stateless

3 K_plumb, K_electr, K_floor, K_wall, K_clean,

4 L_plumb, L_electr, L_floor, L_wall, L_clean,

5 B_plumb, B_electr, B_floor, B_wall, B_clean,

6 R_plumb, R_electr, R_floor, R_wall, R_clean

7
8 output break_K_plumb : { ~K_plumb ==> K_plumb’ & K_floor’ & K_wall’

& K_clean’ }

9 output break_L_plumb : { ~L_plumb ==> L_plumb’ & L_floor’ & L_wall’

& L_clean’ }

10 output break_B_plumb : { ~B_plumb ==> B_plumb’ & B_floor’ & B_wall’

& B_clean’ }

11 output break_R_plumb : { ~R_plumb ==> R_plumb’ & R_floor’ & R_wall’

& R_clean’ }

12
13 output break_K_electr : { ~K_electr ==> K_electr’ & K_wall’ &

K_clean’ }

14 output break_L_electr : { ~L_electr ==> L_electr’ & L_wall’ &

L_clean’ }

15 output break_B_electr : { ~B_electr ==> B_electr’ & B_wall’ &

B_clean’ }

16 output break_R_electr : { ~R_electr ==> R_electr’ & R_wall’ &

R_clean’ }

17 endmodule

Fig. 7. Module Breaks for the house example.

output break_K_plumb : { ~K_plumb ==> K_plumb’ & K_floor’ &

K_wall’ & K_clean’}

All global variables are history free for this module.
The module Calls calls the repairmen and the cleaner when needed (the code of

this module is given in Figure 8); as an example, the plumber is called using the follow-
ing statement:

output call_plumb : { ~plumb_active &

(K_plumb | L_plumb | B_plumb | R_plumb) ==> plumb_active’ }

Note that all the variables are history free for this module. This choice is quite
obvious since, as an example, there is no reason for Calls to track the value of
plumb active after it has called the plumber. If global variables where not history
free, then one would be forced to add many new input rules to the module.

After the declaration of the modules Breaks and Calls, come the declarations of
the modules for the five contractors.

The plumber, whose part of the code is given in Figure 9, and the other contractors
keep track of whether they are working via a Boolean variable working. Also, they
keep track of the room on which they are working via the local Boolean variables Kw,
Lw, Bw, Rw. W hen called, the plumber is initially not working on any room.

23

1 module Calls:

2 stateless

3 K_plumb, K_electr, K_floor, K_wall, K_clean,

4 L_plumb, L_electr, L_floor, L_wall, L_clean,

5 B_plumb, B_electr, B_floor, B_wall, B_clean,

6 R_plumb, R_electr, R_floor, R_wall, R_clean,

7 plumb_active, electr_active, floor_active, wall_active,

clean_active

8
9 output call_plumb : { ~plumb_active & (K_plumb | L_plumb | B_plumb |

R_plumb) ==> plumb_active’ }

10 output call_electr : { ~electr_active & (K_electr | L_electr |

B_electr | R_electr) ==> electr_active’ }

11 output call_floor : { ~floor_active & (K_floor | L_floor | B_floor |

R_floor) ==> floor_active’ }

12 output call_wall : { ~wall_active & (K_wall | L_wall | B_wall |

R_wall) ==> wall_active’ }

13 output call_clean : { ~clean_active & (K_clean | L_clean | B_clean |

R_clean) ==> clean_active’ }

14
15 endmodule

Fig. 8. Module Calls for the house example. The module calls the repairmen and the cleaner.

input call_plumb : { local: ~plumb_active ==> working’ := false }

When an active plumber, not working on any room, sees that the K(itchen) is unoccu-
pied (~K_busy) and needs repair (K plumb), the plumber starts to work in the K(itchen):

output K_start_plumb :

