
A Framework for the Busy Time Calculation of Multiple Correlated Events

Simon Schliecker, Matthias Ivers, Jan Staschulat, Rolf Ernst
Institute for Computer and Communications Network Engineering

{schliecker, ivers, staschulat, ernst}@ida.ing.tu-bs.de

Abstract

Many approaches to determine the response time of a
task have difficulty to model tasks with multiple memory
or coprocessor accesses with variable access times during
the execution. As the request times highly depend on sys-
tem setup and state, they can not be trivially bounded. If
they are bounded by a constant value, large discrepancies
between average and worst case make the focus on single
worst cases vulnerable to overestimation.

We present a novel approach to include remote busy time
in the execution time analysis of tasks. We determine the
time for multiple requests by a task efficiently and and far
less conservative than previous approaches. These requests
may be disturbed by other events in the system. We show
how to integrate such a multiple event busy time analysis to
take into account behavior of tasks that voluntarily suspend
themselves and require multiple data from remote parts of
the system.

1 Introduction and Overview
The analysis of the worst case timing behavior of sys-

tems is facing new challenges with increasing system com-
plexity. In order to derive reliable bounds, overestimations
must often be introduced to reduce the analysis complexity.
However, this will either increase costs or thwart industrial
use altogether. Therefore, timing analysis must be sure to
cover realistic system setups with tight timing bounds.

A particular challenge is the behavior of tasks that
strongly interact with their environment during execution,
e.g. through memory or coprocessor requests: The wait-
ing for such external requests introduces additional delays.
Thus the execution time can not be known without knowl-
edge of these delays, which depend highly on system setup
and state. Furthermore, if the scheduler reallocates the
processor to other tasks, conserving the processor time, but
also additionally delaying the requesting task, the response
time can not be determined on the basis of the tasks core
execution time alone.

Also, the focus on absolute worst case response times
in system level analysis has impaired the analysis potential
of such tasks: Assuming requests to cause a constant delay

to the execution leads to a large overestimation in shared
resource multi-task environments, where the worst case can
outgrow the common case by very large factors.

The contribution of this paper is a new method to in-
vestigate communicating tasks which issue a large number
of events during execution. We present methods to derive
the total busy time of an execution seperated into multiple
chunks, as well as the total busy time of multiple transac-
tions over multiple resources. Both is integreated to find
response times of communicating tasks. We closely exam-
ine a static priority preemptive (SPP) scheduler and show
the improvement over previous work in experiments.

This paper is organized as follows: We will present re-
lated work on timing analysis in Section 2 and a new model
for communicating tasks in Section 3. Section 4 presents
our framework, which is implemented for a SPP scheduler
in Section 5. We present an example and experiment in Sec-
tion 6, and conclude in Section 7.

2 Related Work on Timing Analysis
Timing of real-time systems is addressed on different

levels of abstraction. We will first present approaches that
closely examine thetasksinternal behavior. Approaches
that work on theresourcelevel take these results as the ba-
sis for a schedulability analysis. Finally,systemlevel ap-
proaches investigate the system behavior to derive timing
properties such as path latencies.

The timing analysis ofindividual tasksis commonly sep-
arated in two stages [7] [6]: Microarchitecutural modeling,
in which the timing of sequences of instructions is investi-
gated, and program path analysis to determine which path is
executed in the worst-case. Memory or coprocessor access
times, or cache miss penalties are assumed to be constant
parameters in most approaches.

The interference ofmultiple tasks on the same resource
is considered in the response time analysis. The growing-
window technique is the prevailing method to solve worst
case response time equations which do not lend themselves
easily to direct solution. Originally introduced in [5], ithas
been extended to include arbitrary arrival patterns and addi-
tional timing effects e.g. in [8].

In a simple version, with no blocking time and no multi-
ple releases within a busy window the worst case response

1ECRTS 2006 
6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2006/676



timeWCRT (τ) of a taskτ with worst case execution time
C(τ) on a resource with SPP scheduling is given by the
smallest timew that fulfills the following equation:

w = C(τ) + Ihp(w) (1)

whereIhp(w) is the worst case interferenceτ can experi-
ence due to the execution of higher priority tasks within a
time window of sizew.

