Comparing WCET and Resource Demands of Trigonometric
Functions Implemented as Iterative Calculations vs. Table-Lookup *

Raimund Kirner, Markus Grossing, Peter Puschner
Institut fur Technische Informatik
Technische Universitdat Wien, Austria
raimund@vmars.tuwien.ac.at

Abstract

Trigonometric functions are often needed in embed-
ded real-time software. To fulfill concrete resource de-
mands, different implementation strategies of trigono-
metric functions are possible.

In this paper we analyze the resource demands of
iterative calculations compared to other implementa-
tion strategies, using the trigonometric functions as
a case study. By analyzing the worst-case execution
time (WCET) of the different calculation techniques
of trigonometric functions we got the surprising re-
sult that the WCET of iterative calculations is quite
competitive to alternative calculation techniques, while
their economics on memory demand is far superior.
Finally, a discussion of the general applicability of the
obtained results is given as a design guide for embedded
software.

1 Introduction

For real-time systems in safety-critical environments
it is indispensable to design the temporal behavior of
the system based on knowledge of the worst-case exe-
cution time (WCET) of the real-time tasks. A general
discussion on research directions in the area of WCET
analysis can be found in [9].

Besides analyzing the timing behavior of programs
we also look at software design techniques that
proactively simplify the analysis of the WCET. We
have described a general paradigm, which we call
WCET-oriented programming [10]. The basic idea of
WCET-oriented programming can be summarized as

*This work has been partially supported by the FIT-IT re-
search project “Model-Based Development of distributed Em-
bedded Control Systems (MoDECS)” and the ARTIST2 Network
of Excellence of IST FP6.

ECRTS 2006

6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis

http://drops.dagstuhl.de/opus/volltexte/2006 /669

the search for algorithms whose execution-time vari-
ability is small, for example, by avoiding input-data
dependent control flow decisions whenever possible.

In this paper we study the characteristics of
iteration-based computation techniques, we address
interesting questions like whether these algorithms are
suitable for real-time computing. For example, it is
a common belief that iteration-based computation is
critical, because a) long execution times due to high
number of needed iterations and b) the problem of
finding a precise upper iteration bound.

In the here-presented case study, we look at the be-
havior of trigonometric functions. The contribution
of this paper is to connect the known properties of
trigonometric functions to implementation techniques
of real-time software and to provide an analysis of rele-
vant characteristics like computation time and memory
demands. Besides the interesting results obtained from
our analysis, we also describe the application of WCET
analysis to embedded software with floating point em-
ulation.

2 Related Work

The work in this paper focuses on the properties
of time-memory tradeoffs for real-time software. For
example, one might design algorithms with shorter ex-
ecution time by using more memory.

Sorting examples are sorting by counting, where a
second array is used to sort elements with known rel-
ative positions based on their key in linear time, and
Radiz Sort [6]. Alternatively, lookup tables (LUT) can
be used to reduce online calculations by deploying pre-
calculated values. As an example for the use of lookup
tables, see [7]. Time-space tradeoffs on dictionary at-
tacks to break passwords are presented in [8]. Three
further examples of applying time-memory tradeoffs
are described in [11].

3 Trigonometric Functions

For our study of different computation techniques
we focus on trigonometric functions because they are
heavily used in many scientific disciplines. Sine, co-
sine and tangent as well as their inverse functions play
important roles not only in surveying, navigation, or
scientific mathematics, but also in many other fields
like acoustics, astronomy, computer graphics, electri-
cal engineering and electronics, mechanical engineer-
ing, optics, etc.

First of all, it is important to keep in mind that
the requirements on trigonometric functions are quite
different depending on the application domain. For
example, an application domain where performance is
typically more important than precision is 3D com-
puter graphics. The cosine is a fundamental operation
in 3D rendering techniques like various shading meth-
ods, ray tracing, etc. [12]. Those rendering techniques
have to use the trigonometric functions excessively of-
ten. Therefore, effective approximation techniques are
very important to gain performance, while high preci-
sion is not a first-order requirement.

However, we are focusing more on the use of trigono-
metric functions in the domain of embedded real-time
systems. They are used in mechanical applications,
e.g., to determine distances in automation systems, or
for controlling the movement of a robotic arm. Other
important real-time applications are multimedia sys-
tems, where they are used to compute Fourier trans-
forms (e.g., for audio processing) or discrete cosine
transforms (for graphics) are performed. Further in-
teresting application fields are applications that use ul-
trasound, optical devices, or statistical computations.

