A Framework for the Busy Time Calculation of Multiple Correlated Events

Simon Schliecker, Matthias lvers, Jan Staschulat, RolSErn
Institute for Computer and Communications Network Engiimee
{schliecker, ivers, staschulat, erh@ida.ing.tu-bs.de

Abstract to the execution leads to a large overestimation in shared
resource multi-task environments, where the worst case can
Many approaches to determine the response time of aoutgrow the common case by very large factors.
task have difficulty to model tasks with multiple memory The contribution of this paper is a new method to in-
or coprocessor accesses with variable access times duringvestigate communicating tasks which issue a large number
the execution. As the request times highly depend on sysef events during execution. We present methods to derive
tem setup and state, they can not be trivially bounded. If the total busy time of an execution seperated into multiple
they are bounded by a constant value, large discrepancieschunks, as well as the total busy time of multiple transac-
between average and worst case make the focus on singléions over multiple resources. Both is integreated to find
worst cases vulnerable to overestimation. response times of communicating tasks. We closely exam-
We present a novel approach to include remote busy timeine a static priority preemptive (SPP) scheduler and show
in the execution time analysis of tasks. We determine thethe improvement over previous work in experiments.
time for multiple requests by a task efficiently and and far ~ This paper is organized as follows: We will present re-
less conservative than previous approaches. These requesiated work on timing analysis in Section 2 and a new model
may be disturbed by other events in the system. We shovior communicating tasks in Section 3. Section 4 presents
how to integrate such a multiple event busy time analysis toour framework, which is implemented for a SPP scheduler
take into account behavior of tasks that voluntarily suspen in Section 5. We present an example and experimentin Sec-
themselves and require multiple data from remote parts of tion 6, and conclude in Section 7.

the system. 2 Related Work on Timing Analysis

1 ducti do . Timing of real-time systems is addressed on different
ntroduction an Verview levels of abstraction. We will first present approaches that
The analysis of the worst case timing behavior of sys- closely examine théasksinternal behavior. Approaches

tems is facing new challenges with increasing system com-that work on theesourcelevel take these results as the ba-

plexity. In order to derive reliable bounds, overestimasio sis for a schedulability analysis. Finallgystemlevel ap-
must often be introduced to reduce the analysis complexity.proaches investigate the system behavior to derive timing

However, this will either increase costs or thwart induadtri properties such as path latencies.

use altogether. Therefore, timing analysis must be sure to The timing analysis ahdividual taskss commonly sep-

cover realistic system setups with tight timing bounds. arated in two stages [7] [6]: Microarchitecutural modejing
A particular challenge is the behavior of tasks that in which the timing of sequences of instructions is investi-

strongly interact with their environment during execution gated, and program path analysis to determine which path is

e.g. through memory or coprocessor requests: The wait-executed in the worst-case. Memory or coprocessor access

ing for such external requests introduces additional delay times, or cache miss penalties are assumed to be constant

Thus the execution time can not be known without knowl- parameters in most approaches.

edge of these delays, which depend highly on system setup The interference ofnultiple tasks on the same resource

and state. Furthermore, if the scheduler reallocates thes considered in the response time analysis. The growing-

processor to other tasks, conserving the processor time, buwindow technique is the prevailing method to solve worst

also additionally delaying the requesting task, the respon case response time equations which do not lend themselves

time can not be determined on the basis of the tasks coreesasily to direct solution. Originally introduced in [5],has

execution time alone. been extended to include arbitrary arrival patterns ané add
Also, the focus on absolute worst case response timedional timing effects e.g. in [8].

in system level analysis has impaired the analysis pofentia In a simple version, with no blocking time and no multi-

of such tasks: Assuming requests to cause a constant delagle releases within a busy window the worst case response

ECRTS 2006
6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2006/676

time WCRT () of a taskr with worst case execution time basic blocks of linear code, branches, and loops, all rep-
C(7) on a resource with SPP scheduling is given by the resented in a control flow graph. Some worst case input
smallest timew that fulfills the following equation: pattern leads to a worst case timing behavior as shown in
Figure 1a. The timing includes execution of instructions on

w = C(1)+ Inp(w) 1) the processor as well as memory or coprocessor calls.

