
6th International Workshop on
Worst-Case Execution Time
Analysis

WCET 2006, July 4, 2006, Dresden, Germany

Edited by

Frank Mueller

OASIcs – Vo l . 4 – WCET 2006 www.dagstuh l .de/oas i c s

Editor
Frank Mueller
Department of Computer Science
North Carolina State University
3266 EB2
Raleigh, NC 27695-8206
mueller@cs.ncsu.edu

ACM Classification 1998
C.4 Performance of Systems, D.2.4 Software/Program Verification

ISBN 978-3-939897-03-3

Published online and open access by
Schloss Dagstuhl – Leibniz-Center for Informatics GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany.

Publication date
August, 2006.

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works license:
http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the author’s moral rights:

Attribution: The work must be attributed to its authors.
Noncommercial: The work may not be used for commercial purposes.
No derivation: It is not allowed to alter or transform this work.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.WCET.2006.i

ISBN 978-3-939897-03-3 ISSN 2190-6807 http://www.dagstuhl.de/oasics

iii

OASIcs – OpenAccess Series in Informatics

OASIcs aims at a suitable publication venue to publish peer-reviewed collections of papers emerging from
a scientific event. OASIcs volumes are published according to the principle of Open Access, i.e., they are
available online and free of charge.

ISSN 2190-6807

www.dagstuhl.de/oasics

WCET 2006

Proceedings
of the

6th International Workshop on
Worst-Case Execution Time Analysis

(WCET’06)
Chair:

Frank Mueller
North Carolina State University, USA

Dresden, Germany, July 4, 2006

http://drops.dagstuhl.de/opus/volltexte/2006/679

Preface
On the 4th of July, 2006, the 6th International Workshop onWorst-Case Execution TimeAnalysis (WCET’06)
was held in Dresden, Germany, co-located with the 18th Euromicro International Conference on Real-Time
Systems (ECRTS’06), both with support of Euromicro Technical Committee. The goal of the workshop was
to bring together people from academia, tool vendors and users in industry that are interested in all aspects
of timing analysis for real-time systems. The workshop provided a relaxed forum to present and discuss
new ideas, new research directions, and to review current trends in this area. The workshop was based on
short presentations that should encourage discussion by the attendees.

The topics of the workshop include any issue related to timing analysis, in particular:

• Different approaches at computing WCET
• Flow analysis for WCET
• Low-level timing analysis, modeling and analysis of features
• Calculation methods for WCET
• Strategies to reduce the complexity of WCET analysis
• Integration of WCET and schedulability analysis
• Evaluation and case studies
• Testing Methods for WCET analysis
• Tools for timing analysis
• Design for Timing Predictability
• Integration of WCET analysis into the development process
• Compiler optimizations for worst-case paths
• WCET analysis for multi-processors, multi-cores or SMTs
• WCET analysis for networks (e.g., CAN)

WCET’06 featured one invited talk, one report of an upcoming WCET tool contest and, most of all,
presentations of technical paper combined with discussions with the attendees. The papers were selected
based on peer reviews by program committee members and outside reviewers, all experts in the field.
Acknowledgments
The workshop chair would like to acknowledge the following people:

• the invited speaker, Tullio Vardanega, Univ. of Padua (Italy), for his voluntary contribution to the
workshop;

• Herman Härtig for his local support;
• the WCET SC for their advice;
• and last but not least the eager members of the program committee and the anonymous external
reviewers.

The Chair,

Frank Mueller

June 2006

http://drops.dagstuhl.de/opus/volltexte/2006/679

WCET’06 Program Committee
• Henk Corporaal, TU/e (Eindhoven University of Technology). Netherlands.

• Niklas Holsti, Tidorum Ltd.. Finland.

• Björn Lisper, University of Mälardalen. Sweden.

• Stefan Petters, National ICT Australia Ltd. Australia.

• Isabelle Puaut, IRISA Rennes. France.

• Jan Staschulat, University of Braunschweig. Germany.

• Gerhard Unterweger, Consultant for Automotive Industry. Germany.

WCET’06 Steering Committee
• Guillem Bernat, University of York. England, UK.

• Jan Gustafsson, Mälardalen University, Sweden.

• Peter Puschner, Technical University of Vienna, Austria.

http://drops.dagstuhl.de/opus/volltexte/2006/679

Table of Contents

Session 1: Tightening WCET Bounds

Algorithms for Infeasible Path Calculation, Jan Gustafsson, Andreas Ermedahl, and Björn Lisper

Comparing WCET and Resource Demands of Trigonometric Functions Implemented as Iterative Calcula-
tions vs. Table-Lookup, Raimund Kirner, Markus Groessing, Peter Puschner

History-based Schemes and Implicit Path Enumeration, Claire Burguière and Christine Rochange

Session 2: Timing Anomalies

A Definition and Classification of Timing Anomalies, Jan Reineke, Bjoern Wachter, Stephan Thesing, Rein-
hard Wilhelm, Ilia Polian, Jochen Eisinger, and Bernd Becker

PLRU Cache Domino Effects, Christoph Berg

Session 3: Compilers and WCET

Design of a WCET-Aware C Compiler, Heiko Falk, Paul Lokuciejewski, Henrik Theiling

Loop Nest Splitting for WCET-Optimization and Predictability Improvement, Heiko Falk, Martin Schwarzer

Combining Symbolic Execution and Path Enumeration in Worst-Case Execution Time Analysis, D. Kebbal
and P. Sainrat

Session 4: Potpourri

A Framework for Response Times Calculation Of Multiple Correlated Events, Simon Schliecker, Matthias
Ivers, Jan Staschulat, Rolf Ernst

Towards Formally Verifiable WCET Analysis for a Functional Programming Language, Kevin Hammond,
Roy Dyckhoff, Christian Ferdinand, Reinhold Heckmann, Martin Hofmann, Steffen Jost, Hans-Wolfgang
Loidl, Greg Michaelson, Robert Pointon, Norman Scaife, Jocelyn Serot and Andy Wallace

PapaBench: a Free Real-Time Benchmark, F. Nemer, H. Cassé, P. Sainrat, J.P. Bahsoun

http://drops.dagstuhl.de/opus/volltexte/2006/679

2006 WCET Abstracts Collection

6th Intl. Workshop on Worst-Case Execution
Time (WCET) Analysis

F. Mueller

North Carolina State University, USA
mueller@cs.ncsu.edu

Abstract. On the 4th of July, 2006, the 6th International Workshop on
Worst-Case Execution Time Analysis (WCET'06) was held in Dresden,
Germany, co-located with the 18th Euromicro International Conference
on Real-Time Systems (ECRTS'06), both with support of Euromicro
Technical Committee. The goal of the workshop was to bring together
people from academia, tool vendors and users in industry that are inter-
ested in all aspects of timing analysis for real-time systems. The work-
shop provided a relaxed forum to present and discuss new ideas, new
research directions, and to review current trends in this area. The work-
shop was based on short presentations that encouraged discussion by the
attendees. Abstracts of the presentations are put together in this paper.
Links to extended abstracts or full papers are provided. The �rst section
directs to the preface of the proceedings.

Keywords. WCET'06, workshop proceedings, abstracts collection

2006 WCET Preface � Proceedings of the 6th Intl.
Workshop on Worst-Case Execution Time Analysis
(WCET'06)

Frank Mueller

On the 4th of July, 2006, the 6th International Workshop onWorst-Case Execu-
tion Time Analysis (WCET�06) was held in Dresden, Germany, co-located with
the 18th Euromicro International Conference on Real-Time Systems (ECRTS�06),
both with support of Euromicro Technical Committee. The goal of the workshop
was to bring together people from academia, tool vendors and users in industry
that are interested in all aspects of timing analysis for real-time systems. The
workshop provided a relaxed forum to present and discuss new ideas, new re-
search directions, and to review current trends in this area. The workshop was
based on short presentations that should encourage discussion by the attendees.

Keywords: WCET'06, workshop proceedings, preface
Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/679

ECRTS 2006
6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2006/680

http://drops.dagstuhl.de/opus/volltexte/2006/679

2 Frank Mueller

Algorithms for Infeasible Path Calculation

Jan Gustafsson, Andreas Ermedahl, and Björn Lisper

Static Worst-Case Execution Time (WCET) analysis is a technique to derive
upper bounds for the execution times of programs. Such bounds are crucial
when designing and verifying real-time systems. One key component in static
WCET analysis is to derive �ow information, such as loop bounds and infeasible
paths for the analysed program. Such �ow information can be provided as either
as annotations by the user, can be automatically calculated by a �ow analysis,
or by a combination of both. To make the analysis as simple, automatic and safe
as possible, this �ow information should be calculated automatically with no or
very limited user interaction. In this paper we present three novel algorithms
to calculate infeasible paths. The algorithms are all designed to be simple and
e�cient, both in terms of generated �ow facts and in analysis running time. The
algorithms have been implemented and tested for a set of WCET benchmarks
programs.

Keywords: Worst case execution time, real-time, control �ow analysis, abstract
interpretation, infeasible paths

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/667

Comparing WCET and Resource Demands of
Trigonometric Functions Implemented as Iterative
Calculations vs. Table-Looku

Raimund Kirner, Markus Groessing, Peter Puschner

Trigonometric functions are often needed in embedded real-time software. To
ful�ll concrete resource demands, di�erent implementation strategies of trigono-
metric functions are possible.

In this paper we analyze the resource demands of iterative calculations com-
pared to other implementation strategies, using the trigonometric functions as a
case study. By analyzing the worst-case execution time (WCET) of the di�erent
calculation techniques of trigonometric functions we got the surprising result
that the WCET of iterative calculations is quite competitive to alternative cal-
culation techniques, while their economics on memory demand is far superior.
Finally, a discussion of the general applicability of the obtained results is given
as a design guide for embedded software.

Keywords: Worst-case execution time, WCET analysis, table lookup, iterative
computation, Taylor series, resource demands

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/669

http://drops.dagstuhl.de/opus/volltexte/2006/667
http://drops.dagstuhl.de/opus/volltexte/2006/669

6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis 3

History-based Schemes and Implicit Path Enumeration

Claire Burguière, Christine Rochange

The Implicit Path Enumeration Technique is often used to compute the WCET
of control-intensive programs. This method does not consider execution paths
as ordered sequences of basic blocks but instead as lists of basic blocks with
their respective execution counts. This way of describing an execution path is
adequate to compute its execution time, provided that safe individual WCETs
for the blocks are known. Recently, a model for branch prediction has been
integrated into WCET computation with IPET. This model generates safe es-
timations of the branch misprediction counts. However, we show in this paper
that these counts can be over-estimated because IPET does consider simpli�ed
�ow information that do not completely re�ect the program semantics. We show
how additional information on nested loops can be speci�ed so that the model
provides tighter WCET estimations.

Keywords: WCET, IPET (Implicit Path Enumeration Technique), branch pre-
diction

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/670

A De�nition and Classi�cation of Timing Anomalie

Jan Reineke, Bjoern Wachter, Stephan Thesing, Reinhard Wilhelm, Ilia Polian,

Jochen Eisinger, Bernd Becker

Timing Anomalies are characterized by counterintuitive timing behaviour. A
locally faster execution leads to an increase of the execution time of the whole
program. The presence of such behaviour makes WCET analysis more di±cult: It
is not safe to assume local worst-case behaviour wherever the analysis encounters
uncer- tainty. Existing de�nitions of Timing Anomalies are rather imprecise and
intuitive in nature. Some do not cover all kinds of known Timing Anomalies.
After giving an overview of related work, we give a concise formal de�nition of
Timing Anomalies. We then begin to identify di®erent classes of anomalies. One
of these classes, coined Scheduling Timing Anomalies, coincides with previous
restricted de�nitions.

Keywords: Timing analysis, Worst-case execution time, Timing anomalies,
Scheduling Anomalies, Abstraction

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/671

http://drops.dagstuhl.de/opus/volltexte/2006/670
http://drops.dagstuhl.de/opus/volltexte/2006/671

4 Frank Mueller

PLRU Cache Domino E�ects

Christoph Berg

Domino e�ects have been shown to hinder a tight prediction of worst case execu-
tion times (WCET) on real-time hardware. First investigated by Lundqvist and
Stenström, domino e�ects caused by pipeline stalls were shows to exist in the
PowerPC by Schneider. This paper extends the list of causes of domino e�ects
by showing that the pseudo LRU (PLRU) cache replacement policy can cause
unbounded e�ects on the WCET. PLRU is used in the PowerPC PPC755, which
is widely used in embedded systems, and some x86 models.

Keywords: Embedded systems, predictability, cache memory, PLRU, domino
e�ects, timing anomalies

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/672

Design of a WCET-Aware C Compiler

Heiko Falk, Paul Lokuciejewski, Henrik Theiling

This paper presents techniques to tightly integrate worst-case execution time
information into a compiler framework. Currently, a tight integration of WCET
information into the compilation process is strongly desired, but only some ad-
hoc approaches have been reported currently. Previous publications mainly used
self-written WCET estimators with very limited functionality and preciseness
during compilation. A very tight integration of a high quality industry-relevant
WCET analyzer into a compiler was not yet achieved up to now. This work is the
�rst to present techniques capable of achieving such a tight coupling between a
compiler and the WCET analyzer aiT. This is done by automatically translating
the assembly-like contents of the compiler's low-level intermediate representation
(LLIR) to aiT's exchange format CRL2. Additionally, the results produced by the
WCET analyzer are automatically collected and re-imported into the compiler
infrastructure. The work described in this paper is smoothly integrated into a
C compiler environment for the In�neon TriCore processor. It opens up new
possibilities for the design of WCET-aware optimizations in the future.

The concepts for extending the compiler infrastructure are kept very general
so that they are not limited to WCET information. Rather, it is possible to use
our structures also for multi-objective optimization of e.g. best-case execution
time (BCET) or energy dissipation.

Keywords: WCET, compiler, multi-objective, intermediate representation,
ICD-C, LLIR, CRL2, aiT

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/673

http://drops.dagstuhl.de/opus/volltexte/2006/672
http://drops.dagstuhl.de/opus/volltexte/2006/673

6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis 5

Loop Nest Splitting for WCET-Optimization and
Predictability Improvement

Heiko Falk, Martin Schwarzer

This paper presents the in�uence of the loop nest splitting source code optimiza-
tion on the worst-case execution time (WCET). Loop nest splitting minimizes
the number of executed if-statements in loop nests of embedded multimedia
applications. Especially loops and if-statements of high-level languages are an
inherent source of unpredictability and loss of precision for WCET analysis. This
is caused by the fact that it is di�cult to obtain safe and tight worst-case esti-
mates of an application's �ow of control through these high-level constructs. In
addition, the corresponding control �ow redirections expressed at the assembly
level reduce predictability even more due to the complex pipeline and branch
prediction behavior of modern embedded processors.

The analysis techniques for loop nest splitting are based on precise mathe-
matical models combined with genetic algorithms. On the one hand, these tech-
niques achieve a signi�cantly more homogeneous structure of the control �ow.
On the other hand, the precision of our analyses leads to the generation of very
accurate high-level �ow facts for loops and if-statements. The application of our
implemented algorithms to three real-life multimedia benchmarks leads to av-
erage speed-ups by 25.0% - 30.1%, while WCET is reduced between 34.0% and
36.3%.

Keywords: Loop Nest Splitting, Source Code Optimization, WCET, ACET,
�ow facts, polytope

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/674

Combining Symbolic Execution and Path Enumeration in
Worst-Case Execution Time Analysis

Djemai Kebbal, Pascal Sainrat

This paper examines the problem of determining bounds on execution time of
real-time programs. Execution time estimation is generally useful in real-time
software veri�cation phase, but may be used in other phases of the design and
execution of real-time programs (scheduling, automatic parallelizing, etc.). This
paper is devoted to the worst-case execution time (WCET) analysis. We present a
static WCET analysis approach aimed to automatically extract �ow information
used in WCET estimate computing. The approach combines symbolic execution
and path enumeration. The main idea is to avoid unfolding loops performed
by symbolic execution-based approaches while providing tight and safe WCET
estimate.

http://drops.dagstuhl.de/opus/volltexte/2006/674

6 Frank Mueller

Keywords: Static WCET analysis, �ow analysis, symbolic execution, path
enumeration, loop analysis

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/675

A Framework for Response Times Calculation Of Multiple
Correlated Events

Simon Schliecker, Matthias Ivers, Jan Staschulat, Rolf Ernst

Many approaches to determine the response time of a task have di�culty to
model tasks with multiple memory or coprocessor accesses with variable access
times during the execution. As the request times highly depend on system setup
and state, they can not be trivially bounded. If they are bounded by a constant
value, large discrepancies between average and worst case make the focus on
single worst cases vulnerable to overestimation.

We present a novel approach to include remote busy time in the execution
time analysis of tasks. We determine the time for multiple requests by a task
e�ciently and and far less conservative than previous approaches. These requests
may be disturbed by other events in the system. We show how to integrate such
a multiple event busy time analysis to take into account behavior of tasks that
voluntarily suspend themselves and require multiple data from remote parts of
the system.

Keywords: Response time analysis, multiple memory accesses, multiprocessor,
hard real-time, busy time

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/676

Towards Formally Veri�able WCET Analysis for a
Functional Programming Language

Kevin Hammond, Roy Dyckho�, Christian Ferdinand, Reinhold Heckmann, Mar-

tin Hofmann, Ste�en Jost, Hans-Wolfgang Loidl, Greg Michaelson, Robert Pointon,

Norman Scaife, Jocelyn Serot, Andy Wallace

This paper describes ongoing work aimed at the construction of formal cost
models and analyses to yield veri�able guarantees of resource usage in the con-
text of real-time embedded systems. Our work is conducted in terms of the
domain-speci�c language Hume, a language that combines functional program-
ming for computations with �nitestate automata for specifying reactive systems.
We outline an approach in which high-level information derived from source-code
analysis can be combined with worst-case execution time information obtained
from high quality abstract interpretation of low-level binary code.

http://drops.dagstuhl.de/opus/volltexte/2006/675
http://drops.dagstuhl.de/opus/volltexte/2006/676

6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis 7

Keywords: Worst-case execution time, functional programming, Hume, cost
model, asynchronous, �nite state machine

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/677

PapaBench: a Free Real-Time Benchmark

F. Nemer, H. Cassé, P. Sainrat, J.P. Bahsoun

This paper presents PapaBench, a free real-time benchmark and compares it
with the existing benchmark suites. It is designed to be valuable for experimen-
tal works in WCET computation and may be also useful for scheduling analysis.
This bench is based on the Paparazzi project that represents a real-time applica-
tion, developed to be embedded on di�erent Unmanned Aerial Vehicles (UAV).
In this paper, we explain the transformation process of Paparazzi applied to
obtain the PapaBench. We provide a high level AADL model, which re�ects
the behaviors of each component of the system and their interactions. As the
source project, Paparazzi, PapaBench is delivered under the GNU license and
is freely available to all researchers. Unlike other usual benchmarks widely used
for WCET computation, this one is based on a real and complete real-time
embedded application.

Keywords: Real-Time Benchmark, Complete Application, Worst Case Execu-
tion Time (WCET) Computation, Modeling

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2006/678

http://drops.dagstuhl.de/opus/volltexte/2006/677
http://drops.dagstuhl.de/opus/volltexte/2006/678

A Definition and Classification of
Timing Anomalies

Jan Reineke1, Björn Wachter1, Stephan Thesing1, Reinhard Wilhelm1,
Ilia Polian2, Jochen Eisinger2, and Bernd Becker2

1 Saarland University
Im Stadtwald - Gebäude E1 3
66041 Saarbrücken, Germany

{reineke|bwachter|thesing|wilhelm}@cs.uni-sb.de
2 Albert-Ludwigs-University

Georges-Köhler-Allee 51
79110 Freiburg, Germany

{polian|eisinger|becker}@informatik.uni-freiburg.de

Abstract. Timing anomalies are characterized by counterintuitive timing behaviour.
A locally faster execution leads to an increase of the execution time of the whole
program. The presence of such behaviour makes WCET analysis more difficult: It
is not safe to assume local worst-case behaviour wherever the analysis encounters
uncertainty.
Existing definitions of timing anomalies are either given as an intuitive description or
do not cover all kinds of known timing anomalies. After giving an overview of related
work, we give a concise formal definition of timing anomalies. We then begin to
identify different classes of anomalies. One of these classes, coined Scheduling Timing
Anomalies, coincides with previous restricted definitions.

Keywords: Timing analysis, Worst-case execution time (WCET), Timing anomalies, Ab-
straction

1 Introduction

The notion of timing anomalies was introduced by Lundqvist and Stenström in [LS99]. In-
tuitively, a timing anomaly is a situation where the local worst-case does not entail the
global worst-case. For instance, a cache miss – the local worst-case – may result in a shorter
execution time, than a cache hit, because of scheduling effects. See Figure 1 for an example.
Shortening task A leads to a longer overall schedule, because task B can now block the
“more” important task C. Analogously, there are cases where a shortening of a task leads
to an even greater decrease in the overall schedule. Such effects are not relevant for timing
analysis. We will not consider them in this paper.

Another example occurs with branch prediction. A mispredicted branch results in unneces-
sary instruction fetching that destroys the cache state. If the first instruction being fetched
is a cache miss, the correct branch condition will be computed before more harm can be
done by further fetches. Figure 2 illustrates this.

2 Existing Work on Timing Anomalies

The first paper remotely related to timing anomalies was written as early as 1969 by Graham
[Gra69]. They show that a greedy scheduler can produce a longer schedule, if provided with

ECRTS 2006
6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2006/671

2 Jan Reineke et al.

A

A

Resource 1

Resource 2

Resource 1

Resource 2

C

B C

B

D E

D E

Fig. 1. Scheduling Anomaly

Prefetches

A

A

Cache Miss

Cache Hit C - Miss due to Prefetch

C

Branch Condition
Evaluated

Fig. 2. Speculation Anomaly

shorter tasks, less dependencies, more processors, etc. They also give bounds on these effects,
which are known as scheduling anomalies today. In their model all resources (processors)
are identical though, which renders the given bounds useless for our purposes.

Lundqvist & Stenström first introduced timing anomalies in roughly the sense relevant for
timing analysis. In their 1999 paper [LS99] they give an example of a cache miss resulting in
a shorter execution time than a cache hit. A timing anomaly is characterized as a situation
where a positive (negative) change of the latency of the first instruction by i cycles results
in a global decrease (increase) of the execution time of a sequence of instructions. Situations
where the local effect is even accelerated are also considered timing anomalies, i.e. the global
increase (decrease) of the execution time is greater than the local change. We do not consider
such cases here because they do not pose problems for timing analysis.

In his PhD thesis [Eng02] and in a paper with Jonsson [EJ02], Engblom briefly mentions
timing anomalies. He translates the notion of timing anomalies of the Lundqvist/Stenström
paper [LS99] to his model by assuming that single pipeline stages take longer, in contrast
to whole instructions. Both Lundqvist and Engblom claim that, in processors containing
in-order resources only, no timing anomalies can occur. This is not always true unfor-
tunately, as corrected in Lundqvist’s thesis [Lun02]. Schneider [Sch02] and Wenzel et al.
[Wen03,WKPR05] note that if there exist several resources that have overlapping, but not
equal abilities, timing anomalies can also occur.

Thesing [The04] discusses the Motorola ColdFire 5307, which contains a rather simple in-
order pipeline that does not even have resources with overlapping abilities. He shows that
the processor exhibits timing anomalies caused by its cache. The cache replacement policy of
the ColdFire, Pseudo-Round Robin, causes these problems: In contrast to common replace-
ment strategies, such as LRU or Pseudo-LRU, the effect of a cache miss on the cache state
is sometimes different from that of a cache hit. While the cache miss obviously consumes a

A Definition and Classification of Timing Anomalies 3

longer processing time, it may result in a cache state that better suits the following code.

Wenzel, Kirner, Puschner, and Riedel [Wen03,WKPR05] give a necessary condition for tim-
ing anomalies, the Resource Allocation Criterion, short RAC. The RAC states that it has
to be possible to create different schedules for at least one of the functional units of the
processor for timing anomalies to be possible. Unfortunately, the criterion is based on a
rather restricted definition of timing anomalies. he underlying assumption is that the laten-
cies of subsequent instructions depend solely on the chosen schedule, i.e. which functional
units are used. They are assumed to be independent of the initial latency difference. As we
have observed in our introductory examples, this is overly optimistic. Both speculation and
certain cache replacement strategies, like Pseudo-Round Robin violate this assumption.

3 Formal Definition

While the introductory examples give a rough intuition of what we consider a timing anom-
aly, they do not offer a concise formal definition. Let us identify important concepts that
should flow into a formalization. It should not only cover presently known anomalies but
be general enough to be valid also for future hardware features. This desired generality
obviously requires a rather abstract approach.

Hardware Model A definition of timing anomalies has to take into account the hardware
model. It has a great impact on the number and kind of such anomalies. For instance,
out-of-order processors probably show more anomalies than simpler in-order machines.

Timing anomalies require choice, i.e. non-determinism in the analyzed model. In previous
work on timing anomalies the different cases to compare, like cache hit or cache miss, came
out of the blue.

Abstraction The reason for non-determinism in timing models is abstraction. Timing
analysis usually only becomes feasible through abstraction. It enables us to deal with
unknown input data and huge state-spaces. In return, abstraction has to give up some
precision. Unknown information due to abstraction introduces non-determinism, where
the underlying hardware model was fully deterministic. Depending on the precision of
the abstraction different timing anomalies are conceivable.

Locality In most examples we have some intuition to what is the local worst-case. To
identify a local worst-case formally we need a notion of locality. In literature, locality
was usually not explicitly treated, but often implicitly fixed to the instruction level
[LS99,Lun02]. Engblom [Eng02,EJ02] considered micro-operations (pipeline stages) to
be the right granularity. We believe that micro-operations (like instruction fetch, execute,
etc.) are indeed the right locality level. This is where timing differences first become
visible.

Based on these observations we will now formally define timing anomalies. Our definition
requires some notational prerequisites:

Definition 1 (Transition System). A transition system T is a pair T = (S, R), where
S is a finite set of states and R ⊆ S × S is a transition relation. A path π in a transition
system T = (S,R) is a finite sequence of states, s.t. (πi, πi+1) ∈ R for all i ∈ 0 . . . |π| − 1.
The set of all paths of a transition system T is denoted as Π(T).

A transition system can model the cycle-level behaviour of a computer architecture, i.e. a
transition models the execution of one cycle. In contrast to other low-level hardware models,

4 Jan Reineke et al.

such as Mealy- or Moore-automata, inputs and outputs are not explicitly modeled. This is
not necessary in our context of timing analysis. Data and the program that is executed are
modelled as part of the state.

As noted above, we consider micro-operations to be the right level to make local decisions,
i.e. identify the local worst-case. The following definition of locality constraints enables us
to do so.

Definition 2 (Locality Constraint). A locality constraint l for a transition system T =
(S,R) is a convex predicate on S, i.e. l only holds on consecutive states in any path π through
T . We assume that locality constraints model the sequence of states that is executing a micro-
operation. We denote the restriction of π to l by π|l, i.e. the restriction of the path π to the
subpath of π in which l holds. Note, that this is still a (possibly empty) path. We denote the
restriction of π to a set {l1, . . . , ln} of locality constraints by π|l1...ln , i.e. the restriction of
the path π to a sequence of states of T in which at least one of the predicates l1, . . . , ln holds.
π|l1...ln is not necessarily a path.

Definition 3 (Local Worst-Case Path). Given a set of locality constraints L and a
set of paths Π, a path π ∈ Π is a local worst-case path, if and only if for every locality
constraint l ∈ L and every path π′ ∈ Π it holds that if π = πpre ◦ π|l ◦ πpost, |π|l| > 0 and
π′ = πpre ◦ π′|l ◦ π′post then |π|l| ≥ |π′|l|.
A path is called a non-local worst-case path if it is not a local worst-case path.

Definition 4 (Program). A program (or a control flow graph) P is a directed graph
P = (V, E), E ⊆ V ×V , in which the nodes V represent instructions, and an edge (u, v) ∈ E
represents flow of control from u to v.
A sequence σ through a program P = (V, E) is a finite sequence of instructions, s.t. (σi, σi+1) ∈
E for all i ∈ 0 . . . |σ| − 1.

We do not want to compare arbitrary paths through the transition system, but only those
that correspond to the same path through the program. We can map paths in the transition
system to paths through the program via a labelling function.

Definition 5 (Labelling Function). Given a transition system T = (S,R), a set of local-
ity constraints L, and a program P = (V, E). A Labelling Function ρ : V ∗ → P(L) assigns
each finite sequence of instructions through the program P a set of locality constraints that
corresponds to the execution of the respective micro-operations. A path π through T then
corresponds to the sequence σ through P iff π|l is not empty for all l ∈ ρ(σ) and π|ρ(σ) is
equal to π.
Given a set Π of paths through T , the subset of Π which corresponds to a given sequence σ
w.r.t. a labelling function ρ is denoted as Π|ρσ.