Bletsas et al. have shown in [1] how to consider tasks
whose execution is separated into actual execution times
and known communication times in the response time
analysis. Their approach accounts for the parallelism in lo-
cal and remote execution, in so far that the interference by
higher priority tasks is reduced by the ”gaps” during which
they wait for remote data. Still, the gap time is assumed
to be constant and independant of previous behavior, which
is not the case, e.g. when requests by different tasks are
pipelined.

System level analysisis necessary to derive thepath la-
tencyof memory transactions, or other requests that pass
over multiple components of a system. To avoid confusion
with paths within a tasks control flow, we call paths through
the systemchains.

The classical worst case response time calculation was
extended to distributed systems in [9]. Other approaches,
such as [4] break down the analysis complexity of complete
systems into separate local analyses and bind them together
with a description of the traffic (event streams). Attribut-
ing value dependent execution times (modes) to tasks [3]
can lead to better local response times, if the event streams
are enriched with a description of the type of events in the
stream. Any of these conservative approaches focus solely
on the worst case time of any single event.

The strict distinction between the different levels of ab-
straction was broken down in [2], where an integrated ap-
proach to perform program path analysis and derive co-
processor request latencies was presented, by assuming a
worst case scenarios for each request.

3 Communicating Tasks

The presence of communicating tasks, which perform
system-wide requests during their execution, contradictsa
number of the assumptions of the classical analysis distrib-
ution, in which only “bottom-up” dependencies exist. The
main problem is that the worst case execution behavior de-
pends on the system level influences that can not easily be
bounded before the execution behavior is known. If a con-
servative worst case can be found at all, it is many cases
a high overestimation of the average case. Also, voluntary
suspension of tasks can lead to additionaly scheduling de-
lays. We will therfore introduce a model for communicating
tasks, that enables improved reasoning about the distributed
execution behavior.

The traditional task concept assumes tasks consisiting of

basic blocks of linear code, branches, and loops, all rep-
resented in a control flow graph. Some worst case input
pattern leads to a worst case timing behavior as shown in
Figure 1a. The timing includes execution of instructions on
the processor as well as memory or coprocessor calls.

a) b)

a1 a2 a3

c1 c2 c3 c4

activationactivation

finishfinish

Figure 1. Task execution model.

We assume that acommunicating taskperforms data re-
quests by initiatingtransactions(a1 to a3) though executing
an explicit instruction (CALL a), wherea defines the tar-
get and type of the transaction. By calling an instruction
SYNC a, the task will be suspended until completion of
the transaction. We call the parts of a task during which no
external data is requiredconsecutive execution sequences
(CESc1 to c4), each of which can be seen as corresponding
to the classical task concept. A CES will often be com-
putation but may also be communication or data storage,
depending on the type of resource the CES is executed on.

A worst case task behavior exists that maximizes the
time until completion, including finishing of all CESs and
transactions. For the scope of this paper we assume that
the maximum execution time of each CES is known, and to
reduce the complexity of our problem that the amount and
type of incurred transactions is not data dependant. This
behavior is sketched in Figure 1b.

A transaction consists of an ordered set ofevents. Each
event is the signal that causes one CES on any resource to
becomeready. This CES is thenprocessingthe event until
it is finishedand thus not ready anymore. When the CES
is finished, the next event of the transaction becomesready,
activating the next CES. The first event of the transaction
initiates the transaction and is given by theCALL instruc-
tion. The transaction isfinishedwhen the last event of the
transaction was processed. When a transaction is initiated
but not finished it isongoingor ready.

τ1

τ2

τ3

τ4

CPU1

CPU2

MEM

BUS

COP

Figure 2. A Multiprocessor Setup.

Figure 2 shows the setup of an example multiprocessor
system. Three tasks are mapped to processorCPU1. Dur-

2



MEM

BUS

CPU1

interference
execution
busy time
event
transactionsa1,a2a1 a2

waiting readyreadyready waiting
ti

τ2

Figure 3. A distributed execution
ing its execution,τ2 requires data from the memoryMEM .
A taskτ4 onCPU2 also uses the bus and memory, interfer-
ing with the communication ofτ2. Figure 3 shows a pos-
sible Gantt diagram of this example. Taskτ2 on CPU1 re-
quests data from the memory two times, each time initiating
a transactionconsisting of 4events. The processing of the
events is delayed on theBUS and on the memoryMEM ,
due toτ4 performing similar accesses. As the overall time
window is larger than without transactions, increased inter-
ference (for example by higher priority tasks as experienced
by τ2 at timeti in Figure 3) occurs. The dotted lines denote
the actualoverall busy timeof τ2 which is the focus this
paper.