wherel;,(w) is the worst case interfereneecan experi- activation activation
ence due to the execution of higher priority tasks within a
time window of sizew. | | ler | lea| [es | fa

y A A v A

Bletsas et al. have shown in [1] how to consider tasks inish a1 | log as inish
whose execution is separated into actual execution times a) b)
and known communication times in the response time
analysis. Their approach accounts for the parallelism-n lo
cal and remote execution, in so far that the interference by
higher priority tasks is reduced by the "gaps” during which L
they wait for remote data. Still, the gap time is assumed We assume thateommunicating taskerforms data re-

to be constant and independant of previous behavior, whichduests F’Y ir_1itiatinglransaction9(a1 t0as) though executing
&an explicit instruction CALL a), wherea defines the tar-

pipelined get and type of the transaction. By calling an instruction
' SYNC a, the task will be suspended until completion of

System level analysis necessary to derive thpath la- the transaction. We call the parts of a task during which no
tencyof memory transactions, or other requests that pass . .) .
external data is requirecbnsecutive execution sequences

over multiple components of a system. To avoid confusion : .
with paths within a tasks control flow, we call paths through (CESc, 1o cy), each of which can be seen as corresponding
' to the classical task concept. A CES will often be com-

the systenthains utation but may also be communication or data storage,

The classm_al worst case response time calculation Wasgepending on the type of resource the CES is executed on.
extended to distributed systems in [9]. Other approaches, A worst case task behavior exists that maximizes the

such as [4] break down the analysis complexity of complete time until completion, including finishing of all CESs and

systems into_se_parate local a'?a'yses and bind them tOgemetFansactions. For the scope of this paper we assume that
W'th a description of the trafflce(v_ent streams Attribut- the maximum execution time of each CES is known, and to
ing value dependent execution timeaddes to tasks [3] reduce the complexity of our problem that the amount and

can Ieagl to betyer local response times, if the event s.treamsl.ype of incurred transactions is not data dependant. This
are enriched with a description of the type of events in the behavior is sketched in Figure 1b

stream. Any of these conservative approaches focus solely A transaction consists of an ordered setwénts Each

on the WO_rSt c_as_e tlme of any single eyent. event is the signal that causes one CES on any resource to
The strict distinction between the different levels of ab- becomeeady This CES is themprocessinghe event until

straction was broken down in [2], where an integrated ap- s finishedand thus not ready anymore. When the CES

proach to perform program path analysis and derive co-js finished, the next event of the transaction becoready;

processor request latencies was presented, by assuming &iyating the next CES. The first event of the transaction

worst case scenarios for each request. initiates the transaction and is given by tlALL instruc-

tion. The transaction inishedwhen the last event of the

transaction was processed. When a transaction is initiated
The presence of communicating tasks, which perform but not finished it iongoingor ready:

system-wide requests during their execution, contradicts

Figure 1. Task execution model.

3 Communicating Tasks

number of the assumptions of the classical analysis distrib @ CPU; BUS
ution, in which only “bottom-up” dependencies exist. The T~ MEM
main problem is that the worst case execution behavior de- @ . -~ _
pends on the system level influences that can not easily be @ S = EQ
bounded before the execution behavior is known. If a con- S
. o CPUy, |- | __[COP
servative worst case can be found at all, it is many cases i
a high overestimation of the average case. Also, voluntary -
suspension of tasks can lead to additionaly scheduling de-
lays. We will therfore introduce a model for communicating Figure 2. A Multiprocessor Setup.
tasks, that enables improved reasoning about the distdbut
execution behavior. Figure 2 shows the setup of an example multiprocessor

The traditional task concept assumes tasks consisiting ofsystem. Three tasks are mapped to proceSgeét/,;. Dur-

MEM| [1 interference
____________________ [] execution
_____ busy time
BUS A event

transactions,as

CPUL |}

Figure 3. A distributed execution
ing its executiony, requires data from the memohy E M . The overall busy times the total amount of time during
A taskt, onC PU, also uses the bus and memory, interfer- which either a CES or a transaction is ready.
ing with the communication of,. Figure 3 shows a pos- .)) .
sible Gantt diagram of this example. Taskon CPU, re- Figure 3 shows the execution of task which consists of 3
quests data from the memory two times, each time initiating '0¢& CESs orC’PU; and initiated transactions; andas.
atransactionconsisting of devents The processing of the 1 he dotted lines comprise the overall total busy time of the
events is delayed on thelS and on the memory/ EM tasks CECs and transactions. The following theorem gives
due tor, performing similar accesses. As the overall time & Overallbusy time based on the definitions above.