{ plumb_active & ~working & K_plumb & ~K_busy

==>

working’ & Kw’ & K_busy’ }

and similarly for the other rooms.
While working in the kitchen, the plumber does not expect anybody else to work

in it. Thus, we have to define input transitions corresponding to the actions of the other
contractors. As an example, the following rule forbids the electrician to start working
in the kitchen if the plumber is still working there.

input K_start_electr : { local: ~Kw ==> }

One of the main drawbacks of this formalization is that we have to define many input
transitions that differ only by their name but not by their contents. To simplify the
declaration of such inputs, TICC allows the use of wildcard action names. Figure 9
shows how wildcard inputs can simplify the description of the module Plumber. Using
the special character “*”, input transition rules can be defined to match a set of actions
instead of one action only. For instance, the pattern K * on line 24 of Figure 9 matches
any action whose name starts with K .

24

1 module Plumber:

2 var working: bool

3 var Kw, Lw, Bw, Rw: bool

4 initial: ~working & ~Kw & ~Lw & ~Bw & ~Rw

5 stateless

6 K_plumb, K_electr, K_floor, K_wall, K_clean,

7 L_plumb, L_electr, L_floor, L_wall, L_clean,

8 B_plumb, B_electr, B_floor, B_wall, B_clean,

9 R_plumb, R_electr, R_floor, R_wall, R_clean

10
11 input call_plumb : {local: ~plumb_active ==> working’ := false }

12 output done_plumb : { plumb_active & ~working & ~K_plumb & ~L_plumb

& ~B_plumb & ~R_plumb ==> ~plumb_active’ }

13
14
15 output K_start_plumb : { plumb_active & ~working & K_plumb & ~K_busy

==> working’ & Kw’ & K_busy’ }

16 output L_start_plumb : { plumb_active & ~working & L_plumb & ~L_busy

==> working’ & Lw’ & L_busy’ }

17 output B_start_plumb : { plumb_active & ~working & B_plumb & ~B_busy

==> working’ & Bw’ & B_busy’ }

18 output R_start_plumb : { plumb_active & ~working & R_plumb & ~R_busy

==> working’ & Rw’ & R_busy’ }

19 output K_done_plumb : { plumb_active & Kw ==> ~K_plumb’ & ~Kw’ & ~

K_busy’ & ~working’ }

20 output L_done_plumb : { plumb_active & Lw ==> ~L_plumb’ & ~Lw’ & ~

L_busy’ & ~working’ }

21 output B_done_plumb : { plumb_active & Bw ==> ~B_plumb’ & ~Bw’ & ~

B_busy’ & ~working’ }

22 output R_done_plumb : { plumb_active & Rw ==> ~R_plumb’ & ~Rw’ & ~

R_busy’ & ~working’ }

23
24 input K_* : { local: ~Kw ==> }

25 input L_* : { local: ~Lw ==> }

26 input B_* : { local: ~Bw ==> }

27 input R_* : { local: ~Rw ==> }

28 endmodule

Fig. 9. Module describing the plumber.

25

1 open Ticc;;

2
3 parse "house.si";;

4
5 let breaks = mk_sym "Breaks";;

6 let calls = mk_sym "Calls";;

7 let plumber = mk_sym "Plumber";;

8 let electrician = mk_sym "Electrician";;

9 let rudelectr = mk_sym "RudeElectrician";;

10 let floors = mk_sym "Floors";;

11 let walls = mk_sym "Walls";;

12 let clean = mk_sym "Clean";;

13
14 let c0 = compose breaks calls;;

15 let c1 = compose c0 plumber;;

16 let c2 = compose c1 electrician;;

17
18 let d2 = compose c1 rudelectr;;

Fig. 10. TICC script for the house example: house.in.

In module Plumber, variable plumb active is a history variable, as the module
plans to control its value. Variables K busy, L busy, B busy, and R busy are also his-
tory variables. This choice, combined with the declaration of the input transitions, en-
sures that the value of those variables can be changed by other modules only if the
plumber is not working in the corresponding room.