4 A Framework for Worst Case Busy Times
We present a coupled analysis, that integrates the tasks

execution behavior with the system level behavior to find
the tasks response time. We set a specific focus on the
analysis of multiple transaction on the system level, and
the seperation of tasks into multiple parts on the local level,
which is the common scenario for tasks with remote data
requirements.

First, a worst case busy time analysis is introduced in
Section 4.1, which allows tasks to request data multiple
times during execution. This approach relies on the cal-
culation of a local total busy time (generally addressed in
Section 4.2, and specifically for SPP in Section 5), and the
busy time for the memory transactions, which is calculated
in Section 4.3.

4.1 Worst Case Busy Time Analysis

Extending the scope of the response time analysis from
single worst case behavior to conservative bounds of mul-
tiple events requires the introduction of new terminology.
Let the set of CESs of a task that leads to the largest local
execution time be denoted byE and the set of transactions
that is initiated by a task denoted byQ. Furthermore:

The total busy time of a set of CESsE is the total amount
of time during which at least one CES ofE is ready.
Thus this is the union of the times during which any
single CEC is ready.

The total busy time of transactionsA is the total amount
of time during which at least one transaction ofA is
ready (i.e. ongoing).

The overall busy timeis the total amount of time during
which either a CES or a transaction is ready.

Figure 3 shows the execution of taskτ2, which consists of 3
local CESs onCPU1 and initiated transactionsa1 anda2.
The dotted lines comprise the overall total busy time of the
tasks CECs and transactions. The following theorem gives
a overall busy time based on the definitions above.

Theorem 1. The overall busy time of a taskτ executing on
resourcer during a time window of sizew ≥ 0 is given by
w such that

w = Sr
CES(E, w) + Strans(A, w) (2)

E is the set of CESs that the taskτ needs to execute locally
for completion and

A is the set of transactions the taskτ initiates and requires
to complete execution.

Sr
CES(E, w) is the maximum total busy time for CESsE

and
Strans(A, w) is the maximum total busy time for transac-

tionsA under the assumption that all CESs and trans-
actions can be finished within timew.

Proof. Assume that transactions are initiated at the very last
instant of each CES ofτ . From the definition it follows that
as soon as the transaction is finished the next CES is ready
to be executed. This means that whenever no CES is ready,
a transaction must be ongoing or the task is finished.

As the maximum total amount of time that transac-
tions can be ongoing is bounded byStrans(A, w) and
the maximum amount of time CESs are ready is bounded
by Sr

CES(E, w), it follows that after Sr
CES(E, w) +

Strans(A, w) the task must be finished.
If a task issues the transactions not at the end of a CES

but earlier, both the task and a transaction are ready at the
same time. This can only lead to a smaller total busy time.

To solve equation 2 a growing-window technique as in
[8] can be used. Initially, a non-conservative value forw can
be picked. It will not be possible to perform all requested
computation in time, as it will take at least untilSCES +
Strans to finish. This value is used as a neww and tested.
As soon asw is large enough to contain all busy times, the
assumptions are correct and the analysis has converged. An
example of this procedure is given in Section 6.

3



The above theorem is valid independently of the utilized
arbitration policies, asSCES andStrans are unspecific. The
next sections 4.2 and 4.3 focus on the derivation of these
values.

4.2 Multiple Event Busy Times

One property of the memory and coprocessor requests
adressed in this paper is that commonly many occur during
a tasks execution. We will investigate the case of the exe-
cution of multiple CESs in a given time window. Figure 4
shows the busy time of 4 CECs that are processed in a first-
in-first-out ordering. The resource is also handling requests
by other tasks, which leads to delay due to interference. The
dotted line depicts the searched total busy time, which is the
union of the individual CESs’ busy intervals (R1 to R4).

R1 R2 R3
R4

τ

Interference

Busy time

w

Figure 4. Single Resource Total Busy Time.