window is larger than without transactions, increasedinte theorem 1. The overall busy time of a taskexecuting on

ference (for example by higher priority tasks as experiénce oqqyrcer during a time window of size' > 0 is given by
by 7> at timet; in Figure 3) occurs. The dotted lines denote ¢\ ,ch that -

the actualoverall busy timeof m which is the focus this
paper.
4 A Framework for Worst Case Busy Times E is the set of CESs that the taskieeds to execute locally
]] for completion and
We present a coupled analysis, that integrates the task$y s the set of transactions the tashnitiates and requires
execution behavior with the system level behavior to find to complete execution.

the tasks response time. We set a specific focus on theSEEs(E w) is the maximum total busy time for CEBs

analysis of multiple transaction on the system level, and and

the seperation of tasks into multiple parts on the locallleve Sirans(A, w) is the maximum total busy time for transac-
which is the common scenario for tasks with remote data tions A under the assumption that all CESs and trans-

requirements. _ o _ actions can be finished within time
First, a worst case busy time analysis is introduced in
Section 4.1, which allows tasks to request data multiple Proof. Assume that transactions are initiated at the very last

times during execution. This approach relies on the cal- instant of each CES of. From the definition it follows that
culation of a local total busy time (generally addressed in as soon as the transaction is finished the next CES is ready
Section 4.2, and specifically for SPP in Section 5), and theto be executed. This means that whenever no CES is ready,
busy time for the memory transactions, which is calculated a transaction must be ongoing or the task is finished.

w = SE‘ES(E’ w) + St'r‘ans(Av ’LU) (2)

in Section 4.3. As the maximum total amount of time that transac-
. . tions can be ongoing is bounded 8,.,s(A,w) and
41 Worst Case Busy Time Analysis the maximum amount of time CESs are ready is bounded

Extending the scope of the response time analysis fromby S¢ (I, w), it follows that after S¢ ¢ (I, w) +
single worst case behavior to conservative bounds of mul-Stans (A, w) the task must be finished.
tiple events requires the introduction of new terminology. If a task issues the transactions not at the end of a CES
Let the set of CESs of a task that leads to the largest localbut earlier, both the task and a transaction are ready at the
execution time be denoted tiy and the set of transactions same time. This can only lead to a smaller total busy time.
that is initiated by a task denoted by Furthermore: O
.] To solve equation 2 a growing-window technique as in
Thetotal busy time of a set of CES5is the total amount [g] can be used. Initially, a non-conservative valuedfazan
of time during which at least one CES Bfis ready. pe picked. It will not be possible to perform all requested
T.hus this is_the union of the times during which any computation in time, as it will take at least unfib g +
single CEC is ready. Sirans t0 finish. This value is used as a newand tested.
Thetotal busy time of transaction& is the total amount As soon asw is large enough to contain all busy times, the
of time during which at least one transactionAfis assumptions are correct and the analysis has converged. An
ready (i.e. ongoing). example of this procedure is given in Section 6.

The above theorem is valid independently of the utilized the set of CESs to process is given by
arbitration policies, a§¢-gg andS;,..,s are unspecific. The

next sections 4.2 and 4.3 focus on the derivation of these E=Jc 4)
values. 9€Q

)) Note that Eq. 3 is an overestimation as can be seen in Fig-
4.2 Multiple Event Busy Times ure 4. Firstly, not every event must wait for the processing

One property of the memory and coprocessor requestsOf previous events to be finished as is assumed in the cal-
adressed in this paper is that commonly many occur duringculatmn of WCRT (¢), rather the individual busy windows
a tasks execution. We will investigate the case of the exe-Overiap. Furthermore, not every request can experience the
cution of multiple CESs in a given time window. Figure 4 critical instant of interference by other tasks, but onlea c
shows the busy time of 4 CECs that are processed in a first{&in amount of interference can occur in in the given time
in-first-out ordering. The resource is also handling reues Window. We will therefore present an improved analysis
by other tasks, which leads to delay due to interference. TheSPecifically for static priority preemptive (SPP) schedgli
dotted line depicts the searched total busy time, whicheis th N Section 5.

