
2006 WCET Abstracts Collection

6th Intl. Workshop on Worst-Case Execution
Time (WCET) Analysis

F. Mueller

North Carolina State University, USA
mueller@cs.ncsu.edu

Abstract. On the 4th of July, 2006, the 6th International Workshop on
Worst-Case Execution Time Analysis (WCET'06) was held in Dresden,
Germany, co-located with the 18th Euromicro International Conference
on Real-Time Systems (ECRTS'06), both with support of Euromicro
Technical Committee. The goal of the workshop was to bring together
people from academia, tool vendors and users in industry that are inter-
ested in all aspects of timing analysis for real-time systems. The work-
shop provided a relaxed forum to present and discuss new ideas, new
research directions, and to review current trends in this area. The work-
shop was based on short presentations that encouraged discussion by the
attendees. Abstracts of the presentations are put together in this paper.
Links to extended abstracts or full papers are provided. The �rst section
directs to the preface of the proceedings.

Keywords. WCET'06, workshop proceedings, abstracts collection

2006 WCET Preface � Proceedings of the 6th Intl.
Workshop on Worst-Case Execution Time Analysis
(WCET'06)

Frank Mueller

On the 4th of July, 2006, the 6th International Workshop onWorst-Case Execu-
tion Time Analysis (WCET�06) was held in Dresden, Germany, co-located with
the 18th Euromicro International Conference on Real-Time Systems (ECRTS�06),
both with support of Euromicro Technical Committee. The goal of the workshop
was to bring together people from academia, tool vendors and users in industry
that are interested in all aspects of timing analysis for real-time systems. The
workshop provided a relaxed forum to present and discuss new ideas, new re-
search directions, and to review current trends in this area. The workshop was
based on short presentations that should encourage discussion by the attendees.

Keywords: WCET'06, workshop proceedings, preface
Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/679

ECRTS 2006
6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2006/680

http://drops.dagstuhl.de/opus/volltexte/2006/679

2 Frank Mueller

Algorithms for Infeasible Path Calculation

Jan Gustafsson, Andreas Ermedahl, and Björn Lisper

Static Worst-Case Execution Time (WCET) analysis is a technique to derive
upper bounds for the execution times of programs. Such bounds are crucial
when designing and verifying real-time systems. One key component in static
WCET analysis is to derive �ow information, such as loop bounds and infeasible
paths for the analysed program. Such �ow information can be provided as either
as annotations by the user, can be automatically calculated by a �ow analysis,
or by a combination of both. To make the analysis as simple, automatic and safe
as possible, this �ow information should be calculated automatically with no or
very limited user interaction. In this paper we present three novel algorithms
to calculate infeasible paths. The algorithms are all designed to be simple and
e�cient, both in terms of generated �ow facts and in analysis running time. The
algorithms have been implemented and tested for a set of WCET benchmarks
programs.

Keywords: Worst case execution time, real-time, control �ow analysis, abstract
interpretation, infeasible paths

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/667

Comparing WCET and Resource Demands of
Trigonometric Functions Implemented as Iterative
Calculations vs. Table-Looku

Raimund Kirner, Markus Groessing, Peter Puschner

Trigonometric functions are often needed in embedded real-time software. To
ful�ll concrete resource demands, di�erent implementation strategies of trigono-
metric functions are possible.

In this paper we analyze the resource demands of iterative calculations com-
pared to other implementation strategies, using the trigonometric functions as a
case study. By analyzing the worst-case execution time (WCET) of the di�erent
calculation techniques of trigonometric functions we got the surprising result
that the WCET of iterative calculations is quite competitive to alternative cal-
culation techniques, while their economics on memory demand is far superior.
Finally, a discussion of the general applicability of the obtained results is given
as a design guide for embedded software.

Keywords: Worst-case execution time, WCET analysis, table lookup, iterative
computation, Taylor series, resource demands

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/669

http://drops.dagstuhl.de/opus/volltexte/2006/667
http://drops.dagstuhl.de/opus/volltexte/2006/669

6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis 3

History-based Schemes and Implicit Path Enumeration

Claire Burguière, Christine Rochange

The Implicit Path Enumeration Technique is often used to compute the WCET
of control-intensive programs. This method does not consider execution paths
as ordered sequences of basic blocks but instead as lists of basic blocks with
their respective execution counts. This way of describing an execution path is
adequate to compute its execution time, provided that safe individual WCETs
for the blocks are known. Recently, a model for branch prediction has been
integrated into WCET computation with IPET. This model generates safe es-
timations of the branch misprediction counts. However, we show in this paper
that these counts can be over-estimated because IPET does consider simpli�ed
�ow information that do not completely re�ect the program semantics. We show
how additional information on nested loops can be speci�ed so that the model
provides tighter WCET estimations.