For the application of trigonometric functions in em-
bedded real-time control systems, typically both, the
numerical precision and the resource demands are rele-
vant. For the following discussions of different calcula-
tion techniques we concentrate on the cosine function,
since the other trigonometric functions are closely re-
lated respectively can be derived from it. We also dis-
cuss the maximum error for each calculation technique,
which is needed for the comparison of iterative calcu-
lation and table-lookup in Section 4.

3.1 Iterative Approximation (Taylor Series)

In common implementations of trigonometric func-
tions the Taylor series is used to approximate sine, co-
sine and tangent. There also exist other iterative algo-
rithms like CORDIC [1], which are slower than Taylor
series but easier to implement in hardware as it does
not need multiplication operations. In this paper we

focus on the Taylor series because we are interested in
implementations in software. Let us consider the power
series implementation of cosine (Equation 1): to reach
full double precision (as defined in [3]) a Taylor poly-
nomial of degree 14 is needed. As only the coefficients
of even powers are significant to calculate the cosine
function, only seven coefficients are needed. We call
this class of cosine implementation techniques CTAY-

LOR.

& 2n 7 2n

cos(z) = 3 (~1)" - én)' ~ 3 (-1 (;n), (1)
. n=0 !

n=0

The constant coeflicients do not need to be calcu-
lated at runtime everytime the function is called. In-
stead, they can be stored as static constants.

The accuracy of the power series decreases as the
distance of the argument from the center grows. There-
fore for trigonometric functions this distance is limited
to /4. As the center of sine, cosine, and tangent ap-
proximation is chosen to be zero the actual evaluation
interval of these functions is [—m/4;7/4]. To evaluate
arguments outside this interval an argument reduction
needs to be performed [7].

To estimate the maximum error of a Taylor series
implementation we need to consider the error at /4,
where the distance to the center of the power series is
maximal.

The maximum error of Taylor series with n itera-
tions is given by the remainder term R,i; in Equa-
tion 2.

1 x
Ropi=— [(@=1)" cos ") (1)dt =
n. O
2 g n
= Y T Lt
cos(x) (o1 T +(-1) 2n!> (2)

3.2 Approximation using Lookup Tables

Lookup tables are commonly used to replace run-
time calculations with simpler lookup operations. Re-
trieving an array value from memory is usually much
faster than making an expensive computation.

In the following we will take a look on three different
implementations of lookup tables:

e Fast and simple lookup tables (FLUT)

e Equidistantly interpolated lookup tables (EDI-
LUT), and

e Lookup table with interpolation with smart place-
ment of interpolation points (SMILUT)

3.2.1 Fast and Simple Table Lookup

The fast and simple lookup table (FLUT) is nothing
more than a data array that stores pre-calculated func-
tion values of the function in it. The places where these
values are taken are equidistant, so the array index fit-
ting to a given argument can easily be computed. Each
value in the array covers an interval of arguments. The
biggest error occurs, where the function has its greatest
gradient (see Equation 3. For example, a cosine lookup
table in the interval [0; 7/2] has its greatest gradient at

/2.

The advantage of FLUT is that it is easy to imple-
ment and the estimation of the timing behavior is sim-
ple. The performance according to speed is very good
but accuracy requirements should not be too high. To
enhance accuracy or to reduce the table size if a par-
ticular level of accuracy is given other methods like
EDILUT and SMILUT can be used.

3.2.2 Table Lookup with Equidistant Interpo-
lation

An equidistant interpolated lookup table (EDILUT)
reaches significantly higher accuracy compared to a
FLUT of the same size. The price to pay is a little
more arithmetics and so longer execution time.

The entries of an EDILUT are the function values
of equidistantly distributed places of the input inter-
val. In the case of a cosine EDILUT the input interval
is [0;7/2]. In a cosine calculation, first the two inter-
polation points next to the given argument are deter-
mined. Then a straight line through these two points
is calculated and the argument is set into this straight
interpolation line. With this method accuracy can be
increased significantly.

The maximum error of EDILUT occurs not on the
place with the greatest gradient, like it was the case for
FLUT, but on the place with the greatest curvature.
For our cosine function this is the case near the origin,
so we expect the greatest error to occur in the first
interpolation interval. The error of the interpolation in
the first interval can be calculated by subtracting the
linear interpolation between the first two interpolation
points from the function. By deriving this function and
setting to zero, the exact place of the maximum error
is retrieved. Applying this value to the error function
gives the maximum absolute error (Equation 4) for a
concrete lookup table size n of EDILUT.

