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Abstract

This paper describes ongoing work aimed at the
construction of formal cost models and analyses
to yield verifiable guarantees of resource usage in
the context of real-time embedded systems. Our
work is conducted in terms of the domain-specific
language Hume, a language that combines func-
tional programming for computations with finite-
state automata for specifying reactive systems. We
outline an approach in which high-level informa-
tion derived from source-code analysis can be com-
bined with worst-case execution time information
obtained from high quality abstract interpretation
of low-level binary code.

1 Introduction

The EU Framework VI EmBounded project (IST-
2004-510255) aims to automatically determine
strong resource bounds for high-level programming
language features. We aim to obtain formally veri-
fiable certificates of bounds on resource usage from
a source program through automatic analysis.

1.1 The Hume Language

Our work is undertaken in the context of
Hume [13], a functionally-based domain-specific
high-level programming language for real-time em-
bedded systems. Hume is designed as a lay-
ered language where the coordination layer is used
to construct reactive systems using a finite-state-
automata based notation; while the expression
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layer is used to structure computations using a
strict purely functional rule-based notation that
maps patterns to expressions. The coordination
layer expresses reactive Hume programs as a static
system of interconnecting bozxes. If each box has
bounded space cost internally, it follows that the
system as a whole also has bounded space cost.
Similarly, if each box has bounded time cost, a
simple schedulability analysis can be used to de-
termine reaction times to specific inputs, rates
of reaction and other important real-time proper-
ties. Expressions can be classified according to a
number of levels where lower levels lose abstrac-
tion/expressibility, but gain in terms of the proper-
ties that can be inferred. For example, the bounds
on costs inferred for recursive functions will usu-
ally be less accurate than those for non-recursive
programs, and cannot always be deduced.

Previous papers have considered the Hume lan-
guage design in the general context of program-
ming languages for real-time systems [13], and
specifically functional notations for bounded com-
putations [12], described a heap and stack anal-
ysis for FSM-Hume [14], and considered the re-
lationship of Hume with classical finite-state ma-
chines [17]. The main contribution of this paper
is to outline a worst-case execution time analysis
for Hume combining high- and low-level informa-
tion, where source-level information on the costs of
recursive functions, conditional expressions etc. is
combined with machine-level information on cache
behaviour, pipelines etc.

We will illustrate the design of Hume with a
simple control example for a reactive system: the
controller for a drinks vending machine. Figure 1
shows the Hume box diagram for this system, and
the code is shown below. Note that * in an input
or output position is used to indicate that that po-
sition is ignored, and that all inputs and outputs
are matched asynchronously.

type Cash = int 8;
data Coins = Nickel | Dime;
data Drinks = Coffee | Tea;

data Buttons = BCoffee | BTea | BCancel;

-- vending machine control box

6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis

http://drops.dagstuhl.de/opus/volltexte/2006,/677



value

* keypad

4

control

button

nickel coin

/dime cash

vend

dispense tealcoffee
—

g

refundA

return

(’ holder

Figure 1: Hume example:

box control

in ( coin :: Coins, button :: Buttons,
value :: Cash )
out ( drink :: Drinks, value’ :: Cash,
return :: Cash )
match
( Nickel, *, v ) > (%, v+ 5, %)
| ( Dime, *, v) -> (%, v+ 10, *)
| ( *, BCoffee, v ) -> vend Coffee 10 v
| ( %, BTea, v ) -> vend Tea 5 v
| ( *x, BCancel, v ) -> ( %, 0, v )

vend drink cost v

if v >= cost then ( drink, v-cost, * )

else ( *, v, * )5

Functional languages have rarely been applied
to hard real-time systems, partly because they are
perceived as hard to cost. The most widely used
soft real-time functional language is the impure,
strict language Erlang [1], which has been suc-
cesfully used in many large commercial applica-
tions. However, there have also been attempts to
apply pure functional languages to soft real-time
settings (e.g. [24, 7, 25]). Few, if any, of these
approaches provide strong cost models, however.
Synchronous dataflow languages such as Lustre [6]
or Signal [11] have strong similarities with a func-
tional approach, being similarly declarative. The
primary difference from our approach is that Hume
also supports asynchronicity, is built around state
machines, and provides a highly-expressive pro-
gramming environment including rich data struc-
tures, recursion, and higher-order functions, while
still providing a strong cost model.