Definition 6 (Hardware Model). A (possibly abstracted) hardware model C maps a pro-
gram P to a transition system T , a set of locality constraints L on T , and a labelling function
ρ that relates the states of the transition system with the instructions of the given program
P .

Note that a concrete hardware model is deterministic. Non-determinism – which is necessary
for timing anomalies – is only introduced by abstraction. One can formally define the relation
between concrete and abstract hardware models. For reasons of brevity we omit to provide
such a definition.
Now, we are ready to define timing anomalies.

A Definition and Classification of Timing Anomalies 5

Definition 7 (Timing Anomaly). A hardware model C exhibits timing anomalies, if there
exists a program P with C(P) = (T,L, ρ), a finite sequence σ through P , and a non-local
worst-case path π ∈ Π(T)|ρσ, s.t. |π| > |π′| for all local worst-case paths π ∈ Π(T)|ρσ.

Figure 3 illustrates the situation. At some analysis state, after executing πpre, future execu-
tion is non-deterministic. To find the globally longest path we need to follow the non-local
worst-case path π|l (it is not the longest path on locality constraint l).

...πpre

π|

πpost

... ...

l

time

Fig. 3. Timing Anomaly Example

4 Classification

The above definition introduces timing anomalies in a rather abstract way. In the future,
when confronted with a possible anomaly it will allow us to safely argue whether or not it
constitutes a timing anomaly. This section aims at starting to clarify “what timing anom-
alies really are”, by identifying different subclasses.

The idea is to readopt the view of timing anomalies from a scheduling perspective. In this
setting, a set of tasks with dependencies and resource constraints describes the problem
posed to the hardware. Tasks could be executions of micro-operations. Dependencies ensure
that the micro-operations of a specific instruction can only be executed sequentially. Other
dependencies model data dependencies in a program. Resources are stages in the pipeline
like Instruction Fetch, Execute, or the different functional units of the processor. Now, we
can distinguish at least three classes of timing anomalies (and possibly many more):

Scheduling Timing Anomalies We compare two task sets that differ only in the length
of the “pivot” task. An example could be a cache hit vs. a cache miss. Figure 1 gives an
example. The task sets differ only in the length of task A. Most timing anomalies dealt
with in literature fall into this category. This kind of anomaly is well-known in the
scheduling world, and has been extensively studied on various scheduling routines. One
observation that can be made is that greedy schedulers, mimicked by timing analysis
(and online schedulers, like modern processors, usually are greedy) are unable to prevent
such anomalies in general.

Speculation Timing Anomalies Here, the difference is not confined to the length of the
“pivot” task. The entire task set changes depending on this task. As an example see
Figure 2. In both cases the processor is speculatively prefetching instructions. The local
worst-case, a cache miss while fetching the first instruction, takes so much time that
the branch condition can be evaluated, before more harm can be done to the cache by

6 Jan Reineke et al.

further prefetches. Interestingly, the task set is influenced by previous decisions of the
scheduler. Apparently, these interactions put these anomalies outside of the scope of
scheduling theory. Note that the anomaly can occur even if the abstraction knows that
the branch was mispredicted.

Cache Timing Anomalies These are anomalies induced by strange cache behaviour, as
in the Pseudo-Round Robin cache replacement strategy employed in the ColdFire 5307.
There, the non-local worst-case cache hit results in a different future cache state than
the local worst-case cache miss. The difference in the cache state can then cause the
cache hit branch to be stalled later on.

Interestingly, the latter two classes of anomalies can also happen on in-order architectures,
as the ColdFire.

5 Conclusion

Timing anomalies result from complex interactions in modern processors and non-determinism
introduced by abstraction. Their definition is a difficult task. We have given an overview of
existing work on timing anomalies, and identified imprecisions and weaknesses. Notably, the
restriction to what we call Scheduling Anomalies and the lack of formalization of locality.
Based on these observations, we have given a concise formal definition, that is – unlike pre-
vious definitions – general enough to cover all known kinds of anomalies. Furthermore, we
have begun to identify different classes of timing anomalies.

References

[EJ02] Jakob Engblom and Bengt Jonsson. Processor pipelines and their properties for static
wcet analysis. In EMSOFT ’02: Proceedings of the Second International Conference on
Embedded Software, pages 334–348, London, UK, 2002. Springer-Verlag.

[Eng02] J. Engblom. Processor pipelines and static worst-case execution time analysis, 2002.
[Gra69] Ronald L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal of

Applied Mathematics, 17(2):416–429, 1969.
[LS99] Thomas Lundqvist and Per Stenström. Timing anomalies in dynamically scheduled

microprocessors. In RTSS ’99: Proceedings of the 20th IEEE Real-Time Systems Sym-
posium, page 12, Washington, DC, USA, 1999. IEEE Computer Society.

[Lun02] Thomas Lundqvist. A WCET Analysis Method for Pipelined Microprocessors with Cache
Memories. PhD thesis, Chalmers University of Technology, Sweden, June 2002.

[Sch02] Jörn Schneider. Combined Schedulability and WCET Analysis for Real-Time Operating
Systems. PhD thesis, Saarland University, Germany, December 2002.

[The04] Stephan Thesing. Safe and Precise WCET Determination by Abstract Interpretation of
Pipeline Models. PhD thesis, Saarland University, Germany, July 2004.

[Wen03] Ingomar Wenzel. Principles of timing anomalies in superscalar processors. Master’s the-
sis, Technische Universität Wien, Institut für Technische Informatik, Treitlstr. 3/3/182-
1, 1040 Vienna, Austria, 2003.

[WKPR05] Ingomar Wenzel, Raimund Kirner, Peter Puschner, and Bernhard Rieder. Principles
of timing anomalies in superscalar processors. In Proc. 5th International Conference on
Quality Software, Sep. 2005.

A Framework for the Busy Time Calculation of Multiple Correlated Events

Simon Schliecker, Matthias Ivers, Jan Staschulat, Rolf Ernst
Institute for Computer and Communications Network Engineering

{schliecker, ivers, staschulat, ernst}@ida.ing.tu-bs.de

Abstract

Many approaches to determine the response time of a
task have difficulty to model tasks with multiple memory
or coprocessor accesses with variable access times during
the execution. As the request times highly depend on sys-
tem setup and state, they can not be trivially bounded. If
they are bounded by a constant value, large discrepancies
between average and worst case make the focus on single
worst cases vulnerable to overestimation.

We present a novel approach to include remote busy time
in the execution time analysis of tasks. We determine the
time for multiple requests by a task efficiently and and far
less conservative than previous approaches. These requests
may be disturbed by other events in the system. We show
how to integrate such a multiple event busy time analysis to
take into account behavior of tasks that voluntarily suspend
themselves and require multiple data from remote parts of
the system.

1 Introduction and Overview
The analysis of the worst case timing behavior of sys-

tems is facing new challenges with increasing system com-
plexity. In order to derive reliable bounds, overestimations
must often be introduced to reduce the analysis complexity.
However, this will either increase costs or thwart industrial
use altogether. Therefore, timing analysis must be sure to
cover realistic system setups with tight timing bounds.

A particular challenge is the behavior of tasks that
strongly interact with their environment during execution,
e.g. through memory or coprocessor requests: The wait-
ing for such external requests introduces additional delays.
Thus the execution time can not be known without knowl-
edge of these delays, which depend highly on system setup
and state. Furthermore, if the scheduler reallocates the
processor to other tasks, conserving the processor time, but
also additionally delaying the requesting task, the response
time can not be determined on the basis of the tasks core
execution time alone.

Also, the focus on absolute worst case response times
in system level analysis has impaired the analysis potential
of such tasks: Assuming requests to cause a constant delay

to the execution leads to a large overestimation in shared
resource multi-task environments, where the worst case can
outgrow the common case by very large factors.

The contribution of this paper is a new method to in-
vestigate communicating tasks which issue a large number
of events during execution. We present methods to derive
the total busy time of an execution seperated into multiple
chunks, as well as the total busy time of multiple transac-
tions over multiple resources. Both is integreated to find
response times of communicating tasks. We closely exam-
ine a static priority preemptive (SPP) scheduler and show
the improvement over previous work in experiments.

This paper is organized as follows: We will present re-
lated work on timing analysis in Section 2 and a new model
for communicating tasks in Section 3. Section 4 presents
our framework, which is implemented for a SPP scheduler
in Section 5. We present an example and experiment in Sec-
tion 6, and conclude in Section 7.

2 Related Work on Timing Analysis
Timing of real-time systems is addressed on different

levels of abstraction. We will first present approaches that
closely examine thetasksinternal behavior. Approaches
that work on theresourcelevel take these results as the ba-
sis for a schedulability analysis. Finally,systemlevel ap-
proaches investigate the system behavior to derive timing
properties such as path latencies.

The timing analysis ofindividual tasksis commonly sep-
arated in two stages [7] [6]: Microarchitecutural modeling,
in which the timing of sequences of instructions is investi-
gated, and program path analysis to determine which path is
executed in the worst-case. Memory or coprocessor access
times, or cache miss penalties are assumed to be constant
parameters in most approaches.

The interference ofmultiple tasks on the same resource
is considered in the response time analysis. The growing-
window technique is the prevailing method to solve worst
case response time equations which do not lend themselves
easily to direct solution. Originally introduced in [5], ithas
been extended to include arbitrary arrival patterns and addi-
tional timing effects e.g. in [8].

In a simple version, with no blocking time and no multi-
ple releases within a busy window the worst case response

1ECRTS 2006
6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2006/676

timeWCRT (τ) of a taskτ with worst case execution time
C(τ) on a resource with SPP scheduling is given by the
smallest timew that fulfills the following equation:

w = C(τ) + Ihp(w) (1)

whereIhp(w) is the worst case interferenceτ can experi-
ence due to the execution of higher priority tasks within a
time window of sizew.

Bletsas et al. have shown in [1] how to consider tasks
whose execution is separated into actual execution times
and known communication times in the response time
analysis. Their approach accounts for the parallelism in lo-
cal and remote execution, in so far that the interference by
higher priority tasks is reduced by the ”gaps” during which
they wait for remote data. Still, the gap time is assumed
to be constant and independant of previous behavior, which
is not the case, e.g. when requests by different tasks are
pipelined.

System level analysisis necessary to derive thepath la-
tencyof memory transactions, or other requests that pass
over multiple components of a system. To avoid confusion
with paths within a tasks control flow, we call paths through
the systemchains.

The classical worst case response time calculation was
extended to distributed systems in [9]. Other approaches,
such as [4] break down the analysis complexity of complete
systems into separate local analyses and bind them together
with a description of the traffic (event streams). Attribut-
ing value dependent execution times (modes) to tasks [3]
can lead to better local response times, if the event streams
are enriched with a description of the type of events in the
stream. Any of these conservative approaches focus solely
on the worst case time of any single event.

The strict distinction between the different levels of ab-
straction was broken down in [2], where an integrated ap-
proach to perform program path analysis and derive co-
processor request latencies was presented, by assuming a
worst case scenarios for each request.

3 Communicating Tasks

The presence of communicating tasks, which perform
system-wide requests during their execution, contradictsa
number of the assumptions of the classical analysis distrib-
ution, in which only “bottom-up” dependencies exist. The
main problem is that the worst case execution behavior de-
pends on the system level influences that can not easily be
bounded before the execution behavior is known. If a con-
servative worst case can be found at all, it is many cases
a high overestimation of the average case. Also, voluntary
suspension of tasks can lead to additionaly scheduling de-
lays. We will therfore introduce a model for communicating
tasks, that enables improved reasoning about the distributed
execution behavior.

The traditional task concept assumes tasks consisiting of

basic blocks of linear code, branches, and loops, all rep-
resented in a control flow graph. Some worst case input
pattern leads to a worst case timing behavior as shown in
Figure 1a. The timing includes execution of instructions on
the processor as well as memory or coprocessor calls.

a) b)

a1 a2 a3

c1 c2 c3 c4

activationactivation

finishfinish

Figure 1. Task execution model.

We assume that acommunicating taskperforms data re-
quests by initiatingtransactions(a1 to a3) though executing
an explicit instruction (CALL a), wherea defines the tar-
get and type of the transaction. By calling an instruction
SYNC a, the task will be suspended until completion of
the transaction. We call the parts of a task during which no
external data is requiredconsecutive execution sequences
(CESc1 to c4), each of which can be seen as corresponding
to the classical task concept. A CES will often be com-
putation but may also be communication or data storage,
depending on the type of resource the CES is executed on.

A worst case task behavior exists that maximizes the
time until completion, including finishing of all CESs and
transactions. For the scope of this paper we assume that
the maximum execution time of each CES is known, and to
reduce the complexity of our problem that the amount and
type of incurred transactions is not data dependant. This
behavior is sketched in Figure 1b.

A transaction consists of an ordered set ofevents. Each
event is the signal that causes one CES on any resource to
becomeready. This CES is thenprocessingthe event until
it is finishedand thus not ready anymore. When the CES
is finished, the next event of the transaction becomesready,
activating the next CES. The first event of the transaction
initiates the transaction and is given by theCALL instruc-
tion. The transaction isfinishedwhen the last event of the
transaction was processed. When a transaction is initiated
but not finished it isongoingor ready.

τ1

τ2

τ3

τ4

CPU1

CPU2

MEM

BUS

COP

Figure 2. A Multiprocessor Setup.

Figure 2 shows the setup of an example multiprocessor
system. Three tasks are mapped to processorCPU1. Dur-

2

MEM

BUS

CPU1

interference
execution
busy time
event
transactionsa1,a2a1 a2

waiting readyreadyready waiting
ti

τ2

Figure 3. A distributed execution
ing its execution,τ2 requires data from the memoryMEM .
A taskτ4 onCPU2 also uses the bus and memory, interfer-
ing with the communication ofτ2. Figure 3 shows a pos-
sible Gantt diagram of this example. Taskτ2 on CPU1 re-
quests data from the memory two times, each time initiating
a transactionconsisting of 4events. The processing of the
events is delayed on theBUS and on the memoryMEM ,
due toτ4 performing similar accesses. As the overall time
window is larger than without transactions, increased inter-
ference (for example by higher priority tasks as experienced
by τ2 at timeti in Figure 3) occurs. The dotted lines denote
the actualoverall busy timeof τ2 which is the focus this
paper.

4 A Framework for Worst Case Busy Times
We present a coupled analysis, that integrates the tasks

execution behavior with the system level behavior to find
the tasks response time. We set a specific focus on the
analysis of multiple transaction on the system level, and
the seperation of tasks into multiple parts on the local level,
which is the common scenario for tasks with remote data
requirements.

First, a worst case busy time analysis is introduced in
Section 4.1, which allows tasks to request data multiple
times during execution. This approach relies on the cal-
culation of a local total busy time (generally addressed in
Section 4.2, and specifically for SPP in Section 5), and the
busy time for the memory transactions, which is calculated
in Section 4.3.

4.1 Worst Case Busy Time Analysis

Extending the scope of the response time analysis from
single worst case behavior to conservative bounds of mul-
tiple events requires the introduction of new terminology.
Let the set of CESs of a task that leads to the largest local
execution time be denoted byE and the set of transactions
that is initiated by a task denoted byQ. Furthermore:

The total busy time of a set of CESsE is the total amount
of time during which at least one CES ofE is ready.
Thus this is the union of the times during which any
single CEC is ready.

The total busy time of transactionsA is the total amount
of time during which at least one transaction ofA is
ready (i.e. ongoing).

The overall busy timeis the total amount of time during
which either a CES or a transaction is ready.

Figure 3 shows the execution of taskτ2, which consists of 3
local CESs onCPU1 and initiated transactionsa1 anda2.
The dotted lines comprise the overall total busy time of the
tasks CECs and transactions. The following theorem gives
a overall busy time based on the definitions above.

Theorem 1. The overall busy time of a taskτ executing on
resourcer during a time window of sizew ≥ 0 is given by
w such that

w = Sr
CES(E, w) + Strans(A, w) (2)

E is the set of CESs that the taskτ needs to execute locally
for completion and

A is the set of transactions the taskτ initiates and requires
to complete execution.

Sr
CES(E, w) is the maximum total busy time for CESsE

and
Strans(A, w) is the maximum total busy time for transac-

tionsA under the assumption that all CESs and trans-
actions can be finished within timew.

Proof. Assume that transactions are initiated at the very last
instant of each CES ofτ . From the definition it follows that
as soon as the transaction is finished the next CES is ready
to be executed. This means that whenever no CES is ready,
a transaction must be ongoing or the task is finished.

As the maximum total amount of time that transac-
tions can be ongoing is bounded byStrans(A, w) and
the maximum amount of time CESs are ready is bounded
by Sr

CES(E, w), it follows that after Sr
CES(E, w) +

Strans(A, w) the task must be finished.
If a task issues the transactions not at the end of a CES

but earlier, both the task and a transaction are ready at the
same time. This can only lead to a smaller total busy time.

To solve equation 2 a growing-window technique as in
[8] can be used. Initially, a non-conservative value forw can
be picked. It will not be possible to perform all requested
computation in time, as it will take at least untilSCES +
Strans to finish. This value is used as a neww and tested.
As soon asw is large enough to contain all busy times, the
assumptions are correct and the analysis has converged. An
example of this procedure is given in Section 6.

3

The above theorem is valid independently of the utilized
arbitration policies, asSCES andStrans are unspecific. The
next sections 4.2 and 4.3 focus on the derivation of these
values.

4.2 Multiple Event Busy Times

One property of the memory and coprocessor requests
adressed in this paper is that commonly many occur during
a tasks execution. We will investigate the case of the exe-
cution of multiple CESs in a given time window. Figure 4
shows the busy time of 4 CECs that are processed in a first-
in-first-out ordering. The resource is also handling requests
by other tasks, which leads to delay due to interference. The
dotted line depicts the searched total busy time, which is the
union of the individual CESs’ busy intervals (R1 to R4).

R1 R2 R3
R4

τ

Interference

Busy time

w

Figure 4. Single Resource Total Busy Time.

The total busy time can be used for two things: Firstly,
it gives the maximum total amount of time during which
this resource can be busy processing CECs that are activated
by events that are part of a transaction. This is required to
determine the remote total busy timeStrans of Theorem 1
and is investigated in Section 4.3.

Secondly, it is also an estimate on the local total busy
timeSCES of a communicating task. The execution of such
a task consists of CESsE (see Section 3). Although the
CESs of a single task may not overlap, the total busy time
is still valid.

Tindells approach to response times for bursty job ar-
rivals [8] is not applicable, as it finds the worst case re-
sponse time only within a self-inflicted and continuousbusy
window. In our case however nothing is said about the ar-
rival times, so that events mayalsoarrive completelysepa-
rated.

Anyway, the worst case response time as derived in [8]
and similar approaches may be reused: For any scheduling
arbitration the maximum total busy time is bounded by the
sum of the individual worst case response timesWCRT (c)
of the CESsc ∈ E.

Sr
CES(E, w) =

∑

c∈E

WCRT (c) (3)

Similarly, the busy time required to process a set of
eventsQ to CESs on the same resource can be bounded. As
each eventq ∈ Q causes one CES,c(q), to become ready,

the set of CESs to process is given by

E =
⋃

q∈Q

c(q) (4)

Note that Eq. 3 is an overestimation as can be seen in Fig-
ure 4. Firstly, not every event must wait for the processing
of previous events to be finished as is assumed in the cal-
culation ofWCRT (c), rather the individual busy windows
overlap. Furthermore, not every request can experience the
critical instant of interference by other tasks, but only a cer-
tain amount of interference can occur in in the given time
window. We will therefore present an improved analysis
specifically for static priority preemptive (SPP) scheduling
in Section 5.

4.3 Busy Time of Transactions

In the previous section we have investigated processing
of multiple events on the same resource. We will now turn
to the total busy time of transactions that consists of multi-
ple events on different resources,Strans, in Eq. 2. For this,
we can build on the results of section Section 4.2 (and 5).

A straightforward bound for the total busy time of trans-
actionsA is the sum over the worst case response times
that each individual transaction would have taken. This
is again an overestimation, as the worst case interference
can in many cases not be imposed on every single transac-
tion, and not every transaction may be delayed by preceding
transactions. An amelioration is achieved by Theorem 2,
where multiple transactions are investigated together.

Theorem 2. Let each transaction inA consist of events to
CESs mapped to a set of resourcesR, and it is known they
can be initiated and finished within a time window of size
w. Let all events of the transaction on the same resource be
treated with a first-in-first-out principle. Then the maximum
total busy time of the transactionsA is given by:

Strans(A, w) ≤
∑

r∈R

Sr
CES(EA

r , w) (5)

whereEA
r is the union of all CESs that are executed on

r and activated by an event of the transactionA and
Sr

CES(EA
r , w) is the maximum total busy time of these

CESs.

Proof. Let Tr(c) be the time interval at which a specific
CESc on resourcer is ready. The total amount of time that
resourcer can be busy processing events is given by the
size of the union of all times at which at least one CES of
the transaction is ready onr.

As the transactions are assumed to be finished within a
time window of sizew, Theorem 3 bounds the total busy
time of the CESs which correspond to the events in the
transaction bySr

CES(EA
r , w).

∣

∣

∣

∣

∣

∣

⋃

c∈EA
r

Tr(c)

∣

∣

∣

∣

∣

∣

≤ Sr
CES(EA

r , w) (6)

4

⋃

· Produces the union of included intervals.
| · | Is the sum of the total size of all included intervals.

A transaction along the chain is ongoing whenever an event
of the transaction is ready on any of the given resources
along the chain. Therefore, the busy time of the transactions
A is bounded by

Strans(A, w) =

∣

∣

∣

∣

∣

∣

⋃

r∈R

⋃

c∈EA
r

Tr(c)

∣

∣

∣

∣

∣

∣

(7)

As the size of the union of intervals can not be larger than
the sum over the sizes of the intervals, equation 5 follows
from equations 6 and 7.

This framework allows to determine the worst case re-
sponse time of tasks which require multiple data from other
parts of the system, and initiate transactions to fetch this
data. The total busy time of the transactions was deter-
mined, and the effect of the resulting voluntary suspensions
of the task into multiple CESs has been taken into account
in Section 4.2, albeit rather imprecisely. We will now im-
prove the considerations about local total busy time in the
following section.

5 A Static Priority Preemptive Scheduler
To show the validity of the approach presented in Sec-

tion 4, we introduce a simple static priority preemptive
(SPP) scheduler that arbitrates tasks with transaction andre-
synchronization instructions. Based on SPP scheduling, the
scheduler ensures that at every time point the task with the
highest priority that has all data required for execution, and
has not completed execution is executing on the resource.
Tasks may consist of multiple CECs, that receive the same
priority as the task. All CECs with the same priority are
treated first-in-first-out. For the scope of this paper, we as-
sume that there is no blocking caused by shared critical sec-
tions, and the scheduling procedure induces no significant
additional overhead.

Theorem 3. Let a set of CESsE have the same priority
on resourcer that is scheduled with mechanisms described
above. Let the processing of all CESs be started and fin-
ished within a time window of sizew. Furthermore, let
C(c) be the worst case computation time of a CESc ∈ E,
andIhp(w) be the maximum time tasks with higher priority
may be executing. Then the maximum total busy time ofE

is given by the following equation:

Sr
CES(E, w) =

∑

c∈E

C(c) + Ihp(w) (8)

Proof. The total busy timeB is given by the sum of all
times during which at least one CES is ready. LetRUN(t)
be the task or CES chosen by the scheduler to execute at
time pointt.

All times t at whichRUN(t) ∈ E, a CES inE is being ex-
ecuted and must therefore be ready, thust must be included
in B. This can be the case for at most

∑

c∈E C(c).

At times t, when RUN(t) 6∈ E, either no CES inE is
ready, or if one ore more CES is ready, they are kept from
executing by a higher priority task that is ready. Whenever
no CES inE is ready,B does not increase. The total amount
of time higher priority tasks can be executing is limited by
Ihp(w), and in the given scheduler, at least one higher pri-
ority task is ready, only if a higher priority task is executing.
Thus, whenever a CES inE is ready, it can not be kept from
executing for more thanIhp(w) within a time interval of
sizew.

Thus, the CESs inE can not be ready for more than
∑

c∈E C(c) + Ihp(w) in a time interval of sizew.

Compared to section 4.2, this is a better estimate of the
busy time of the CECs inE, as now the worst case inter-
ference in the given time windoww in which all processing
takes place is only accounted once.

Note that the worst case interferenceIhp(w) by higher
priority tasks which are allowed to suspend themselves to
request data is not given by the traditional ”critical instant”
of all tasks being activated simultaneously [1]. Instead, the
first interfering invocation has to be assumed to have per-
formed all suspensionbeforethe beginning of the time win-
dow, which leads to an earlier possible activation of all suc-
cessive invocations.

6 Example and Experiments
Consider the System in Figure 2 and 3. Let all resources

be scheduled with the SPP scheduling as described in Sec-
tion 5. We are interested in the response time ofτ2. Assume
thatτ2 initiate 5 transactionsA to the memory. Let the pe-
riod and jitter be according to Table 1, and the deadline of
τ2 equal to its period. Assume thatτ1 is the only task on
CPU1 with a higher priority. On both the bus and the mem-
ory, the priority of the tasks handlingτ2’s transactions are
lower than the interference (I1

4 , I2
4 , andI3

4) caused by the
transactions ofτ4 on CPU2, which occur with the period
and jitter as shown. Besides their transactions, letτ1 consist
of a single CES of size10, andτ2 of one of size50. Let the
execution time of any execution on the bus or the memory
be 10.

CPU1 Bus Memory
τ2 τ1 A I1

4 I2
4 A I3

4

Period 400 100 n/a 100 100 n/a 100
Jitter 0 200 n/a 0 200 n/a 0

Table 1. Example Setup

A traditional response time analysis utilizes the worst
case time for a single request, each delayed by the
maximum amount of interference. This calculates to
WCRTBUS +WCRTMEM +WCRTBUS = 50+40+50
(calculation not shown). Thus for 5 requests a time of
5 ∗ 140 = 700 is required. Based on this,τ2 can not keep
its deadline.

5

Determining the worst case response time on the basis
of multiple event busy times yields much tighter bounds.
According to Theorem 1, the overall busy time is given by
SCPU1

CES + Strans, whereSCPU1

CES is denoted bySCPU and
Strans according to Theorem 2 is given bySBUS +SMEM .
Initially, it is assumed that all computation request can be
handled within a time window size ofw = 50, which is
the core time ofτ2. If this were the case, the computation
on CPU1, Bus, and the memory would take80, 130 and
80 time units respectively. Thus, the computation can not
be finished within the assumed time window. A new test
is done with the time window size 290, which also fails.
This goes on until finally it is assumed that all computation
is started and finished in a time window of size 380, thus
the assumption holds, and a the worst case response time
of τ2 is found. This is an improvement towards previous
approaches, as the interference in the overall busy window
is only accounted for once.

CPU1 Bus Memory
C(τ2) = 50 C(q) = 10 C(q) = 10

w I1 SCPU I1 I2 SBUS I4 SMEM

50 30 80 15 15 130 30 80
290 50 100 25 25 150 50 100
350 60 110 30 30 160 60 110

380! 60 110 30 30 160 60 110

Table 2. Calculation Procedure

We conducted a set of multiple request experiments to
show the gain of our analysis ins Section 5 over the sum
of worst cases approach. Figure 5 shows the estimated re-
sponse times for a number of requests, from which it is
known that they occur within a time window of size 300. As
the number of requests increases, the total busy time only
increases by the added core execution time. This results
from the fact, that the complete possible interference in the
time window is assumed from the beginning. This is also
the reason, why the new method is inferior forN = 1, as in
traditional WCRT only the interference during the requests
busy window (notw) can interfere with the execution. As
both approaches are conservative, the minimum can be used
for an optimal analysis. The positive effect scales for trans-
actions as suggested by the aboeve example.

Figure 5. Multiple Request Total Busy Time.

7 Conclusion
To allow the analysis of communicating tasks that con-

sist of local execution sequences and remote transactions
we have proposed a framework that integrates the analysis
over different levels of abstraction. We address multiple
events together and calculate an upper bound on the total
amount of busy time. This is both used for a tight estimate
on the transaction latencies as well as the overall time to
complete the task execution. Additionally, we presented a
straight-forward analysis that accounts for the properties of
static priority preemptive scheduling. For scheduling poli-
cies, where no such adopted analysis is possible or avail-
able, we have presented a conservative fall-back solution.

The experiments have shown how the consideration of
a larger time window and multiple events can significantly
improve the estimates on the worst case response time of a
task that issues multiple memory requests.

References
[1] N. C. Audsley and K. Bletsas. Fixed priority tim-

ing analysis of real-time systems with limited paral-
lelism. In Proceedings of the 16th Euromicro Confer-
ence on Real-Time Systems (ECRTS 04), Catania, Italy,
jul 2004. IEEE Computer Society, IEEE.

[2] M. Ivers J. Staschulat, S. Schliecker and R. Ernst.
Analysis of memory latencies in multi-processor sys-
tems. InWCET Workshop, Palma de Mallorca, Spain,
July 2005.

[3] M. Jersak, R. Henia, and R. Ernst. Context-aware per-
formance analysis for efficient embedded system de-
sign. InProceeding Design Automation and Test in Eu-
rope, Paris, France, March 2004.