We considered two different electrician modules. A “correct” implementation,
Electrician, checks that the kitchen is free before starting to work in it:

output K_start_electr :

{ electr_active & ~working & K_electr & ~K_busy

==>

working’ & Kw’ & K_busy’ }

Note that above, the variable Kw is local to the electrician, and indicates whether the
electrician is working on the kitchen; the equally-named variable Kw in (*) is instead
local to the plumber. An “incorrect” implementation of the electrician, WElectrician,
in the rush of getting things done, forgets to check whether somebody else is already at
work in the kitchen:

output K_start_electr :

{ electr_active & ~working & K_electr ==> working’ & Kw’ & K_busy’ }

TICC is able to detect that the composition of Breaks, Calls, Plumber, and
Electrician is compatible (see lines from 14 to 16 of Figure 10), whereas it detects
that the composition of Breaks, Calls, Plumber, and WElectrician is not. Thus,
the protocol violation can be discovered before the complete system, consisting also of
modules to repair floors and walls, is constructed. In fact, a simple check would have

26

revealed the problem already in the composition of Plumber and WElectrician (as
computed in line 18 of Figure 10). When composing Plumber and WElectrician,
TICC automatically synthesizes the assumption that (i) they are not both called to work,
or (ii) no room needs to be repaired by both of them.

We also note that the protocol violation is revealed thanks to the input assumption
of the correct module Plumber. In the game-based approach that underlies TICC, the
input assumptions of correct modules constrain the protocol of modules that will be
later composed into the system, preventing the composition of “rogue” modules. The
verification of the correctness of interaction is simply a by-product of composition. This
situation should be contrasted to the usual, non-game-based approach to modeling and
verification. In the usual approach, detecting incompatibilities requires writing separate
specifications of correctness, and can usually be performed only once all components
are composed.

7 Additional Tool Features

While composition is certainly the most important operation that TICC can perform on
modules, it is not the only one. This section is a brief introduction to the other features
of the tool.

7.1 Symbolic Operations, Model Checking, and Simulation

A set of states, in TICC, can be defined via a formula specifying constraints on the values
of the variables. TICC can parse such formulas, and construct a symbolic representa-
tion (an MDD) that enables it to manipulate the set. TICC can combine such sets with
the usual Boolean operators, via the functions set or, set and, set implies, and
set not; sets can also be compared using set is subset and set equal. A set of
states can be printed using the command print stateset (printing is not optimized,
and can lead to exponentially large printouts). TICC also contains an implementation
of the classical CTL operators [9], allowing the user to verify properties of models via
model checking. As usual, the CTL operators are documented in doc/api/Ticc.html.

Example 6. Consider the fire detection system given in Figure 2(a), and the script file
in Figure 11. Line 11 builds the symbolic representation of a set φ consisting of the
states where ControlUnit.s = 2, i.e., the firemen have been called. Line 13 prints
the set of states that satisfy the CTL formula ∃3φ , and line 15 prints the set of states
that satisfy the CTL formula ∀3φ .

TICC can also perform random simulation on symbolic modules, generating an
HTML file with the result of the simulation. This is particularly useful in the early
stages of model construction, to confirm that the model behaves as intended.

7.2 Closure

TICC allows the user to close a module with respect to the occurrence of input tran-
sitions. After several modules have been composed, the closure operation can be used

27

1 open Ticc;;

2 parse "fire-detector-disable.si";;

3
4 let fire1 = mk_sym "FireDetector1";;

5 let controlunit = mk_sym "ControlUnit";;

6 let comp = compose fire1 controlunit;;

7
8 let clone_fire1 = sym_clone fire1;;

9 simulate comp "Fire1.s = 0 & ControlUnit.s = 0", 5, "detector.html";;

10
11 let called_firemen = parse_stateset ("ControlUnit.s = 2");;

12 print_string "Can call the firemen:";;

13 print_stateset (ctl_e_f comp called_firemen);;

14 print_string "Always calls the firemen:";;

15 print_stateset (ctl_a_f comp called_firemen);;

Fig. 11. A script file illustrating individual operations.

to say that the environment is no longer able to provide a certain input. The follow-
ing example illustrates the use of the closure operation in the context of CTL model
checking.

