
Algorithms for Infeasible Path Calculation

Jan Gustafsson, Andreas Ermedahl, and Björn Lisper
Department of Computer Science and Electronics, Mälardalen University

Box 883, S-721 23 Väster̊as, Sweden
{jan.gustafsson, andreas.ermedahl, bjorn.lisper}@mdh.se

Abstract
Static Worst-Case Execution Time (WCET) ana-

lysis is a technique to derive upper bounds for the ex-
ecution times of programs. Such bounds are crucial
when designing and verifying real-time systems. A key
component in static WCET analysis is to derive flow
information, such as loop bounds and infeasible paths.

Such flow information can be provided as either as
annotations by the user, can be automatically calcu-
lated by a flow analysis, or by a combination of both.
To make the analysis as simple, automatic and safe
as possible, this flow information should be calculated
automatically with no or very limited user interaction.

In this paper we present three novel algorithms to
calculate infeasible paths. The algorithms are all de-
signed to be simple and efficient, both in terms of gen-
erated flow facts and in analysis running time. The
algorithms have been implemented and tested for a set
of WCET benchmarks programs.

1 Introduction

To give timing guarantees for embedded and real-
time systems, a key parameter is the worst-case exe-
cution time (WCET) of the software. A static WCET
analysis analysis finds an upper bound to the WCET
of a program, relying on mathematical models of the
software and hardware involved. Given that the models
are correct, the analysis will derive a timing estimate
that is safe, i.e., greater than or equal to the WCET.

To statically derive a timing bound for a program,
information on both the hardware timing characteris-
tics, such as the execution time of individual instruc-
tions, as well as the program’s possible execution flows,
to bound the number of times the instructions can be
executed, needs to be derived. The latter includes in-
formation about the maximum number of times loops
are iterated, which paths through the program that are
feasible, execution frequencies of code parts, etc.

This research has been supported by the KK-foundation
through grant 2005/0271.

The goal of flow analysis is to calculate such flow
information as automatically as possible. Flow analy-
sis research has mostly focused on loop bound analysis,
since upper bounds on the number of loop iterations
must be known in order to derive WCET estimates [8].

Flow analysis can also identify infeasible paths, i.e.,
paths which are executable according to the control-
flow graph structure, but not feasible when considering
the semantics of the program and the possible inputs.
Information on infeasible paths is not necessary to find
a WCET estimate, but may tighten it.

This article presents ongoing work to automatically
calculate infeasible paths. Three new and complemen-
tary algorithms are presented. They have been im-
plemented in our prototype WCET analysis tool and
tested for a set of WCET benchmarks programs.

The concrete contributions of this article are:

• We present ongoing work to extend our flow anal-
ysis method, called abstract execution, to calculate
information about infeasible paths.

• We present three algorithms, calculating different
types of infeasible path information, allowing us to
trade analysis time for flow information precision.

• We show how to make our infeasible path algorithms
input data dependent, allowing us to calculate more
precise flow information for a program with limita-
tions on its possible input data values.

• We evaluate the effect of our different infeasible path
detection algorithms, including the type and amount
of flow information generated.

The rest of this paper is organized as follows: In Sec-
tion 2, we discuss causes of infeasible paths and de-
scribe related work. In Section 3, we describe our re-
search prototype, SWEET. Section 4 describes the dif-
ferent algorithms, and Section 5 presents an illustrat-
ing example. Section 6 presents analysis results, and in
Section 7 we draw some conclusions and discuss future
work.

1
ECRTS 2006
6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2006/667

2 Causes of Infeasible Paths and
Related Work

There are two different causes to infeasible paths.
The first cause is semantic dependencies that always
hold, as illustrated by the following code fragment:

if (x < 0) A else B; if (x > 2) then C else D

Here, both true-branches for the if statements are al-
ways in conflict1, and the corresponding path A-C can
never be taken.

A second cause to infeasible paths is due to limita-
tions of input data values. Such limitations can be used
to further limit the set of feasible paths. For example,
if we know that x>5 when the above code is executed,
then we can conclude that the paths A-C, A-D, and
B-D are all infeasible i.e., we find more infeasible paths
with this additional knowledge.