[4] M. Jersak, K. Richter, and R. Ernst. Performance analy-
sis for complex embedded applications.International
Journal of Embedded Systems, Special Issue on Code-
sign for SoC, 2004.

[5] M. Joseph and P. Pandya. Finding response times in a
real-time system.The Computer Journal (British Com-
puter Society), 29(5):390–395, October 1986.

[6] Y.-T. S. Li, Sharad Malik, and Andrew Wolfe. Cache
modeling for real-time software: Beyond direct mapped
instruction caches. InIEEE Real-Time Systems Sympo-
sium, pages 254–263, 1996.

[7] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and
precise wcet prediction by seperate cache and path
analyses.Real-Time Systems, 18(2/3), May 2000.

[8] K. Tindell, A. Burns, and A. Wellings. An extendible
approach for analysing fixed priority hard real-time sys-
tems. Journal of Real-Time Systems, 6(2):133–152,
March 1994.

[9] K. Tindell and J. Clark. Holistic schedulability analysis
for distributed hard real-time systems.Microprocessing
& Microprogramming, 50(2-3):117–134, apr 1994.

6

Algorithms for Infeasible Path Calculation

Jan Gustafsson, Andreas Ermedahl, and Björn Lisper
Department of Computer Science and Electronics, Mälardalen University

Box 883, S-721 23 Väster̊as, Sweden
{jan.gustafsson, andreas.ermedahl, bjorn.lisper}@mdh.se

Abstract
Static Worst-Case Execution Time (WCET) ana-

lysis is a technique to derive upper bounds for the ex-
ecution times of programs. Such bounds are crucial
when designing and verifying real-time systems. A key
component in static WCET analysis is to derive flow
information, such as loop bounds and infeasible paths.

Such flow information can be provided as either as
annotations by the user, can be automatically calcu-
lated by a flow analysis, or by a combination of both.
To make the analysis as simple, automatic and safe
as possible, this flow information should be calculated
automatically with no or very limited user interaction.

In this paper we present three novel algorithms to
calculate infeasible paths. The algorithms are all de-
signed to be simple and efficient, both in terms of gen-
erated flow facts and in analysis running time. The
algorithms have been implemented and tested for a set
of WCET benchmarks programs.

1 Introduction

To give timing guarantees for embedded and real-
time systems, a key parameter is the worst-case exe-
cution time (WCET) of the software. A static WCET
analysis analysis finds an upper bound to the WCET
of a program, relying on mathematical models of the
software and hardware involved. Given that the models
are correct, the analysis will derive a timing estimate
that is safe, i.e., greater than or equal to the WCET.

To statically derive a timing bound for a program,
information on both the hardware timing characteris-
tics, such as the execution time of individual instruc-
tions, as well as the program’s possible execution flows,
to bound the number of times the instructions can be
executed, needs to be derived. The latter includes in-
formation about the maximum number of times loops
are iterated, which paths through the program that are
feasible, execution frequencies of code parts, etc.

This research has been supported by the KK-foundation
through grant 2005/0271.

The goal of flow analysis is to calculate such flow
information as automatically as possible. Flow analy-
sis research has mostly focused on loop bound analysis,
since upper bounds on the number of loop iterations
must be known in order to derive WCET estimates [8].

Flow analysis can also identify infeasible paths, i.e.,
paths which are executable according to the control-
flow graph structure, but not feasible when considering
the semantics of the program and the possible inputs.
Information on infeasible paths is not necessary to find
a WCET estimate, but may tighten it.

This article presents ongoing work to automatically
calculate infeasible paths. Three new and complemen-
tary algorithms are presented. They have been im-
plemented in our prototype WCET analysis tool and
tested for a set of WCET benchmarks programs.

The concrete contributions of this article are:

• We present ongoing work to extend our flow anal-
ysis method, called abstract execution, to calculate
information about infeasible paths.

• We present three algorithms, calculating different
types of infeasible path information, allowing us to
trade analysis time for flow information precision.

• We show how to make our infeasible path algorithms
input data dependent, allowing us to calculate more
precise flow information for a program with limita-
tions on its possible input data values.

• We evaluate the effect of our different infeasible path
detection algorithms, including the type and amount
of flow information generated.

The rest of this paper is organized as follows: In Sec-
tion 2, we discuss causes of infeasible paths and de-
scribe related work. In Section 3, we describe our re-
search prototype, SWEET. Section 4 describes the dif-
ferent algorithms, and Section 5 presents an illustrat-
ing example. Section 6 presents analysis results, and in
Section 7 we draw some conclusions and discuss future
work.

1
ECRTS 2006
6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2006/667

2 Causes of Infeasible Paths and
Related Work

There are two different causes to infeasible paths.
The first cause is semantic dependencies that always
hold, as illustrated by the following code fragment:

if (x < 0) A else B; if (x > 2) then C else D

Here, both true-branches for the if statements are al-
ways in conflict1, and the corresponding path A-C can
never be taken.

A second cause to infeasible paths is due to limita-
tions of input data values. Such limitations can be used
to further limit the set of feasible paths. For example,
if we know that x>5 when the above code is executed,
then we can conclude that the paths A-C, A-D, and
B-D are all infeasible i.e., we find more infeasible paths
with this additional knowledge.

Recent industrial WCET case-studies [7, 9, 17], have
shown that it is important to develop good support for
both loop bound analysis and infeasible path detection,
thereby reducing the need for manual annotations. The
case studies also showed that a mode- (giving a WCET
estimate under certain system conditions) and input-
sensitive WCET analysis often was preferable, in or-
der to obtain better resource utilization and provide
a better understanding of the system’s timing char-
acteristics. Thus, it should be important to develop
input-sensitive infeasible path analyses.

There has been some work on automatic detection
of infeasible paths for WCET analysis. Altenbernd [2]
uses a combination of path enumeration, path pruning,
and symbolic evaluation to find infeasible paths. Koun-
touris [13] studies detection of infeasible paths in the
synchronous real-time language SIGNAL. Liu et al. [14]
use symbolic evaluation of higher languages to avoid in-
feasible paths. Lundqvist and Stenström [15] find loop
bounds and infeasible paths by symbolic simulation on
the binary code. Healy et al. use value-dependent con-
straints to find infeasible paths [12]. Aljifri et al. [1]
generate only the feasible paths using the concept of
partially-known variables. Chen et al. [4] proposed a
method that finds infeasible paths by identifying con-
flicts between assignments and branches, and between
different branches.

The proposed infeasible path detection algorithms
all use our flow analysis method abstract execution
[10, 11], which is briefly described in the next sec-
tion. This method has some similarities with the one
of Lundqvist and Stenström [15], as well as with trace
partitioning [3]. However, abstract execution uses a

1We assume, for simplicity, that the value of x is not modified
in A and B.

more detailed value domain, and it is based on an ab-
stract interpretation framework.

3 SWEET and Abstract Execution

SWEET (SWEdish Execution time Tool) is a proto-
type WCET tool developed at Uppsala and Mälardalen
University [16]. It consists of three main parts; a flow
analysis which detects program flow constraints, a low-
level analysis, where timing for program parts are ob-
tained [6], and a final calculation where the longest
execution path is extracted given information derived
in the two preceding stages [8].

The current flow analysis of SWEET uses a scope-
graph [8]. Each scope in the scope-graph is a different
execution environment of a program, such as a func-
tion or a loop. See Figure 3 for an example. Our
current scope-graph representation is context-sensitive,
i.e., each call to a function or a loop in a function gener-
ates a different scope. Different calls to a function are
analysed separately, which may yield higher precision
but also a costlier analysis.

Abstract execution is a form of symbolic execu-
tion [10, 11], which is based on abstract interpreta-
tion. Rather than using traditional fixed-point itera-
tion [5], abstract execution executes the program in the
abstract domain, with abstract values for the program
variables, and abstract versions of the operators in the
language. For instance, the abstract domain can be the
domain of intervals: each numeric variable will then
hold an interval rather than a number, and each as-
signment will calculate a new interval from the current
intervals held by the variables. As usual in abstract in-
terpretation, the abstract value held by a variable, at
some point, represents a set containing the actual con-
crete values that the variable can hold at that point.

With abstract values, conditionals cannot always be
decided, and the abstract execution must then execute
both branches. In order to curb the growing number
of paths, merging of abstract values for different paths
can take place. A merged abstract value then surely
contains all the possible concrete values from both
paths, and a single-path abstract execution, represent-
ing the execution of both paths, can continue from the
merging point. Typical merge points are places where
different program flows meet, like after if-statements or
loops. Merging may yield abstract values that repre-
sent the possible set of concrete values in a less precise
way: for instance, the merge of the intervals [6..6] and
[10..11] is [6..11], which also contains the concrete val-
ues 7, 8, 9 not present in the original intervals.

SWEET currently supports abstract execution with
intervals. It allows the user to control the placement
of merge points, in order to explore different tradeoffs

2

i = INPUT; // i = [1..4]
while (i < 10) {

// point p
...
i=i+2;

}
// point q

(a) Example

iter i at p
1 [1..4]
2 [3..6]
3 [5..8]
4 [7..9]
5 [9..9]
6 impossible

(b) Analysis

min.
#iter: 3

max.
#iter: 5

(c) Result
Figure 1. Example of abstract execution

between analysis speed and precision. Currently, the
user can specify merge points to be one or more of the
following types: after if-statements, after loop bodies,
after loop exits and after function exits.

Figure 1 gives a simple example of abstract execu-
tion with intervals. The loop in Figure 1(a) is ab-
stractly executed in Figure 1(b). As iteration 4 and 5
are executed, the set of possible values of i is reduced
until, finally, the set of values for the true branch of
the loop condition is empty, the loop condition is eval-
uated to FALSE only, and the abstract execution of
the loop terminates. During the abstract execution,
we keep track of the iteration count of the loop body,
and Figure 1(c) shows the resulting loop bounds.

The abstract interpretation framework guarantees
that a calculated abstract value always represents the
set of possible concrete values. Thus, no execution
paths will be missed by the analysis. On the other
hand, an abstract value may overestimate this set,
which means that the analysis may yield program flow
constraints that are not tight. This means that some
infeasible paths might be reported as feasible. How-
ever, this is safe, since less information about infeasible
paths only gives a possibly less tight WCET estimate.

We have created an abstract analysis domain for the
data representation in C [11]. This allows us to handle
C features like structs, arrays, pointers and type casts.
We do not perform our analysis directly on the C source
code. Instead, it is applied on an intermediate code
format, making our flow analysis more generic and less
dependent on C source characteristics.

The infeasible path analyses presented in this paper
are implemented in SWEET as a part of the abstract
execution. The abstract execution is input data sensi-
tive, as illustrated in Figure 1, allowing the user to con-
strain the possible input data values. The result of the
abstract execution is passed as flow information, flow
facts [8], to the subsequent calculation phase. Flow
facts are a kind of constraints on the execution count.

4 Algorithms for Infeasible Paths

We now present our three algorithms for infeasible
path detection. Since they are based on abstract exe-

cution, which is input-sensitive, the analyses are input-
sensitive as well.

All three algoritms have a similar overall structure.
They augment each analysis state with a recorder keep-
ing track of nodes and path(s) taken during a particular
analysis of a scope. Each algorithm resets the recorder
of a scope when starting a new iteration of the scope.
They also associate a collector to each scope, which ac-
cumulates information about nodes and paths during
iterations of the scope. In the end, each collector is
used to generate flow facts for its scope.

4.1 Detecting Infeasible Nodes
The first algorithm finds infeasible nodes, that is:

basic blocks which are never visited in any execution
of a certain scope. Since there is one scope per context,
the resulting flow information becomes context sensi-
tive. An infeasible node is therefore not necessarily the
same as dead code, since the basic block potentially
can be executed in another context.

The recorder object is a bit array with one bit per
node in the scope. These bits are all reset to zero at
each iteration of the scope, and the bit of a node is set
to one at each abstract execution of the node. Thus, a
value of zero, after an iteration, means “definitely not
executed in this iteration” and one means “may have
been executed in this iteration”.

The collector object is a similar bit array. Its bits
are all initialized to zero, and the end of each iteration
the new value of the collector object is set to the bitwise
or of its old value and the current value of the recorder
object. At termination, if the collector holds a zero for
a node, then it is surely never executed in that scope,
and a corresponding “infeasible node flow fact” can be
generated. An example is:

scope : <> : #BB82 = 0;
specifying that basic block BB82 is not executed in any
iteration of the scope scope.

4.2 Detecting Infeasible Pair of Nodes
The second algorithm finds infeasible pairs of ba-

sic blocks, i.e., blocks which are always excluding each
other during the same iteration of a scope. This gives
additional knowledge as compared to the first analysis,
since there might be nodes which both can be executed
during some iteration of a scope, but which never can
be executed together. The limitation is that infeasible
paths with more than two selections can be missed.

The recorder object for this algorithm is a path (list
of nodes) taken during an iteration. To limit the num-
ber of recorded nodes, only nodes after conditional
branches are recorded. At the entry of a scope or at a
new loop iteration, the path is emptied. Whenever a
conditional branch is taken, we remember the branch

3

by appending the corresponding node to end of the
path. If both paths are taken, the analysis proceeds in
two abstract states, one for each path.

The collector object is a triangular matrix which
holds exclusion data. It is of size N × N , where N is
the number of possible branch outcomes (basic blocks)
for the selections in the scope. The matrix can be tri-
angular since the order of the elements in a pair is
irrelevant. All elements in such a matrix are set to ⊥
in the beginning of the analysis, which means that no
information is available to start with. A recorder list
RL is added to the collector matrix M when an ab-
stract state has reached the end of a loop body or a
function scope. The collector is updated as follows:

for each node n1 in RL do
for each subsequent node n2 to n1 in RL do

M [n1, n2] := 1
for each alternative branch node n3 to n2 do

if M [n1, n3] = ⊥ then
M [n1, n3] := 0

else
M [n1, n3] := M [n1, n3] OR 0

For example, if the path A-C was taken in the ex-
ample in Section 2 we would have updated M [A][C] to
1 and M [A][D] with 0.

When the analysis has finished, the resulting col-
lector matrix is investigated. Matrix positions with
⊥ mark pairs which have not been touched during the
analysis. Some of them can never be executed together
anyway due to the structure of the control graph, while
the rest really are infeasible pairs. For the first type,
generating flow facts will be superfluous. They could
be identified using a reachability analysis. However,
this is not included in the current implementation, so
to avoid a large number of superfluous flow facts, no
flow facts are currently generated for ⊥ positions.

If the matrix positions holds a 0, it marks a node
pair that we surely know excludes each other for any
iteration of the scope, so for this pair an “excluding
pair flow fact” can be generated, like:

scope : <> : (#BB33 + #BB57) < 2;

specifying that for any iteration of scope the basic
blocks BB33 and BB57 are never executed together.

4.3 Detecting Infeasible Paths

The third algorithm finds sequences of nodes which
are never executed together during the same iteration
of a scope. The algorithm makes use of the fact that
many infeasible paths can be efficiently represented by
allowing them to share a common prefix (sub)path.

The recorder data object is now a tree where each
tree node represents a path and has an associated

!

"

$

%

&

'

()

*+

)

,--.

(

$#

)

,--.

(

$#

)

,--.

(

$#

+& +& +& +&

!"#$%&' !(#$)"*+$*,-- !.#$)"*+$*,-- !.#$%/00-.*/,$*,--

Figure 2. Example CFG and Path Trees

boolean specifying if the corresponding path is feasi-
ble or unfeasible. Similar to the recording in the sec-
ond algorithm we only keep track of nodes taken after
branches. However, the tree additionally keeps track
of branch outcomes not taken.

Figure 2 gives an illustration of how the recorder
tree works. Figure 2(a) gives a CFG with 23 = 8
structurally possible execution paths. Figure 2(b) gives
the tree resulting from an execution taking the path
A-B-D-F-G-H-J through the CFG. In the recorded
tree the paths A-C, A-B-D-E and A-B-D-F-G-I
have been marked as infeasible. Note that we, for
the sake of efficiency, do not record any join nodes in
the tree. Similarly, Figure 2(c) gives the tree resulting
from an execution path of A-B-D-E-G-H-J. Note
that the path A-C actually represents 22 = 4 number
of paths through the CFG, sinceA-C is a prefix of all
these paths.

For this algorithm the collector is the tree of paths
obtained by merging all recorded trees for the scope.
The basic idea of the collector is the same as in the first
two algorithms, i.e., only keep infeasible path informa-
tion which are true for all executions of the scope.

Figure 2(d) gives the collector tree resulting from
merging the two trees in Figure 2(b) and Figure 2(c).
Both trees has A-C as infeasible, and so does the col-
lector tree. Since A-B-D-E is infeasible in Figure 2(b)
but not in Figure 2(c), since it is part of the feasible
A-B-D-E-G-H-J path, the collector tree cannot keep
the path as infeasible. Instead, all paths (both infea-
sible and feasible) starting with the path A-B-D-E in
Figure 2(c) are added to the collector tree. The infeasi-
ble path A-B-D-F in Figure 2(c) is extended similarly.
The resulting collector tree in Figure 2(d) marks paths
A-C, A-B-D-F-G-I and A-B-D-E-G-I as infeasible.

A collector tree CT is updated with a recorder tree
RT as follows:

if RT is the first recorded tree reported
CT := RT

else
for each infeasible path i in CT do

if i is prefix to a feasible path in RT
mark path i as feasible in CT
add all paths with prefix i in RT to CT

4

x = INPUT; // x = [0..100]
int main(void) {

if (x<10) ...; // A
else ...; // B
if (x<5) ...; // C
else ...; // D
foo(x);
if (x<0) ...; // E
else ...; // F
foo(x+50);
return 1;

}
int foo(int y) {

int i;
for (i=0; i<10; i++) {

if (y>=50) ...; // G
else ...; // H
if (y<50) ...; // I
else ...; // J

}
}

(a) Example code

1//2 1//3

1//345
!"#
$"%

1//245
!"#
$"%

6"78
&"'"(
)"*"+

(b) Scopes
Figure 3. Code with several infeasible paths

After the analysis we create flow facts for the re-
maining infeasible paths in the collector tree. An ex-
ample of such a flow fact is:

scope : <> : (#BB33 + #BB57 + #BB82) < 3;
specifying that basic blocks BB33, BB57, and BB82 are
never executed together for each iteration of scope.

5 Example

The example code in Figure 3(a) contains infeasible
paths of several types (we assume that neither i, x or
y are changed in the excluded code). It will be used to
illustrate the algorithms we propose in the paper. The
program contains five scopes; main, foo1, foo2 (the
two calls to foo) and the corresponding loop scopes
(foo1 L and foo2 L) in foo, as depicted in Figure 3(b).
We can identify the following infeasible nodes, pairs
and paths:
1. Infeasible nodes:

- E is an infeasible node in main, H and I are infeasible
nodes in foo2 L (limitations in input data).

2. Infeasible pairs:

- B-C, B-E, and D-E are infeasible pairs in main (con-
tradicting conditions).

- A-E and C-E is an infeasible pair in main (limitations
in input data).

- G-I and H-J are infeasible pairs in foo1 L and foo2 L
(contradicting conditions).

- H-I is an infeasible pair in foo2 L (limitations in input
data).

3. Infeasible paths:

- A-D-E, B-C-E, B-C-F, and B-D-E are infeasible
paths in main (contradicting conditions).

- B-D-E is an infeasible path in main (limitations in
input data).

We note that infeasibility can be expressed in several
ways, e.g., the infeasible pair B-C and the infeasible

paths B-C-E and B-C-F exclude the same paths.

6 Evaluation

Program Description #LC #S #L
adpcm Adaptive pulse code modulation algo-

rithm.
879 65 27

bs Binary search for the array of 15 integer
elements.

114 3 1

bsort100 Bubblesort program. 128 4 2
cnt Counts non-negative numbers in a ma-

trix.
267 10 4

compress Compression using lzw. 508 22 11
cover Program for testing many paths. 640 7 3
crc Cyclic redundancy check computation

on 40 bytes of data.
128 11 6

duff Using “Duff’s device” to copy 43 byte
array.

86 5 2

edn Finite Impulse Response (FIR) filter
calculations.

285 21 2

expint Series expansion for computing an ex-
ponential integral function

157 5 3

fdct Fast Discrete Cosine Transform. 239 4 2
fft1 1024-point Fast Fourier Transform us-

ing the Cooly-Turkey algorithm.
219 52 30

fibcall Iterative Fibonacci, used to calculate
fib(30).

72 3 1

fir Finite impulse response filter (signal
processing algorithms) over a 700 items
long sample.

276 4 2

insertsort Insertion sort on a reversed array of size
10.

92 3 2

janne complex Nested loop program. 64 4 2
jfdctint Discrete-cosine transformation on 8x8

pixel block.
375 5 2

lcdnum Read ten values, output half to LCD. 64 3 1
ludcmp LU decomposition algorithm. 147 14 11
matmult Matrix multiplication of two 20x20 ma-

trices.
163 12 7

ndes Complex embedded code. A lot of bit
manipulation, shifts, array and matrix
calculations.

231 25 12

ns Search in a multi-dimensional array. 535 6 4
nsichneu Simulate an extended Petri net. Au-

tomatically generated code with more
than 250 if-statements.

4253 2 2

qsort-exam Linear equations by LU decomposition. 121 8 6
qurt Root computation of quadratic equa-

tions.
166 16 3

select A function to select the Nth largest
number in a floating point array.

114 6 4

statemate Automatically generated code. 1276 9 1

Table 1. Benchmark programs used
We have used programs from the Mälardalen WCET

Benchmark to test our calculations. Table 1 gives
some basic data about the programs (LC = lines of
code), number of iteration scopes (#S), and number
of (context-dependant) loops (#L). Table 2 shows the
results of the different analyses. It shows the following
information: Analysis time in seconds for abstract exe-
cution with loop bound analysis only (LB), number of
found flow facts (#FF), and analysis time (Time) for
each of the three algorithms (IN = infeasible nodes,
EP = exclusive pairs, IP = infeasible paths). All mea-
surements were performed on a 1.25 MHz PowerPC G4
processor, 1 Gb memory running Mac OS 10.4.6.

We see that we, with a small extra cost, can find in-
feasible nodes and paths for some of the benchmarks. It

5

Program Time Alg. 1 (IN) Alg. 2 (EP) Alg. 3 (IP)
LB #FF Time #FF Time #FF Time

adpcm 19.14 37 19.86 44 19.22 24 20.04
bs 0.02 0 0.02 0 0.01 0 0.01

bsort100 0.95 3 0.95 0 0.95 0 0.96
cnt 0.21 1 0.22 0 0.21 0 0.23

compress 0.58 63 0.61 9 0.59 6 0.58
cover 0.71 114 1.65 1061 0.85 102 0.87
crc 2.13 18 2.36 6 2.16 4 2.24
duff 0.05 41 0.06 0 0.06 0 0.06
edn 1.22 0 1.23 0 1.23 0 1.29

expint 0.08 5 0.08 0 0.09 1 0.09
fdct 0.01 14 0.01 0 0.01 0 0.01
fft1 0.19 102 0.23 2 0.19 2 0.19

fibcall 0.02 0 0.02 0 0.02 0 0.02
fir 0.22 1 0.22 1 0.21 1 0.22

insertsort 0.13 0 0.13 0 0.13 0 0.12
janne complex 0.02 1 0.03 4 0.03 0 0.02

jfdctint 0.03 0 0.03 0 0.03 0 0.03
lcdnum 0.01 41 0.02 6 0.02 6 0.02
ludcmp 1.88 3 1.88 1 1.89 1 1.88

matmult 2.76 0 2.79 0 2.84 0 2.99
ndes 8.02 11 9.39 3 8.10 1 8.13
ns 1.00 1 1.01 0 1.01 0 1.05

nsichneu 12.88 126 13.16 78150 1288.76 623 19.15
qsort-exam 0.18 1 0.19 11 0.18 6 0.19

qurt 0.08 27 0.11 7 0.08 5 0.08
select 0.21 2 0.20 8 0.19 14 0.19

statemate 0.14 256 0.15 5 0.13 32 0.13

Table 2. Analysis results

should be noted that these results are based on single-
path analysis, i.e., using a single input that leads to a
single execution path. We expect more infeasible nodes
and paths to be found when we analyse the programs
with inputs that leads to multi-path analyses.

7 Conclusions and Future Work

We do think that our results are promising, but they
are still somewhat preliminary: the benchmarks used
so far are limited to single-path programs, and we only
count the number of generated flow facts for infeasi-
ble paths. The next step is to extend the evaluation
to a larger set of benchmarks, using multi-path anal-
ysis, and to also investigate the effect of the derived
infeasible path information on the WCET estimate. In
particular, we want to try out the algorithms on indus-
trial real-time codes.

We also want to investigate tradeoffs between analy-
sis time and WCET estimate precision. One possibility
would be to generate flow information for individual
iterations of a scope. This could give tighter WCET
estimates, at the expense of longer analysis times. An-
other possibility is to generate non-context-sensitive
flow facts, valid for all different call-sites of a particular
function or loop. This will, in general, give less precise
WCET estimates, but for a lower analysis cost.

References

[1] H. Aljifri, A. Pons, and M. Tapia. Tighten the computation
of worst-case execution-time by detecting feasible paths. In
Proc. 19th IEEE International Performance, Computing, and

Communications Conference (IPCCC2000). IEEE, February
2000.

[2] P. Altenbernd. On the false path problem in hard real-time
programs. In Proc. 8th Euromicro Workshop of Real-Time
Systems, pages 102–107, June 1996.

[3] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret,
Laurent Mauborgne, Antoine Miné, David Monniaux, and
Xavier Rival. Design and implementation of a special-purpose
static program analyzer for safety-critical real-time embedded
software. In The Essence of Computation; Complexity, Anal-
ysis, Transformation. Essays Dedicated to Neil D. Jones, vol-
ume 2566 of LNCS, pages 85–108. Springer-Verlag, 2002.

[4] Ting Chen, Tulika Mitra, Abhik Roychoudhury, and Vivy
Suhendra. Exploiting branch constraints without exhaustive
path enumeration. In Reinhard Wilhelm, editor, Proc. 5th In-
ternational Workshop on Worst-Case Execution Time Analy-
sis, (WCET’2005), pages 40–43, Palma de Mallorca, July 2005.

[5] Patrick Cousot and Radhia Cousot. Abstract interpretation:
A unified lattice model for static analysis of programs by con-
struction or approximation of fixpoints. In Proc. 4th ACM
Symposium on Principles of Programming Languages, pages
238–252, Los Angeles, January 1977.

[6] Jakob Engblom. Processor Pipelines and Static Worst-Case
Execution Time Analysis. PhD thesis, Uppsala University,
Dept. of Information Technology, Box 337, Uppsala, Sweden,
April 2002. ISBN 91-554-5228-0.

[7] O. Eriksson. Evaluation of Static Time Analysis for CC Sys-
tems. Master’s thesis, Mälardalen University, August 2005.

[8] Andreas Ermedahl. A Modular Tool Architecture for Worst-
Case Execution Time Analysis. PhD thesis, Uppsala Univer-
sity, Dept. of Information Technology, Uppsala University, Swe-
den, June 2003.

[9] Andreas Ermedahl, Jan Gustafsson, and Björn Lisper. Expe-
riences from industrial WCET analysis case studies. In Proc.
5th International Workshop on Worst-Case Execution Time
Analysis, (WCET’2005), pages 19–22, July 2005.

[10] Jan Gustafsson. Analyzing Execution-Time of Object-Oriented
Programs Using Abstract Interpretation. PhD thesis, Dept.
of Information Technology, Uppsala University, Sweden, May
2000.

[11] Jan Gustafsson, Andreas Ermedahl, and Björn Lisper. Towards
a flow analysis for embedded system C programs. In Proc. 10th

IEEE International Workshop on Object-oriented Real-time
Dependable Systems (WORDS 2005), February 2005.

[12] C. Healy and D. Whalley. Tighter Timing Predictions by Au-
tomatic Detection and Exploitation of Value-Dependent Con-
straints. In Proc. 5th IEEE Real-Time Technology and Appli-
cations Symposium (RTAS’99), June 1999.

[13] Apostolos A. Kountouris. Safe and efficient elimination of in-
feasible execution paths in WCET estimation. In Proc. 3rd

International Conference on Real-Time Computing Systems
and Applications (RTCSA’96). IEEE, IEEE Computer Soci-
ety Press, 1996.

[14] Y. A. Liu and G. Gomez. Automatic accurate time-bound anal-
ysis for high-level languages. In Proc. ACM SIGPLAN Work-
shop on Languages, Compilers and Tools for Embedded Sys-
tems (LCTES’98), pages 31–40, June 1998.

[15] Thomas Lundqvist. A WCET Analysis Method for Pipelined
Microprocessors with Cache Memories. PhD thesis, Chalmers
University of Technology, Göteborg, Sweden, June 2002.

[16] Mälardalen University WCET project homepage, 2006.
www.mrtc.mdh.se/projects/wcet.