Example 7. We consider a simple dining philosophers model, where n philosophers are
sitting at a round table. Set between each pair of neighboring philosophers are n forks,
so that all philosophers have a fork on their left, and one on their right. Each philosopher
can either think or try to eat. To be able to eat, philosophers, being rather clumsy, have
to use both forks on their sides.

Each philosopher Phil can be in one of 7 internal states that are enumerated with a
local variable s. In s=0, Phil is thinking; a transition to s=1 indicates the philosopher’s
desire for food. In state s=4 the philosopher eats. To go from s=1 to s=4, Phil has
to grab the two forks. This can be done in any order (requiring the addition of two
intermediate states s=2 and s=3, depending on which fork has been chosen first). After
having eaten, Phil releases the forks in nondeterministic order, and starts thinking
again.

The TICC program of Figure 12 and its corresponding script file given in Figure 13
show an example of dining philosophers with n = 2 philosophers and thus 2 forks. The
program can easily be extended to a greater number of philosophers. In the program,
the philosophers are represented by modules Phil1 and Phil2, while the forks with
Boolean global variables F1, and F2, whose value is true if the fork is available, and
false otherwise. The actions of grabbing and releasing forks are modeled by the ac-
tions GrabFx and givebackFx, where x ∈ {1,2} identifies the fork. Since a fork is
shared between two philosophers, each philosopher must both output these actions, and
be able to accept them as input from other philosophers. This is the purpose of the
wildcard input input *.

The problem is that, once Phil1 and Phil2 are composed, their composition can
still accept the actions GrabFx and givebackFx from the environment. It is as if

28

1 var F1, F2: bool

2 stateset initcond: F1 & F2

3
4 module Phil1:

5 var s: [0..6]

6 initial: s = 0

7
8 input *: {}

9 local no_moves: { true ==> }

10 local wants_to_eat: { s = 0 ==> s’ = 1 }

11 output grabF1: { s = 1 & F1 ==> s’ = 2 & ~F1’;

12 s = 3 & F1 ==> s’ = 4 & ~F1’ }

13 output grabF2: { s = 1 & F2 ==> s’ = 3 & ~F2’;

14 s = 2 & F2 ==> s’ = 4 & ~F2’ }

15 output givebackF1: { s = 4 ==> s’ = 5 & F1’;

16 s = 6 ==> s’ = 0 & F1’ }

17 output givebackF2: { s = 4 ==> s’ = 6 & F2’;

18 s = 5 ==> s’ = 0 & F2’ }

19 endmodule

20
21 module Phil2:

22 var s: [0..6]

23 initial: s = 0

24
25 input *: {}

26 local no_moves: { true ==> }

27 local wants_to_eat: { s = 0 ==> s’ = 1 }

28 output grabF2: { s = 1 & F2 ==> s’ = 2 & ~F2’;

29 s = 3 & F2 ==> s’ = 4 & ~F2’ }

30 output grabF1: { s = 1 & F1 ==> s’ = 3 & ~F1’;

31 s = 2 & F1 ==> s’ = 4 & ~F1’ }

32 output givebackF2: { s = 4 ==> s’ = 5 & F2’;

33 s = 6 ==> s’ = 0 & F2’ }

34 output givebackF1: { s = 4 ==> s’ = 6 & F1’;

35 s = 5 ==> s’ = 0 & F1’ }

36 endmodule

Fig. 12. A TICC dining philosophers model: dining.si.