Keywords: WCET, IPET (Implicit Path Enumeration Technique), branch pre-
diction

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/670

A De�nition and Classi�cation of Timing Anomalie

Jan Reineke, Bjoern Wachter, Stephan Thesing, Reinhard Wilhelm, Ilia Polian,

Jochen Eisinger, Bernd Becker

Timing Anomalies are characterized by counterintuitive timing behaviour. A
locally faster execution leads to an increase of the execution time of the whole
program. The presence of such behaviour makes WCET analysis more di±cult: It
is not safe to assume local worst-case behaviour wherever the analysis encounters
uncer- tainty. Existing de�nitions of Timing Anomalies are rather imprecise and
intuitive in nature. Some do not cover all kinds of known Timing Anomalies.
After giving an overview of related work, we give a concise formal de�nition of
Timing Anomalies. We then begin to identify di®erent classes of anomalies. One
of these classes, coined Scheduling Timing Anomalies, coincides with previous
restricted de�nitions.

Keywords: Timing analysis, Worst-case execution time, Timing anomalies,
Scheduling Anomalies, Abstraction

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/671

http://drops.dagstuhl.de/opus/volltexte/2006/670
http://drops.dagstuhl.de/opus/volltexte/2006/671

4 Frank Mueller

PLRU Cache Domino E�ects

Christoph Berg

Domino e�ects have been shown to hinder a tight prediction of worst case execu-
tion times (WCET) on real-time hardware. First investigated by Lundqvist and
Stenström, domino e�ects caused by pipeline stalls were shows to exist in the
PowerPC by Schneider. This paper extends the list of causes of domino e�ects
by showing that the pseudo LRU (PLRU) cache replacement policy can cause
unbounded e�ects on the WCET. PLRU is used in the PowerPC PPC755, which
is widely used in embedded systems, and some x86 models.

Keywords: Embedded systems, predictability, cache memory, PLRU, domino
e�ects, timing anomalies

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/672

Design of a WCET-Aware C Compiler

Heiko Falk, Paul Lokuciejewski, Henrik Theiling

This paper presents techniques to tightly integrate worst-case execution time
information into a compiler framework. Currently, a tight integration of WCET
information into the compilation process is strongly desired, but only some ad-
hoc approaches have been reported currently. Previous publications mainly used
self-written WCET estimators with very limited functionality and preciseness
during compilation. A very tight integration of a high quality industry-relevant
WCET analyzer into a compiler was not yet achieved up to now. This work is the
�rst to present techniques capable of achieving such a tight coupling between a
compiler and the WCET analyzer aiT. This is done by automatically translating
the assembly-like contents of the compiler's low-level intermediate representation
(LLIR) to aiT's exchange format CRL2. Additionally, the results produced by the
WCET analyzer are automatically collected and re-imported into the compiler
infrastructure. The work described in this paper is smoothly integrated into a
C compiler environment for the In�neon TriCore processor. It opens up new
possibilities for the design of WCET-aware optimizations in the future.

The concepts for extending the compiler infrastructure are kept very general
so that they are not limited to WCET information. Rather, it is possible to use
our structures also for multi-objective optimization of e.g. best-case execution
time (BCET) or energy dissipation.

Keywords: WCET, compiler, multi-objective, intermediate representation,
ICD-C, LLIR, CRL2, aiT

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/673

http://drops.dagstuhl.de/opus/volltexte/2006/672
http://drops.dagstuhl.de/opus/volltexte/2006/673

6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis 5

Loop Nest Splitting for WCET-Optimization and
Predictability Improvement

Heiko Falk, Martin Schwarzer

This paper presents the in�uence of the loop nest splitting source code optimiza-
tion on the worst-case execution time (WCET). Loop nest splitting minimizes
the number of executed if-statements in loop nests of embedded multimedia
applications. Especially loops and if-statements of high-level languages are an
inherent source of unpredictability and loss of precision for WCET analysis. This
is caused by the fact that it is di�cult to obtain safe and tight worst-case esti-
mates of an application's �ow of control through these high-level constructs. In
addition, the corresponding control �ow redirections expressed at the assembly
level reduce predictability even more due to the complex pipeline and branch
prediction behavior of modern embedded processors.