[17] Daniel Sehlberg. Static WCET analysis of task-oriented code for
construction vehicles. Master’s thesis, Mälardalen University,
Väster̊as, Sweden, October 2005.

6

Combining Symbolic Execution and Path Enumeration
in Worst-Case Execution Time Analysis

D. KebbalandP. Sainrat
Institut deRechercheenInformatiquedeToulouse

118routedeNarbonne- F-31062ToulouseCedex 9 France

Abstract

Thispaperexaminestheproblemof determiningbounds
on executiontime of real-timeprograms. Executiontime
estimationis generally usefulin real-timesoftware verifi-
cation phase, but maybe usedin other phasesof the de-
sign and executionof real-timeprograms(scheduling, au-
tomatic parallelizing, etc.). This paper is devotedto the
worst-caseexecutiontime (WCET)analysis. We presenta
staticWCETanalysisapproach aimedto automaticallyex-
tract flow informationusedin WCETestimatecomputing.
Theapproach combinessymbolicexecutionand path enu-
meration. Themain idea is to avoid unfoldingloopsper-
formedbysymbolicexecution-basedapproacheswhilepro-
viding tight andsafeWCETestimate.

1. Introduction

Real-timesystemsare systemsin which the execution
time is subjectto someconstraints,which may leadto un-
desirableconsequenceswhenthey arenot respected,espe-
cially in hardreal-timesystems.The constraintvalidation
processrequiresthe knowledgeof the execution time or
boundson the executiontime of programs. WCET anal-
ysis is a popularapproachusedin thetemporalconstraints
validationof hardreal-timesystems.

StaticWCETanalysisperformsahigh-levelstaticanaly-
sisof theprogramsourceor objectcode.Thisavoidswork-
ing on theprograminput data.StaticWCET analysiscon-
sistsof determiningan upperboundon the programexe-
cution time. For eachcomponentof the program(block,
task,etc.), an upperboundon the time of its executionis
estimated.This definition implies that WCET analysisis
only ableto provide upperboundson WCET valuesrather
thanexactvalues.Therefore,WCET analysismustguaran-
teetwo mainpropertiesin orderto keepreal-timesystems
predictableandtheir costfinancially reasonable:Safeness;
andTightnessof providedWCETvalues.

StaticWCETanalysisproceedsgenerallyin threephases
[4, 7]: flow analysis,low-levelanalysisandWCETestimate
computing. Flow analysischaracterizesthe executionse-
quencesof the program’s componentsandtheir execution
frequency (executionpaths). Generally, two typesof flow
informationareextracted. The first category is relatedto
the programstructureandmay be extractedautomatically.
The secondcategory is relatedto the programfunctional-
ity and semantics. This includesinformation about loop
boundsand feasible/infeasiblepathsespecially. This type
of flow informationis complex to automateandthereforeis
generallyprovidedby theprogrammerasannotations[7, 2].
Low-levelanalysisevaluatestheexecutiontimeof eachpro-
gramcomponenton the target hardwarearchitecture.The
calculationphaseusestheresultsof thetwo previoussteps
to computeaWCET estimatefor theprogram.

Theremainderof this paperis organizedasfollows: the
next sectionpresentstherelatedwork. In section3, we in-
troducesomeconceptswhichwill beusedby theflow anal-
ysis approach.Section4 describesanddiscussesthe pro-
posedblock-basedsymbolicexecutionmethod.Finally, we
concludethepaperandpresentsomeperspective issues.

2. Related work

Oneof themostpopularmethodsfor staticWCET anal-
ysisarebasedonpathanalysis.Path-basedapproachespro-
ceedby explicitly enumeratingthesetof theprogramexe-
cutionpaths[10, 1]. [9] describesamethodbasedoncycle-
level symbolicexecutionto predicttheWCET of real-time
programsonhighperformanceprocessors.Themaindraw-
backsof thoseapproacheslie in theimportantnumberof the
generatedprogrampathswhich scalesexponentiallywith
the programsize. Anothercategory of approachescalled
IPET1 do not enumerateall programpaths,but rathercon-
sider that they implicitly belongto the problemsolution.
The problemof the WCET estimationmay then be con-

1Implicit PathEnumerationTechniques.

ECRTS 2006
6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2006/675

vertedto theoneof solvinganILP2 problem[7, 11, 4].

All thoseapproachesinvolvetheprogrammerin theflow
informationdeterminationprocess,especiallythe flow in-
formationrelatedto programsemantics(feasible/infeasible
paths,loop bounds,etc.). Though the provided flow in-
formation may be highly precise, this is an error-prone
problem. [5] usesan interval-basedabstractinterpretation
methodthatassociatesrangesto theprogramvariablesand
allows to automaticallyextract flow informationrelatedto
programsemantics. The methodproceedsby rolling out
theprogram(especiallyloops)until it terminates,which is
very costly in time andmemory. [8] presentsan approach
for automaticparametricWCETanalysis.Themethoduses
abstractinterpretation,a symbolicmethodto countinteger
pointsin polyhedraanda symbolicILP technique.Theap-
proachseemscomplex in practice. In [6], anapproachfor
determiningloop boundsis presented.They considerloops
with multiple exit conditionsandnon-rectangularloops,in
which thenumberof iterationsof aninnerloop dependson
thecurrentiterationof anouterloop. However, they handle
only loopswith theinductionvariablebeingincreasedby a
constantamountbetweentwo successive iterations.More-
over, only the flow information relatedto loop boundsis
determined. Symbolic executionis anothertechniquefor
automaticallyextractingtheflow informationrelatedto pro-
gramfunctionality. Theprogramis rolled out which allows
to determinethe valuesof variablesasexpressionsof the
programinputs[3]. Symbolicexecution-basedmethodsare
capableto work with smallprograms,but arenotwell suited
for long andcomplex programs.

Our aim is to determinean approachwhich automati-
cally extractsflow informationrelatedto programfunction-
ality andcomputesasafeandtight upperboundon thepro-
gramWCET with a lower cost. We usea hybrid method
basedon symbolicexecutionandpathenumeration.Loops
arenotunfolded,ratherapathanalysisis performedoneach
loopblock.

3. Flow analysis concepts

In the following, we presenta setof conceptsusedby
ourflow analysisapproach.���������	��
�������������������������������
�

We usethe control flow graph(CFG) formalismto ex-
pressthe control flow of the programto be analyzed.The
sourcecodeof theprogramis decomposedinto a setof ba-
sic blocks. A basicblock is a set of instructionswith a
singleentry point anda singleexit point. The entry point
is situatedat the beginningof the block andthe exit point

2IntegerLinearProgramming.

at its end.Two fictitious blocks,labeled� �"!�#$� and %'&)(�� are
added.Weassumethatall executionsof theCFGstartatthe�*�"!�#$� blockandendat the %'&)(�� block. Figure1-b illustrates
anexampleof a controlflow graphof a programwherethe
C sourcecodeis shown in figure 1-a. Formally, the pro-
gram is representedby the graph +-,/.10325476 , where 0
representstheprogrambasicblocksand 4 theprecedence
constraintsbetweenthem.���189�;:=<�
�>@?9�A���CBEDF<G
C>�?H����I�KJ��

Weusethenotionof blockwhereasetof blocksof level L
aregroupedinto ablockof level L�M=N . Complex blockscor-
respondto complex programminglanguagefeatures(loops,
conditionalstatements,functions,modules,etc.).Theblock
compositionstartsatthelowestlevelandmayberecursively
carriedoutuntil theCFGlevel. Figure2 illustratestheblock
graphsconstructedfor the exampleof the figure 1. For-
mally, a block O of level L is definedby the formula 1 and
composedof: a numberof sub-blocks(0QP); a setof header
blocks(0SRPUT 0 , 0SRPVT 0WP); a set 4XP of edgesconnecting
thesub-blocks;andoneor moreexit edges(47YP T 4ZP).

O;,\[$0QP]2^0 RP 254ZP*2^4 YP�_�` (1)

Eachblock O of level L is definedby a block graphdescrib-
ing its structure. The O ’s blocks set 0 P is composedof
blocks of higher levels (acbdL). The set of edges4 P is
constructedas follows: eachedgeof the CFG connecting
two nodesbelongingto two different blocks O]e and O5f of0QP formsanedgeof level L from O]e to O^f . Edgesto blocks
outside 0WP produceedgesof exit type. Redundantedges
areeliminated. In figure2, in thegraphof block O gh corre-
spondingto thewhile loop,theedge%'i connectingthebasic
blocks 0j0Zi and 070Qk in theCFGyieldstheedge%$li .

A headerblock is a basicblock executedwhenthe ex-
ecution flow reachesthe block for the first time. Infor-
mally, headerblockscorrespondto loop andselectioncon-
dition test blocks. The set of header-blocks of the blockO gh is 0jRP ,�['0j0 g _ (figure 2). We handleonly well-
structuredcodeprogramsyielding blockswith oneheader
block. Whenthe executionof the block is terminated,the
controlflow leavestheblock throughanexit-edge.Theset
of exit-edgesof theblock O gh is ['%$lg 25%'&)(�� _ . Whentheexecu-
tion of ablockmustberepeated,this is doneby transferring
theexecutionflow to theheaderblockthroughaback-edge.
Thesetof back-edgesof theblock O gh is ['% lm 2^% ln _ (figure2).���o���;�S����JC�V���CBp�G�q�����I����
���

A pathin a block graph O is a sequenceof edgesin 4ZP
wheretheend-nodeof eachedgeis thestarting-nodeof the
next edgein the path. In the following we refer by block-
pathsto theone-iterationpathsin ablock O . Wedistinguish

2

void some_func(int n, int cond) {
int i = 1;
while (i < 2*n) {
if(cond)

break;
... //statements
if(i < n) {

i = 2*i;
continue;

}
i++;

}
}

BB3BB4

BB2

BB1

6BBBB5

0e (true)

exit

start
BB0

break;

continue; i ++;

e (true)

e (true)

e e

cond

(cond)(!cond)

i < 2*n
exit (i>=2*n)e (i<2*n)

exit (true)

1

23

45

6

7

i=i*2;

i = 1;

i < n

e (i>=n)e (i<n)

start

a) C sourcecode. b) Controlflow graph.

Figure 1. Example program.

0

0
b

e
1
2

e1
0

Block graph of b
1
(if)21Block graph of b

0
(while)Block graph of b0

0
(some_func)

Block graph of b2
0
(if)

start

exit

BB0

b1

BB
1

b0
2 if

ifb2
1

BB6

BB

BB

2

3

3e

level 2level 1level 0 level 3

e

e

e

2

2

2

0

2

e2

start

e
0

e
1

0

0

0

exit

while

some_func

0

3e
1

exit
exit

e2
3

5

4

BB

BB

4

5

3e
3e

3e

2
3

4

Figure 2. The bloc k graphs of the example .

two typesof block-paths:exit pathsand loop paths. An
exit-pathin O is a pathstartingat theheaderblock of O and
endingby anexit-edgeof O . Likewise,a loop-pathin O is a
pathstartingat theheaderblock of O andendingby a back-
edgeof O . In figure2 andtable1, theblock O gh hastwo exit
paths:r�lh andr�lg , andtwo loop-paths:r�ll andr�lm .

Eachblock is executeda numberof times(0 or more).
We usethe notion of iteration to denotean executionof a
block,which is definedasoneexecutionof a block-path.

4. Flow analysis approach

In this section,we describeour methodaimedto auto-
matically extract the flow information relatedto program
semantics.We useadataflow analysisapproachin orderto
derivevaluesof variablesatdifferentpointsin theprogram.
Theapproachcombinessymbolicexecutionwith pathenu-

meration. The flow analysisis performedfor eachblock
withoutunfoldingiterativeblocks.Ratherthan,thenumber
of times the blocks areexecutedis analyticallycomputed
which reducesthe complexity of the method. Only a sub-
setof thesymbolicstatessetof theprogramarecomputed
(statesat the entry point andthe exit pointsof the block).
Exit pointsof ablockarethestartingpointsof its exit edges.

A symbolic execution statemay be representedby a
triple sut�25vxwQ2^y�vzb , where: t{,|[�sp} g 2^% g b~2 `*` ` 2*s}���2^%$��b _ is the setof pairs s�}�!�#$(�!�O�L1%�2^%'&�r)#�%��'�*(��$��b ,
wherethe variables} g 2 `*` ` 2^} � have beenassignedthe ex-
pressions% g 2 ` ` ` 2^% � ; vxw is the pathconditionexpressing
theconditionsunderwhich thatpathis taken;and y�v refers
to thenext instructionto execute.Initially, theinputparam-
etersareinitializedusingsymbolsandtheothervariablesto
thespecialvalue ���I��%�� . Symbolicexecutionof a program
takesa symbolicstateanda rule which correspondsto the

3

currentstatementreferredby y�v andreturnsthe symbolic
statesresultingfrom theexecutionof thestatement.

In orderto ensuretheanalyzabilityof real-timesoftware,
the flow analysismethodimposessomelimitations on the
handledprograms.First, potentiallynon-deterministicand
complex programminglanguagefeatureslikerecursion,dy-
namicmemoryallocationandunstructuredcodearenot al-
lowed. Moreover, for instancethe loop inductionvariable
updatestatementis limited to the form (Q,p!j�Z(��O . We
think that this restrictionis compatiblewith hardreal-time
systems,knowing thatmany worksusemorerestrictivefor-
mulas[6]. Furthermore,the expressionscanbe easilyex-
tendedto Presburgerformulas.�C�������S����J�>)
���BK�G����
�������BE���I��J���>�����
��

Eachelementaryedge% in theCFGis associateda path
condition vxw�.1%�6 which is a Booleanpredicatecondition-
ing the executionof thatedgewith respectto the program
state � at the sourcenodeof the edge. Likewise,eachba-
sic block O]O appliesa block action 07�j.GO]O]6 which repre-
sentsthe effect of the executionof all statementsof the
block on the programstate � (symbolic executionrules).
Thepathactionof a block-pathr denotedv~�7.�r�6 is these-
quenceof the block action of all blocks constitutingthat
path. Likewise the path condition of a block-pathis the
“lo gical and” of the path condition of all edgesforming
thatpath. vxw�.�r�6C,�vxw�.1% h 6I�	vxw�.G% g 6 `*` ` ��vxw�.G% ��� g 6 .

In order to computethe path action of a block-pathr , we considerthe set t@� of programvariablesassigned
in different blocks of r . Let 0j�7.GO O$2�}�6 be the function
applied by the basic block O O on the variable }���t��
which representsthe effect of the executionof all state-
mentsof the block on } . The action appliedon } by r
(v~�j.�r�2^}@6) is the sequenceof block actionappliedby all
blocksforming r in theorderthey appearin r . v~�7.�r�2^}@6C,.107�j.GO]O h 2�}�6� ` `*` ^0j�7.�O]O��@� g 2�}�6�6 is representedby an ex-
pressionof the form !�}S�¡O (for loop inductionvariables)
suchthat ! and O areintegerconstants(!	b£¢).�C�18���¤¥<�����DK������>£�)¦���<�§�������
���
¨7�K����J��

Pathsareevaluatedby decomposingeachconditionalex-
pressionvxw�.�r�6 into elementaryBooleanexpressionsre-
latedby logical operators.Eachconditionalexpression% is
of theform (��©r7%'&�r)# , where �©r is a relationaloperatorand%*&�r)# is an integer valuedexpression.For eachexpression% , thefollowing parametersareevaluated:ª Interval type: theinterval is qualifiedasraisedif �©r is

“ s ” or “ « ”, constantif �©r is “ , ” andundervaluedif�©r is “ b ” or “ ¬ ”.

ª Direction: if thevariable (is increasedin thepathac-
tionof r (v~�j.�r�6), thedirectionis positiveandnegative
if (is decreasedin v~�7.�r�6 . If (is never updatedalong
with thepath,thedirectionis null.

Thedirectionandthe interval typeareusedto checkfor
emptyendunboundedpathsbeforeevaluatingthe number
of iterationsof thepath. This stepallows to determinethe
pathparameters(!�25O�2^ g and l) usedby theformula2.

In figure 3, for the state(t®,¯[�s�(©25° h b~2*s��925° g b2 sd±]�$�I�²2^° l b _ 2^vxwz,³° h «d° g MHN~�¥° l ,´¢), and
the path r²ll , therearetwo expressions% g ,p° h «�° g M¡N
and % l ,µ° l ,µ¢ . The setof variablesinvolved in % g is[*(_ , v~�7.�r ll 2^("6�,¶(C·¹¸�(. Thereforetheinterval typeof % g
is “r aised” andthedirectionis “positive” . Thenumberof
iterationsis never emptynor unbounded.Thenthenumber
of iterations y@Y� of the path r relatedto % andthe resulting
symbolicstateºCY� arecalculated.

In orderto analyticallycomputethenumberof iterations
of a loop pathr , wedefinethefollowing suite }�� :» } h , g} ��¼ g , !�} � �½O¿¾��V�SÀ `

The numberof iterations y is definedby the formula l M½ g ¬pÁ¡Â � l��Ã h �*� . �'�¥,p}���¼ g M½}�� . The right-hand
sideof theinequalitywouldbethegreatestintegerlessthan
or equaltheexpression l MÄ g .
yj,¿ÅÆÆÇ ÆÆÈ

ÉËÊÍÌqÎ�Ï .�N��EÐÍÑ�Ò � Ñ9Ó�Ô�Ð Ï � g ÔP ¼ Ð Ï � g ÔoÑ9Ó 6�ÕF��NcÖX×²%*� l bØ g�Ù!	b¡NC�� g ."N;M¥!�6XÚ,¡OÉ Ñ Ò � Ñ ÓP ÕK��N ÖX×²%*� !S,ÛNÜ ÖX×²%*� O;,� g ."NZMÄ!�6
(2)

The numberof iterationsis then given by equation2.
When OÛ,Ý g ."N	M�!@6 , the induction variable } would
have the samevalue during the different iterations } � , g ¾��¯¬³¢ . Therefore,the numberof iterationsis un-
bounded(y�, Ü). Let us considerthe loop: ���$#�.o(¥,Nq ^(sX,�N*¢�¢� �(Þ,´¸7�W(C��N'6 , the parameterscharacteriz-
ing theloop pathare: !�,¡¸�25OF,HN�2^ g ,ÛN and l ,HN'¢q¢ .
Thealgebraictool evaluatesthenumberof iterationsto 6.

The final numberof iterationsof the path r is deter-
minedfrom the numberof iterationsof all elementaryex-
pressionsof vxw�.�r�6 as follows: y@Y Ó^ß Y Ò� ,´àÞá�âI.1y@Y Ó� 25y�Y Ò� 6
and y�Y Ó�ã Y Ò� ,�à�äæå�.1y@Y Ó� 25y�Y Ò� 6 .�C�o���;:=<�
�>@?ç DK�I����BE��èC�ØD�
�<���>½�)é���>²§C����
�

Theblock-basedsymbolicexecutionproceedsin a post-
ordermanner. The blocksof the level LI�HN areevaluated
beforetheblocksof thelevel L . Theevaluationof a block O
is performedin thefollowing steps:

4

êjëGìIí'î ïXð�ñ*ò óZô�õ�ö ïXð�ñ*ò�íqì�÷øõCì�ù*ú1ñ*úGì²û ïXð�ñ*ò�íqì�ûü�ú1ñ*ú1ì�û ïXð�ñ*òÙð�í�ñ'ú1ì�û ýQü�þ�ö
O�lh r mh %'&)(�� .G% m g 6C,H.G070 l 6 ±]�$�I�ÿÚ,¡¢ %$llr m g %'&)(�� .G% mh 2^%'&)(���6�,�.10j0 l 2^070 m 6 ±]�$�I�j,¡¢ %'&²(��O�l g r ml %'&)(�� .G% mm'6C,H.G070Xi$6 (C¬£� %$lir mm %'&)(�� .G% ml 2^% mi 6�,�.10j0Zi�2^0j0 n 6 (�«£�ÙM£N .1(�·³¸�("6 %$lmO gh r�lh %'&)(�� .G%'lg 6C,H.G070 g 6 (�¬ ¸�� %'&²(��r�lg %'&)(�� .G%'lh 2^%'&)(���6�,�.10j0 g 25O�lh 6 (�«Ø¸��	M£NC�Ù± �$�I�ÿÚ,�¢ %'&²(��r�ll LG���©r .G%'lh 2^%$ll 25%$lm 6�,�.1070 g 2©O�lh 2©O�l g 6 (�« �ÿM£NC�	±]�$�I��, ¢ .1(�·³¸�("6r lm LG���©r .G% lh 2^% ll 25% li 2^% ln 6�,Û.G070 g 25O lh 25O l g 2^0j0 k 6 �Ä« (�«Ø¸��ÙM£NC�	± �$�I�S, ¢ .1(�·´(�� N$6O hh r�gh %'&)(�� .�� �"!�#$��2^%�gh 2^%'&)(���6�,Û.1070 h 25O gh 6 ��#$��% .1(�·-N� ^v~�j.GO gh 6�6 % h g�"�©r r hh %'&)(�� .G% hh 2^% h g 6�,�.G�*�"!�#$��25O hh 2^%'&²(���6 ��#$��% .Gv~�7.�O hh 6^6

Table 1. Path definition and parameter s.

a- Path information The first stepconsistsof determin-
ing a setof informationcharacterizingtheblock. We deter-
minethesetof block-pathsof theblock. For eachpathaset
of parametersiscalculated:pathtype(looporexit path); the
setof edgesforming the path;pathcondition;pathaction;
andfinally for exit paths,the edgeof the enclosingblock
graphon which theflow will go after takingthatpath.The
startingpoint of that edgeconstitutesan exit point of the
block. This informationis keptin a tablewhereasummary
for theexampleof thefigure1 is shown in table1.

b- Block evaluation The symbolicexecutionof a blockO is performedby evaluating all the block paths v ,O�L1��± � r�!���×²��.GO 6 startingat theentrypoint of theblock with
asymbolicstatein whichall variablesusedin theblockare
assignedsymbols.For evaluatingeachpathr weuseasym-
bolic statein which vxw correspondsto the pathcondition
of r . This stepyieldsthesetof theblock exit statesºIP and
thenumberof iterationsof theblock (figure3).

c- Path evaluation Thepathevaluationtakesa symbolic
state � , the pathaction v~�j.�r�6 andperformsthe algebraic
evaluationof the path using the formula 2. The result is
the numberof iterationsof the path y©� and the generated
symbolicstatesº²� .

Figure3 illustratesthe block-basedsymbolicexecution
of the block O gh . Edgesareannotatedby the numberof it-
erationsappliedby the path on the symbolic stateof the
starting node. We assumethat the variable ±]�$�I� is up-
datedin the “instructions” block but not � . The result-
ing symbolicstatesaretheterminalnodes(���h 2©��� g 2 `*` `) (fig-
ure 3). Merging of statesmay be performedwhich al-
lows to reducethe numberof resultingstates.Two states� g ,js�t g 25vxw g 2^y�vzb and � l ,js�t l 25vxw l 2^y�v³b with
the sameinstruction pointer y�v can be merged into one
state�W,jsØt g � t l 25vxw g � vxw l 2^y�v b . Mergingof states

�

� � �

� �

� � �

� �

� Ã
	�� e� ������ ��� � Ó ��
��������� � Ò ������ Ã � �"!�Y

� Ã
	�� e� ���#�� ��� � Ó ��
�$���^��� � Ò ������ Ã ����% l � Ó � g ã � Ò &Ã h

� Ã'	�� e ���#�� ��� � Ó ��
�$���^��� � Ò ������ Ã ���(%$� Ó � g ã � Ò Ã h

� Ã
	�� e �����
 ��� � Ó �

��������� � Ò ������ Ã � Ó %�����% l � Ó � gã � Ò Ã h

� Ã
	�� e� ������ ��� � Ó ��
��������� � Ò ������ Ã ����) l � Ó

� Ã'	�� e � �� �� ��� � Ó ��
��������� �+*Ò ������ Ã � � %$� Ó � g ã � Ò Ã hã � �� %$� Ó � g ã �,*Ò &Ã h

� Ã'	�� e � � l - Ò ��
��� � Ó �
 �$���^��� h ������ Ã � � %$� Ó � g ã � Ò Ã h

� Ã'	�� e � �� �� ��� � Ó ��
��������� �+*Ò ������ Ã ���(%$� Ó � g ã � Ò Ã hã � �� %$� Ó � g ã �,*Ò &Ã h

� Ã
	�� e� � Ó� �� ��� � Ó ��
�$���^��� �,*Ò ������ Ã ���#%$� Ó � g ã � Ò Ã hã � Ó %�� Ó� % l � Ó � g ã �,*Ò &Ã h

� Ã'	�� e l � Ó ��
��� � Ó �� ��������� h ������ Ã ���#%$� Ó � gã � Ò Ã h

� Ã
	�� e� � Ó� �� ��� � Ó ��
�$���^��� �,*Ò ������ Ã ���#%$� Ó � g ã � Ò Ã hã � Ó %�� Ó� % l � Ó � g ã �,*Ò &Ã h

� Ã
	�� e l � Ó ��
��� � Ó �� ��������� h ������ Ã ����%�� Ó � g ã � Ò Ã h

� Ò. Ð Â Ó Ã0/21 3"4 Ò Ð 5 ��5 � Ô 6 ¼ g Ô � Ò. Ð Â Ò Ã0/21 3"4 Ò Ð 5 Ó�7 Ó5 � Ô 6 ¼ g Ô

� Ò Ó Ð g Ô � ÒÒ Ð Â . Ã � Ó� � � � l - Ò ¼ g Ô � ÒÒ Ð Â98 Ã l � Ó � � � l - Ò Ô 6 Ô

� Ò Ó Ð g Ô � Ò� Ð g Ô

:�;�

:�; Ó :�;Ò

Figure 3. Bloc k-based symbolic execution of
the bloc k O gh

may sometimescauseinformation loss. Then somepes-
simismwill be incurredin theWCET estimate.Therefore,
a trade-off mustbedonebetweentheWCET precisionand
the numberof generatedstates. States��� g and ��� l may be
mergedinto onestate��� m (s¡t ,H[�s (©2^°9gh b~2 sØ�925° g b~s±]�$�I�²2^°=<l b _ 25vxw�,�° h «£° g M½NC��° g «£°9gh «£¸q° g b).

5

Thesestatesconstitutetheblock exiting symbolicstates
whichwouldbeusedin theevaluationof lower level blocks
(ex. O hh). Indeed,whenthecurrentblock O(> is examinedin
theframework of ablock O�� of lower level, theblockaction
of theblock 07�j.GO > 6 is evaluatedin onestep.

Whentheexecutionreachestheblock O hh (higherlevel),
the variable (is initialized to 1, then the incomplete
branchesof thefigure3 arediscarded(vxw becomes��!@LG�'%),
reducingthusthenumberof theblockexiting statesto only
3. Furthermore,it is possibleto keeponly the resulting
statesmaximizingtheWCET of theblock.�C�Ë���'?$�q���������1¦�UDF<�
�>@?9�A@Ä�1��JØ¦��I����������9§��ØD����	
¨�G�q����������
���

In the caseof nestedloops,the numberof iterationsof
aninner loop maydependon thecontrolvariablesof outer
loopsand thus variesfollowing thosedependencies.The
worst-casenumberof iterationsfor sucha block may be
consideredalwaysits limit. Thismayresultin animportant
WCETover-estimation.Therefore,thenumberof iterations
of aninnerloop mustbeexpressedin termsof controlvari-
ablesof outerloopsvalues.Theblock-basedsymbolicexe-
cutionapproachis ableto estimatea worst-casenumberof
iterationsof suchblockswithoutover-estimation.

Assumethatthe“statements”areaof thefigure1-acom-
prisesa block O mh consistingof the loop: ���$#�.CB£,d¢) 9BØs(5 DB~���W6 . OnecanestimatetheWCET of the loop nestto¸��FE .G¸��¥M\N'6 since (startswith the value1. Whenap-
plying the block-basedsymbolic execution: � e �H,js¹[�s(525° h b~2 sØ�92^° g b~2*sGBq25° m b _ 25vxwH,���#'��%Sb , theresults
are � � !H� ,js [�s�(©2^° h b~2*s��92^° g b~2*sIB�2^° g b _ 25vxwu,��#'��%3b with a numberof iterationsof ° g M ° h . Whenthe
analysisreachesthetop level ((is initializedto 1), thenum-

berof iterationsis evaluatedto Á l - Òe Ã g (�J ('Kz¸�(ML�� Á l ��� ge Ã l - Ò (.For example,for ��,|N*¢ , the intuitive methodyields 380
while ourmethodprovidestheactualWCET 85.

In addition, the block basedsymbolicexecutionelimi-
natesimplicitly most of the programinfeasiblepathsand
allows to expresstheWCET estimatesassymbolicexpres-
sionsfunctionof theprogrampartsinput parameters(func-
tion parameters,etc.). Thequality of theprovidedflow in-
formationis comparableto the oneof symbolicexecution
andabstractinterpretationschemasinceour approachis a
symbolicexecutionmethod.