Ernaz(n)=cos (sin™" (k)) — k-sin™" (k) — 1,
e 1 —cos 72(71”71) @

2(nﬂ——1)

3.2.3 Table Lookup with Smart Interpolation

A smart interpolated lookup table (SMILUT) is a fur-
ther improvement of EDILUT. In a SMILUT the in-
terpolation points are not equidistantly distributed in
the input interval but in a smarter way. The function
for mapping the input interval into the range of array
indices should be rather simple. We map the input
interval to the indices using the squareroot function.
The result is an improvement of accuracy.

With this placement we achieve that the maximum
error does not occur within the first interpolation in-
terval but rather in the middle of the overall input in-
terval.

As the squareroot function might be too expensive
to compute, we considered an alternative implemen-
tation for finding the correct interpolation interval,
namely using binary search.

EDILUT
SMILUT ==

0.01 [
0.0001
1e-006

1e-008

maximum error

1e-010 + Mo, 1

1le-012 | My, g

1e-014 L L L L L L (2
10 100 1000 10000 1000001e+006

size of lookup table

Figure 1. Maximum Absolute Error of FLUT, EDI-
LUT, and SMILUT

To complete the discussion about LUT-based solu-
tions, a comparison of the accuracy in dependence of
the size of the lookup array is given in Figure 1 .

1Note that due to range limitations in the numerical calcula-
tion, the size values above 2000 are extrapolated values to show
the tendency of the graph.

4 Comparison of Iterative vs. LUT-

based Techniques

A comparison of different iteration numbers of Tay-
lor series implementations to the three lookup table
approaches is depicted in Figure 2. It is shown how
many entries a particular type of lookup table needs
to exceed the accuracy of different Taylor series imple-
mentations.

As the maximum error of FLUT and EDILUT can
be calculated analytically, these two variants can be
easily compared to the Taylor series. For the compari-
son of SMILUT a simple tool was developed to experi-
mentally determine the required size of the SMILUT to
reach the accuracy of the different Taylor series imple-
mentations. This tool determines the maximum error
of a SMILUT for a given array size. If the error is
too big the array size is increased. The program ter-
minates when the accuracy of the SMILUT exceeds a
given limit, e.g., the accuracy of a particular Taylor
implementation.

As shown in Figure 2 the accuracy of FLUT is much
worse than the accuracy of the other LUT implementa-
tions. SMILUT performs slightly better than EDILUT.
One can see that the size of lookup tables of any type
grows exponentially with the number of Taylor itera-
tions. Thus, if high accuracy requirements need to be
met, the use of lookup tables may not be feasible or
sensible to approximate trigonometric functions - the
memory consumption of these algorithms is too high.

1le+010

2 FLUT ©
S 1e+009 [EDILUT 4 1
S leroog | SMILUT o |
@ o
.é 1e+007 1
o 1e+006 | 1
kel o
% 100000 f o
S 10000 | 1
e o 7'y
= 1000 | . 1
2 100 | . 1
3 %
E 10 ¢ & 1
3 e 7 ‘ ‘ ‘ ‘

0 1 2 3 4 5

number of taylor iterations

Figure 2. Necessary LUT Size to Match the Accu-
racy of Taylor Series

5 Experimental Evaluation

In Section 3 we described the theoretical proper-
ties of different calculation techniques of trigonometric

functions. Lets now look at the different calculation
techniques from a practical point of view. Especially
interesting for the use of trigonometric functions in em-
bedded real-time systems are their resource demands.
Therefore, we analyzed their memory footprints in data
and code memory, and calculated an upper bound of
their worst-case execution time (WCET).

5.1 Studied Algorithms

To analyze the properties of the different compu-
tation techniques discussed in Section 3 on a concrete
computer platform, we implemented several variants of
the cosine function. We implemented the cosine func-
tion for the double data type of ANSI C (which is typ-
ically the 64-bit IEEE floating point format [3]).

Two iterative cosine variants belonging to CTAY-
LOR were implemented, one which is a straight for-
ward implementation of the Taylor-formula and one
with precalculation of the coefficients of the Taylor-
terms.

On the other side the three LUT-based variants of
Section 3.2 have been implemented: FLUT the straight
forward method, EDILUT which uses linear interpo-
lation and SMILUT, an implementation using binary
search to find the correct interpolation point within the
LUT. Compared to EDILUT it is highly performance
oriented and uses more precomputed results, requiring
three LUTs.