2 A Source-Level Cost Model
for Hume Expressions
Our approach involves producing a formally verifi-

able upper bound cost model for Hume programs
that is related to actual execution costs. We can

vending machine box diagram

use this model to produce high-level static analy-
ses for determining bounds on recursive calls, iter-
ative loops etc. In this paper, we use an abstract
machine approach, where execution costs are as-
sociated with abstract machine instructions, and
where these costs are related to Hume source forms
through formal translation. In this way, the math-
ematical cost model can be insulated from changes
in the concrete architecture, being effectively pa-
rameterised by cost information for each abstract
machine operation. A correspondence proof (omit-
ted here, for brevity) formally relates the high-level
model to costs expressed in terms of the abstract
machine. In this way, we are able to prove that
the source level timing information we give here
is an upper bound on actual exection costs, pro-
vided only that the timing information for each
abstract machine instruction is a true upper bound
on the execution cost of that instruction, includ-
ing effects of pipelining and cache behaviour. The
use of purely functional expressions within Hume
boxes simplifies both the construction of the cost
model and the corresponding proofs, by avoiding
the need for dataflow analysis, alias analysis and
other consequences of the use of side-effects. This
also improves the accuracy of the result.

As a proof-of-concept, we have chosen a simple,
high level stack-based machine, the Hume Abstract
Machine (or HAM). The approach can, however,
be generalised to other abstract machine designs
or to direct compilation, as required.

The formal statement V,n % e~ L
may be read as follows: given the value environ-
ment V and initial heap 7, expression e evaluates
in a finite number of steps to a result value stored
at location £ in the modified heap 7', provided that
there were t time, p stack and m heap units avail-
able before computation. Furthermore, at least ¢’
time, p’ stack and m’ heap units are unused after
evaluation. We illustrate the approach by showing
a few sample rules covering key expression forms.

Variables are simply looked up from the envi-
ronment and the corresponding value pushed on



the stack. The time cost of this is the cost of
the PushVar instruction, shown here as Tpushvar.
Concrete values for this constant can be obtained
using either measurement-based approaches [2] or
abstract interpretation (see Section 3). There is no
heap cost.

Vz) =14

| t' + Tpushvar, p’ + 1, m
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p m
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There are three rules for conditionals: two sym-
metric cases where the condition is true or false,
respectively; and a third case to deal with excep-
tions (omitted here). In the case of a true/false
condition the time cost is the cost of evaluating
the conditional expression, plus the cost of eval-
uating an If instruction Tiftrue/Tiffalse plus
the cost of executing the true/false branch, plus
the cost of a goto if the condition is false.
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The CALL rule deals with calls to some function
fid, whether or not this is recursive. Each argu-
ment to the call is evaluated, and then the func-
tion is applied used ApPp. The cost of the call
is Tcall and the cost of completing the call is
Tslide, where the underlying Slide instruction
removes function arguments from the stack, whilst
preserving the return value.

b=y 1 Pi—1) ) M=)
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t), — Tcall| pr| my
V, i _|_2L|_k_t;ca ' - APP(fid, [k, ..., 01]) ~ £, 0
V.10 It’a jroslideI p/pi i 29 fid ex e~ 4,0
(CALL)

These rules can be easily extended to cover other
expression forms and boxes, so giving a complete
cost model for Hume. From this cost model, it is
possible to derive a number of behavioural proper-
ties. The most important are that the cost model
correctly captures the potential change in time and
memory usage and that the result of execution is
always left as an extra value on the stack. In order
to produce this proof, we construct a formal trans-
lation from Hume to HAM, and prove for each case
that the costs of the HAM translation are precisely
captured in the cost model for the Hume source.