union of the individual CESs’ busy intervalB(to R,). 4.3 Busy Timeof Transactions
In the previous section we have investigated processing
Interference 17— 10 [T 1 [of multiple events on the same resource. We will now turn
—] to the total busy time of transactions that consists of multi
T —H —1] —] ple events on different resourcés, ..., in EQ. 2. For this,
we can build on the results of section Section 4.2 (and 5).
_ Ry Ry &3 Ry A straightforward bound for the total busy time of trans-
Busy time [--zzeeeeooooeee 0 eeeereocooseeeserr ceoooeeee actionsA is the sum over the worst case response times

that each individual transaction would have taken. This
is again an overestimation, as the worst case interference
can in many cases not be imposed on every single transac-
tion, and not every transaction may be delayed by preceding
))] transactions. An amelioration is achieved by Theorem 2,
The total busy time can be used for two things: Firstly, \yhere multiple transactions are investigated together.

it gives the maximum total amount of time during which o)
this resource can be busy processing CECs that are activate§i'€0rem 2. Let each transaction irk. consist of events to
CESs mapped to a set of resourd®sand it is known they

by events that are part of a transaction. This is required to ar - e -) [
determine the remote total busy tinSg,.,,, of Theorem 1 can be initiated and finished within a time window of size
ane w. Let all events of the transaction on the same resource be

and is investigated in Section 4.3. d with & firstuin-fi i cile. Then th -
Secondly, it is also an estimate on the local total busy treated with a first-In-first-out principle. ent_ € maximu
total busy time of the transactiods is given by:

time Scgs of a communicating task. The execution of such

Figure 4. Single Resource Total Busy Time.

a task consists of CESE (see Section 3). Although the Sirans(A,w) < Z SEEs(E§7w) (5)
CESs of a single task may not overlap, the total busy time reR
is still valid.

Tindell h . for b ob whereE2 is the union of all CESs that are executed on
indells approach to response times for bursty Job ar-,. 54 activated by an event of the transactidn and

rivals [8]_ is not appllc_:able, as it finds the worst case re- St ms(EA, w) is the maximum total busy time of these
sponse time only within a self-inflicted and continubusy CESs

window In our case however nothing is said about the ar-

rated CESc on resource is ready. The total amount of time that

resourcer can be busy processing events is given by the

Anyway, the worst case response time as derived in [8] ' - . . .
yway P [8] ize of the union of all times at which at least one CES of

and similar approaches may be reused: For any schedulin h o q
arbitration the maximum total busy time is bounded by the 1N€ fransactionis ready on

sum of the individual worst case response tiffié§'RT (c) _As t_he transac_tions are assumed to be finished within a
of the CESs: ¢ K. time window of sizew, Theorem 3 bounds the total busy

time of the CESs which correspond to the events in the
Seps(Bw) = Y WCRT(c) (3) transaction bys?, o (EA, w).
celb
Similarly, the busy time required to process a set of
events)) to CESs on the same resource can be bounded. As U T.(c) < Shps(EX w) (6)
each eveny € Q causes one CES(q), to become ready, ceEA

(J- Produces the union of included intervals.
| -| Isthe sum of the total size of all included intervals.

At times ¢, whenRuUN(t) ¢ E, either no CES irE is
ready, or if one ore more CES is ready, they are kept from

A transaction along the chain is ongoing whenever an event€Xecuting by a higher priority task that is ready. Whenever
of the transaction is ready on any of the given resourcesn0 CES inlt is ready,B does notincrease. The total amount

along the chain. Therefore, the busy time of the transastion
A is bounded by

Strans(Aaw) = U U TT(C)

TER ceEA

(7)

As the size of the union of intervals can not be larger than
the sum over the sizes of the intervals, equation 5 follows
from equations 6 and 7. O

This framework allows to determine the worst case re-
sponse time of tasks which require multiple data from other
parts of the system, and initiate transactions to fetch this
data. The total busy time of the transactions was deter-
mined, and the effect of the resulting voluntary susperssion

of time higher priority tasks can be executing is limited by
I, (w), and in the given scheduler, at least one higher pri-
ority task is ready, only if a higher priority task is execgi
Thus, whenever a CES If is ready, it can not be kept from
executing for more thad},(w) within a time interval of
sizew.