Recent industrial WCET case-studies [7, 9, 17], have
shown that it is important to develop good support for
both loop bound analysis and infeasible path detection,
thereby reducing the need for manual annotations. The
case studies also showed that a mode- (giving a WCET
estimate under certain system conditions) and input-
sensitive WCET analysis often was preferable, in or-
der to obtain better resource utilization and provide
a better understanding of the system’s timing char-
acteristics. Thus, it should be important to develop
input-sensitive infeasible path analyses.

There has been some work on automatic detection
of infeasible paths for WCET analysis. Altenbernd [2]
uses a combination of path enumeration, path pruning,
and symbolic evaluation to find infeasible paths. Koun-
touris [13] studies detection of infeasible paths in the
synchronous real-time language SIGNAL. Liu et al. [14]
use symbolic evaluation of higher languages to avoid in-
feasible paths. Lundqvist and Stenström [15] find loop
bounds and infeasible paths by symbolic simulation on
the binary code. Healy et al. use value-dependent con-
straints to find infeasible paths [12]. Aljifri et al. [1]
generate only the feasible paths using the concept of
partially-known variables. Chen et al. [4] proposed a
method that finds infeasible paths by identifying con-
flicts between assignments and branches, and between
different branches.

The proposed infeasible path detection algorithms
all use our flow analysis method abstract execution
[10, 11], which is briefly described in the next sec-
tion. This method has some similarities with the one
of Lundqvist and Stenström [15], as well as with trace
partitioning [3]. However, abstract execution uses a

1We assume, for simplicity, that the value of x is not modified
in A and B.

more detailed value domain, and it is based on an ab-
stract interpretation framework.

3 SWEET and Abstract Execution

SWEET (SWEdish Execution time Tool) is a proto-
type WCET tool developed at Uppsala and Mälardalen
University [16]. It consists of three main parts; a flow
analysis which detects program flow constraints, a low-
level analysis, where timing for program parts are ob-
tained [6], and a final calculation where the longest
execution path is extracted given information derived
in the two preceding stages [8].

The current flow analysis of SWEET uses a scope-
graph [8]. Each scope in the scope-graph is a different
execution environment of a program, such as a func-
tion or a loop. See Figure 3 for an example. Our
current scope-graph representation is context-sensitive,
i.e., each call to a function or a loop in a function gener-
ates a different scope. Different calls to a function are
analysed separately, which may yield higher precision
but also a costlier analysis.

Abstract execution is a form of symbolic execu-
tion [10, 11], which is based on abstract interpreta-
tion. Rather than using traditional fixed-point itera-
tion [5], abstract execution executes the program in the
abstract domain, with abstract values for the program
variables, and abstract versions of the operators in the
language. For instance, the abstract domain can be the
domain of intervals: each numeric variable will then
hold an interval rather than a number, and each as-
signment will calculate a new interval from the current
intervals held by the variables. As usual in abstract in-
terpretation, the abstract value held by a variable, at
some point, represents a set containing the actual con-
crete values that the variable can hold at that point.

With abstract values, conditionals cannot always be
decided, and the abstract execution must then execute
both branches. In order to curb the growing number
of paths, merging of abstract values for different paths
can take place. A merged abstract value then surely
contains all the possible concrete values from both
paths, and a single-path abstract execution, represent-
ing the execution of both paths, can continue from the
merging point. Typical merge points are places where
different program flows meet, like after if-statements or
loops. Merging may yield abstract values that repre-
sent the possible set of concrete values in a less precise
way: for instance, the merge of the intervals [6..6] and
[10..11] is [6..11], which also contains the concrete val-
ues 7, 8, 9 not present in the original intervals.

SWEET currently supports abstract execution with
intervals. It allows the user to control the placement
of merge points, in order to explore different tradeoffs

2

i = INPUT; // i = [1..4]
while (i < 10) {

// point p
...
i=i+2;

}
// point q

(a) Example

iter i at p
1 [1..4]
2 [3..6]
3 [5..8]
4 [7..9]
5 [9..9]
6 impossible

(b) Analysis

min.
#iter: 3

max.
#iter: 5

(c) Result
Figure 1. Example of abstract execution

between analysis speed and precision. Currently, the
user can specify merge points to be one or more of the
following types: after if-statements, after loop bodies,
after loop exits and after function exits.