29

1 open Ticc;;

2
3 parse "phil.si";;

4
5 let phil1 = mk_sym "Phil1";;

6 let phil2 = mk_sym "Phil2";;

7 let comp_phils = compose phil1 phil2;;

8
9 let initial = parse_stateset "Phil1.s = 0 & Phil2.s = 0 & F1 & F2 ";;

10 let bad_fork = parse_stateset "Phil1.s = 0 & Phil2.s = 0 & ~F2";;

11
12 let can_reach_bad_fork_exists = ctl_e_f comp_phils bad_fork;;

13 let result = set_and can_reach_bad_fork_exists initial;;

14 print_stateset result;;

15
16 let comp_phils_close = close comp_phils "*";;

17
18 let can_reach_bad_fork_exists = ctl_e_f comp_phils_close bad_fork;;

19 let result = set_and can_reach_bad_fork_exists initial;;

20 print_stateset result;;

Fig. 13. A TICC script for the dining philosophers.

passers-by were allowed to pick up and put down forks! Indeed, in the composition
of Phil1 and Phil2, we can start from the state where Phil1 and Phil2 are both
thinking and F2 is available and reach a state where the philosophers are still thinking
but F2 is not available, as it has been “picked up” by the environment. This is shown by
the fact that the stateset printed at line 14 is not empty.

This clearly does not make sense: once Phil1 and Phil2 are composed, we should
be able to say that the forks are no longer in the environment’s reach. To this end, we
close the composition of Phil1 and Phil2 with respect to all input actions.8 Once this
is done, the state where both philosophers are thinking but F2 is not available is no
longer reachable, and indeed the printout from line 20 is the empty set (represented as
(0)).

8 Conclusions

Interface theories are the subject of many recent works. The sociable interface model
presented in this paper is only one of them. Interface models that appeared before socia-
ble interfaces include interface automata [13, 15] and interface modules [14, 8]. Those
models were based on a communication with either actions, or variables, but not both.

Sociable interfaces do not break new ground in the conceptual theory of interface
models. However, by allowing both actions and variables in the communication process,
they take advantage of the existing models and provide rich communication primitives.

8 In general, we can close a module with respect to any set of actions.

30

The tool TICC is certainly not the first tool that implements an interface model,
and even not the most complete. As an example, the tool CHIC that implements a syn-
chronous, variable-based interface theory is able to handle pushdown games while TICC

cannot.
However, one major difference between TICC and its predecessors is its ability to

use rich communication primitives to model components in a very compact and natural
way. Another strong point of the tool is its symbolic implementation which makes it
very efficient and easily extensible.

TICC is a tool in constant evolution, and so is the sociable interface model. As an
example, we are currently developing a real-time extension of the tool, based on the
Timed Interfaces of [16]. This is a large and complex endeavor, as the game-theoretic
machinery of TICC will have to be replaced with one suited to real-time games. Another
direction we are considering is the implementation of the alternating-time temporal
logic of [2]. This logic is more suitable to model check open systems than CTL.

References

1. B. Adler, L. de Alfaro, L. D. da Silva, M. Faella, A. Legay, V. Raman, and P. Roy. Ticc, a tool
for interface compatibility and composition. In Proceedings 18th International Conference
on Computer Aided Verification (CAV), volume 4144 of Lecture Notes in Computer Science.
Springer, 2006. to appear.

2. R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic. In Proc. 38th
IEEE Symp. Found. of Comp. Sci., pages 100–109. IEEE Computer Society Press, 1997.

3. R. Alur, T.A. Henzinger, F.Y.C. Mang, S. Qadeer, S.K. Rajamani, and S. Tasiran. Mocha:
modularity in model checking. In CAV 98: Proc. of 10th Conf. on Computer Aided Verifica-
tion, volume 1427 of Lect. Notes in Comp. Sci., pages 521–525. Springer-Verlag, 1998.

4. R.E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions
on Computers, C-35(8):677–691, 1986.

5. A. Chackrabarti, L. de Alfaro, T.A. Henzinger, and M. Stoelinga. Resource interfaces. In
EMSOFT 03: 3rd Intl. Workshop on Embedded Software, volume 2855 of Lect. Notes in
Comp. Sci., pages 117–133. Springer-Verlag, 2003.