Thus, the CESs il can not be ready for more than
> ecr C(c) + Inp(w) inatime interval of sizew. O

Compared to section 4.2, this is a better estimate of the
busy time of the CECs iiiit, as now the worst case inter-
ference in the given time window in which all processing
takes place is only accounted once.

Note that the worst case interferengg (w) by higher
priority tasks which are allowed to suspend themselves to

of the task into multiple CESs has been taken into accountrequest data is not given by the traditional “critical imdta

in Section 4.2, albeit rather imprecisely. We will now im-
prove the considerations about local total busy time in the
following section.

5 A Static Priority Preemptive Scheduler

To show the validity of the approach presented in Sec-
tion 4, we introduce a simple static priority preemptive
(SPP) scheduler that arbitrates tasks with transactioneand
synchronization instructions. Based on SPP schedulieg, th

of all tasks being activated simultaneously [1]. Instead, t
first interfering invocation has to be assumed to have per-
formed all suspensiobeforethe beginning of the time win-
dow, which leads to an earlier possible activation of allsuc
cessive invocations.

6 Example and Experiments

Consider the System in Figure 2 and 3. Let all resources
be scheduled with the SPP scheduling as described in Sec-

scheduler ensures that at every time point the task with thetion 5. We are interested in the response time,ofAssume

highest priority that has all data required for executiord a
has not completed execution is executing on the resource

thatr, initiate 5 transactions\ to the memory. Let the pe-
riod and jitter be according to Table 1, and the deadline of

Tasks may consist of multiple CECs, that receive the samer, equal to its period. Assume that is the only task on

priority as the task. All CECs with the same priority are
treated first-in-first-out. For the scope of this paper, we as

C PU, with a higher priority. On both the bus and the mem-
ory, the priority of the tasks handling’s transactions are

sume that there is no blocking caused by shared critical seclower than the interferencd{, I7, and I3}) caused by the
tions, and the scheduling procedure induces no significanttransactions of, on CPU,, which occur with the period

additional overhead.

Theorem 3. Let a set of CES& have the same priority
on resource- that is scheduled with mechanisms described
above. Let the processing of all CESs be started and fin-
ished within a time window of size. Furthermore, let
C(c) be the worst case computation time of a GES E,

and I, (w) be the maximum time tasks with higher priority
may be executing. Then the maximum total busy tinie of
is given by the following equation:

Seps(Ew) = Y Ce) + Inp(w)
cell

Proof. The total busy timeB is given by the sum of all
times during which at least one CES is ready. Rei(t)

(8)

be the task or CES chosen by the scheduler to execute amaximum amount of interference.

time pointt.

Alltimest at whichruN(?) € IE, a CES ink is being ex-
ecuted and must therefore be ready, thosist be included
in B. This can be the case for at mgst, _, C(c).

and jitter as shown. Besides their transactions;lebnsist

of a single CES of siz&0, andr, of one of size50. Let the
execution time of any execution on the bus or the memory
be 10.

CPU1 Bus Memory
T2 | T1 A | Ii | If A | L.f
Period || 400 | 100 || n/fa| 100 | 100 | n/a| 100
Jitter 0| 200 | n/a 0| 200 | n/a 0
Table 1. Example Setup

A traditional response time analysis utilizes the worst
case time for a single request, each delayed by the
This calculates to
WCRTBUS"‘WCRT]\IEM+WCRTBUS = 50+40+50
(calculation not shown). Thus for 5 requests a time of
5% 140 = 700 is required. Based on this; can not keep
its deadline.

Determining the worst case response time on the basis/ Conclusion
of multiple event busy times yields much tighter bounds.
According to Theorem 1, the overall busy time is given by
SEEET + Sirans, WhereSSEL is denoted byScpyr and
Strans @according to Theorem 2 is given Bys s + Syreas -
Initially, it is assumed that all computation request can be
handled within a time window size af = 50, which is
the core time ofr,. If this were the case, the computation
on CPU;, Bus, and the memory would tal®, 130 and
80 time units respectively. Thus, the computation can not
be finished within the assumed time window. A new test
is done with the time window size 290, which also fails.