Figure 1 gives a simple example of abstract execu-
tion with intervals. The loop in Figure 1(a) is ab-
stractly executed in Figure 1(b). As iteration 4 and 5
are executed, the set of possible values of i is reduced
until, finally, the set of values for the true branch of
the loop condition is empty, the loop condition is eval-
uated to FALSE only, and the abstract execution of
the loop terminates. During the abstract execution,
we keep track of the iteration count of the loop body,
and Figure 1(c) shows the resulting loop bounds.

The abstract interpretation framework guarantees
that a calculated abstract value always represents the
set of possible concrete values. Thus, no execution
paths will be missed by the analysis. On the other
hand, an abstract value may overestimate this set,
which means that the analysis may yield program flow
constraints that are not tight. This means that some
infeasible paths might be reported as feasible. How-
ever, this is safe, since less information about infeasible
paths only gives a possibly less tight WCET estimate.

We have created an abstract analysis domain for the
data representation in C [11]. This allows us to handle
C features like structs, arrays, pointers and type casts.
We do not perform our analysis directly on the C source
code. Instead, it is applied on an intermediate code
format, making our flow analysis more generic and less
dependent on C source characteristics.

The infeasible path analyses presented in this paper
are implemented in SWEET as a part of the abstract
execution. The abstract execution is input data sensi-
tive, as illustrated in Figure 1, allowing the user to con-
strain the possible input data values. The result of the
abstract execution is passed as flow information, flow
facts [8], to the subsequent calculation phase. Flow
facts are a kind of constraints on the execution count.

4 Algorithms for Infeasible Paths

We now present our three algorithms for infeasible
path detection. Since they are based on abstract exe-

cution, which is input-sensitive, the analyses are input-
sensitive as well.

All three algoritms have a similar overall structure.
They augment each analysis state with a recorder keep-
ing track of nodes and path(s) taken during a particular
analysis of a scope. Each algorithm resets the recorder
of a scope when starting a new iteration of the scope.
They also associate a collector to each scope, which ac-
cumulates information about nodes and paths during
iterations of the scope. In the end, each collector is
used to generate flow facts for its scope.

4.1 Detecting Infeasible Nodes
The first algorithm finds infeasible nodes, that is:

basic blocks which are never visited in any execution
of a certain scope. Since there is one scope per context,
the resulting flow information becomes context sensi-
tive. An infeasible node is therefore not necessarily the
same as dead code, since the basic block potentially
can be executed in another context.

The recorder object is a bit array with one bit per
node in the scope. These bits are all reset to zero at
each iteration of the scope, and the bit of a node is set
to one at each abstract execution of the node. Thus, a
value of zero, after an iteration, means “definitely not
executed in this iteration” and one means “may have
been executed in this iteration”.

The collector object is a similar bit array. Its bits
are all initialized to zero, and the end of each iteration
the new value of the collector object is set to the bitwise
or of its old value and the current value of the recorder
object. At termination, if the collector holds a zero for
a node, then it is surely never executed in that scope,
and a corresponding “infeasible node flow fact” can be
generated. An example is:

scope : <> : #BB82 = 0;
specifying that basic block BB82 is not executed in any
iteration of the scope scope.

4.2 Detecting Infeasible Pair of Nodes
The second algorithm finds infeasible pairs of ba-

sic blocks, i.e., blocks which are always excluding each
other during the same iteration of a scope. This gives
additional knowledge as compared to the first analysis,
since there might be nodes which both can be executed
during some iteration of a scope, but which never can
be executed together. The limitation is that infeasible
paths with more than two selections can be missed.

The recorder object for this algorithm is a path (list
of nodes) taken during an iteration. To limit the num-
ber of recorded nodes, only nodes after conditional
branches are recorded. At the entry of a scope or at a
new loop iteration, the path is emptied. Whenever a
conditional branch is taken, we remember the branch

3

by appending the corresponding node to end of the
path. If both paths are taken, the analysis proceeds in
two abstract states, one for each path.