The total busy time can be used for two things: Firstly,
it gives the maximum total amount of time during which
this resource can be busy processing CECs that are activated
by events that are part of a transaction. This is required to
determine the remote total busy timeStrans of Theorem 1
and is investigated in Section 4.3.

Secondly, it is also an estimate on the local total busy
timeSCES of a communicating task. The execution of such
a task consists of CESsE (see Section 3). Although the
CESs of a single task may not overlap, the total busy time
is still valid.

Tindells approach to response times for bursty job ar-
rivals [8] is not applicable, as it finds the worst case re-
sponse time only within a self-inflicted and continuousbusy
window. In our case however nothing is said about the ar-
rival times, so that events mayalsoarrive completelysepa-
rated.

Anyway, the worst case response time as derived in [8]
and similar approaches may be reused: For any scheduling
arbitration the maximum total busy time is bounded by the
sum of the individual worst case response timesWCRT (c)
of the CESsc ∈ E.

Sr
CES(E, w) =

∑

c∈E

WCRT (c) (3)

Similarly, the busy time required to process a set of
eventsQ to CESs on the same resource can be bounded. As
each eventq ∈ Q causes one CES,c(q), to become ready,

the set of CESs to process is given by

E =
⋃

q∈Q

c(q) (4)

Note that Eq. 3 is an overestimation as can be seen in Fig-
ure 4. Firstly, not every event must wait for the processing
of previous events to be finished as is assumed in the cal-
culation ofWCRT (c), rather the individual busy windows
overlap. Furthermore, not every request can experience the
critical instant of interference by other tasks, but only a cer-
tain amount of interference can occur in in the given time
window. We will therefore present an improved analysis
specifically for static priority preemptive (SPP) scheduling
in Section 5.

4.3 Busy Time of Transactions

In the previous section we have investigated processing
of multiple events on the same resource. We will now turn
to the total busy time of transactions that consists of multi-
ple events on different resources,Strans, in Eq. 2. For this,
we can build on the results of section Section 4.2 (and 5).

A straightforward bound for the total busy time of trans-
actionsA is the sum over the worst case response times
that each individual transaction would have taken. This
is again an overestimation, as the worst case interference
can in many cases not be imposed on every single transac-
tion, and not every transaction may be delayed by preceding
transactions. An amelioration is achieved by Theorem 2,
where multiple transactions are investigated together.

Theorem 2. Let each transaction inA consist of events to
CESs mapped to a set of resourcesR, and it is known they
can be initiated and finished within a time window of size
w. Let all events of the transaction on the same resource be
treated with a first-in-first-out principle. Then the maximum
total busy time of the transactionsA is given by:

Strans(A, w) ≤
∑

r∈R

Sr
CES(EA

r , w) (5)

whereEA
r is the union of all CESs that are executed on

r and activated by an event of the transactionA and
Sr

CES(EA
r , w) is the maximum total busy time of these

CESs.

Proof. Let Tr(c) be the time interval at which a specific
CESc on resourcer is ready. The total amount of time that
resourcer can be busy processing events is given by the
size of the union of all times at which at least one CES of
the transaction is ready onr.

As the transactions are assumed to be finished within a
time window of sizew, Theorem 3 bounds the total busy
time of the CESs which correspond to the events in the
transaction bySr

CES(EA
r , w).

∣

∣

∣

∣

∣

∣

⋃

c∈EA
r

Tr(c)

∣

∣

∣

∣

∣

∣

≤ Sr
CES(EA

r , w) (6)

4



⋃

· Produces the union of included intervals.
| · | Is the sum of the total size of all included intervals.

A transaction along the chain is ongoing whenever an event
of the transaction is ready on any of the given resources
along the chain. Therefore, the busy time of the transactions
A is bounded by

Strans(A, w) =

∣

∣

∣

∣

∣

∣

⋃

r∈R

⋃

c∈EA
r

Tr(c)

∣

∣

∣

∣

∣

∣

(7)

As the size of the union of intervals can not be larger than
the sum over the sizes of the intervals, equation 5 follows
from equations 6 and 7.

This framework allows to determine the worst case re-
sponse time of tasks which require multiple data from other
parts of the system, and initiate transactions to fetch this
data. The total busy time of the transactions was deter-
mined, and the effect of the resulting voluntary suspensions
of the task into multiple CESs has been taken into account
in Section 4.2, albeit rather imprecisely. We will now im-
prove the considerations about local total busy time in the
following section.