To allow the analysis of communicating tasks that con-
sist of local execution sequences and remote transactions
we have proposed a framework that integrates the analysis
over different levels of abstraction. We address multiple
events together and calculate an upper bound on the total
amount of busy time. This is both used for a tight estimate
on the transaction latencies as well as the overall time to
complete the task execution. Additionally, we presented a
straight-forward analysis that accounts for the propextie
static priority preemptive scheduling. For scheduling-pol
) o o .~ cies, where no such adopted analysis is possible or avail-
This goes on until finally it is assumed that all computation 5 \ve have presented a conservative fall-back solution.
is started and finished in a time window of size 380, thus 11,4 experiments have shown how the consideration of

the assumption holds, and a the worst case response timg |5,qer time window and multiple events can significantly

of 7 is found. This is an improvement towards previous jnoye the estimates on the worst case response time of a
approaches, as the interference in the overall busy W'ndOWtask that issues multiple memory requests

is only accounted for once.

References
CPU1 Bus Memory [1] N. C. Audsley and K. Bletsas. Fixed priority tim-
C(r2) =50 | C(g) =10 Clg) =10 ing analysis of real-time systems with limited paral-
w| L [Sepv | L | I | Spus | I | Suem lelism. InProceedings of the 16th Euromicro Confer-
50| 30 80| 15| 15 130 | 30 80 ence on Real-Time Systems (ECRTS 0O4jania, Italy,
290 | 50 100] 25 | 25 150 | 50 100 jul 2004. IEEE Computer Society, IEEE.
350 | 60 110 | 30 | 30 160 | 60 110 [2] M. Ivers J. Staschulat, S. Schliecker and R. Ernst.
3801 | 60 1101 30 | 30 160 | 60 110 Analysis of memory latencies in multi-processor sys-
tems. INWCET WorkshopPalma de Mallorca, Spain,
Table 2. Calculation Procedure July 2005.

[3] M. Jersak, R. Henia, and R. Ernst. Context-aware per-

We conducted a set of multiple request experiments to formance analysis for efficient embedded system de-
show the gain of our analysis ins Section 5 over the sum sign. InProceeding Design Automation and Test in Eu-
of worst cases approach. Figure 5 shows the estimated re- rope Paris, France, March 2004.
sponse times for a number of requests, from which it is [4] M. Jersak, K. Richter, and R. Ernst. Performance analy-
known that they occur within a time window of size 300. As sis for complex embedded applicationaternational
the number of requests increases, the total busy time only Journal of Embedded Systems, Special Issue on Code-
increases by the added core execution time. This results sign for SoC2004.
from the fact, that the complete possible interferenceén th [5] M. Joseph and P. Pandya. Finding response times in a
time window is assumed from the beginning. This is also real-time systemThe Computer Journal (British Com-

the reason, why the new method is inferior fér= 1, as in puter Society)29(5):390-395, October 1986.
traditional WCRT only the interference during the requests [6] Y.-T. S. Li, Sharad Malik, and Andrew Wolfe. Cache
busy window (notw) can interfere with the execution. As modeling for real-time software: Beyond direct mapped
both approaches are conservative, the minimum can be used instruction caches. IlEEE Real-Time Systems Sympo-
for an optimal analysis. The positive effect scales forgran sium pages 254-263, 1996.
actions as suggested by the aboeve example. [7] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and
precise wcet prediction by seperate cache and path
faoy analysesReal-Time System$8(2/3), May 2000.
T ool Fmwer e [8] K. Tindell, A. Burns, and A. Wellings. An extendible
£201 INSE300) | e approach for analysing fixed priority hard real-time sys-
glgg: tems. Journal of Real-Time System6(2):133-152,
2 sod = March 1994,
< A A [9] K. Tindell and J. Clark. Holistic schedulability analys
Nurber of Requests (N) for distributed hard real-time systeniicroprocessing

& Microprogramming 50(2-3):117-134, apr 1994.
Figure 5. Multiple Request Total Busy Time.