The collector object is a triangular matrix which
holds exclusion data. It is of size N × N , where N is
the number of possible branch outcomes (basic blocks)
for the selections in the scope. The matrix can be tri-
angular since the order of the elements in a pair is
irrelevant. All elements in such a matrix are set to ⊥
in the beginning of the analysis, which means that no
information is available to start with. A recorder list
RL is added to the collector matrix M when an ab-
stract state has reached the end of a loop body or a
function scope. The collector is updated as follows:

for each node n1 in RL do
for each subsequent node n2 to n1 in RL do

M [n1, n2] := 1
for each alternative branch node n3 to n2 do

if M [n1, n3] = ⊥ then
M [n1, n3] := 0

else
M [n1, n3] := M [n1, n3] OR 0

For example, if the path A-C was taken in the ex-
ample in Section 2 we would have updated M [A][C] to
1 and M [A][D] with 0.

When the analysis has finished, the resulting col-
lector matrix is investigated. Matrix positions with
⊥ mark pairs which have not been touched during the
analysis. Some of them can never be executed together
anyway due to the structure of the control graph, while
the rest really are infeasible pairs. For the first type,
generating flow facts will be superfluous. They could
be identified using a reachability analysis. However,
this is not included in the current implementation, so
to avoid a large number of superfluous flow facts, no
flow facts are currently generated for ⊥ positions.

If the matrix positions holds a 0, it marks a node
pair that we surely know excludes each other for any
iteration of the scope, so for this pair an “excluding
pair flow fact” can be generated, like:

scope : <> : (#BB33 + #BB57) < 2;

specifying that for any iteration of scope the basic
blocks BB33 and BB57 are never executed together.

4.3 Detecting Infeasible Paths

The third algorithm finds sequences of nodes which
are never executed together during the same iteration
of a scope. The algorithm makes use of the fact that
many infeasible paths can be efficiently represented by
allowing them to share a common prefix (sub)path.

The recorder data object is now a tree where each
tree node represents a path and has an associated

!

"

$

%

&

'

()

*+

)

,--.

(

$#

)

,--.

(

$#

)

,--.

(

$#

+& +& +& +&

!"#$%&' !(#$)"*+$*,-- !.#$)"*+$*,-- !.#$%/00-.*/,$*,--

Figure 2. Example CFG and Path Trees

boolean specifying if the corresponding path is feasi-
ble or unfeasible. Similar to the recording in the sec-
ond algorithm we only keep track of nodes taken after
branches. However, the tree additionally keeps track
of branch outcomes not taken.

Figure 2 gives an illustration of how the recorder
tree works. Figure 2(a) gives a CFG with 23 = 8
structurally possible execution paths. Figure 2(b) gives
the tree resulting from an execution taking the path
A-B-D-F-G-H-J through the CFG. In the recorded
tree the paths A-C, A-B-D-E and A-B-D-F-G-I
have been marked as infeasible. Note that we, for
the sake of efficiency, do not record any join nodes in
the tree. Similarly, Figure 2(c) gives the tree resulting
from an execution path of A-B-D-E-G-H-J. Note
that the path A-C actually represents 22 = 4 number
of paths through the CFG, sinceA-C is a prefix of all
these paths.

For this algorithm the collector is the tree of paths
obtained by merging all recorded trees for the scope.
The basic idea of the collector is the same as in the first
two algorithms, i.e., only keep infeasible path informa-
tion which are true for all executions of the scope.

Figure 2(d) gives the collector tree resulting from
merging the two trees in Figure 2(b) and Figure 2(c).
Both trees has A-C as infeasible, and so does the col-
lector tree. Since A-B-D-E is infeasible in Figure 2(b)
but not in Figure 2(c), since it is part of the feasible
A-B-D-E-G-H-J path, the collector tree cannot keep
the path as infeasible. Instead, all paths (both infea-
sible and feasible) starting with the path A-B-D-E in
Figure 2(c) are added to the collector tree. The infeasi-
ble path A-B-D-F in Figure 2(c) is extended similarly.
The resulting collector tree in Figure 2(d) marks paths
A-C, A-B-D-F-G-I and A-B-D-E-G-I as infeasible.