We have produced a prototype implementation
of an analysis for space usage with non-recursive
functions, based on this cost model [14], and cali-
brated against our abstract machine implementa-
tion. We are now working on extending the anal-
ysis to recursive functions and to include time in-
formation.

3 WCET Analysis using Ab-
stract Interpretation

Our objective is to develop a combined high- and
low- level analysis for worst-case execution time.
We will achieve this by extending the stack and
heap cost model presented above with the addition
of parameters representing actual timing costs.
Our ultimate aim is to produce accurate worst-case
cost information from source level programs.

The AbsInt aiT tool (described below) uses ab-
stract interpretation to efficiently compute a safe
approximation for all possible cache and pipeline
states that can occur at a given program point.
These results can be combined with ILP (Integer
Linear Programming) techniques to safely predict
the worst-case execution time and a corresponding
worst-case execution path.

The AbsInt analysis works at a code snippet
level, analyzing imperative C-style code snippets
to derive safe upper bounds on the worst-case time
behavior. Whilst the AbsInt analysis works at
a level that is more abstract than simple basic
blocks, providing analyses for loops, conditionals
and non-recursive subroutines, it is not presently
capable of managing the complex forms of recur-
sion which occur in functional languages such as
Hume. We are thus motivated to link the two lev-
els of analysis, combining information on recursion
bounds and other high-level constructs from the
Hume source analysis with the low-level worst-case
execution time analysis from the AbsInt analysis.

3.1 WCET Prediction

Static determination of worst-case execution time
(WCET) in real-time systems is an essential part
of the analyses of overall response time and of qual-
ity of service [4, 18]. However, WCET analysis is a
challenging issue, as the complexity of interaction
between the software and hardware system com-
ponents often results in very pessimistic WCET
estimates. For modern architectures such as the
Motorola PPC755, for example, WCET prediction
based on simple weighted instruction counts may
result in an over-estimate of time usage by a factor
of 250. Obtaining high-quality WCET results is
important to avoid seriously over-engineering real-
time embedded systems, which would result in con-
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Figure 2: Phases of WCET computation

siderable and unnecessary hardware costs for the
large production runs that are often required.

Three competing technologies can be used for
worst-case execution time analysis: ezperimen-
tal (or testing-based) approaches [26], probabilistic
measurement [2, 3] and static analysis. Experi-
mental approaches determine worst-case execution
costs by (repeated and careful) measurement of
real executions, using either software or hardware
monitoring. However, they cannot guarantee up-
per bounds on execution cost. Probabilistic ap-
proaches similarly do not provide absolute guar-
anteed upper bounds, but are cheap to construct
and deliver more accurate costs than simple exper-
imental approaches [2].

Motivated by the problems of measurement-
based methods for WCET estimation, AbsInt
GmbH has investigated a new approach based on
static program analysis [16, 15]. The approach
relies on the computation of abstract cache and
pipeline states for every program point and execu-
tion context using abstract interpretation. These
abstract states provide safe approximations for all
possible concrete cache and pipeline states, and
provide the basis for an accurate timing of hard-
ware instructions, which leads to safe and precise
WCET calculations that are valid for all executions
of the application.

3.2 Phases of WCET Computation

In AbsInt’s approach [9] the WCET of a program
task is determined in several phases (see Figure 2):

e CFG Building decodes, i.e. identifies in-
structions, and reconstructs the control-flow
graph (CFG) from an executable binary pro-
gram;

e Value Analysis computes address ranges for

instructions accessing memory;

e Cache Analysis classifies memory references
as cache misses or hits [10];

e Pipeline Analysis predicts the behavior of
the program on the processor pipeline [16];

e Path Analysis determines a worst-case exe-
cution path of the program [22].