Some characteristic parameters of the different co-
sine implementations are given in Table 1. The column
#BB denotes the number of basic blocks of the gener-
ated object code. The DataMem columns give the re-
quired number of bytes to store the intermediate data
and the LUT. It is given first in parametric form as a
function of the LUT size N, and second for the con-
crete case N = 1000. The column CodeMem denotes
the net code size, i.e., without counting the standard
library functions which are linked by the compiler. The
byte values are given for the Infineon C167 processor,
a 16bit architecture.

5.2 WCET Analysis

In the following we describe how we derived the
WCET of the different cosine implementation tech-
niques. Our WCET analysis tool calc_wcet_167 ? uses
static timing analysis to calculate an upper bound of
a task’s WCET. The target architecture for the tool is
the processor C167 from Infineon, for which the GCC
compiler was ported by the company HighTec EDV

%http://www.wcet.at/tools.html

DataMem
Function name | #BB (parametric) (N=1000) CodeMem
[bytes] [bytes] [bytes]
CTAYLOR 22 28 n.a. 720
CTAYLOR_tab | 19 90 n.a. 598
FLUT 13 10+-N-8 8 010 456
EDILUT 15 344+N-8 8 034 902
SMILUT 23 30+(N+1)-24 24 054 536

Table 1. Implemented Calculation Variants of the Cosine Function

Systeme GmbH 3. The integration of optimizing com-
pilation into the WCET analysis is described in [5].
The development and verification of the timing model
for the Infineon C167 is documented in [2]. Because
the Infineon C167 processor has a relatively simple ar-
chitecture, the overestimation of the calculated WCET
bound of our tool is tight, maximal 5%, but typically
less than 2%, provided the control flow is precisely
modelled by flow constraints [2].

The cosine implementations were written in WCETC,
based on a subset of ANSI C but providing additional
features to annotate the source code with flow infor-
mation to guide the WCET analysis tool [4].

The WCET analysis of the cosine implementations
itself did not require anything special to mention. How-
ever, the overall WCET analysis was not easy because
the Infineon C167 processor does not have a floating
point engine in hardware. For such architectures the
compiler links extra program code that emulates the
floating point computations in software (libsgnu.a
provided by HighTec). To perform the WCET anal-
ysis we disassembled the object code of the library and
annotated it at assembly code level with flow informa-
tion.

The final WCET analysis results of the different co-
sine implementations are given in Table 2. Besides the
properties of the concrete implementations, these val-
ues are generally rather high because we assumed a
slow hardware configuration with slow external mem-
ory. The first of the WCET columns shows the WCET
in a parametric form. This is only relevant for the iter-
ative implementations, where iter is the number of loop
iterations used to iteratively refine the result based on
the Taylor series of the cosine function. The other four
WCET columns show the WCET bound of the itera-
tive algorithms for different iteration counts.

5.3 Discussion

The results of the general analysis of the maximum
absolute error for CTAYLOR and of the maximum

Shttp://www.hightec-rt.com

absolute error of FLUT, EDILUT, and SMILUT to-
gether with the precision relationsship between CTAY-
LOR and LUT-based methods (Figure 2) can be com-
bined with the results from the concrete implementa-
tion to reason about the pros and cons of the different
computation paradigms.

To demonstrate how this can be done, lets assume
that for a concrete project one needs a cosine function
providing a maximal error of less than 2.5-1078. Evalu-
ating Equation 2 at /4 it follows that one would need
4 iterations (= 5 Taylor terms) with the CTAYLOR
methods. To replace the CTAYLOR method later by
an adequate LUT-based method one could deduce from
Figure 2 the required LUT size to match at least the
same precision. For example, to obtain the same qual-
ity with EDILUT or SMILUT, one has to choose an
LUT size of N > 3000!

From Table 1 we can see that in this case the addi-
tional memory demand for the LUT-based methods is
significant. The FLUT method, though it is relatively
fast, is completely out of choice as it would require an
LUT size of N > 10°. If performance really is the most
important issue, then according to Table 2 one has to
use the SMILUT implementation. But surprisingly, the
CTAYLOR methods are not that bad regarding the
WCET compared to SMILUT. As a rough indicator
using our example, one would need only 90 bytes data
memory when using CTAYLOR_tab compared to the
more than 72kB when using SMILUT. The code size is
almost the same between these two implementations.

Another benefit of the CTAYLOR methods is their
anytime characteristic. In case a CTAYLOR method
gets interrupted, there is still some accuracy of the re-
sult available, for example, to move a robot arm at least
in the intended direction, hoping that the control will
be refined in the next round by a more accurate result.
Depending on the application, this can be an advan-
tage of iteration-based CTAYLOR methods compared
to the LUT-based methods.