5. Conclusion

WCET analysisis a popularmethodusedto validatethe
temporalcorrectnessof real-timesystems.WCET analy-
sis may be donestatically on the programsourceor ob-
ject code, which resultsin overestimatedvalues. There-

fore, techniquesallowing to tighten the WCET estimates
are required. However, thesetechniquesare complex be-
causethey dealwith programsemantics.

We proposeda practicalapproachaimed to automati-
cally extractflow informationrelatedto programsemantics
which will be usedto tighten the WCET estimates. The
methodpresentsa reducedcomplexity in termsof time and
memoryby avoiding unfoldingiterative blocks. Moreover,
theapproachprovidestight valuessinceit handlesnonrect-
angularloopsand loopswith multiple exit conditionsand
eliminatesimplicitly mostof theinfeasiblepaths.

We areimplementingaprototypeof themethodin order
to evaluateits performance.Furthermore,weplanto extend
theexpressionusedto evaluateloopsto Presburgerformulas
andusetheresultsobtainedon thoseformulas.

References

[1] G. BernatandA. Burns. An approachto symbolicworst-
caseexecutiontime analysis. In 25th IFAC Workshopon
Real-TimeProgramming, Palma,Spain,May 2000.

[2] R. Chapman,A. Burns,andA. Wellings. Combiningstatic
worst-casetiming analysisandprogramproof. Real-Time
Systems, 11:145–171,1996.

[3] A. Coen-Porisini,G. Denaro,C. Ghezzi,andM. Pezz̀e. Us-
ing symbolicexecutionfor verifying safety-criticalsystems.
In 8th Europeansoftware engineeringconference, pages
142–151,New York, USA, 2001.ACM Press.

[4] A. Ermedahl.A modularTool Architecture for Worst-Case
ExecutionTime Analysis. PhD thesis,UppsalaUniversity,
2003.

[5] J. Gustafssonand A. Ermedahl. Automatic derivation of
pathandloop annotationsin object-orientedreal-timepro-
grams.Journalof Parallel andDistributedComputingPrac-
tices, 1(2):61–74,1998.

[6] C. Healy, M. Sjodin, V. Rustagi,D. Whalley, , andR. van
Engelen. Supportingtiming analysisby automaticbound-
ing of loop iterations.Journal of Real-TimeSystems, 18(2-
3):129–156,May 2000.

[7] Y.-T. S. Li andS. Malik. Performanceanalysisof embed-
dedsoftwareusingimplicit pathenumeration.In ACM SIG-
PLAN Workshopon Languages, Compilers and Tools for
Real-timeSystems,La Jolla, California, June1995.

[8] B. Lisper. Fully automatic,parametricworst-caseexecution
timeanalysis.In 3rd InternationalWorkshoponWorst-Case
ExecutionTimeAnalysis,WCET2003, pages99–102,Poly-
technicInstituteof Porto,Portugal,2003.

[9] T. LundqvistandP. Stenstr̈om. An integratedpathandtim-
ing analysismethodbasedon cycle-level symbolicexecu-
tion. Real-TimeSystems, 17(2-3):183–207,1999.

[10] C. Y. Park andA. C. Shaw. Experimentswith a program
timing tool basedonsource-level timing schema.Journalof
Real-TimeSystems, 1(2):160–176,September1989.

[11] P. PuschnerandA. V. Schedl. Computingmaximumtask
execution- a graph-basedapproach. Real-Time Systems,
13(1):67–91,July 1997.

6

Comparing WCET and Resource Demands of Trigonometric
Functions Implemented as Iterative Calculations vs. Table-Lookup ∗

Raimund Kirner, Markus Grössing, Peter Puschner
Institut für Technische Informatik

Technische Universität Wien, Austria
raimund@vmars.tuwien.ac.at

Abstract

Trigonometric functions are often needed in embed-
ded real-time software. To fulfill concrete resource de-
mands, different implementation strategies of trigono-
metric functions are possible.

In this paper we analyze the resource demands of
iterative calculations compared to other implementa-
tion strategies, using the trigonometric functions as
a case study. By analyzing the worst-case execution
time (WCET) of the different calculation techniques
of trigonometric functions we got the surprising re-
sult that the WCET of iterative calculations is quite
competitive to alternative calculation techniques, while
their economics on memory demand is far superior.
Finally, a discussion of the general applicability of the
obtained results is given as a design guide for embedded
software.

1 Introduction

For real-time systems in safety-critical environments
it is indispensable to design the temporal behavior of
the system based on knowledge of the worst-case exe-
cution time (WCET) of the real-time tasks. A general
discussion on research directions in the area of WCET
analysis can be found in [9].

Besides analyzing the timing behavior of programs
we also look at software design techniques that
proactively simplify the analysis of the WCET. We
have described a general paradigm, which we call
WCET-oriented programming [10]. The basic idea of
WCET-oriented programming can be summarized as

∗This work has been partially supported by the FIT-IT re-
search project “Model-Based Development of distributed Em-
bedded Control Systems (MoDECS)” and the ARTIST2 Network
of Excellence of IST FP6.

the search for algorithms whose execution-time vari-
ability is small, for example, by avoiding input-data
dependent control flow decisions whenever possible.

In this paper we study the characteristics of
iteration-based computation techniques, we address
interesting questions like whether these algorithms are
suitable for real-time computing. For example, it is
a common belief that iteration-based computation is
critical, because a) long execution times due to high
number of needed iterations and b) the problem of
finding a precise upper iteration bound.

In the here-presented case study, we look at the be-
havior of trigonometric functions. The contribution
of this paper is to connect the known properties of
trigonometric functions to implementation techniques
of real-time software and to provide an analysis of rele-
vant characteristics like computation time and memory
demands. Besides the interesting results obtained from
our analysis, we also describe the application of WCET
analysis to embedded software with floating point em-
ulation.

2 Related Work

The work in this paper focuses on the properties
of time-memory tradeoffs for real-time software. For
example, one might design algorithms with shorter ex-
ecution time by using more memory.

Sorting examples are sorting by counting, where a
second array is used to sort elements with known rel-
ative positions based on their key in linear time, and
Radix Sort [6]. Alternatively, lookup tables (LUT) can
be used to reduce online calculations by deploying pre-
calculated values. As an example for the use of lookup
tables, see [7]. Time-space tradeoffs on dictionary at-
tacks to break passwords are presented in [8]. Three
further examples of applying time-memory tradeoffs
are described in [11].

ECRTS 2006
6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2006/669

3 Trigonometric Functions

For our study of different computation techniques
we focus on trigonometric functions because they are
heavily used in many scientific disciplines. Sine, co-
sine and tangent as well as their inverse functions play
important roles not only in surveying, navigation, or
scientific mathematics, but also in many other fields
like acoustics, astronomy, computer graphics, electri-
cal engineering and electronics, mechanical engineer-
ing, optics, etc.

First of all, it is important to keep in mind that
the requirements on trigonometric functions are quite
different depending on the application domain. For
example, an application domain where performance is
typically more important than precision is 3D com-
puter graphics. The cosine is a fundamental operation
in 3D rendering techniques like various shading meth-
ods, ray tracing, etc. [12]. Those rendering techniques
have to use the trigonometric functions excessively of-
ten. Therefore, effective approximation techniques are
very important to gain performance, while high preci-
sion is not a first-order requirement.

However, we are focusing more on the use of trigono-
metric functions in the domain of embedded real-time
systems. They are used in mechanical applications,
e.g., to determine distances in automation systems, or
for controlling the movement of a robotic arm. Other
important real-time applications are multimedia sys-
tems, where they are used to compute Fourier trans-
forms (e.g., for audio processing) or discrete cosine
transforms (for graphics) are performed. Further in-
teresting application fields are applications that use ul-
trasound, optical devices, or statistical computations.

For the application of trigonometric functions in em-
bedded real-time control systems, typically both, the
numerical precision and the resource demands are rele-
vant. For the following discussions of different calcula-
tion techniques we concentrate on the cosine function,
since the other trigonometric functions are closely re-
lated respectively can be derived from it. We also dis-
cuss the maximum error for each calculation technique,
which is needed for the comparison of iterative calcu-
lation and table-lookup in Section 4.

3.1 Iterative Approximation (Taylor Series)

In common implementations of trigonometric func-
tions the Taylor series is used to approximate sine, co-
sine and tangent. There also exist other iterative algo-
rithms like CORDIC [1], which are slower than Taylor
series but easier to implement in hardware as it does
not need multiplication operations. In this paper we

focus on the Taylor series because we are interested in
implementations in software. Let us consider the power
series implementation of cosine (Equation 1): to reach
full double precision (as defined in [3]) a Taylor poly-
nomial of degree 14 is needed. As only the coefficients
of even powers are significant to calculate the cosine
function, only seven coefficients are needed. We call
this class of cosine implementation techniques CTAY-
LOR.

cos(x) =
∞∑

n=0

(−1)n · x2n

(2n)!
≈

7∑
n=0

(−1)n · x2n

(2n)!
(1)

The constant coefficients do not need to be calcu-
lated at runtime everytime the function is called. In-
stead, they can be stored as static constants.

The accuracy of the power series decreases as the
distance of the argument from the center grows. There-
fore for trigonometric functions this distance is limited
to π/4. As the center of sine, cosine, and tangent ap-
proximation is chosen to be zero the actual evaluation
interval of these functions is [−π/4; π/4]. To evaluate
arguments outside this interval an argument reduction
needs to be performed [7].

To estimate the maximum error of a Taylor series
implementation we need to consider the error at π/4,
where the distance to the center of the power series is
maximal.

The maximum error of Taylor series with n itera-
tions is given by the remainder term Rn+1 in Equa-
tion 2.

Rn+1 =
1
n!

∫ x

0

(x− t)n · cos(n+1)(t)dt =

= cos(x)−
(

1− x2

2!
+

x4

4!
· · ·+ (−1)n · x2n

2n!

)
(2)

3.2 Approximation using Lookup Tables

Lookup tables are commonly used to replace run-
time calculations with simpler lookup operations. Re-
trieving an array value from memory is usually much
faster than making an expensive computation.

In the following we will take a look on three different
implementations of lookup tables:

• Fast and simple lookup tables (FLUT)

• Equidistantly interpolated lookup tables (EDI-
LUT), and

• Lookup table with interpolation with smart place-
ment of interpolation points (SMILUT)

2

3.2.1 Fast and Simple Table Lookup

The fast and simple lookup table (FLUT) is nothing
more than a data array that stores pre-calculated func-
tion values of the function in it. The places where these
values are taken are equidistant, so the array index fit-
ting to a given argument can easily be computed. Each
value in the array covers an interval of arguments. The
biggest error occurs, where the function has its greatest
gradient (see Equation 3. For example, a cosine lookup
table in the interval [0;π/2] has its greatest gradient at
π/2.

Emax(n)=cos
(

π

2
− π

4(n−1)

)
= sin

(
π

4(n−1)

)
(3)

The advantage of FLUT is that it is easy to imple-
ment and the estimation of the timing behavior is sim-
ple. The performance according to speed is very good
but accuracy requirements should not be too high. To
enhance accuracy or to reduce the table size if a par-
ticular level of accuracy is given other methods like
EDILUT and SMILUT can be used.

3.2.2 Table Lookup with Equidistant Interpo-
lation

An equidistant interpolated lookup table (EDILUT)
reaches significantly higher accuracy compared to a
FLUT of the same size. The price to pay is a little
more arithmetics and so longer execution time.

The entries of an EDILUT are the function values
of equidistantly distributed places of the input inter-
val. In the case of a cosine EDILUT the input interval
is [0; π/2]. In a cosine calculation, first the two inter-
polation points next to the given argument are deter-
mined. Then a straight line through these two points
is calculated and the argument is set into this straight
interpolation line. With this method accuracy can be
increased significantly.

The maximum error of EDILUT occurs not on the
place with the greatest gradient, like it was the case for
FLUT, but on the place with the greatest curvature.
For our cosine function this is the case near the origin,
so we expect the greatest error to occur in the first
interpolation interval. The error of the interpolation in
the first interval can be calculated by subtracting the
linear interpolation between the first two interpolation
points from the function. By deriving this function and
setting to zero, the exact place of the maximum error
is retrieved. Applying this value to the error function
gives the maximum absolute error (Equation 4) for a
concrete lookup table size n of EDILUT.

Emax(n)=cos
(
sin−1 (k)

)− k · sin−1 (k)− 1,

k=−
1− cos π

2(n−1)
π

2(n−1)

(4)

3.2.3 Table Lookup with Smart Interpolation

A smart interpolated lookup table (SMILUT) is a fur-
ther improvement of EDILUT. In a SMILUT the in-
terpolation points are not equidistantly distributed in
the input interval but in a smarter way. The function
for mapping the input interval into the range of array
indices should be rather simple. We map the input
interval to the indices using the squareroot function.
The result is an improvement of accuracy.

With this placement we achieve that the maximum
error does not occur within the first interpolation in-
terval but rather in the middle of the overall input in-
terval.

As the squareroot function might be too expensive
to compute, we considered an alternative implemen-
tation for finding the correct interpolation interval,
namely using binary search.

 1e-014

 1e-012

 1e-010

 1e-008

 1e-006

 0.0001

 0.01

 1

 10 100 1000 10000 100000 1e+006

m
ax

im
um

 e
rr

or

size of lookup table

FLUT
EDILUT
SMILUT

Figure 1. Maximum Absolute Error of FLUT, EDI-
LUT, and SMILUT

To complete the discussion about LUT-based solu-
tions, a comparison of the accuracy in dependence of
the size of the lookup array is given in Figure 1 1.

1Note that due to range limitations in the numerical calcula-
tion, the size values above 2000 are extrapolated values to show
the tendency of the graph.

3

4 Comparison of Iterative vs. LUT-
based Techniques

A comparison of different iteration numbers of Tay-
lor series implementations to the three lookup table
approaches is depicted in Figure 2. It is shown how
many entries a particular type of lookup table needs
to exceed the accuracy of different Taylor series imple-
mentations.

As the maximum error of FLUT and EDILUT can
be calculated analytically, these two variants can be
easily compared to the Taylor series. For the compari-
son of SMILUT a simple tool was developed to experi-
mentally determine the required size of the SMILUT to
reach the accuracy of the different Taylor series imple-
mentations. This tool determines the maximum error
of a SMILUT for a given array size. If the error is
too big the array size is increased. The program ter-
minates when the accuracy of the SMILUT exceeds a
given limit, e.g., the accuracy of a particular Taylor
implementation.

As shown in Figure 2 the accuracy of FLUT is much
worse than the accuracy of the other LUT implementa-
tions. SMILUT performs slightly better than EDILUT.
One can see that the size of lookup tables of any type
grows exponentially with the number of Taylor itera-
tions. Thus, if high accuracy requirements need to be
met, the use of lookup tables may not be feasible or
sensible to approximate trigonometric functions - the
memory consumption of these algorithms is too high.

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

 1e+009

 1e+010

 0 1 2 3 4 5

nu
m

be
r

of
 in

te
rp

ol
at

io
n

po
in

ts
 r

eq
ui

re
d

number of taylor iterations

FLUT
EDILUT
SMILUT

Figure 2. Necessary LUT Size to Match the Accu-
racy of Taylor Series

5 Experimental Evaluation

In Section 3 we described the theoretical proper-
ties of different calculation techniques of trigonometric

functions. Lets now look at the different calculation
techniques from a practical point of view. Especially
interesting for the use of trigonometric functions in em-
bedded real-time systems are their resource demands.
Therefore, we analyzed their memory footprints in data
and code memory, and calculated an upper bound of
their worst-case execution time (WCET).

5.1 Studied Algorithms

To analyze the properties of the different compu-
tation techniques discussed in Section 3 on a concrete
computer platform, we implemented several variants of
the cosine function. We implemented the cosine func-
tion for the double data type of ANSI C (which is typ-
ically the 64-bit IEEE floating point format [3]).

Two iterative cosine variants belonging to CTAY-
LOR were implemented, one which is a straight for-
ward implementation of the Taylor-formula and one
with precalculation of the coefficients of the Taylor-
terms.

On the other side the three LUT-based variants of
Section 3.2 have been implemented: FLUT the straight
forward method, EDILUT which uses linear interpo-
lation and SMILUT, an implementation using binary
search to find the correct interpolation point within the
LUT. Compared to EDILUT it is highly performance
oriented and uses more precomputed results, requiring
three LUTs.

Some characteristic parameters of the different co-
sine implementations are given in Table 1. The column
#BB denotes the number of basic blocks of the gener-
ated object code. The DataMem columns give the re-
quired number of bytes to store the intermediate data
and the LUT. It is given first in parametric form as a
function of the LUT size N , and second for the con-
crete case N = 1000. The column CodeMem denotes
the net code size, i.e., without counting the standard
library functions which are linked by the compiler. The
byte values are given for the Infineon C167 processor,
a 16bit architecture.

5.2 WCET Analysis

In the following we describe how we derived the
WCET of the different cosine implementation tech-
niques. Our WCET analysis tool calc wcet 167 2 uses
static timing analysis to calculate an upper bound of
a task’s WCET. The target architecture for the tool is
the processor C167 from Infineon, for which the GCC
compiler was ported by the company HighTec EDV

2http://www.wcet.at/tools.html

4

DataMem
Function name #BB (parametric) (N=1000) CodeMem

[bytes] [bytes] [bytes]
CTAYLOR 22 28 n.a. 720
CTAYLOR tab 19 90 n.a. 598
FLUT 13 10+N·8 8 010 456
EDILUT 15 34+N·8 8 034 902
SMILUT 23 30+(N+1)·24 24 054 536

Table 1. Implemented Calculation Variants of the Cosine Function

Systeme GmbH 3. The integration of optimizing com-
pilation into the WCET analysis is described in [5].
The development and verification of the timing model
for the Infineon C167 is documented in [2]. Because
the Infineon C167 processor has a relatively simple ar-
chitecture, the overestimation of the calculated WCET
bound of our tool is tight, maximal 5%, but typically
less than 2%, provided the control flow is precisely
modelled by flow constraints [2].

The cosine implementations were written in wcetC,
based on a subset of ANSI C but providing additional
features to annotate the source code with flow infor-
mation to guide the WCET analysis tool [4].

The WCET analysis of the cosine implementations
itself did not require anything special to mention. How-
ever, the overall WCET analysis was not easy because
the Infineon C167 processor does not have a floating
point engine in hardware. For such architectures the
compiler links extra program code that emulates the
floating point computations in software (libsgnu.a
provided by HighTec). To perform the WCET anal-
ysis we disassembled the object code of the library and
annotated it at assembly code level with flow informa-
tion.

The final WCET analysis results of the different co-
sine implementations are given in Table 2. Besides the
properties of the concrete implementations, these val-
ues are generally rather high because we assumed a
slow hardware configuration with slow external mem-
ory. The first of the WCET columns shows the WCET
in a parametric form. This is only relevant for the iter-
ative implementations, where iter is the number of loop
iterations used to iteratively refine the result based on
the Taylor series of the cosine function. The other four
WCET columns show the WCET bound of the itera-
tive algorithms for different iteration counts.

5.3 Discussion

The results of the general analysis of the maximum
absolute error for CTAYLOR and of the maximum

3http://www.hightec-rt.com

absolute error of FLUT, EDILUT, and SMILUT to-
gether with the precision relationsship between CTAY-
LOR and LUT-based methods (Figure 2) can be com-
bined with the results from the concrete implementa-
tion to reason about the pros and cons of the different
computation paradigms.

To demonstrate how this can be done, lets assume
that for a concrete project one needs a cosine function
providing a maximal error of less than 2.5·10−8. Evalu-
ating Equation 2 at π/4 it follows that one would need
4 iterations (≡ 5 Taylor terms) with the CTAYLOR
methods. To replace the CTAYLOR method later by
an adequate LUT-based method one could deduce from
Figure 2 the required LUT size to match at least the
same precision. For example, to obtain the same qual-
ity with EDILUT or SMILUT, one has to choose an
LUT size of N > 3000!

From Table 1 we can see that in this case the addi-
tional memory demand for the LUT-based methods is
significant. The FLUT method, though it is relatively
fast, is completely out of choice as it would require an
LUT size of N > 105. If performance really is the most
important issue, then according to Table 2 one has to
use the SMILUT implementation. But surprisingly, the
CTAYLOR methods are not that bad regarding the
WCET compared to SMILUT. As a rough indicator
using our example, one would need only 90 bytes data
memory when using CTAYLOR tab compared to the
more than 72kB when using SMILUT. The code size is
almost the same between these two implementations.

Another benefit of the CTAYLOR methods is their
anytime characteristic. In case a CTAYLOR method
gets interrupted, there is still some accuracy of the re-
sult available, for example, to move a robot arm at least
in the intended direction, hoping that the control will
be refined in the next round by a more accurate result.
Depending on the application, this can be an advan-
tage of iteration-based CTAYLOR methods compared
to the LUT-based methods.

5

WCET [cycles]
Function name (parametric) (iter=1) (iter=3) (iter=4) (iter=7)
CTAYLOR 23 140 + iter·79 500 102 640 261 640 341 140 579 640
CTAYLOR tab 23 380 + iter·49 200 72 580 170 980 220 180 367 780
FLUT 136 840 n.a. n.a. n.a. n.a.
EDILUT 276 640 n.a. n.a. n.a. n.a.
SMILUT 120 540 n.a. n.a. n.a. n.a.

Table 2. Calculated WCET of the Cosine Functions (Target Processor: Infineon C167)

Generality of the Results

In our concrete case study of the cosine function it
has been shown that the WCET of the iterative cal-
culation is quite competitive to table-lookup while the
economics on memory demand is far superior.

Iterative calculations generally provide the same ad-
vantages as long as they have a relatively compact cal-
culation step within each iteration and the termination
speed of the iterative calculation is reasonable.

As a further example, the Newton method to solve
equations numerically tends to provide such a behav-
ior, provided that the start value is already within the
local convergence interval of the solution. There are
many instantiations of the Newton method in practice,
e.g., the Heron method to calculate the square root of
a number.

6 Summary and Conclusion

Motivated by our general effort to study the suit-
ability of different algorithms for real-time computing,
we looked at different calculation techniques of trigono-
metric functions, because of their use in a wide range
of technical applications.

One of the central conclusions is that whenever
memory is highly constrained, iteration-based methods
are very useful, because they tend to demand much less
memory while still providing reasonable accuracy of re-
sults. And quite important, the performance overhead
of iteration-based methods is not that high, even in
our case study where we calculated the WCET for the
C167, a processor that emulates floating point arith-
metics in software. Further, the WCET analysis itself
was an interesting experience, as we had to analyze
routines of the floating-point emulation library by dis-
assembling the object code.

In general, in embedded real-time systems, where
size of memory is typically restricted, iterative al-
gorithms can be a memory-efficient calculation tech-
nique without significant performance costs compared
to LUT-based methods, as long as a reasonable termi-
nation speed of the iterative calculation is ensured.

References

[1] R. Andraka. A survey of cordic algorithms for fpga
based computers. In Proc. ACM/SIGDA 6th Inter-
national Symposium on Field Programmable Gate Ar-
rays, pages 191–200, 1998.

[2] P. Atanassov. Experimental Assessment of Worst-
Case Program Execution Times. PhD thesis, Tech-
nische Universität Wien, Vienna, May 2003.

[3] IEEE. IEEE Standard 754-1985 for Binary Floating-
Point Arithmetic. IEEE, New York, 1987. Reprinted
in SIGPLAN Notices 22,2,9-25.

[4] R. Kirner. The programming language wcetC. Tech-
nical report, Technische Universität Wien, Institut für
Technische Informatik, Treitlstr. 1-3/182-1, 1040 Vi-
enna, Austria, 2002.

[5] R. Kirner. Extending Optimising Compilation to Sup-
port Worst-Case Execution Time Analysis. PhD the-
sis, Technische Universität Wien, Vienna, Austria,
May 2003.

[6] D. E. Knuth. The Art of Computer Programming -
Sorting and Searching, volume 3. Addison Wesly, New
York, USA, 2nd edition, 1998. ISBN 0-201-89685-0.

[7] J. N. Lygouras. Memory reduction in look-up ta-
bles for fast symmetric function generators. IEEE
Transactions on Instrumentation and Measurement,
48(6):1254–1258, Dec. 1999.

[8] A. Narayanan and V. Shmatikov. Fast dictionary at-
tacks on passwords using time-space tradeoff. In Proc.
12th ACM conference on Computer and Communica-
tions Security, pages 364–372, New York, NY, USA,
2005. ACM Press.

[9] P. Puschner and A. Burns. A review of worst-case
execution-time analysis. Journal of Real-Time Sys-
tems, 18(2/3):115–128, May 2000.

[10] P. Puschner and R. Kirner. Avoiding timing problems
in real-time software. In Proc. IEEE Computer So-
ciety’s Workshop on Software Technologies for Future
Embedded Systems, May 2003.

[11] M. Stamp. Once upon a time-memory tradeoff. Tech-
nical report, San José State University, San José, Cal-
ifornia, USA, July 2003.

[12] A. Watt. 3D Computer Graphics. Addison Wesley,
3rd edition, Dec. 1999. ISBN: 0201398559.

Design of a WCET-Aware C Compiler ∗

Heiko Falk Paul Lokuciejewski Henrik Theiling

Computer Science 12 Computer Science 12 AbsInt Angewandte Informatik
University of Dortmund University of Dortmund Science Park 1

D-44221 Dortmund D-44221 Dortmund D-66123 Saarbr¨ucken
Heiko.Falk@udo.edu Paul.Lokuciejewski@udo.edu theiling@absint.com

Abstract
This paper presents techniques to tightly integrate worst-

case execution time (WCET) information into a compiler
framework. Currently, a tight integration of WCET infor-
mation into the compilation process is strongly desired, but
only some ad-hoc approaches have been reported currently.
Previous publications mainly used self-written WCET esti-
mators with very limited functionality and preciseness dur-
ing compilation. A very tight integration of a high quality
industry-relevant WCET analyzer into a compiler was not
yet achieved up to now. This work is the first to present tech-
niques capable of achieving such a tight coupling between
a compiler and the WCET analyzer aiT. This is done by
automatically translating the assembly-like contents of the
compiler’s low-level intermediate representation (LLIR) to
aiT’s exchange format CRL2. Additionally, the results pro-
duced by the WCET analyzer are automatically collected
and re-imported into the compiler infrastructure. The work
described in this paper is smoothly integrated into a C com-
piler environment for the Infineon TriCore processor. It
opens up new possibilities for the design of WCET-aware
optimizations in the future.

The concepts for extending the compiler infrastructure
are kept very general so that they are not limited to WCET
information. Rather, it is possible to use our structures also
for multi-objective optimization of e. g. best-case execution
time (BCET) or energy dissipation.

1. Introduction
In contrast to general-purpose systems, embedded sys-

tems often have to meet some real-time constraints mak-
ing them real-time systems. The correctness of a real-time
system depends not only on the logical result of the com-
putation, but also on the time at which the results are pro-
duced [5]. Besides the necessity of safeness of real-time
systems, the market demands high performance, energy ef-
ficient and low cost products. Without knowledge about the
worst-case timing of a real-time application, the designer
tends to use oversized hardware in order to guarantee the
safeness of the real-time system. The knowledge of the
worst-case execution time(WCET)gives the designer the
opportunity to use or to design a hardware platform which
is tailored towards the software resource requirements like
memory or clock rate. Thus, the production costs can be
reduced significantly, while still guaranteeing the safeness
of the real-time system.

Today, software development for embedded systems is
done using high-level languages like C, requiring the ex-

∗This work is partially funded by the European IST FP6 Network of
Excellence ARTIST2.

istence of a suitable compiler. Modern compilers are
equipped with a vast variety of optimizations. However,
these optimizations aim at minimizing e. g. average-case
execution time(ACET)[14] or energy dissipation [15]. The
influence of compiler optimizations on WCET is unknown
in almost all cases. Currently, the binary executable gener-
ated by the compiler is manually fed into a WCET analyzer
computing the required information. Using this WCET
data, it can be determined whether real-time constraints are
met. If this is not the case, the program source code has to
be tuned, compiled and optimized again in another cycle of
the design flow.

As can be seen, it is highly desirable to have a com-
piler that is aware of WCET properties. In an integrated
WCET-aware compilation environment, it will be possible
to integrate and to apply optimizations with the objective of
WCET minimization. WCET information available within
the compiler can be used to determine those parts of the
code that lie on the worst-case path. Specialized complex
optimizations could be applied in the future only to these
code portions in order to minimize WCET aggressively. If
the compiler is able to support multiple optimization ob-
jectives at the same time (e. g. energy consumption and
WCET), automated trade-offs can be applied by the com-
piler such that the most energy efficient code is generated
that still meets real-time constraints.

This paper is the first one to present a tight integration
of an existing WCET analyzer into a compiler infrastruc-
ture. Using the techniques of this work, it is possible to
feed the assembly-like contents of the compiler’s low-level
intermediate representation(LLIR) into the WCET analyzer
automatically. The results produced by the WCET analyzer
are automatically re-imported into the compiler infrastruc-
ture and are available for future optimizations as described
above. Currently, this includes the WCET of an entire ap-
plication, of functions and basic blocks as well as calling
contexts, execution counts and feasibility information. The
techniques presented in this work are part of a C compiler
environment and were validated for the Infineon TriCore [9]
processor.