A collector tree CT is updated with a recorder tree
RT as follows:

if RT is the first recorded tree reported
CT := RT

else
for each infeasible path i in CT do

if i is prefix to a feasible path in RT
mark path i as feasible in CT
add all paths with prefix i in RT to CT

4

x = INPUT; // x = [0..100]
int main(void) {

if (x<10) ...; // A
else ...; // B
if (x<5) ...; // C
else ...; // D
foo(x);
if (x<0) ...; // E
else ...; // F
foo(x+50);
return 1;

}
int foo(int y) {

int i;
for (i=0; i<10; i++) {

if (y>=50) ...; // G
else ...; // H
if (y<50) ...; // I
else ...; // J

}
}

(a) Example code

1//2 1//3

1//345
!"#
$"%

1//245
!"#
$"%

6"78
&"'"(
)"*"+

(b) Scopes
Figure 3. Code with several infeasible paths

After the analysis we create flow facts for the re-
maining infeasible paths in the collector tree. An ex-
ample of such a flow fact is:

scope : <> : (#BB33 + #BB57 + #BB82) < 3;
specifying that basic blocks BB33, BB57, and BB82 are
never executed together for each iteration of scope.

5 Example

The example code in Figure 3(a) contains infeasible
paths of several types (we assume that neither i, x or
y are changed in the excluded code). It will be used to
illustrate the algorithms we propose in the paper. The
program contains five scopes; main, foo1, foo2 (the
two calls to foo) and the corresponding loop scopes
(foo1 L and foo2 L) in foo, as depicted in Figure 3(b).
We can identify the following infeasible nodes, pairs
and paths:
1. Infeasible nodes:

- E is an infeasible node in main, H and I are infeasible
nodes in foo2 L (limitations in input data).

2. Infeasible pairs:

- B-C, B-E, and D-E are infeasible pairs in main (con-
tradicting conditions).

- A-E and C-E is an infeasible pair in main (limitations
in input data).

- G-I and H-J are infeasible pairs in foo1 L and foo2 L
(contradicting conditions).

- H-I is an infeasible pair in foo2 L (limitations in input
data).

3. Infeasible paths:

- A-D-E, B-C-E, B-C-F, and B-D-E are infeasible
paths in main (contradicting conditions).

- B-D-E is an infeasible path in main (limitations in
input data).

We note that infeasibility can be expressed in several
ways, e.g., the infeasible pair B-C and the infeasible

paths B-C-E and B-C-F exclude the same paths.

6 Evaluation

Program Description #LC #S #L
adpcm Adaptive pulse code modulation algo-

rithm.
879 65 27

bs Binary search for the array of 15 integer
elements.

114 3 1

bsort100 Bubblesort program. 128 4 2
cnt Counts non-negative numbers in a ma-

trix.
267 10 4

compress Compression using lzw. 508 22 11
cover Program for testing many paths. 640 7 3
crc Cyclic redundancy check computation

on 40 bytes of data.
128 11 6

duff Using “Duff’s device” to copy 43 byte
array.

86 5 2

edn Finite Impulse Response (FIR) filter
calculations.

285 21 2

expint Series expansion for computing an ex-
ponential integral function

157 5 3

fdct Fast Discrete Cosine Transform. 239 4 2
fft1 1024-point Fast Fourier Transform us-

ing the Cooly-Turkey algorithm.
219 52 30

fibcall Iterative Fibonacci, used to calculate
fib(30).

72 3 1

fir Finite impulse response filter (signal
processing algorithms) over a 700 items
long sample.

276 4 2

insertsort Insertion sort on a reversed array of size
10.

92 3 2

janne complex Nested loop program. 64 4 2
jfdctint Discrete-cosine transformation on 8x8

pixel block.
375 5 2

lcdnum Read ten values, output half to LCD. 64 3 1
ludcmp LU decomposition algorithm. 147 14 11
matmult Matrix multiplication of two 20x20 ma-

trices.
163 12 7

ndes Complex embedded code. A lot of bit
manipulation, shifts, array and matrix
calculations.

231 25 12

ns Search in a multi-dimensional array. 535 6 4
nsichneu Simulate an extended Petri net. Au-

tomatically generated code with more
than 250 if-statements.