WCET [cycles]
Function name (parametric) (iter=1) (iter=3) (iter=4) (iter=7)
CTAYLOR 23 140 + iter-79 500 102 640 261 640 341 140 579 640
CTAYLOR_tab | 23 380 + iter-49 200 72580 170980 220 180 367 780
FLUT 136 840 n.a. n.a. n.a. n.a.
EDILUT 276 640 n.a. n.a. n.a. n.a.
SMILUT 120 540 n.a. n.a. n.a. n.a.

Table 2. Calculated WCET of the Cosine Functions (Target Processor: Infineon C167)

Generality of the Results

In our concrete case study of the cosine function it
has been shown that the WCET of the iterative cal-
culation is quite competitive to table-lookup while the
economics on memory demand is far superior.

Iterative calculations generally provide the same ad-
vantages as long as they have a relatively compact cal-
culation step within each iteration and the termination
speed of the iterative calculation is reasonable.

As a further example, the Newton method to solve
equations numerically tends to provide such a behav-
ior, provided that the start value is already within the
local convergence interval of the solution. There are
many instantiations of the Newton method in practice,
e.g., the Heron method to calculate the square root of
a number.

6 Summary and Conclusion

Motivated by our general effort to study the suit-
ability of different algorithms for real-time computing,
we looked at different calculation techniques of trigono-
metric functions, because of their use in a wide range
of technical applications.

One of the central conclusions is that whenever
memory is highly constrained, iteration-based methods
are very useful, because they tend to demand much less
memory while still providing reasonable accuracy of re-
sults. And quite important, the performance overhead
of iteration-based methods is not that high, even in
our case study where we calculated the WCET for the
C167, a processor that emulates floating point arith-
metics in software. Further, the WCET analysis itself
was an interesting experience, as we had to analyze
routines of the floating-point emulation library by dis-
assembling the object code.

In general, in embedded real-time systems, where
size of memory is typically restricted, iterative al-
gorithms can be a memory-efficient calculation tech-
nique without significant performance costs compared
to LUT-based methods, as long as a reasonable termi-
nation speed of the iterative calculation is ensured.

References

[1] R. Andraka. A survey of cordic algorithms for fpga
based computers. In Proc. ACM/SIGDA 6th Inter-
national Symposium on Field Programmable Gate Ar-
rays, pages 191-200, 1998.

[2] P. Atanassov. FEzperimental Assessment of Worst-
Case Program Ezecution Times. PhD thesis, Tech-
nische Universitdt Wien, Vienna, May 2003.

[3] IEEE. IEEE Standard 754-1985 for Binary Floating-
Point Arithmetic. IEEE, New York, 1987. Reprinted
in SIGPLAN Notices 22,2,9-25.

[4] R. Kirner. The programming language WCETC. Tech-
nical report, Technische Universitat Wien, Institut fiir
Technische Informatik, Treitlstr. 1-3/182-1, 1040 Vi-
enna, Austria, 2002.

[5] R. Kirner. Extending Optimising Compilation to Sup-
port Worst-Case Ezxecution Time Analysis. PhD the-
sis, Technische Universitit Wien, Vienna, Austria,
May 2003.

[6] D. E. Knuth. The Art of Computer Programming -
Sorting and Searching, volume 3. Addison Wesly, New
York, USA, 2nd edition, 1998. ISBN 0-201-89685-0.

[7] J. N. Lygouras. Memory reduction in look-up ta-
bles for fast symmetric function generators. I[IEFE
Transactions on Instrumentation and Measurement,
48(6):1254-1258, Dec. 1999.

[8] A. Narayanan and V. Shmatikov. Fast dictionary at-
tacks on passwords using time-space tradeoff. In Proc.
12th ACM conference on Computer and Communica-
tions Security, pages 364-372, New York, NY, USA,
2005. ACM Press.

[9] P. Puschner and A. Burns. A review of worst-case
execution-time analysis. Journal of Real-Time Sys-
tems, 18(2/3):115-128, May 2000.

[10] P. Puschner and R. Kirner. Avoiding timing problems
in real-time software. In Proc. IEEE Computer So-
ciety’s Workshop on Software Technologies for Future
Embedded Systems, May 2003.

[11] M. Stamp. Once upon a time-memory tradeoff. Tech-
nical report, San José State University, San José, Cal-
ifornia, USA, July 2003.

[12] A. Watt. 8D Computer Graphics. Addison Wesley,
3rd edition, Dec. 1999. ISBN: 0201398559.