In addition, a very powerful and flexible mechanism is
presented enabling to attach not only WCET-related data to
the LLIR, but also to store arbitrary information used by op-
timizations targeting different objectives than WCET. This
approach will be useful in order to perform automated trade-
offs between different optimization goals.

The remainder of this paper is structured as follows: Sec-
tion 2 gives a survey of related work. Section 3 presents the
entire structure of our WCET-aware C compiler. It is fol-

ECRTS 2006
6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2006/673

lowed by a discussion on the proposed compiler structure
in Section 4. Finally, Section 5 summarizes this paper and
gives an outlook on future work.

2. Related Work
[4] presented a very first simple approach to integrate

WCET techniques into a commercial compiler. Flow facts
required for WCET analysis have to be annotated manually
using source-level pragmas. The compiler backend gener-
ates code for the Intel 8051 which is an inherently simple
and predictable machine without pipeline and caches etc.
The entire work was not finished and tested, and results are
unavailable. A fully pragma based approach is not promis-
ing since manual annotations are tedious and error-prone.

While mapping high-level code to object code, compil-
ers perform various optimizations so that the correlation be-
tween high-level flow facts and the optimized object code
becomes very vague. In order to keep track of the influ-
ence of compiler optimization on high-level flow facts, [7]
proposes co-transformation of flow facts. However, the co-
transformer has never reached a fully working state, and
several standard compiler optimizations can not be modeled
at all due to insufficient data structures.

[12] presents techniques for transforming program path
information during compiler optimization. The authors are
able to keep high-level flow facts consistent while perform-
ing GCC’s standard optimizations. Their approach was
thoroughly tested and led to precise WCET estimates. How-
ever, compilation and WCET analysis are done in a decou-
pled way. The assembly file generated by the compiler is
passed to the WCET analyzer together with the transformed
flow facts. Additionally, the proposed compiler is only able
to process a subset of the C programming language, and the
modeled target processor lacks pipelines and caches.

In [17, 18], the integration of a proprietarily developed
WCET analyzer into a compiler is presented. The com-
piler operates on a low-level intermediate representation
(IR). Control flow information is passed to the timing an-
alyzer which computes the WCET of loops and functions
and passes this data back to the compiler. However, this
approach has several limitations. First, the WCET analyzer
works with very coarse granularity since it only computes
WCETs of loops and functions. WCETs for basic blocks or
single instructions are unavailable. Second, WCET-relevant
data which is not the WCET itself is unavailable, too. This
includes e. g. execution contexts, execution frequencies of
basic blocks, value ranges of registers, predicted cache be-
havior etc. Third, the lack of a high-level IR within the
compiler requires to costly re-generate valuable high-level
flow facts that are only available at the source code level.
Finally, the considered processor is quite simple as it has a
simple pipeline and no caches.

A compiler guided trade-off between WCET and code
size is presented in [13]. The authors observe that applica-
tions using the 16-bit THUMB instruction set of an ARM7
processor typically are smaller but run slower than when
using the 32-bit ARM instruction set. [13] compiles a pro-
gram using both instruction sets at the same time with the
goal to reduce WCET at the expense of code size and vice
versa. To obtain WCET information, a simple timing ana-
lyzer was implemented from scratch assuming the absence
of caches and a simple pipeline structure. [13] presents a

LLIR

Conversion
LLIR2CRL

Conversion
CRL2LLIR

ICD-C
Parser

High-Level
ICD-C

LLIR Code
Selector

Code
Generator

aiT WCET
Analysis

CRL2 with
WCET

Estimates

Generated
CRL2

Analyses
Optimizations

ANSI-C
Source

WCET-
Optimized
Assembly

Figure 1. WCET-aware C Compiler (WCC)

WCET-guided compiler optimization, but it does not homo-
geneously integrate WCET analysis into the compiler itself.
Compilation and WCET analysis are completely decoupled,
WCET data is not fed back to the compilation stages.

An optimization allocating both functions and data ele-
ments of an application to a scratchpad memory is presented
in [16]. The authors report a significant WCET reduction,
since scratchpads are much faster than other types of mem-
ory, and their use is fully guided by the compiler so that
very precise flow facts can be passed to the WCET analyzer.
However, this approach also does not establish a tight inte-
gration of WCET data into the compiler. The memory allo-
cation optimization is not based on WCET data. Instead,
the optimization minimizes energy dissipation when us-
ing scratchpad memories. WCET timing is measured after
compilation by analyzing the resulting binary executable.

3. Design of the WCET-Aware C Compiler
Based on the results of the previous publications pre-

sented in Section 2, we propose the structure depicted in
Figure 1 for WCET-aware compilation. As can be seen,
the compiler we callWCC relies on two IRs, namely ICD-
C [10] being close to ANSI-C, and LLIR [11] modeling
code at the assembly level. The code selector is respon-
sible for the translation of ICD-C to LLIR. Analyses and
optimizations take place both at the high and the low level.
Currently, all optimizations done by the compiler are not
yet WCET-aware. The focus of this paper clearly lies on
the integration of WCET analysis into the compiler, and not
on WCET optimizations which are part of our future work.

Today, there are only few vendors providing commer-
cial WCET analyzers. One of the leading analyzers is the
aiT [1] WCET analyzer developed by AbsInt. aiT is avail-
able for various processors, including ARM7, Power-PC,
TI TMS320C33 and the Infineon TriCore v1.3. In this pa-
per, the Infineon TriCore processor is considered as target
architecture for compilation and WCET analysis.

WCET analysis can only take place at the assembly / bi-
nary level since processor-specific information and machine
code is unavailable at higher levels of abstractions. Thus,
the WCET analyzer aiT is coupled to our compiler at the
LLIR level. Our compiler is able to translate its LLIR rep-
resentation to the CRL2 format [2] which is the IR of aiT.
This way, both aiT and WCC use the same format to ex-

2

Loop Bound
Analysis

AbsInt’s
CRL2

CRL2 with
WCET

Estimates

Decoder
exec2crl

Value
Analysis

Path
Analysis

Pipeline
Analysis

Executable Cache
Analysis

Figure 2. Workflow of aiT

change information. Hence, aiT can be provided with CRL2
accurately modeling the application under analysis, and all
results computed by aiT are also available in the CRL2 for-
mat after WCET analysis is done. Using a conversion from
CRL2 to LLIR, we are able to import all data computed by
aiT into our compiler.

3.1. The WCET Analyzer aiT

In contrast to numerous other WCET analyzers, aiT per-
forms a highly accurate analysis of the processor pipeline
and available caches. When being used outside our WCC
compiler framework, aiT needs to be provided with a binary
executable of the program to be analyzed as well as with a
specification file. To estimate the WCET of the binary exe-
cutable, several analysis steps are taken (cf. Figure 2). The
decoder exec2crl reads the executable and reconstructs its
control flow graph. This control flow graph is translated
into aiT’s intermediate format CRL2 [2]. CRL2 is used as
exchange format storing the application under analysis as
well as analysis results generated by the individual substeps
of aiT. In the WCC setup, aiT’s decoder exec2crl is skipped.

Value analysisdetermines potential values in the proces-
sor registers for any possible program point. These values
are frequently used within aiT. Cache analysis requires pre-
dicted values to identify possible addresses of memory ac-
cesses. In addition, the predicted values are used to deter-
mine infeasible paths resulting from conditions being true
or false at any point of the analyzed program. Finally, tight
value ranges are required to determine loop bounds.

Since a program spends most of its execution time in
loops, the iteration counts play an important role for WCET
estimation. aiT relies on precise bounds to be able to per-
form a WCET analysis at all. The detection of loop bounds
during loop bound analysissucceeds only for simple loops
and demands their external annotation outside aiT.

The cache analysisof aiT statically analyzes the cache
behavior of a program using a formal cache model. Ac-
cesses to main memory are examined by an algorithm dis-
tinguishing between sure cache hits and unclassified ac-
cesses. A proper cache analysis relies on the value ranges
of processor registers obtained from the value analysis.

Pipeline analysismodels the processor’s pipeline behav-
ior and is based on the current state of the pipeline, the re-
sources in use, the contents of prefetch queues and the re-
sults obtained during cache analysis. It aims at finding a
WCET estimate for each basic block of a program. Each
basic block is analyzed by taking possible pipeline states
from preceding basic blocks into account. After processing
each instruction of the currently analyzed block, the longest
time this block takes to execute is computed.

Using the data provided by the previous analysis steps,
path analysiscomputes a program’s global WCET. A path
within the control flow graph is a sequence of successive
basic blocks starting at the entry point of a program and
ending at its end point. For each block on a path, its maxi-
mum execution timeT can be expressed based on the previ-
ous analyses. Using the loop bound information, a block’s
maximum number of executionsC can be determined. The
WCET of a path can be expressed as the sum of the products
T ∗ C over all edges of a path. A program’s global WCET
is determined by finding the maximum path WCET for all
feasible paths. This maximization problem is expressed and
solved using integer linear programming.

All analyses of aiT takeexecution contextsinto account.
A context indicates a particular way of calling a program’s
functionR. If R is called several times, contexts are used
to distinguish between the different program states repre-
senting the different flows of control through the program
to functionR. Contexts improve the precision of analysis if
analysis results are computed individually for each program
state represented by a context.

Since aiT is directly invoked with a CRL2 IR generated
by our compiler, the decoder exec2crl shown in Figure 2 is
skipped in our WCC setup. In the following subsections,
the conversions between LLIR and CRL2 and vice versa
are described as well as a generic mechanism for storing
arbitrary data beyond WCET information within LLIR.

3.2. Conversion LLIR ↔ CRL2

Since both LLIR and CRL2 are low-level IRs represent-
ing a program as control flow graph(CFG), it is easy to
translate these IRs into each other. At the top level, the
control flow graph of both IRs consists of functions. Each
function contains a list of basic blocks connected via edges.
Basic blocks in turn consist of a sequence of instructions.
In both IRs, an instruction can consist of several operations
in order to express the implicit parallelism present in e. g. a
VLIW machine. In addition to basic blocks, information on
execution contexts is attached to functions within CRL2. In
LLIR, this kind of information does not exist.

Due to the analogy of both IRs, the translation steps ba-
sically need to traverse the CFG of one IR recursively and
need to generate equivalent CFG components of the other
IR. However, there are two issues making the translation
from LLIR to CRL2 and back much more complex than
this simple recursive traversal.

Determination of op ids

First, we need to solve the problem that LLIR is an
assembly-level IR, whereas CRL2 is a binary-level IR. As
a consequence, any information additionally created during
assembly and linking is unavailable within LLIR, but avail-
able to CRL2. This difference between both IRs mainly
comes into play when converting LLIR operations into
CRL2 operations. An LLIR operation is represented by
its assembly mnemonic and belonging operands, whereas
CRL2 requires a unique identifier (op id) representing the
binary machine code of the operation together with its
operands. Unfortunately, there is no direct translation be-
tween an LLIR opcode and a correspondingop id.

For example, the TriCore ISA contains four different ma-

3

chine operations with the mnemonicAND[9]:
ANDDc, Da, Db ANDDc, Da, const9
ANDDa, Db ANDD15,const8

All theseANDoperations differ by the number and types of
parameters, namely data registers denoted by Dx or D15, or
constants. As can be seen, the mere use of the mnemonic
does not yield an unambiguous CRL2 operation. As a con-
sequence, more key characteristics of an LLIR operation
need to be taken into account.

In addition to its mnemonic, the operation’sopcode for-
mat is considered next. Depending on the amount and type
of parameters, the binary machine code of an operation has
various formats. For example, the firstANDoperation listed
above has the 32-bit wide formatRR. The second operation
with a constant parameter is of formatRC. The last two op-
erations with only two parameters have the 16-bit opcode
formatsSRRandSC, respectively.

Using the alignment and the type of parameters of an
LLIR operation, its opcode format is determined. In almost
all cases, these first two steps of mnemonic and opcode for-
mat matching are sufficient to obtain an unambiguousop id.
However, the addressing mode has to be considered as third
criterion in a few cases. The addressing mode specifies the
calculation of an effective memory address of a certain op-
eration parameter, using values held in registers and con-
stants. Mainly load and store operations make extensive
use of the various addressing modes. The TriCore architec-
ture provides eight different modes such asPre- andPost-
incrementor ShortandLong Base plus Offsetaddressing.

As example, theLD.W operation loading a word from
memory is considered. The TriCore instruction set includes
only one operation with the opcodeLD.W:

LD.W Da, <mode>
Its first parameter designates the register to be loaded, the
second one specifies the addressing mode. Depending on
this mode, various CRL2op ids can be used for theLD.W

operation. It is easy to see that mnemonic and opcode for-
mat are insufficient in this case to obtain a uniqueop id.

But even after considering addressing modes, there are
still some operations which can not be unambiguously iden-
tified so far. In particular, halfword arithmetical operations
have equivalent mnemonics and opcode formats, but do not
rely on addressing modes at all. The only difference be-
tween these halfword operations is a specifier like e. g.UL
denoting that an upper halfword of a register is combined
with a lower halfword of another register. However, these
few cases of halfword arithmetic can be handled easily by
performing particular checks for these halfword operations.

But even after this fourth stage of halfword operation
matching, there still exist LLIR operations which are not
unambiguously mapped to CRL2op ids. The TriCore in-
struction set still contains few operations which can not be
classified unambiguously at all using the information avail-
able within LLIR. For instance, there are two versions of
theMOVoperation:

MOVDc, Db MOVDa, Db

The parameters of these two operations are arbitrary data
registers in both cases. However, the first operation is 32
bits wide, whereas the second operation is a 16-bit opera-
tion. Since the LLIR does not distinguish the bit-width of
operations, it is impossible to classify these two opcode for-

Block 0

Block 1

Block 2

Routine F

Block 3

END

Block 0

Block 3

Routine F

END

Block 1

Block 2

END

Routine F’

Figure 3. Loop Transformation Stage of aiT

mats correctly. As a consequence, a decision on the under-
lying opcode format has to be taken during translation from
LLIR to CRL2. In such a situation, our compiler framework
decides to assume the 32-bit version of an operation.1 After
this decision is finally taken, all LLIR operations are as-
signed a unique CRL2op id. Hence, a complete translation
of our compiler’s LLIR into aiT’s IR is achieved.

Attention needs to be paid that the decision taken during
the previous phase described above is also considered dur-
ing the subsequent compilation steps. When writing out the
contents of the LLIR into an assembly file, a line just like

MOV D9, D8

will be dumped. Eventually, the assembler processing the
assembly file next treats this line as a 16-bit operation.
Hence, the binary code produced by the assembler and the
CRL2 file analyzed by aiT would differ, leading to incor-
rect WCET estimates. In order to prevent this situation, the
decision taken on the bit-width of an operation is passed to
the assembler using particular assembler directives [6]:

.code32

MOV D9, D8

Loop Transformation

Second, the conversions from LLIR to CRL2 and back need
to be aware of a control flow transformation inherently per-
formed by aiT. As already mentioned previously, execution
contexts provide higher precision of WCET estimates. Due
to the structure of CRL2, context information can only be
attached to CRL2 functions. However, context-related in-
formation is not only relevant for functions, but also for
loops within functions. For example, it is useful to distin-
guish individual iterations of a loop during WCET analysis
and to compute different WCET information for loop iter-
ations, depending on e. g. cache states. This can only be
achieved if contexts are also applicable to loops. This is
done within aiT by moving loops out of their original func-
tion into a new dedicated CRL2 function which calls itself
recursively during each iteration (cf. Figure 3). This way,
aiT is able to attach context-related information to loops by
simply annotating the newly created loop functions.

However, this loop transformation stage has the effect
that the CFG structures of LLIR and CRL2 differ. Since
a CRL2 CFG may contain more functions than its LLIR
counterpart, there is no direct correspondence at the func-
tion level. When traversing the CRL2 CFG in order to im-
port all WCET data computed by aiT into the WCC com-
piler, CRL2 functions may be reached for which no LLIR

1We could also assume a 16-bit operation – the actual width does not
matter. However, it is important to feed the decision to the assembler.

4

function exists. Hence, the question arises where to store all
the WCET data attached at CRL2 functions within LLIR.

Basic blocks have a unique identifier in both IRs, namely
the label denoting its starting address. WCET informa-
tion stored at the level of CRL2 functions is attached to
the very first basic block of this function within LLIR. For
CRL2 functionsF also existing within LLIR, this has the
effect that all WCET data ofF will also be available for
F within LLIR by just checkingF ’s first basic block. For
CRL2 functionsF ′ generated during loop transformation,
the WCET data attached toF ′ will be stored at that position
within LLIR where the loop represented byF ′ begins. This
way, all WCET information is stored exactly at those code
positions within LLIR to which the WCET data belongs.

3.3. LLIR Objectives and Handlers
In a simple approach, all WCET data extracted from

CRL2 would directly be attached to the corresponding
LLIR components as described in the previous section, e. g.
the class of LLIR basic blocks would be extended by new at-
tributes storing the execution count and the block’s WCET.
However, this approach is too inflexible for our purposes.

As already shown in Section 2, WCET-related com-
piler optimizations will have to deal with trade-offs between
WCET and other optimization criteria, e. g. code size [13].
In the future, we intend to extend the WCC infrastructure
presented in this paper towards a full multi-objective op-
timization engine. Besides the WCET data, the compiler
will thus have to deal with other types of information rep-
resenting other optimization objectives. Hence, the simple
approach to just store this additional data within the LLIR
core classes like e. g. basic blocks in the future will require
the entire LLIR core to be extended and rebuilt. But since a
compiler’s IR is a complex piece of software, modifications
of its core should be reduced to an absolute minimum.

In order to be able to attach arbitrary data to the LLIR
core components without having to modify the core in the
future, we have extended the LLIR by a modular and flexi-
ble objective and handler mechanism.

An LLIR objectiverepresents a container storing all data
relevant for the compiler in order to perform optimizations
for a particular objective. Besides its pure data elements,
methods in order to set and get the data stored within an
LLIR objective are provided. Additionally, each LLIR ob-
jective carries specific type information such that a WCET
LLIR objective can be distinguished from e. g. a code size
objective by simply comparing their type attributes.

Using inheritance from an abstract objective class, other
kinds of LLIR objectives besides WCET can be created eas-
ily. Arbitrary types of LLIR objectives can now be attached
to the entire LLIR control flow graph, to LLIR functions,
basic blocks and instructions. All of these LLIR compo-
nents contain a so-calledobjective handlerwhich is respon-
sible for managing multiple LLIR objectives of different
type attached to the same LLIR component. In this way, ar-
bitrary data useful for compiler optimizations pursuing dif-
ferent optimization goals can be freely attached to the LLIR.
The objective handler takes care that only one instance of
an LLIR objective with a given type can be attached to an
LLIR component, so that all data relevant e. g. for the ob-
ject’s WCET is not scattered among various instances of
the WCET LLIR objective. The objective handler provides

LLIR Component

(CFG, Function,
Basic Block,
Instruction)

list<LLIRObjective> objectives;

LLIR Objective Handler

addObjective(LLIRObjective);
LLIRObjective getObjective(ObjectiveType);
bool hasObjective(ObjectiveType);
...

addObjective(LLIRObjective);
LLIRObjective getObjective(ObjectiveType);
bool hasObjective(ObjectiveType);
...

LLIR
Objective

(Energy)

LLIR
Objective

(WCET)

LLIR
Objective

(...)

Figure 4. LLIR Objective Handling

methods in order to set and get objectives of a certain objec-
tive type. The structure of the LLIR objective and handler
mechanism is illustrated in Figure 4.

4. Discussion of the Structure of WCC
The proposed architecture of our WCET-aware C com-

piler WCC has several advantages compared to previously
published approaches (cf. Table 1).

First, the use of both a high- and a low-level IR is ex-
tremely beneficial for WCET analysis and optimization.
WCET analysis inherently requires high-level flow facts
to be present. Previously published approaches recompute
these flow facts from a low-level IR. This approach is cum-
bersome and inelegant. The availability of a high-level IR
within our WCC compiler results in an overall simplifica-
tion of flow fact computation since flow facts are computed
directly at the corresponding level of abstraction. In addi-
tion, there are several high-level control flow optimizations
potentially having a positive effect on WCET. For example,
procedure cloning making use of calling contexts is easier
to realize using a high-level IR than using LLIR.

Second, our WCC compiler does not rely on a propri-
etarily developed WCET analyzer. Instead, we were able
to tightly integrate aiT into our compiler. By coupling
WCC with AbsInt’s aiT, we do not use simplified models
of the target processor architecture at all. In contrast to
various other publications, no simplifying assumptions on
e. g. pipeline behavior and cache structure are made during
WCET analysis. This is ensured by the high quality of aiT
where the entire processor architecture is modeled with a
very high degree of accuracy. As a consequence, the WCET
data our compiler uses is highly accurate and precise.

Due to the accuracy and precision of the processor mod-
els used by aiT, a vast amount of WCET-related informa-
tion is computed. Since both the compiler and aiT use
CRL2 as common exchange format, all this data is available
within WCC without limitations. Currently, we are able
to import the following data from aiT into our compiler:
global WCET of an entire CFG, calling contexts, context-
dependent WCETs and execution counts of basic blocks and
functions, feasibility of CFG edges, overall WCETs of basic
blocks. Using the infrastructure presented in this paper, it is
easy to import all other WCET data from aiT to WCC like
e. g. value ranges of registers or pipeline and cache states.

The concept of objectives and handlers presented in this
paper allows to model arbitrary trade-offs within our com-
piler. Previous publications have already shown that it is
relevant to combine WCET optimization with other crite-
ria like e. g. code size. Using objectives and handlers, our

5

High/Low-
Level IR

Tight WCET
Integration

Automated
Flow Facts

Compiler Opti-
mization Support

Complex
Processor

Avail. WC-
ET Data

Multi-
Objective

Tested

WCC + + ± ± + + + +
[4] – + – – – – – –
[7] + – – + – –
[12] – – + + – – – +

[17, 18] – + + + – – – +
[13] – – – – + +
[16] – – + + ± – – +

Table 1. Comparison of WCC with Related Work

compiler is already well designed for this purpose, even if
this is part of our future work.

5. Summary and Future Work
This paper is the first one describing a tight integration of

an existing WCET analyzer into a compiler infrastructure.
Using our techniques, it is possible to feed the assembly-
like contents of our compiler’s low-level IR LLIR into Ab-
sInt’s aiT automatically. This is achieved by translating
LLIR into aiT’s intermediate format CRL2. Since LLIR
is an assembly-level representation, some information only
visible at the linker level (e. g. exact opcode formats of op-
erations having the same mnemonic) is unavailable. Hence,
care has been taken during the translation from LLIR to
CRL2 that the generated CRL2 representation of a given
program is fully equivalent to its LLIR representation, and
that the same holds for the final executable program gener-
ated by assembling and linking the LLIR representation.

After CRL2 generation, the WCET analyzer aiT is in-
voked automatically by our compiler. After its timing anal-
yses are completed, the WCET data produced by aiT is im-
ported into LLIR for further compiler optimizations.

In order to integrate WCET data within LLIR, a novel
mechanism for future multi-objective compiler optimiza-
tion is employed. It allows to attach arbitrary data relevant
for compiler optimizations pursuing different optimization
goals to almost all components of the LLIR. For example,
this objective handler technique enables to store code size
or energy and WCET data within LLIR at the same time in a
flexible, modular and extensible way. This multi-objective
design of the LLIR is motivated by the fact that the design of
low-cost real-time systems requires performing automated
trade-offs between different optimization criteria.

Our compiler is equipped with an extensive testbench
consisting of 1,500 C files with 165,000 lines of code. The
WCC compiler successfully compiles this testbench, gen-
erates valid CRL2 and performs WCET computation using
aiT in the background. These tests serve as a proof of con-
cept for the techniques presented in this paper and clearly
demonstrate the reliability and quality of our concepts.

As already stated in Section 2, a good WCET analysis
framework relies on the presence of high-level flow facts.
To make them available within LLIR, we need to compute
these flow facts within our high-level IR ICD-C, keep them
up to date during optimization and pass them through the
code selector down to the LLIR. Thus, the integration of
flow fact computation [8] and transformation [12] into our
WCC is part of the future work. Hence, the corresponding
entries for WCC in Table 1 are marked just with±.

Of course, the main part of our future work is to develop
WCET-aware compiler optimizations both at the high ICD-

C level and at the LLIR level. This requires some kind of
back annotation of the WCET data stored in the LLIR up to
our high-level IR. Using our compiler structure with WCET
data available at all levels, several issues noted in the WCET
compiler wish list [3] can be tackled in the future.

Besides pure WCET-aware optimizations, we will con-
sider multi-objective optimizations within our compiler in
order to achieve trade-offs between real-time constraints
and other optimization criteria.

Acknowledgments
The authors would like to thank Jens Wagner, J¨org

Eckart and Luis Gomez who have designed the LLIR.

References
[1] AbsInt Angewandte Informatik GmbH. aiT: Worst-Case Execution

Time Analyzers.http://www.absint.com/ait, 2005.
[2] AbsInt Angewandte Informatik GmbH. CRL Version 2.

http://www.absint.com/artist2/doc/crl2, 2006.
[3] G. Bernat and N. Holsti. Compiler Support for WCET Analysis:

a Wish List. InProc. of “3rd Intl. Workshop on WCET Analysis”
(WCET), Porto, July 2003.

[4] H. Börjesson. Incorporating Worst Case Execution Time in a Com-
mercial C-Compiler. Master’s thesis, Uppsala University, Jan. 1996.

[5] A. Burns and A. J. Wellings. Real-Time Systems and Program-
ming Languages: ADA 95, Real-Time Java, and Real-Time POSIX.
Addison-Wesley, Boston, 2001.

[6] D. Elsner and J. Fenlason.Using as – The GNU Assembler. Free
Software Foundation, 1994.

[7] J. Engblom. Worst-Case Execution Time Analysis for Optimized
Code. Master’s thesis, Uppsala University, Uppsala, Sept. 1997.

[8] J. Gustafsson, A. Ermedahl and B. Lisper. Towards a Flow Analysis
for Embedded System C Programs. InProc. of “The 10th IEEE
Intl. Workshop on Object-oriented Real-time Dependable Systems”
(WORDS), Sedona, Feb 2005.

[9] TriCore 1 32-Bit Unified Processor Core v1.3 Architecture – Archi-
tecture Manual. Infineon Technologies AG, Sept. 2002.

[10] Informatik Centrum Dortmund. ICD-C Compiler framework.
http://www.icd.de/es/icd-c, 2006.

[11] ICD Low Level Intermediate Representation backend infrastructure
(LLIR) – Developer Manual. Informatik Centrum Dortmund, 2006.

[12] R. Kirner and P. Puschner. Transformation of Path Information for
WCET Analysis during Compilation. InProc. of “13th Euromicro
Conference on Real-Time Systems” (ECRTS), Delft, Jun 2001.

[13] S. Lee, J. Lee, C. Y. Park and S. L. Min. A Flexible Tradeoff be-
tween Code Size and WCET using a Dual Instruction Set Processor.
In Proc. of “Intl. Workshop on Software and Compilers for Embed-
ded Systems” (SCOPES), Amsterdam, Sept. 2004.

[14] R. Leupers.Code Optimization Techniqes for Embedded Processors
- Methods, Algorithms and Tools. Kluwer Academic Publishers,
Boston, 2000.

[15] S. Steinke, L. Wehmeyer et al. TheenccCompiler Homepage.
http://ls12-www.cs.uni-dortmund.de/research/encc, 2002.

[16] L. Wehmeyer and P. Marwedel. Influence of Onchip Scratchpad
Memories on WCET Prediction. InProc. of “4th Intl. Workshop on
WCET Analysis” (WCET), Catania, June 2004.

[17] W. Zhao, W. Kreahling, D. Whalley et al. Improving WCET by
Optimizing Worst-Case Paths. InProc. of “11th RTAS Symposium”,
San Francisco, Mar 2005.

[18] W. Zhao, P. Kulkarni, D. Whalley et al. Tuning the WCET of Em-
bedded Applications. InProc. of “10th RTAS Symposium”, Toronto,
May 2004.

6

History-based Schemes and Implicit Path Enumeration

Claire Burguière and Christine Rochange
Institut de Recherche en Informatique de Toulouse

Université Paul Sabatier
31062 Toulouse cedex 9, France

{burguier,rochange}@irit.fr

Abstract

The Implicit Path Enumeration Technique is often used
to compute the WCET of control-intensive programs. This
method does not consider execution paths as ordered se-
quences of basic blocks but instead as sets of basic blocks
with their respective execution counts. This way of describ-
ing an execution path is adequate to compute its execution
time, provided that safe individual WCETs for the blocks are
known. Implicit path enumeration has also been used to an-
alyze hardware schemes like instructions caches or branch
predictors the behavior of which depends on the execution
history. However, implicit paths do not completely capture
the execution history since they do not express the order in
which the basic blocks are executed. Then the estimated
longest path might not be feasible and the estimated WCET
might be overly pessimistic. This problem has been raised
for cache analysis. In this paper, we show that it arises more
acutely for branch prediction and we propose a solution to
tighten the estimation of the misprediction counts.