6. A. Chackrabarti, L. de Alfaro, M. Jurdziński, K. Chatterjee, T.A. Henzinger,
and F.Y.C. Mang. CHIC: Checker for interface compatibility, 2003. www-
cad.eecs.berkeley.edu/ tah/chic/.

7. A. Chakrabarti, L. de Alfaro, T.A. Henzinger, Marcin Jurdziński, and F.Y.C. Mang. Interface
compatibility checking for software modules. In CAV 02: Proc. of 14th Conf. on Computer
Aided Verification, volume 2404 of Lect. Notes in Comp. Sci., pages 428–441. Springer-
Verlag, 2002.

8. A. Chakrabarti, L. de Alfaro, T.A. Henzinger, and F.Y.C. Mang. Synchronous and bidirec-
tional component interfaces. In CAV 02: Proc. of 14th Conf. on Computer Aided Verification,
volume 2404 of Lect. Notes in Comp. Sci., pages 414–427. Springer-Verlag, 2002.

9. E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press, 1999.
10. L. de Alfaro. Game models for open systems. In Proceedings of the International Symposium

on Verification (Theory in Practice), volume 2772 of Lect. Notes in Comp. Sci. Springer-
Verlag, 2003.

11. L. de Alfaro, R. Alur, R. Grosu, T. Henzinger, M. Kang, R. Majumdar, F. Mang, C. Meyer-
Kirsch, and B.Y. Wang. Mocha: A model checking tool that exploits design structure. In
ICSE 01: Proceedings of the 23rd International Conference on Software Engineering, 2001.

31

12. L. de Alfaro, L. D. da Silva, M. Faella, A. Legay, P. Roy, and M. Sorea. Sociable interfaces.
In Proceedings of 5th International Workshop on Frontiers of Combining Systems, volume
3717 of Lecture Notes in Computer Science, pages 81–105. Springer, 2005.

13. L. de Alfaro and T.A. Henzinger. Interface automata. In Proceedings of the 8th European
Software Engineering Conference and the 9th ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering (ESEC/FSE), pages 109–120. ACM Press, 2001.

14. L. de Alfaro and T.A. Henzinger. Interface theories for component-based design. In EM-
SOFT 01: 1st Intl. Workshop on Embedded Software, volume 2211 of Lect. Notes in Comp.
Sci., pages 148–165. Springer-Verlag, 2001.

15. L. de Alfaro and T.A. Henzinger. Interface-based design. In Engineering Theories of Soft-
ware Intensive Systems, proceedings of the Marktoberdorf Summer School. Kluwer, 2004.

16. L. de Alfaro, T.A. Henzinger, and M. Stoelinga. Timed interfaces. In Proceedings of the Sec-
ond International Workshop on Embedded Software (EMSOFT 2002), Lect. Notes in Comp.
Sci., pages 108–122. Springer-Verlag, 2002.

17. L. de Alfaro and M. Stoelinga. Interfaces: A game-theoretic framework to reason about open
systems. In FOCLASA 03: Proceedings of the 2nd International Workshop on Foundations
of Coordination Languages and Software Architectures, 2003.

18. M. Faella and A. Legay. Some models and tools for open systems. Technical report, Univer-
sity of Santa Cruz, 2005. Proceedings of FIT05.

19. E. A. Lee and Y. Xiong. A behavioral type system and its application in Ptolemy II. Formal
Aspect of Computing Journal, 2003.

20. Xavier Leroy. Objective caml. http://caml.inria.fr/ocaml/index.en.html.
21. N.A. Lynch. Distributed Algorithms. Morgan-Kaufmann, 1996.
22. Fabio Somenzi. Cudd: Cu decision diagram package. http://vlsi.colorado.edu/ fabio/CUD-

D/cuddIntro.html.
23. A. Srinivasan, T. Kam, S. Malik, and R. Brayton. Algorithms for discrete function manipu-

lation. In Proceedings International Conference CAD (ICCAD-91), 1990.

32