5 A Static Priority Preemptive Scheduler
To show the validity of the approach presented in Sec-

tion 4, we introduce a simple static priority preemptive
(SPP) scheduler that arbitrates tasks with transaction andre-
synchronization instructions. Based on SPP scheduling, the
scheduler ensures that at every time point the task with the
highest priority that has all data required for execution, and
has not completed execution is executing on the resource.
Tasks may consist of multiple CECs, that receive the same
priority as the task. All CECs with the same priority are
treated first-in-first-out. For the scope of this paper, we as-
sume that there is no blocking caused by shared critical sec-
tions, and the scheduling procedure induces no significant
additional overhead.

Theorem 3. Let a set of CESsE have the same priority
on resourcer that is scheduled with mechanisms described
above. Let the processing of all CESs be started and fin-
ished within a time window of sizew. Furthermore, let
C(c) be the worst case computation time of a CESc ∈ E,
andIhp(w) be the maximum time tasks with higher priority
may be executing. Then the maximum total busy time ofE

is given by the following equation:

Sr
CES(E, w) =

∑

c∈E

C(c) + Ihp(w) (8)

Proof. The total busy timeB is given by the sum of all
times during which at least one CES is ready. LetRUN(t)
be the task or CES chosen by the scheduler to execute at
time pointt.

All times t at whichRUN(t) ∈ E, a CES inE is being ex-
ecuted and must therefore be ready, thust must be included
in B. This can be the case for at most

∑

c∈E C(c).

At times t, when RUN(t) 6∈ E, either no CES inE is
ready, or if one ore more CES is ready, they are kept from
executing by a higher priority task that is ready. Whenever
no CES inE is ready,B does not increase. The total amount
of time higher priority tasks can be executing is limited by
Ihp(w), and in the given scheduler, at least one higher pri-
ority task is ready, only if a higher priority task is executing.
Thus, whenever a CES inE is ready, it can not be kept from
executing for more thanIhp(w) within a time interval of
sizew.

Thus, the CESs inE can not be ready for more than
∑

c∈E C(c) + Ihp(w) in a time interval of sizew.

Compared to section 4.2, this is a better estimate of the
busy time of the CECs inE, as now the worst case inter-
ference in the given time windoww in which all processing
takes place is only accounted once.

Note that the worst case interferenceIhp(w) by higher
priority tasks which are allowed to suspend themselves to
request data is not given by the traditional ”critical instant”
of all tasks being activated simultaneously [1]. Instead, the
first interfering invocation has to be assumed to have per-
formed all suspensionbeforethe beginning of the time win-
dow, which leads to an earlier possible activation of all suc-
cessive invocations.

6 Example and Experiments
Consider the System in Figure 2 and 3. Let all resources

be scheduled with the SPP scheduling as described in Sec-
tion 5. We are interested in the response time ofτ2. Assume
thatτ2 initiate 5 transactionsA to the memory. Let the pe-
riod and jitter be according to Table 1, and the deadline of
τ2 equal to its period. Assume thatτ1 is the only task on
CPU1 with a higher priority. On both the bus and the mem-
ory, the priority of the tasks handlingτ2’s transactions are
lower than the interference (I1

4 , I2
4 , andI3

4 ) caused by the
transactions ofτ4 on CPU2, which occur with the period
and jitter as shown. Besides their transactions, letτ1 consist
of a single CES of size10, andτ2 of one of size50. Let the
execution time of any execution on the bus or the memory
be 10.

CPU1 Bus Memory
τ2 τ1 A I1

4 I2
4 A I3

4

Period 400 100 n/a 100 100 n/a 100
Jitter 0 200 n/a 0 200 n/a 0

Table 1. Example Setup

A traditional response time analysis utilizes the worst
case time for a single request, each delayed by the
maximum amount of interference. This calculates to
WCRTBUS +WCRTMEM +WCRTBUS = 50+40+50
(calculation not shown). Thus for 5 requests a time of
5 ∗ 140 = 700 is required. Based on this,τ2 can not keep
its deadline.