1 Introduction

The difficulty of evaluating the Worst-Case Execution
Time of a real-time application comes from the – gener-
ally – huge number of possible paths that makes it in-
tractable to analyze each of them individually. The single-
path programming paradigm [9] would noticeably simplify
the WCET computation but it has a cost in terms of perfor-
mance that might not be acceptable. This is the reason why
much research effort has been put on developing WCET
evaluation approaches based on static analysis [10]. These
approaches factorize the efforts by building up the WCET of
the complete program from the individual WCETs of basic
blocks. The Implicit Path Enumeration Technique [13], also
known as IPET, is a very popular method for WCET calcu-
lation. It expresses the search of the WCET as an Integer
Linear Programming problem where the program execution

time is to be maximized under some constraints on the ex-
ecution counts of the basic blocks. With this technique, an
execution path is defined by the set of the executed blocks
with their respective execution counts but the order in which
they are executed is not expressed.

More and more complex processors are used in real-time
embedded systems and it is a real challenge to take into ac-
count all of their advanced features in WCET analysis. In
particular, some mechanisms have a behaviour that depends
on the execution history which is difficult to capture by
static analysis. These mechanisms include cache memories
and dynamic branch predictors. In this paper, we consider
bimodal branch prediction as an example of such schemes.

Various methods to take branch prediction into account
have been proposed in the litterature. As explained below,
we focus on the approach by Li et al. [12] that we have later
extended [5] to take into account 2-bit prediction counters.
In this paper, we show that both models can lead to over-
estimated WCET because the worst-case number of mispre-
dictions computed by IPET would correspond to an infea-
sible execution path. We show how they should be revised
to only reflect feasible behaviours of the branch prediction
scheme. Experimental results show that the revised model
tighten the estimated WCET.

The paper is organized as follows. In Section 2, we illus-
trate the differences between implicit and explicit execution
paths by an example. Section 3 gives an overview of dy-
namic branch prediction and lists previous work on branch
prediction modeling for WCET analysis. We show how
misprediction counts can be over-estimated in Section 4
and we propose an extended model to tighten the estimated
WCET in Section 5. Section 6 concludes the paper.

2 Implicit vs. explicit execution paths

Figure 1 gives an example code that will be used
throughout this paper and Figure 2 shows the correspond-
ing CFG.

ECRTS 2006
6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2006/670

#define M 4
#define N 6
int main() {
int i, j;
int mat[M][N];
for (i=0; i<M; i++){

mat[i][0]=1;
for (j=0; j<N; j++)

mat[i][j]=i+j;
}

}

Figure 1. Example code.

1

2

3

4 5

loop bounds

number of occurences

1

6

4

4

4

4
20

20

4X5

4

0

Figure 2. Example CFG.

Explicit paths. An explicit execution path is an ordered
list of the executed basic blocks. In our example, the
only possible execution path is defined by the sequence of
blocks:

(
b1− b2− (b3− b4)×5 − b3− b5

)
×4
− b1− b6

Path-based WCET analysis [11][16] explores explicit
paths but this might be costly because, as said before, a
program may have many possible (explicit) paths. Some
static WCET analysis methods simplify the path exploration
while still considering explicit paths. For example, the Ex-
tended Timing Schema [17][15] works on the Syntax Tree.

Implicit paths. The IPET method [13] considers implicit
paths. An implicit path is defined by the list of its basic
blocks and of their execution counts. The implicit path cor-
responding to the explicit path given above is:

(
b1×5, b2×4, b3×24, b4×20, b5×4, b6×1

)

An implicit path defines many possible explicit paths but, in
general, most of them are infeasible. For example, the im-
plicit path given above could be expanded as below, where
the inner loop is executed three times with a single iteration
and once with 17 iterations, which is not consistent with the
program semantics.

(b1− b2− b3− b4− b3− b5)×3 − b1− b2−
−(b3− b4)×17 − b3− b5− b1− b6

In the IPET method, the execution time of an implicit path
is computed by adding the individual execution times of
the basic blocks weighted by their execution counts. The
WCET is obtained by maximizing the total execution time
under some contraints that link the execution counts of the
nodes and edges of the CFG: structural constraints directly
express the CFG structure and flow constraints express loop
bounds and infeasible paths.

As long as implicit paths are only used to compute a
global execution time by summing individual times, there
is no need to provide further information about the pro-
gram semantics. However, when some mechanisms based
on the execution history have to be modeled within the same
framework, the implicit expression of execution paths might
not be sufficient. This problem has been raised in the case of
instruction cache analysis [14]. In this paper, our purpose is
to show that it can also arise when modeling branch predic-
tion and that it is a bit more complex in this case. However,
we will provide a solution to get round it.

3 Branch prediction and WCET estimation

3.1 Bimodal branch prediction

Branch prediction enhances the pipeline performance by
allowing the speculative fetching of instructions along the
predicted path after a conditional branch has been encoun-
tered and until it is resolved. If the branch was mispredicted,
the pipeline is flushed and the other path is fetched and ex-
ecuted. In the hardware bimodal branch predictor [18], the
branch direction is predicted from a 2-bit saturating counter
stored in the Branch History Table (which is indexed by
the branch PC). If the branch is predicted as taken (counter
equal to 11 or 10), the target address is read in the Branch
Target Buffer, otherwise the instruction fetch proceeds se-
quentially. When the branch is later computed, the predic-
tion counter is updated as shown in Figure 3.

3.2 Modeling branch prediction for
WCET estimation

3.2.1 Background

Modeling bimodal dynamic branch predictors for WCET
analysis has been the purpose of several papers these last

2

mispredicted

correctly predicted

0 : not−taken branch
1 : taken branch

1

0

11 10

0100

01
1

1
0

0

strongly
taken

taken

not−takenstrongly
not−taken

Figure 3. Bimodal branch prediction.

years. Some of the proposed techniques are decoupled from
the pipeline analysis. Colin and Puaut [8] use static simula-
tion to determine whether the prediction counter associated
to a branch might be corrupted by another branch. Then
they combine these results with an analysis of the behaviour
of the 2-bit counters related to algorithmic structures to cal-
culate bounds on the misprediction counts. Other works
assume that branch aliasing can be prevented and refine the
analysis of branching patterns related to algorithmic struc-
tures [1][6]. Once misprediction counts have been deter-
mined, the estimated execution time is augmented by the
corresponding misprediction penalties.

To take into account tigher per-branch misprediction
penalties, branch prediction modeling can also be integrated
to the WCET computation with IPET [2][4]. Li et al. go
further by completely modeling the behaviour of the branch
prediction scheme within the IPET model [12]. They take
conflicts in the Branch History Table into account but they
only consider 1-bit prediction counters. In [5] we argue for
techniques to prevent aliasing and we extend their model by
considering 2-bit counters. Our discussion here is based on
this last work.

Modeling branch prediction as part of WCET compu-
tation has several advantages: (1) any kind of loop can
be analyzed, even if it is not well structured (e.g. sev-
eral exit points); (2) the analysis of branches implementing
conditional structures does not require any particular effort;
(3) per-branch misprediction penalties can be specified.

3.2.2 Baseline model

The estimation of misprediction counts is combined to
WCET computation by IPET by the way of additional
constraints that: (a) express the way the prediction counters
evolve; and (b) link the evolution of the prediction counters
to the execution counts of the blocks and edges in the CFG.
In this section, we give a simplified overview of the model.
The variables used to evaluate the WCET by IPET are:

xi execution count of block i
x

i
d→ execution count of the edge leaving block i

when the branch direction is d
xi = x

i
0→ + x

i
1→

The constraints added to model a bimodal branch
predictor (without aliasing in the Branch History Table) use
some additional variables (execution counts) presented in
Figure 4.

x11
i

x
i
0

11
x11

i x11
i

x
i

11

x
i

x
i

x
i

x
i

x
i

x
i

x
i

x
i

x
i

x
i
0

x
i

x
ix

i

x
i
0

1 10

10

10

01010000

01

10

x
i
00

00 00
1

01

01
1 0

10

1

Figure 4. Variables used to model branch pre-
diction for block i

The set of possible states for a 2-bit branch predic-
tion counter is denoted as C = {00, 01, 10, 11} and the
set of possible directions d after a branch is denoted as
D = {0, 1}. The constraints that model the way the pre-
diction for the branch of block i evolves are:

x00
i = x00

i
0→

+ x01

i
0→

+ x00
⇒i

x01
i = x10

i
0→

+ x00

i
1→

+ x01
⇒i

x10
i = x11

i
0→

+ x01

i
1→

+ x10
⇒i

x11
i = x11

i
1→

+ x10

i
1→

+ x11
⇒i

(1)

∀c ∈ C, xc
i = xc

i
0→

+ xc

i
1→

+ xc
i⇒ (2)

The variables related to branch prediction are linked to
the execution counts of basic blocks and edges by the fol-
lowing constraints:

xi =
∑

c

xc
i ∀d ∈ D, x

i
d→ =

∑
c

xc

i
d→

+
∑

c

xc

i
d⇒

(3)

For the initial and final state of the branch counter of
block i, we can write:

∑
c

xc
⇒i = 1

∑
c

xc
i⇒ = 1 (4)

Finally, mispredictions counts are derived from:

mi = x00

i
1→

+ x01

i
1→

+ x10

i
0→

+ x11

i
0→

(5)

3

4 Branch prediction modeling and implicit
path enumeration

4.1 Example code

We have analyzed the branch predictor behavior for our
example code using the model described in the previous
section. Figure 5 shows the results we obtained. The branch
at the end of block 3 controls the inner loop that iterates 5
times (then the branch is executed 6 times for each execu-
tion of the loop: it is not taken 5 times and taken once). The
inner loop is repeated 4 times: block 3 is then executed 24
times on the global execution path (20 times as not taken
and 4 times as taken). The numbers given in the dotted and
dashed hexagons stand for the correct and erroneous branch
prediction counts.

execution count

misprediction count

correct prediction count

1

2

3

4 5

1
0

0

6

2

4

2

4

4

20

5

15

0

Figure 5. Results for the example code

In [1], the worst-case number of mispredictions for a
branch that controls a repeated loop is bounded. For a loop
that iterates N times (N ≥ 3) and is repeated M times,
the worst-case misprediction count is (M + 2): during the
first execution of the loop, the prediction counter reaches
the 00 state after 3 iterations at most (considering any pos-
sible starting state) and the branch is mispredicted at most
twice. At the end of every execution of the loop, the counter
is incremented from 00 to 01 and the branch is mispre-
dicted (this makes M mispredictions). For the next exe-
cution, the counter is decremented to 00 and the branch is
well predicted.

According to these results, the worst-case misprediction
count for the inner loop of our example should be 6. But
the result obtained with the ILP model is 9, as shown in
Figure 5. A closer look to these results show that they cor-
respond to a behaviour of the prediction counter as the one

10

43

0100

11

1

1

14

1

(a) erroneous

10

0100

11
1

14 4

4

1

(b) correct

Figure 6. Detailed results for counter state
transitions

shown in Figure 6 (a). This behaviour would be obtained if
the branching pattern was:

(
(NT− NT− T)− (NT− T)×2 − (NT×16 − T)

)

where NT stands for "not taken" and T for "taken". This
pattern defines a path where the inner loop executes once
with 2 iterations, then twice with one iteration, and finally
once with 16 iterations: this path is inconsistent with the
program semantics.

The only possible explicit path for this program has the
same implicit description but has the following branching
pattern:

(NT− NT− NT− NT− NT− T)×4,

The correct evolution for the prediction counter is given
shown in Figure 6 (b).

4.2 General case

In the general case (a loop with N iterations repeated M
times), the number of mispredictions would be (over-) esti-
mated as (2M +1): the loop would considered as executing
once with two iterations, then (M − 2) times with a single
iteration and finally once with (M(N − 1)) iterations. As
said before, the correct value is (M + 1).

The error comes from how flow information is ex-
pressed. The IPET formulation of the problem specifies
that the edge that enters the inner loop is executed at most
M × N times. This does not completely reflects the pro-
gram semantics because the maximum number of iterations
for each execution of the loop (i.e. N) is not specified.
This missing parameter lets the ILP solver finding an in-
feasible path. Similar observations were mentioned for in-
struction cache analysis in [14]. However, the problem is
more complex for branch prediction because it not possi-
ble to establish a direct link between paths in the CFG and
transitions in the prediction counter finite-state automaton.
In the next section, we show how additional constraints in
the ILP model can control the branch predictor behavior for
repeated loops.

4

5 Enforcing valid execution patterns for
nested loops

5.1 Extended model

In [14], the worst-case miss rate for an instruction cache
is evaluated by considering the possible states of cache
lines. The state of a given cache line is the memory block
it contains at some point of the program. The way this state
changes is expressed by a Cache Conflict Graph (CCG). To
some extent, a CCG plays the same role as the branch pre-
diction counter automaton (shown in Figure 3). However,
every edge in a CCG can be related to one path in the Con-
trol Flow Graph because each node of the CCG is related to
a part of the code, i.e. to a node in the CFG. On the contrary,
nodes in the branch prediction automaton do not stand for
code parts and an edge in this automaton might correspond
to several control flows.

To illustrate this, let us consider the transition from state
10 to state 01. This transition can be fired either when the
loop is entered (i.e. after block b2 has been executed) or
when it iterates (i.e. after b4). Then it is not possible to
directly bound the execution count of this transition (x10

i
0→

)
to the execution counts of blocks b2 and b4 (this was the
solution proposed in [14]).

In the case of a branch predictor, if a loop iterates at most
N times, the prediction counter cannot fall into the 00 state
more than N times it leaves this state. This guarantees that
no more than N iterations are considered for each execu-
tion of the loop. This can be expressed by this additional
constraint:

x01

i
0→

+ x00

i
0→

+ x00
⇒i ≤ N × (

x00

i
1→

+ x00

i
1⇒

)

This constraint applies to any loop with an upper-
bounded number of iterations (which means that the effec-
tive number of iterations for one execution of the loop might
range from 0 to N). This includes triangular loops where
the number of executions of the inner loop depends on the
value of the iteration counter of the outer loop.

This kind of constraint has to be generated for every
block identified as controlling a loop. In the next section,
we will give an overview of how the blocks that control
loops can be identified from the CFG.

Considering the anomaly in the misprediction counts
pointed out in this article, this constraint eliminates from
the analysis some infeasible explicit paths related to valid
implicit path. This is likely to tighten the WCET estima-
tion.

5.2 Detecting loop-control blocks

As said before, integrating branch prediction into the
IPET model makes it possible to consider various loop con-

structs. Our model fits different loop patterns (control at
the beginning or at the end of the loop, exit of the loop ei-
ther with a taken or not taken branch) as well as loops with
multiple exits (however, to save room, we only describe the
constraints for loops with a single exit).

This makes it necessary to identify in the CFG the blocks
that contain a loop branch. Our algorithm implements pre-
dominance analysis to build sets of blocks that belong to a
same loop. Then it searches, in each set, the block that has
a successor out of the set: this block is the one that controls
the loop and the direction of the branch to exit the loop is
determined.

Once the block bctrl that controls a loop has been iden-
tified, the number of executions of the loop is x

ctrl
1→ (pro-

vided the loop is exited when the branch is taken).

5.3 Experimental results

We have made some experiments to measure the im-
provement due to refined branch prediction modeling. We
have considered four benchmarks from the SNU suite [3].
The Control Flow Graphs of the programs were extracted
and analyzed to identify the blocks that control loops us-
ing the OTAWA tool [7]. The block execution times were
obtained using a cycle-level simulator that models a su-
perscalar out-of-order processor and was developed in our
team. Finally, the specification of the ILP problem for
WCET calculation (i.e. the objective function and the struc-
tural and flow constraints) was produced by a perl script.
We used lp_solve to solve the problem.

To estimate the impact of the infeasible paths on the cal-
culated WCET, we have analyzed the benchmarks with both
models: the earlier one, and the extended one proposed in
this paper. Results are given in Table 1.

benchmark old WCET new WCET
matmul 3,246 3,078
ludcmp 11,411 11,201

insertsort 2,012 1,976
crc 211,628 210,098

Table 1. Estimated WCET.

It can be observed that the extended model gives tighter
WCETs for all of the benchmarks we have tested. The im-
provement ranges from 0.72% to 5.17%. In every case, the
earlier model over-estimates the number of branch mispre-
dictions and then accounts for superfluous penalties.

6. Conclusion

Modeling advanced processor features using Integer Lin-
ear Programming and integrating the model to WCET esti-
mation by IPET has several advantages: most of the loop

5

patterns can be analyzed, per-branch misprediction penal-
ties can be accounted for, conditional structures are natu-
rally analyzed. However, considering implicit paths is not
sufficient to analyze schemes that behave according to the
execution history. In the case of nested loops, cache miss or
branch misprediction counts are overestimated because they
are maximized for infeasible explicit paths. To get round
this difficulty, we propose an extension to the branch pre-
dictor model. Experimental results show that the obtained
WCET is tighter.

References

[1] I. Bate and R. Reutemann. Worst-Case Execution
Time Analysis for Dynamic Branch Predictors. In
16th Euromicro Conference on Real-Time systems,
2004.

[2] I. Bate and R. Reutemann. Efficient Integration of Bi-
modal Branch Prediction and Pipeline Analysis. In
IEEE Conference on Real-Time Computing Systems
and Applications, 2005.

[3] SNU benchmark suite.
http://archi.snu.ac.kr/realtime/benchmark/.

[4] C. Burguière and C. Rochange. A Contribution to
Branch Prediction Modeling in WCET Analysis. In
Conference on Design, Automation and Test in Europe
(DATE), 2005.

[5] C. Burguière and C. Rochange. Modélisation d’un
prédicteur de branchement bimodal dans le calcul du
WCET par la méthode IPET. In 13th International
Conference on Real-Time Systems, 2005.

[6] C. Burguière, C. Rochange, and P. Sainrat. A Case
for Static Branch Prediction in Real-Time Systems.
In IEEE Conference on Real-Time Computing Systems
and Applications, 2005.

[7] H. Cassé and P. Sainrat. OTAWA, a Framework for Ex-
perimenting WCET Computations. In 3rd European
Congress on Embedded Real-Time Software, 2006.

[8] A. Colin and I. Puaut. Worst-Case Execution Time
Analysis for Processors with Branch Prediction. Real-
Time Systems, 18(2-3), 2000.

[9] M. Delvai, W. Huber, P. Puschner, and A. Steininger.
Processor Support for Temporal Predictability - The
SPEAR Design Example. In Euromicro Conference
on Real-Time Systems, 2003.

[10] J. Engblom, A. Ermedahl, M. Sjödin, J. Gustafsson,
and H. Hansson. Towards Industry-Strength Worst-
Case Execution Time Analysis. Technical Report
99/02, ASTEC, 1999.

[11] C. Healy, R. Arnold, F. Muller, D. Whalley, and
M. Harmon. Bounding Pipeline and Instruction Cache
Performance. IEEE Transactions on Computers,
48(1), 1999.

[12] X. Li, T. Mitra, and A. Roychoudhury. Modeling Con-
trol Speculation for Timing Analysis. Real-Time Sys-
tems, 29(1), 2005.

[13] Y.-T. Li and S. Malik. Performance Analysis of Em-
bedded Software using Implicit Path Enumeration.
ACM SIGPLAN Notices, 30(11), 1995.

[14] Y.-T. Li, S. Malik, and A. Wolfe. Efficient Microar-
chitecture Modeling and Path Analysis for Real-Time
Software. In IEEE Real-Time Systems Symposium,
1997.

[15] S.-S. Lim, S. Min, M. Lee, C. Park, H. Shin, and C. S.
Kim. An Accurate Instruction Cache Analysis Tech-
nique for Real-Time Systems. In Workshop on Archi-
tectures for Real-Time Applications, 1994.

[16] T. Lundqvist and P. Stenström. An Integrated Path
and Timing Analysis Method based on Cycle-Level
Symbolic Execution. Real-Time Systems, 17(2), 1999.

[17] P. Puschner and C. Koza. Calculating the Maximum
Execution Time of Real-Time Programs. Real-Time
Systems, 1(2), 1989.

[18] J. Smith. A Study of Branch Prediction Strategies. In
8th International Symposium on Computer Architec-
ture, 1982.

6

Loop Nest Splitting for WCET-Optimization and Predictability Improvement ∗

Heiko Falk Martin Schwarzer

University of Dortmund, Computer Science 12, D - 44221 Dortmund, Germany
Heiko.Falk| Martin.Schwarzer@udo.edu

Abstract
This paper presents the influence of the loop nest split-

ting source code optimization on the worst-case execution
time (WCET). Loop nest splitting minimizes the number of
executed if-statements in loop nests of embedded multime-
dia applications. It identifies iterations of a loop nest where
all if-statements are satisfied and splits the loop nest such
that if-statements are not executed at all for large parts of
the loop nest’s iteration space.

Especially loops and if-statements of high-level lan-
guages are an inherent source of unpredictability and loss of
precision for WCET analysis. This is caused by the fact that
it is difficult to obtain safe and tight worst-case estimates
of an application’s flow of control through these high-level
constructs. In addition, the corresponding control flow redi-
rections expressed at the assembly level reduce predictabil-
ity even more due to the complex pipeline and branch pre-
diction behavior of modern embedded processors.

The analysis techniques for loop nest splitting are based
on precise mathematical models combined with genetic al-
gorithms. On the one hand, these techniques achieve a sig-
nificantly more homogeneous structure of the control flow.
On the other hand, the precision of our analyses leads to the
generation of very accurate high-level flow facts for loops
and if-statements. The application of our implemented al-
gorithms to three real-life multimedia benchmarks leads to
average speed-ups by 25.0% – 30.1%, while WCET is re-
duced between 34.0% and 36.3%.

1. Introduction
In contrast to general-purpose systems, embedded sys-

tems often have to meet real-time constraints. The correct-
ness of a real-time system depends not only on the logical
result of the computation, but also on the time at which the
results are produced. Besides the criticality of safeness of
real-time systems, the market demands high performance,
energy efficient and low cost products. Without knowledge
about the worst-case timing of a real-time application, the
designer tends to use oversized hardware in order to guar-
antee the safeness of the real-time system.

In recent years, the real-time behavior of embedded mul-
timedia applications (e. g. medical image processing, video
compression) with simultaneous consideration of power ef-
ficiency has become a crucial issue. Many of these applica-
tions are data-dominated using large amounts of data mem-
ory. Typically, such applications consist of deeply nested
for-loops. The main algorithm is usually located in the in-
nermost loop. Often, such an algorithm treats particular
parts of its data specifically, e. g. an image border requires
other manipulations than its center. This boundary checking

∗This work is partially funded by the European IST FP6 Network of
Excellence ARTIST2.

for (x=0; x<36; x++) { x1=4 * x;
for (y=0; y<49; y++) { y1=4 * y; / * y loop * /

for (k=0; k<9; k++) { x2=x1+k-4;
for (l=0; l<9; l++) { y2=y1+l-4;

for (i=0; i<4; i++) { x3=x1+i; x4=x2+i;
for (j=0; j<4; j++) { y3=y1+j; y4=y2+j;

if (x3<0 || 35<x3 || y3<0 || 48<y3)
then block 1; else else block 1;

if (x4<0 || 35<x4 || y4<0 || 48<y4)
then block 2; else else block 2; }}}}}}

Figure 1. A typical Loop Nest (from MPEG 4)

is implemented usingif-statements in the innermost loop
(see e. g. Figure 1, an MPEG 4 full search motion estima-
tion kernel [9]).

This code fragment has several properties making it sub-
optimal w. r. t. worst- and average-case execution time
(ACET). First, the if-statements lead to a very irregular
control flow. Any jump instruction in a machine program
causes a control hazard for pipelined processors [13]. This
means that the pipeline needs to be stalled for some instruc-
tion cycles, so as to prevent the execution of incorrectly
prefetched instructions. WCET analysis is faced with the
problem to estimate whether a jump is taken or not. The
worst-case influence of this decision on pipeline and branch
prediction behavior needs to be taken into account. Since it
is very difficult to predict these control flow modifications
accurately, resulting WCETs tend to become imprecise the
more irregular the control flow is.

In addition, the way how conditions are expressed within
if-statements may also have a negative impact on WCET. If
conditions are connected using the logical and / or operators
of ANSI-C [10], they are evaluated lazily. For example, ex-
pressione2 of the conditione1 || e2 is not evaluated if
e1 already evaluates to true. Hence, each occurrence of the
|| and&& operators implies hidden control flow modifica-
tions having a negative influence on WCET. This source of
unpredictability caused by theif-statements becomes even
more severe if theif-statements are located in the heart of
a loop nest as depicted in Figure 1. Here, WCET analysis
has to multiply the overestimated data computed for theif-
statements with the possibly also overestimated number of
loop iterations, leading to even more imprecise estimates.

Considering the example shown in Figure 1, loop nest
splitting is able to detect that
• the conditionsx3<0 andy3<0 are never true,
• bothif-statements are true forx ≥ 10 ory ≥ 14.

Information of the first type is used to detect conditions
not having any influence on the control flow of an applica-
tion. This kind of redundant code (which is not typical dead
code, since the results of these conditions are used within
theif-statement) can be removed from the code, thus reduc-
ing sources of unpredictability during WCET analysis of a
program.

ECRTS 2006
6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2006/674

for (x=0; x<36; x++) { x1=4 * x;
for (y=0; y<49; y++)

if (x>=10 || y>=14) / * Splitting-If * /
for (; y<49; y++) / * Second y loop * /

for (k=0; k<9; k++)
... / * l- & i-loop omitted * /

for (j=0; j<4; j++) {
then block 1; then block 2; }

else { y1=4 * y;
for (k=0; k<9; k++) { x2=x1+k-4;

... / * l- & i-loop omitted * /
for (j=0; j<4; j++) { y3=y1+j; y4=y2+j;

if (0 || 35<x3 || 0 || 48<y3)
then block 1; else else block 1;

if (x4<0 || 35<x4 || y4<0 || 48<y4)
then block 2; else else block 2; }}}}}}

Figure 2. Loop Nest after Splitting

Using the second information, the entire loop nest can be
rewritten so that the total number of executedif-statements
is minimized (see Figure 2). In order to achieve this, a new
if-statement (thesplitting-if) is inserted in they loop testing
the conditionx≥10 || y ≥14. The else-part of this new
if-statement is an exact copy of the body of the originaly

loop shown in Figure 1. Since allif-statements are fulfilled
when the splitting-if is true, thethen-part consists of the
body of they loop without anyif-statements and associated
else-blocks. To minimize executions of the splitting-if for
values ofy ≥ 14, a secondy loop is inserted in thethen-part
counting from the current value ofy to the upper bound 48.
The correctly transformed code is illustrated in Figure 2.

As shown by this example, our technique is able to gen-
erate a very homogeneous control flow in the hot-spots of
an application. Furthermore, the algorithms briefly summa-
rized in this paper enable the generation of precise high-
level flow facts for WCET analysis. This paper evalu-
ates the effect of loop nest splitting on the WCET of se-
lected real-life benchmarks. Loop nest splitting is done by
automatically transforming ANSI-C source codes. These
source codes are then compiled for the ARM7 processor.
WCET analysis for the resulting executable programs is fi-
nally done using the aiT WCET analyzer.

Section 2 of this paper gives a survey of related work.
Section 3 presents the analyses and optimizations of of loop
nest splitting. Section 4 describes the benchmarking results,
and Section 5 summarizes and concludes this paper.

2. Related Work
Loop transformations have been described in literature

on compiler design for many years (see e. g. [2, 13]) and are
often integrated into today’s optimizing compilers. Classi-
cal loop splitting(or loop distribution/ fission) creates sev-
eral loops out of an original one and distributes the state-
ments of the original loop body among all new loops. The
main goal of this optimization is to enable the paralleliza-
tion of a loop due to fewer data dependencies [2] and to
possibly improve I-cache performance due to smaller loop
bodies. The impact of this optimization on WCET has not
yet been studied.

Loop unswitchingis applied to loops containing loop-
invariantif-statements [13]. The loop is then replicated in-
side each branch of theif-statement, reducing the branching
overhead and decreasing code sizes of the loops [2]. The
goals of loop unswitching and the way how the optimiza-
tion is expressed are equivalent to the topics of Section 1.
But the fact that theif-statements must not depend on index

variables makes loop unswitching unsuitable for multime-
dia programs. The fact that only loop-invariant conditions
are considered implies that no valuable flow facts for WCET
analysis are generated during this optimization.

In [12], classical loop splitting is applied together with
function call insertion at the source code level to improve I-
cache performance. After the application of loop splitting, a
large reduction of I-cache misses is reported for one bench-
mark. All other parameters (instruction and data memory
accesses, D-cache misses) are worse after the transforma-
tion. All results are generated with cache simulation soft-
ware which is known to be imprecise, and the WCETs and
ACETs of the benchmark are not considered at all.