The cache analysis phase uses the results of the
value analysis phase to predict the behavior of the
(data) cache based on the range of values that can
occur in the program. The results of the cache
analysis are then used within the pipeline analy-
sis to allow prediction of those pipeline stalls that
may be due to cache misses. The combined re-
sults of the cache and pipeline analyses are used
to compute the execution times of specific pro-
gram paths. By separating the WCET determi-
nation into several phases, it becomes possible to
use different analysis methods that are tailored to
the specific subtasks. Value analysis, cache analy-
sis, and pipeline analysis are all implemented us-
ing abstract interpretation [7], a semantics-based
method for static program analysis. Integer lin-
ear programming is then used for the final path
analysis phase.

The techniques described above have been incor-
porated into AbsInt’s aiT WCET analyzer tools,
that are widely used in industry [20, 5, 8, 27, 19].
For example, they have been used to demonstrate
the correct timing behavior of the new Airbus
A380 fly-by-wire computer software in a certifica-
tion process according to DO178B level A [23, 21].
For this purpose, aiT for MPC755 and aiT for
TMS320C33 will be qualified as verification tools
according to DO178B.

3.3 Linking the Analyses

In order to link the two levels of analysis, we must
base the costs for time potentials in the cost model
(Tpushvar etc) on actual times for execution on
the Hume Abstract Machine using information ob-
tained from the aiT tool. In this way, we will have
constructed a complete time cost model and anal-
ysis from Hume source to actual machine code.
Pragmatically, in order to obtain timing infor-
mation from the aiT tool, our high level analysis
must be adapted to output information on the lim-
its on recursion bounds and other high-level con-
straints derived from the program source that can
be fed to the aiT tool using its native system spec-
ification language (aiS). This information must be
provided in terms of the compiled executable code
that has been produced from the Hume source
rather than directly from the source itself. It will



Cost aiT bound | Prob. bound
for M32 for PPC
(cycles) (1s)
Tiftrue 30 0.051
Tiffalse 30 0.051
Tpushvar 109 0.110
Tmatchint 30...32 0.047
Tmatchedrule 11 0.039
Tmatchrule 22 0.053
Tmatchnone 11 0.040
Tconsumeset 82 —
Tmkint 220 ... 223 0.046
Tcopyarg 110 0.045

Figure 3: WCET bounds on HAM instructions

therefore also be necessary to provide details of the
compilation process in an appropriate form.

3.3.1 Preliminary WCET Results

This section reports timing results obtained using
the aiT tool using the TAR C-compiler for the Re-
nesas M32C. The M32C is a 32-bit architecture de-
signed for typical automotive applications. It has a
complex instruction set and a three-stage pipeline,
but neither data nor instruction cache. Instruc-
tion cache analysis is therefore disabled. Figure 3
gives timings obtained from aiT for some sample
HAM abstract machine instructions on the M32,
and the corresponding costs on a 1.25GHz Pow-
erPC G4 obtained using a probabilistic approach
over 1,000,000 executions of each instruction (we
have not yet been able to obtain probabilistic cost
information for the M32, though we expect to be
able to achieve this soon). While there are some
clear differences in the underlying implementation
of the instructions on the two architectures (no-
tably for Tmkint, which allocates heap in external
memory), there are also broad similarities.

An interesting observation is that combining
the WCET costs of individual HAM instructions
gives a result that is usually within 1-2% of the
WCET bound of the complete sequence of instruc-
tions. While this observation certainly holds as
long as the code on the M32C is executed from
internal memory with single cycle access time, for
slower, external memory, the internal instruction
buffer of the M32C might have a bigger influence.
This means that for “simple” architectures, WCET
bounds for Hume-like languages can be computed
by considering WCET bounds of individual ab-
stract machine instructions.

4 Conclusions

We have introduced Hume and shown how a cost
model can be constructed to expose time, stack
and heap cost information. We have also out-
lined how our work can be extended in order to
synthesise worst-case execution time costs using
a combination of source- and binary-based anal-
ysis. Our work is formally based and motivated:
we aim to construct formal models of behaviour at
source program and abstract machine levels; have
provided elsewhere a formal translation between
these levels; and will synthesise actual worst-case
execution time costs using abstract interpretation
of binary programs.
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