5



Determining the worst case response time on the basis
of multiple event busy times yields much tighter bounds.
According to Theorem 1, the overall busy time is given by
SCPU1

CES + Strans, whereSCPU1

CES is denoted bySCPU and
Strans according to Theorem 2 is given bySBUS +SMEM .
Initially, it is assumed that all computation request can be
handled within a time window size ofw = 50, which is
the core time ofτ2. If this were the case, the computation
on CPU1, Bus, and the memory would take80, 130 and
80 time units respectively. Thus, the computation can not
be finished within the assumed time window. A new test
is done with the time window size 290, which also fails.
This goes on until finally it is assumed that all computation
is started and finished in a time window of size 380, thus
the assumption holds, and a the worst case response time
of τ2 is found. This is an improvement towards previous
approaches, as the interference in the overall busy window
is only accounted for once.

CPU1 Bus Memory
C(τ2) = 50 C(q) = 10 C(q) = 10

w I1 SCPU I1 I2 SBUS I4 SMEM

50 30 80 15 15 130 30 80
290 50 100 25 25 150 50 100
350 60 110 30 30 160 60 110

380! 60 110 30 30 160 60 110

Table 2. Calculation Procedure

We conducted a set of multiple request experiments to
show the gain of our analysis ins Section 5 over the sum
of worst cases approach. Figure 5 shows the estimated re-
sponse times for a number of requests, from which it is
known that they occur within a time window of size 300. As
the number of requests increases, the total busy time only
increases by the added core execution time. This results
from the fact, that the complete possible interference in the
time window is assumed from the beginning. This is also
the reason, why the new method is inferior forN = 1, as in
traditional WCRT only the interference during the requests
busy window (notw) can interfere with the execution. As
both approaches are conservative, the minimum can be used
for an optimal analysis. The positive effect scales for trans-
actions as suggested by the aboeve example.

Figure 5. Multiple Request Total Busy Time.

7 Conclusion
To allow the analysis of communicating tasks that con-

sist of local execution sequences and remote transactions
we have proposed a framework that integrates the analysis
over different levels of abstraction. We address multiple
events together and calculate an upper bound on the total
amount of busy time. This is both used for a tight estimate
on the transaction latencies as well as the overall time to
complete the task execution. Additionally, we presented a
straight-forward analysis that accounts for the properties of
static priority preemptive scheduling. For scheduling poli-
cies, where no such adopted analysis is possible or avail-
able, we have presented a conservative fall-back solution.

The experiments have shown how the consideration of
a larger time window and multiple events can significantly
improve the estimates on the worst case response time of a
task that issues multiple memory requests.

References
[1] N. C. Audsley and K. Bletsas. Fixed priority tim-

ing analysis of real-time systems with limited paral-
lelism. In Proceedings of the 16th Euromicro Confer-
ence on Real-Time Systems (ECRTS 04), Catania, Italy,
jul 2004. IEEE Computer Society, IEEE.

[2] M. Ivers J. Staschulat, S. Schliecker and R. Ernst.
Analysis of memory latencies in multi-processor sys-
tems. InWCET Workshop, Palma de Mallorca, Spain,
July 2005.

[3] M. Jersak, R. Henia, and R. Ernst. Context-aware per-
formance analysis for efficient embedded system de-
sign. InProceeding Design Automation and Test in Eu-
rope, Paris, France, March 2004.

[4] M. Jersak, K. Richter, and R. Ernst. Performance analy-
sis for complex embedded applications.International
Journal of Embedded Systems, Special Issue on Code-
sign for SoC, 2004.

[5] M. Joseph and P. Pandya. Finding response times in a
real-time system.The Computer Journal (British Com-
puter Society), 29(5):390–395, October 1986.

[6] Y.-T. S. Li, Sharad Malik, and Andrew Wolfe. Cache
modeling for real-time software: Beyond direct mapped
instruction caches. InIEEE Real-Time Systems Sympo-
sium, pages 254–263, 1996.

[7] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and
precise wcet prediction by seperate cache and path
analyses.Real-Time Systems, 18(2/3), May 2000.

[8] K. Tindell, A. Burns, and A. Wellings. An extendible
approach for analysing fixed priority hard real-time sys-
tems. Journal of Real-Time Systems, 6(2):133–152,
March 1994.

[9] K. Tindell and J. Clark. Holistic schedulability analysis
for distributed hard real-time systems.Microprocessing
& Microprogramming, 50(2-3):117–134, apr 1994.

6