4253 2 2

qsort-exam Linear equations by LU decomposition. 121 8 6
qurt Root computation of quadratic equa-

tions.
166 16 3

select A function to select the Nth largest
number in a floating point array.

114 6 4

statemate Automatically generated code. 1276 9 1

Table 1. Benchmark programs used
We have used programs from the Mälardalen WCET

Benchmark to test our calculations. Table 1 gives
some basic data about the programs (LC = lines of
code), number of iteration scopes (#S), and number
of (context-dependant) loops (#L). Table 2 shows the
results of the different analyses. It shows the following
information: Analysis time in seconds for abstract exe-
cution with loop bound analysis only (LB), number of
found flow facts (#FF), and analysis time (Time) for
each of the three algorithms (IN = infeasible nodes,
EP = exclusive pairs, IP = infeasible paths). All mea-
surements were performed on a 1.25 MHz PowerPC G4
processor, 1 Gb memory running Mac OS 10.4.6.

We see that we, with a small extra cost, can find in-
feasible nodes and paths for some of the benchmarks. It

5

Program Time Alg. 1 (IN) Alg. 2 (EP) Alg. 3 (IP)
LB #FF Time #FF Time #FF Time

adpcm 19.14 37 19.86 44 19.22 24 20.04
bs 0.02 0 0.02 0 0.01 0 0.01

bsort100 0.95 3 0.95 0 0.95 0 0.96
cnt 0.21 1 0.22 0 0.21 0 0.23

compress 0.58 63 0.61 9 0.59 6 0.58
cover 0.71 114 1.65 1061 0.85 102 0.87
crc 2.13 18 2.36 6 2.16 4 2.24
duff 0.05 41 0.06 0 0.06 0 0.06
edn 1.22 0 1.23 0 1.23 0 1.29

expint 0.08 5 0.08 0 0.09 1 0.09
fdct 0.01 14 0.01 0 0.01 0 0.01
fft1 0.19 102 0.23 2 0.19 2 0.19

fibcall 0.02 0 0.02 0 0.02 0 0.02
fir 0.22 1 0.22 1 0.21 1 0.22

insertsort 0.13 0 0.13 0 0.13 0 0.12
janne complex 0.02 1 0.03 4 0.03 0 0.02

jfdctint 0.03 0 0.03 0 0.03 0 0.03
lcdnum 0.01 41 0.02 6 0.02 6 0.02
ludcmp 1.88 3 1.88 1 1.89 1 1.88

matmult 2.76 0 2.79 0 2.84 0 2.99
ndes 8.02 11 9.39 3 8.10 1 8.13
ns 1.00 1 1.01 0 1.01 0 1.05

nsichneu 12.88 126 13.16 78150 1288.76 623 19.15
qsort-exam 0.18 1 0.19 11 0.18 6 0.19

qurt 0.08 27 0.11 7 0.08 5 0.08
select 0.21 2 0.20 8 0.19 14 0.19

statemate 0.14 256 0.15 5 0.13 32 0.13

Table 2. Analysis results

should be noted that these results are based on single-
path analysis, i.e., using a single input that leads to a
single execution path. We expect more infeasible nodes
and paths to be found when we analyse the programs
with inputs that leads to multi-path analyses.

7 Conclusions and Future Work

We do think that our results are promising, but they
are still somewhat preliminary: the benchmarks used
so far are limited to single-path programs, and we only
count the number of generated flow facts for infeasi-
ble paths. The next step is to extend the evaluation
to a larger set of benchmarks, using multi-path anal-
ysis, and to also investigate the effect of the derived
infeasible path information on the WCET estimate. In
particular, we want to try out the algorithms on indus-
trial real-time codes.

We also want to investigate tradeoffs between analy-
sis time and WCET estimate precision. One possibility
would be to generate flow information for individual
iterations of a scope. This could give tighter WCET
estimates, at the expense of longer analysis times. An-
other possibility is to generate non-context-sensitive
flow facts, valid for all different call-sites of a particular
function or loop. This will, in general, give less precise
WCET estimates, but for a lower analysis cost.