The analysis techniques for loop nest splitting are based on precise mathe-
matical models combined with genetic algorithms. On the one hand, these tech-
niques achieve a signi�cantly more homogeneous structure of the control �ow.
On the other hand, the precision of our analyses leads to the generation of very
accurate high-level �ow facts for loops and if-statements. The application of our
implemented algorithms to three real-life multimedia benchmarks leads to av-
erage speed-ups by 25.0% - 30.1%, while WCET is reduced between 34.0% and
36.3%.

Keywords: Loop Nest Splitting, Source Code Optimization, WCET, ACET,
�ow facts, polytope

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/674

Combining Symbolic Execution and Path Enumeration in
Worst-Case Execution Time Analysis

Djemai Kebbal, Pascal Sainrat

This paper examines the problem of determining bounds on execution time of
real-time programs. Execution time estimation is generally useful in real-time
software veri�cation phase, but may be used in other phases of the design and
execution of real-time programs (scheduling, automatic parallelizing, etc.). This
paper is devoted to the worst-case execution time (WCET) analysis. We present a
static WCET analysis approach aimed to automatically extract �ow information
used in WCET estimate computing. The approach combines symbolic execution
and path enumeration. The main idea is to avoid unfolding loops performed
by symbolic execution-based approaches while providing tight and safe WCET
estimate.

http://drops.dagstuhl.de/opus/volltexte/2006/674

6 Frank Mueller

Keywords: Static WCET analysis, �ow analysis, symbolic execution, path
enumeration, loop analysis

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/675

A Framework for Response Times Calculation Of Multiple
Correlated Events

Simon Schliecker, Matthias Ivers, Jan Staschulat, Rolf Ernst

Many approaches to determine the response time of a task have di�culty to
model tasks with multiple memory or coprocessor accesses with variable access
times during the execution. As the request times highly depend on system setup
and state, they can not be trivially bounded. If they are bounded by a constant
value, large discrepancies between average and worst case make the focus on
single worst cases vulnerable to overestimation.

We present a novel approach to include remote busy time in the execution
time analysis of tasks. We determine the time for multiple requests by a task
e�ciently and and far less conservative than previous approaches. These requests
may be disturbed by other events in the system. We show how to integrate such
a multiple event busy time analysis to take into account behavior of tasks that
voluntarily suspend themselves and require multiple data from remote parts of
the system.

Keywords: Response time analysis, multiple memory accesses, multiprocessor,
hard real-time, busy time

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/676

Towards Formally Veri�able WCET Analysis for a
Functional Programming Language

Kevin Hammond, Roy Dyckho�, Christian Ferdinand, Reinhold Heckmann, Mar-

tin Hofmann, Ste�en Jost, Hans-Wolfgang Loidl, Greg Michaelson, Robert Pointon,

Norman Scaife, Jocelyn Serot, Andy Wallace

This paper describes ongoing work aimed at the construction of formal cost
models and analyses to yield veri�able guarantees of resource usage in the con-
text of real-time embedded systems. Our work is conducted in terms of the
domain-speci�c language Hume, a language that combines functional program-
ming for computations with �nitestate automata for specifying reactive systems.
We outline an approach in which high-level information derived from source-code
analysis can be combined with worst-case execution time information obtained
from high quality abstract interpretation of low-level binary code.

http://drops.dagstuhl.de/opus/volltexte/2006/675
http://drops.dagstuhl.de/opus/volltexte/2006/676

6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis 7

Keywords: Worst-case execution time, functional programming, Hume, cost
model, asynchronous, �nite state machine

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/677

PapaBench: a Free Real-Time Benchmark

F. Nemer, H. Cassé, P. Sainrat, J.P. Bahsoun

This paper presents PapaBench, a free real-time benchmark and compares it
with the existing benchmark suites. It is designed to be valuable for experimen-
tal works in WCET computation and may be also useful for scheduling analysis.
This bench is based on the Paparazzi project that represents a real-time applica-
tion, developed to be embedded on di�erent Unmanned Aerial Vehicles (UAV).
In this paper, we explain the transformation process of Paparazzi applied to
obtain the PapaBench. We provide a high level AADL model, which re�ects
the behaviors of each component of the system and their interactions. As the
source project, Paparazzi, PapaBench is delivered under the GNU license and
is freely available to all researchers. Unlike other usual benchmarks widely used
for WCET computation, this one is based on a real and complete real-time
embedded application.

Keywords: Real-Time Benchmark, Complete Application, Worst Case Execu-
tion Time (WCET) Computation, Modeling

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/678

http://drops.dagstuhl.de/opus/volltexte/2006/677
http://drops.dagstuhl.de/opus/volltexte/2006/678

	2006 WCET Abstracts Collection 6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
	 F. Mueller