References

[1] H. Aljifri, A. Pons, and M. Tapia. Tighten the computation
of worst-case execution-time by detecting feasible paths. In
Proc. 19th IEEE International Performance, Computing, and

Communications Conference (IPCCC2000). IEEE, February
2000.

[2] P. Altenbernd. On the false path problem in hard real-time
programs. In Proc. 8th Euromicro Workshop of Real-Time
Systems, pages 102–107, June 1996.

[3] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret,
Laurent Mauborgne, Antoine Miné, David Monniaux, and
Xavier Rival. Design and implementation of a special-purpose
static program analyzer for safety-critical real-time embedded
software. In The Essence of Computation; Complexity, Anal-
ysis, Transformation. Essays Dedicated to Neil D. Jones, vol-
ume 2566 of LNCS, pages 85–108. Springer-Verlag, 2002.

[4] Ting Chen, Tulika Mitra, Abhik Roychoudhury, and Vivy
Suhendra. Exploiting branch constraints without exhaustive
path enumeration. In Reinhard Wilhelm, editor, Proc. 5th In-
ternational Workshop on Worst-Case Execution Time Analy-
sis, (WCET’2005), pages 40–43, Palma de Mallorca, July 2005.

[5] Patrick Cousot and Radhia Cousot. Abstract interpretation:
A unified lattice model for static analysis of programs by con-
struction or approximation of fixpoints. In Proc. 4th ACM
Symposium on Principles of Programming Languages, pages
238–252, Los Angeles, January 1977.

[6] Jakob Engblom. Processor Pipelines and Static Worst-Case
Execution Time Analysis. PhD thesis, Uppsala University,
Dept. of Information Technology, Box 337, Uppsala, Sweden,
April 2002. ISBN 91-554-5228-0.

[7] O. Eriksson. Evaluation of Static Time Analysis for CC Sys-
tems. Master’s thesis, Mälardalen University, August 2005.

[8] Andreas Ermedahl. A Modular Tool Architecture for Worst-
Case Execution Time Analysis. PhD thesis, Uppsala Univer-
sity, Dept. of Information Technology, Uppsala University, Swe-
den, June 2003.

[9] Andreas Ermedahl, Jan Gustafsson, and Björn Lisper. Expe-
riences from industrial WCET analysis case studies. In Proc.
5th International Workshop on Worst-Case Execution Time
Analysis, (WCET’2005), pages 19–22, July 2005.

[10] Jan Gustafsson. Analyzing Execution-Time of Object-Oriented
Programs Using Abstract Interpretation. PhD thesis, Dept.
of Information Technology, Uppsala University, Sweden, May
2000.

[11] Jan Gustafsson, Andreas Ermedahl, and Björn Lisper. Towards
a flow analysis for embedded system C programs. In Proc. 10th

IEEE International Workshop on Object-oriented Real-time
Dependable Systems (WORDS 2005), February 2005.

[12] C. Healy and D. Whalley. Tighter Timing Predictions by Au-
tomatic Detection and Exploitation of Value-Dependent Con-
straints. In Proc. 5th IEEE Real-Time Technology and Appli-
cations Symposium (RTAS’99), June 1999.

[13] Apostolos A. Kountouris. Safe and efficient elimination of in-
feasible execution paths in WCET estimation. In Proc. 3rd

International Conference on Real-Time Computing Systems
and Applications (RTCSA’96). IEEE, IEEE Computer Soci-
ety Press, 1996.

[14] Y. A. Liu and G. Gomez. Automatic accurate time-bound anal-
ysis for high-level languages. In Proc. ACM SIGPLAN Work-
shop on Languages, Compilers and Tools for Embedded Sys-
tems (LCTES’98), pages 31–40, June 1998.

[15] Thomas Lundqvist. A WCET Analysis Method for Pipelined
Microprocessors with Cache Memories. PhD thesis, Chalmers
University of Technology, Göteborg, Sweden, June 2002.

[16] Mälardalen University WCET project homepage, 2006.
www.mrtc.mdh.se/projects/wcet.

[17] Daniel Sehlberg. Static WCET analysis of task-oriented code for
construction vehicles. Master’s thesis, Mälardalen University,
Väster̊as, Sweden, October 2005.

6