This survey of related work shows that loop optimiza-
tions typically aim at improving temporal or spatial local-
ity of caches and thus focus on ACET reduction. The in-
fluence of loop optimizations on WCET has not yet been
studied thoroughly. Loop nest splitting was originally pre-
sented in [6, 8]. However, these original publications solely
concentrated on the optimization of average-case execution
time and energy dissipation. The impact of the optimization
on WCET was not yet taken into account. Furthermore, all
control-flow related data computed during the optimization
process was discarded after loop nest splitting and was not
used during subsequent optimization or analysis steps.

3. Analysis and Optimization Algorithm

Structural C
Code Analysis

Source Code
Transformation

Relevant Polytopes

Polytopes for Conditions

Condition
Satisfiability

Section 3.1

Global Search Space
Construction

Section 3.3

Optimized Polytopes

Condition
Optimization

Section 3.2

Global Search Space

Result Polytope

Global Search Space
Exploration

Section 3.4

Transformed ANSI-C Program

for(x=0;x<36;x++){

x1=4*x;

for(y=0;y<49;y++)

if(x>=10 || y>=14)

for(;y<49;y++)

for(k=0;k<9;k++)...

else{

y1=4*y;...

}}

for(z=0;z<20;z++)

for(x=0;x<36;x++){

x1=4*x;

for(y=0;y<49;y++){

y1=4*y;

for(k=0;k<9;k++){

x2=x1+k-4;

for(l=0;l<0;l++)...

}}}

Original ANSI-C Program

Figure 3. Design Flow of Loop Nest Splitting

Figure 3 gives an overview over the techniques required
for loop nest splitting. As can be seen from this figure,
loop nest splitting relies on polyhedral models in order
to represent loop nests andif-statements. Polyhedra and

2

polytopes are defined as follows:

Definition:
1. P = {x ∈ Z

N | Ax = a, Bx ≥ b} is called apolyhe-
dron for A, B ∈ Z

m×N anda, b ∈ Z
m andm ∈ N.

2. A polyhedronP is called apolytope, if |P | < ∞.

Since polyhedra are systems of linear inequations, loop
nest splitting requires loop bounds and conditions ofif-
statements to be affine expressions depending on the loops’
index variables. For a given loop nestΛ = {L1, . . . , LN}
where each loopLl is characterized by its index variable
il and lower / upper boundslbl andubl, loop nest splitting
computes valueslb ′

l andub ′
l for every loopLl ∈ Λ with

• lb ′
l ≥ lbl andub ′

l ≤ ubl, i. e. the computed values
must lie within the loop bounds,

• all loop-variantif-statements inΛ are satisfied for all
values of the index variablesil with lb ′

l ≤ il ≤ ub ′
l,• loop nest splitting by all valueslb ′

l andub ′
l leads to the

minimization ofif-statement execution.

The valueslb ′
l andub ′

l are used for the construction of the
splitting if-statement. The individual steps carried out dur-
ing loop nest splitting as shown in Figure 3 are briefly de-
scribed in Section 3.1 (cf. also [7] for a more in-depth de-
scription). Section 3.2 deals with the automatic generation
of high-level flow facts during loop nest splitting.

3.1. Workflow of Loop Nest Splitting
Since the analyses of loop nest splitting require that the

source code to be optimized meets some preconditions,
these requirements are checked in the very beginning. Dur-
ing this phase labeled “Structural C Code Analysis” in Fig-
ure 3, only suitable loop nests andif-statements having
affine bounds and conditions are extracted from the source
code. The output of this phase consists of a set of polytopes,
each of them representing a single condition occurring in
the source code. The core optimization algorithm consists
of four sequentially executed tasks that are illustrated as a
shaded region in Figure 3. In the beginning, all conditions
in a loop nest are analyzed separately without considering
any inter-dependencies among them.

First, it is detected if conditions ever evaluate to true or
not (“Condition Satisfiability”). For example, the two con-
ditionsx3<0 andy3<0 are eliminated from the code shown
in Figure 1, since they are provably false during each loop
nest iteration and are thus represented by empty polytopes.

Second, all satisfiable conditions are analyzed and an
optimized search space for each condition is constructed
(”Condition Optimization”). This means, that a polytope
P representing an original conditionC is replaced by an
optimized polytopeP ′ modeling a conditionC′ such that
C′ ⇒ C holds. The goal is to generateP ′ in such a way
thatC′ is significantly simpler thanC. For example, con-
dition optimization detects thatC′ = x >= 10 implies
C = 4* x + k + i >= 40 for the loops of Figure 1.

In a third step, all polytopesP ′ generated during con-
dition optimization are combined to form a global search
spaceG (“Global Search Space Construction”). This stage
is motivated by the fact that the previous phases only con-
sidered single conditions of entireif-statements in isolation.
In order to determine value ranges of the loop index vari-
ables, for which allif-statements in a loop nest are true,

all P ′ need to be combined using intersection and union
of polytopes according to the structure of allif-statements.

Finally, this global search spaceG has to be explored
leading to the optimized result for loop nest splitting
(“Global Search Space Exploration”). Basically, this phase
selects a subset of constraints defining the global search
spaceG in order to build a final polytopeR representing
the splittingif-statement. For the code shown in Figure 1,
the outcome of the global search space exploration is the
polytopeR = {x ≥ 10} ∪ {y ≥ 14}.

The resultR of global search space exploration is finally
used to rewrite a loop nest (“Source Code Transformation”).
For this purpose, the splittingif-statement has to be gener-
ated and inserted in the loop nest. Itsthen- andelse-parts
are created by replicating parts of the original loop nest.

3.2. Flow Fact Generation
Since the major part of the execution time of a program

is spent in loops, the iteration counts play an important role
for WCET estimation. Hence, it is crucial to pass precise in-
formation about the number of loop iterations to the WCET
analyzer in order to obtain safe and accurate WCET bounds.
As already stated in the previous section, polytopes are used
to model conditions and loops. Since polytopes are repre-
sented by linear inequations, the bounds of a loopLl neces-
sarily have to be affine expressions of the surrounding loops
for loop nest splitting. An outermost loopL1 is not sur-
rounded by any other loop so that its boundslb1 andub1

are required to be constant. This way, it is ensured that the
loop’s iterations are allowed to be non-constant but still are
fully analyzable at compile time.

During loop nest splitting, polytopes are generated mod-
eling the loop currently under analysis. This is done
straightforward by defining affine constraints for the lower
and upper bounds of the loop itself and for all surrounding
loops. In the resulting polytope, each integral point repre-
sents a single execution of the current loop body for one
actual assignment of values to the loops’ index variables.
By counting the number of integral points of these poly-
topes, the total number of executions of the loop body can
be determined exactly. For this purpose, so-calledEhrhart
polynomials[4] are applied to the polytopes.

Example: For the l -loop shown in Figure 1, a polytope hav-
ing the constraints0 <= x < 36 , 0 <= y < 49 , 0 <= k < 9 and
0 <= l < 9 would be generated. This polytope contains 142,884
points. Hence, the body of thel -loop is executed as many times
within the entire loop nest.

This number of integral points is used to generate flow
facts for WCET analysis that exactly specify the number of
executions of a loop body compared to the code lying out-
side the outermost loopL1. In the case of the aiT WCET an-
alyzer [1] used throughout this work, annotations likeflow

0x40007c / 0x40002e is exactly 142884; are cre-
ated, where the given addresses represent the basic blocks
lying inside the current loop and outside the outermost loop,
respectively.

In addition, more annotations concerning the splitting-if
generated after global search space exploration can be pro-
vided to aiT. As already mentioned in Section 3.1, the final
solution of loop nest splitting is a polytopeR which is used
to generate the splitting-if. The computation of the size of
R using Ehrhart polynomials leads to the actual number of

3

ARM7 ARM-Mode ARM7 THUMB-Mode

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

WCET ACET WCET ACET

CAVITY ME QSDPCM Average

Figure 4. Relative WCETs and ACETs after Loop Nest Splitting

loop iterations for which the splitting-if provably is true.
Since all loops are fully analyzable at compile time, the
number of iterations for which the splitting-if is not true
can also be computed. These two values are used to gener-
ate additionalflow annotations for aiT precisely modeling
the control flow structures resulting from loop nest splitting.

4. Evaluation

In this section, the impact of loop nest splitting on
WCET is evaluated. For this purpose, the benchmarking
workflow is presented in Section 4.1. Benchmarking results
are given in Section 4.2.

4.1. Benchmarking Methodology
The techniques presented in Section 3 are fully im-

plemented using the SUIF [16], Polylib [15] and PGA-
Pack [11] libraries. Both GAs use the default parameters
provided by [11] (population size 100, replacement frac-
tion 50%, 1,000 iterations). Our tool was applied to three
multimedia programs. First, a medical tomography image
processor (CAVITY[3]) is used. The second benchmark is
an MPEG 4 full search motion estimation (ME [9], see Sec-
tion 1), and the QSDPCM algorithm [14] for scene adaptive
coding serves as third benchmark.

Since all polyhedral operations used [15] have exponen-
tial worst case complexity, loop nest splitting as a whole
also has exponential complexity. Nevertheless, the effective
runtimes of our tool are very low, only a maximum of 1.58
CPU seconds (CAVITY) are required for optimization on
an AMD Athlon running at 1.3 GHz.

In order to quantify the influence of loop nest splitting
on the WCET of the benchmarks, we considered an ARM7
based processor architecture. The ARM7 is a dual instruc-
tion set CPU having a 32-bit wide ARM instruction set and
a 16-bit THUMB instruction set. For both instruction sets,
the native ARM compilersarmccandtccwere used to gen-
erate executable code from the benchmark’s source codes.
Both compilers are always invoked with all optimizations
enabled so that highly optimized code is generated.

In a first step, the source codes were compiled for both
instruction sets without loop nest splitting being applied.
The resulting executables were passed to AbsInt’s WCET
analyzer aiT [1] for the ARM7 to obtain the WCETs be-
fore our optimization. In addition to the binary executable,
a specification file containing the exact number of loop it-
erations is also provided to aiT. In parallel, the same exe-
cutables were processed by the cycle-true native ARM sim-
ulator. These simulations used typical input data for the
benchmarks and the resulting cycle counts are considered

as the ACETs of the benchmarks in the following.
In a second step, the source codes were optimized us-

ing our tool for loop nest splitting. The resulting optimized
source codes were processed in the same way as described
in the previous paragraph, leading to the corresponding
WCETs and ACETs after loop nest splitting. For WCET
analysis of the optimized codes, a specification file contain-
ing theflow annotations for loop bodies and the splitting-if
(cf. Section 3.2) is also provided.

4.2. Benchmarking Results

WCET and ACET
Figure 4 shows the effects of loop nest splitting on the
WCET and ACET of the benchmarks for the ARM7 using
both the ARM and the THUMB instruction sets. The figure
shows the corresponding values for the optimized bench-
marks as a percentage of the unoptimized versions denoted
as 100%.

As can be seen from this figure, loop nest splitting is able
to reduce both ACET and WCET significantly. Concern-
ing ACET, improvements between 6.4% (QSDPCM) and
54.8% (ME) were measured for the ARM instruction set.
Similarly, ACET is reduced between 11.5% (QSDPCM)
and up to 59.4% (ME) using THUMB instructions. On av-
erage for all considered benchmarks, ACET is reduced be-
tween 25.0% (ARM) and 30.1% (THUMB). These numbers
clearly demonstrate that the generation of a homogeneous
control flow within loop nests leads to increased average
performance since a large amount of code located in the in-
nermost loops before our optimization is eliminated.

However, Figure 4 also shows that the WCET reductions
achieved after loop nest splitting have a similar order of
magnitude. Here, the gains reach from 4.4% (QSDPCM)
up to 86.5% (ME) when using 32-bit wide instructions. For
the 16-bit THUMB instruction set, reductions of WCET
between 9.6% (QSDPCM) and even 89.0% (ME) were re-
ported by aiT. On average over all benchmarks, the reduc-
tions of WCET achieved by loop nest splitting are signifi-
cantly larger than the corresponding ACET reductions. In
terms of WCET, average improvements of 34.0% (ARM)
and 36.3% (THUMB) can be reported.

Despite the fact that WCET is reduced more than ACET,
Figure 4 does not show an invalid WCET underestimation.
This is due to the fact that Figure 4 presents all results just as
a percentage of the WCETs and ACETs of the unoptimized
benchmarks. This way, it is legal to reduce WCET by 89%
and ACET by just 59%. For all results presented in this
paper, the estimated absolute WCETs are correct and safe
and are larger than the corresponding absolute ACETs.

4

100%

1000%

10000%

100000%

1000000%
CAVITY ME QSDPCM Average

ARM7 ARM-Mode ARM7 THUMB-Mode

Figure 5. Relative WCETs after Loop Nest
Splitting without Flow Annotations

Of course, these differences in the average WCET and
ACET values are caused by the enormous improvements
of WCET for the ME benchmark. For the two other
benchmarks (CAVITY and QSDPCM), the WCET reduc-
tion scales with the corresponding ACET improvements.
This behavior shows that the achievable gains in terms of
WCET also depend on the overall structure of the unopti-
mized benchmark’s code.

For example, both ME and QSDPCM have a simi-
lar structure like that shown in Figure 1. The difference
between both benchmarks leading to the varying WCET
reductions is the structure of the code blocks executed
conditionally by virtue of theif-statements. For ME,
then block 1 and then block 2 just contain the as-
signment of a constant to a variable, whereas bothelse -
blocks contain very complex array accesses and address
computations. Since these address computations invoke in-
teger divisions and modulo computations, this code leads to
the generation of calls to runtime libraries. For QSDPCM,
the situation is vice versa – here, thethen-blocks are more
complex than theelse-blocks.

This slight difference has the effect that for the unopti-
mized ME, the WCET path passes through theelse-parts
of the if-statements, whereas it lies on thethen-parts for
QSDPCM. After loop nest splitting, the new WCET path
traverses thethen-part of the splitting-if for both bench-
marks. For ME, the innermost loop of thisthen-part now
just contains the assignments of constants. Thus, the new
WCET path of ME after loop nest splitting does no longer
contain the costly address computations mentioned above,
leading to the very high gains reported in this section. In the
case of QSDPCM, the innermost loop of thethen-part of the
splitting-if still contains the complex address computations
after loop nest splitting. As a consequence, this complex
code still lies on the WCET path so that the gains in terms
of WCET are not as high as compared to ME.

Impact of Flow Facts on WCET
The benefits of the flow facts extracted during loop nest
splitting for WCET analysis are depicted in Figure 5. This
diagram shows the WCETs resulting from the analysis of
the benchmarks after loop nest splitting, but without pro-
viding aiT with the flow annotations precisely describing
the splitting-if (cf. Section 3.2). Results are presented in
a relative way such that the 100% baseline represents the
WCETs before loop nest splitting.

As can be seen, the flow facts computed during global

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

130%
CAVITY ME QSDPCM Average

ARM7 ARM-Mode ARM7 THUMB-Mode

Figure 6. Relative Code Sizes after Loop Nest
Splitting

search space exploration are essential for a successful
WCET minimization after loop nest splitting. Without
this information, aiT is unable to compute precise WCETs
from the optimized control flow structures. For all bench-
marks, the WCETs without flow facts are worse than
WCETs before any optimization being applied. For the ME
benchmark, the degradations of WCET range between 4%
(THUMB) and 231% (ARM). For QSDPCM, WCET re-
sults without flow facts are even worse. Here, increases
between 743% and 767% compared to the WCETs of
the unoptimized benchmarks were measured. The highest
WCETs were computed for CAVITY. For this benchmark,
WCETs increase between 113,031% (ARM) and 113,953%
(THUMB) if aiT is not provided with the flow facts gener-
ated by loop nest splitting.

Code Size
Since code is replicated, loop nest splitting obviously en-
tails a certain increase in code size that we do not want
to neglect. However, Figure 6 shows that these increases
are within small bounds. In order to measure code sizes,
the size of the text sections in bytes was extracted from
the ELF binaries of the benchmarks before and after loop
nest splitting. For CAVITY, code size increases range be-
tween 19.9% (ARM) and 15.9% (THUMB). Although the
ME benchmark is accelerated most, its code enlarges least.
Increases of just 5.8% (ARM) and 8.1% (THUMB) were
measured. Finally, the code of QSDPCM enlarges between
7.9% (ARM) and 10.5% (THUMB). On average over all
benchmarks, code size increases of just 11.2% (ARM) and
11.5% (THUMB) were measured.

For fine tuned embedded systems with hard constraints
on both worst-case execution time and code size, code size
increases might potentially be a severe drawback. However,
loop nest splitting offers inherent opportunities for solv-
ing this problem since it is perfectly suited for trading off
WCET with code size increases.

As depicted in Figure 2, loop nest splitting generates a
splitting-if like if (x >= 10 || y >= 14) and places it
in the y-loop, since this is the innermost loop of the entire
loop nest the splitting-if directly depends on. Within the
splitting-if, the remaining loop nest consisting of thek-, l -,
i - and j -loop can be found. Since the splitting-if does not
depend on index variables of this remaining loop nest by
definition, it is always legal to place the splitting-if in any
of these loops. This way, the portions of code replicated
during loop nest splitting become smaller on the one hand.

5

100%

101%

102%

103%

104%

105%

106%

107%

108%

109%

110%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 110% 120%

Relative WCET

R
e

la
ti

v
e

C
o

d
e

S
iz

e

y

y
vx

l
k y4

x4

vy

ji

Figure 7. Possible WCET / Code Size Trade-Offs for Loop Nest Splitting

On the other hand, it can be expected that less improve-
ments of WCET will be achieved since moreif-statements
are executed, leading to the mentioned trade-off.

Figure 7 shows the corresponding Pareto curves for the
ME and QSDPCM benchmarks. The x-axis denotes the rel-
ative WCETs of the benchmarks, whereas the y-axis shows
the corresponding relative code sizes (100% = unoptimized
code version). Each point is labeled with the loop in which
the splitting-if is placed. The code versions used to generate
all previously presented results are marked withy (ME and
QSDPCM). As expected, they lead to the lowest WCETs
and entail the highest code size increases. In contrast, code
versionsj (ME) and y4 (QSDPCM) are the slowest but
smallest ones. In between these two extremal points, other
interesting solutions for loop nest splitting can be found.

These experiments show that it is worthwhile to study
possible trade-offs when applying loop nest splitting under
tight code size constraints. A more systematic study than
that presented here resulting in an automated approach to
explore WCET / size trade-offs is part of the future work.

5. Conclusions
This paper puts the previously presented source code op-

timization loop nest splitting in the context of WCET. Loop
nest splitting removes redundancies in the control flow of
embedded multimedia applications. Using polytope mod-
els, conditions having no effect on the control flow are re-
moved. Genetic algorithms identify ranges of the iteration
space where allif-statements are provably satisfied. The
source code of an application is rewritten in such a way that
the total number of executedif-statements is minimized.

It has turned out that loop nest splitting is highly bene-
ficial for WCET optimization. This is due to the fact that
the quality of WCET analysis inherently depends on a pre-
cise description of the control flow of an application un-
der analysis. On the one hand, precise high-level flow facts
representing e. g. loop iterations have to be provided. On
the other hand, assembly-level jumps modifying the control
flow are hard to analyze since the conditions under which
a jump is taken or not are difficult to analyze resulting in
imprecise worst-case assumptions.

The benefits of loop nest splitting on WCET are twofold.
First, the optimization by itself produces a very linear and
homogeneous control flow in the hot-spots of an appli-
cation. As a consequence, the potential for applying the
imprecise worst-case assumptions mentioned above during
WCET analysis of the time-critical parts of a code is heav-
ily reduced. Second, loop nest splitting inherently computes
execution frequencies of all relevant control flow constructs

during its analyses. These execution frequencies can di-
rectly be used to formulate precise loop and flow annota-
tions for the WCET analyzer.

The results presented in this paper underline the effec-
tiveness of loop nest splitting. In terms of average-case ex-
ecution times, it achieves improvements between 25.0% –
30.1%. However, even larger average gains are reported
in terms of WCET. Here, reductions between 34.0% and
36.3% were measured for an ARM7 based processor.

In the future, we intend to integrate loop nest splitting
into our WCET-aware C compiler [5]. Due to its multi-
objective capabilities, it is perfectly suited to systematically
explore the WCET / size trade-offs of loop nest splitting.

Acknowledgments
The authors would like to thank AbsInt Angewandte In-

formatik GmbH for their support concerning WCET analy-
sis using the aiT framework.

References
[1] AbsInt Angewandte Informatik GmbH. aiT: Worst-Case Execution

Time Analyzers.http://www.absint.com/ait, 2005.
[2] D. F. Bacon, S. L. Graham et al. Compiler Transformations for

High-Performance Computing.ACM Computing Surv., 26(4), 1994.
[3] M. Bister, Y. Taeymans et al. Automatic Segmentation of Cardiac

MR Images.IEEE Journ. on Computers in Cardiology, 1989.
[4] P. Clauss and V. Loechner. Parametric Analysis of polyhedral Iter-

ation Spaces.Journal of VLSI Signal Processing, 19(2), July 1998.
[5] H. Falk and P. Lokuciejewski. Design of a WCET-Aware C Com-

piler. In Proc. of “6th Intl. Workshop on WCET Analysis” (WCET),
Dresden, July 2006.

[6] H. Falk and P. Marwedel. Control Flow driven Splitting of Loop
Nests at the Source Code Level. InProc. of DATE, Munich, Mar.
2003.

[7] H. Falk and P. Marwedel.Source Code Optimization Techniques
for Data Flow Dominated Embedded Software. Kluwer Academic
Publishers, Boston, Oct. 2004.

[8] H. Falk and M. Verma. Combined Data Partitioning and Loop
Nest Splitting for Energy Consumption Minimization. InProc. of
SCOPES, Amsterdam, Sept. 2004.

[9] S. Gupta, M. Miranda et al. Analysis of High-level Address Code
Transformations for Programmable Processors. InProc. of DATE,
Paris, 2000.

[10] B. W. Kernighan and D. M. Ritchie.The C Programming Language.
Prentice Hall, Englewood Cliffs, New Jersey, 1988.

[11] D. Levine.Users Guide to the PGAPack Parallel Genetic Algorithm
Library. Tech. Rep. ANL-95/18, Argonne National Lab., 1996.

[12] N. Liveris, N. D. Zervas et al. A Code Transformation-Based
Methodology for Improving I-Cache Performance of DSP Appli-
cations. InProc. of DATE, Paris, 2002.

[13] S. S. Muchnick.Advanced Compiler Design and Implementation.
Morgan Kaufmann, San Francisco, 1997.

[14] P. Strobach. A new technique in scene adaptive coding. InProc. of
EUSIPCO, Grenoble, 1988.

[15] D. K. Wilde. A Library for doing polyhedral Operations. Tech.
Rep. 785, IRISA Rennes, France, 1993.

[16] R. Wilson, R. French et al. An Overview of the SUIF Compiler
System.http://suif.stanford.edu/suif/suif1, 1995.

6

Abstract
This paper presents PapaBench, a free real-time

benchmark and compares it with the existing benchmark
suites. It is designed to be valuable for experimental
works in WCET computation and may be also useful for
scheduling analysis. This benchmark is based on the
Paparazzi project that represents a real-time application,
developed to be embedded on different Unmanned Aerial
Vehicles (UAV).

In this paper, we explain the transformation process
of Paparazzi applied to obtain the PapaBench. We
provide a high level AADL model, which reflects the
behavior of each system component and their
interactions.

As the source project Paparazzi, PapaBench is
delivered under the GNU license and is freely available
to all researchers. Unlike other usual benchmarks widely
used for WCET computation, this one is based on a real
and complete real-time embedded application.

1. Introduction
When designing a real-time system, it is mandatory to

have a predictable timing of the system. While
underestimating the execution time of tasks may cause
catastrophic disasters especially in critical hard real-time
systems, overestimating the execution time may also
cause an oversizing of the running hardware.

To prove these timing constraints, it is essential to
know the Worst Case Execution Time (WCET) of a
program running on a particular hardware system. The
real-time system designers use it to check the timing
deadlines satisfaction of the tasks while many real-time
operating systems rely on this information to perform
scheduling. Moreover, in embedded system design,
the WCET of the software is often required in order to
decide how to partition hardware / software.

As any piece of software, the WCET computation
needs to be experimented, evaluated and compared.
To achieve this goal, this paper introduces PapaBench, a
real time benchmark, describing a complete embedded
system driving a UAV. Designed to be a valuable base
for experimental work in the WCET computation by
static [1, 2, 3, 4, 5] or dynamic [6] analyses, it may be
also very useful for scheduling analysis of applications
since it provides concrete tasks and interrupts with their
timing constraints and precedence rules. This benchmark
will make experimental results more realistic than
existing WCET benchmarks [7, 8] since the tasks
encountered are close to those running in real avionic

systems.
The rest of this paper is organized as follows.

Section 2 provides a complete description of Paparazzi.
Section 3 presents our PapaBench model in AADL [9,
10], which maps the Paparazzi C sources into a list of
tasks and interrupts. Section 4 describes the PapaBench
genesis, the adaptation to compile this benchmark on
different architecture and the mapping of the application
sources with the AADL model. We compare our
benchmark with existing real-time benchmarks in section
5 and section 6 concludes this paper.

2. The Paparazzi Project
The "Paparazzi" project, created in 2003 by

P. Brisset and A. Drouin [11, 12], is an attempt to build a
cheap fixed-wing autonomous UAV executing a
predefined mission. It develops a complete system
hardware and software that may be installed on a variety
of aircrafts. Such a system has limited autonomies, a 2-
5 kg total aircraft weight, a 25 km maximum flight
distance, a one hour flight duration, a 50 km/h maximum
speed and a 500 g maximum payload.

It comprises an embedded system and a ground
station as shown in Figure 1. The embedded system

consists of a control card, a GPS receiver (μblox SAM-LS
with 16 channels), a two-axis differential infrared sensor,
a radio transmitter and servo-commands controlling gaz
and wings. We have also a list of devices supplying
voltage, pressure, heading and so on.

The control card is designed as a bi-processor
architecture, separating the radio / servo commands
management from the autopilot task, holding two RISC,
ATMEL AVR micro-controllers [13]. MCU1 (ATMega8,
called Fly-By-Wire) features a 16 Mhz / 16 MIPS
processor with 1 Kb SRAM, a 8 Kb flash memory and
512 bytes EEPROM, that manages radio-command orders
and servo-commands. MCU0 (ATMega128, called
Autopilot) provides a 16 MHz / 16 MIPS processor with

1

PapaBench : A Free Real-Time Benchmark
Fadia Nemer, Hugues Cassé, Pascal Sainrat, Jean-Paul Bahsoun and Marianne De Michiel

IRIT - University of Paul Sabatier
F-31062 Toulouse France

{nemer, casse, sainrat, bahsoun, michiel}@irit.fr

Figure 1: Paparazzi

MCU1

Commande

MCU0

Stabilisation
Navigation

Pressure

Energy Alim

Compas

Air Speed

Video Cam

Infrared

GPS

Aircraft

Servos

Counter

Receiver Transmitter

Modem

Radio-Command Video Recorder Laptop

Embedded
System

Ground Station

SPIMCU1

Command

MCU0

Stabilisation
Navigation

Pressure

Energy Alim

Compas

Air Speed

Video Cam

Infrared

GPS

Aircraft

Servos

Counter

Receiver Transmitter

Modem

Radio-Command Video Recorder Laptop

Embedded
System

Ground Station

SPIMCU1

Commande

MCU0

Stabilisation
Navigation

Pressure

Energy Alim

Compas

Air Speed

Video Cam

Infrared

GPS

Aircraft

Servos

Counter

Receiver Transmitter

Modem

Radio-Command Video Recorder Laptop

Embedded
System

Ground Station

SPIMCU1

Command

MCU0

Stabilisation
Navigation

Pressure

Energy Alim

Compas

Air Speed

Video Cam

Infrared

GPS

Aircraft

Servos

Counter

Receiver Transmitter

Modem

Radio-Command Video Recorder Laptop

Embedded
System

Ground Station

SPI

ECRTS 2006
6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2006/678

4 Kb SRAM, 128 Kb flash memory and 4 Kb EEPROM.
It runs the navigation and stabilization tasks of the
aircraft. The micro-controllers are inter-connected by a
SPI serial link in a master (MCU0) / slave (MCU1) mode.

The ground station consists of a usual radio-
command, a radio receiver and a laptop. The audio and
video channels of the receiver are respectively connected
to the laptop and to a video tape recorder. The laptop
receives information about the running mission while a
variety of interfaces visualize the flight parameters, the
flight path and all the messages held by the aircraft.

Although the ground station is largely developed,
we are only interested in the embedded system that
constitutes the core of our benchmark. Indeed, the ground
station software does not exhibit any hard real-time code.

The embedded system has two basic operation
modes: "manual" mode and "automatic" mode. In
"manual" mode, MCU1 receives the radio-command
instructions from the ground station and dispatches them
to MCU0. MCU0 analyses this information, performs the
stabilization and returns the flight commands to the
MCU1 that transmits them to the servos.

On the other hand, in "automatic" mode, MCU0
manages the aircraft navigation using the GPS and the
infrared sensor while MCU1 only receives the flight
commands and transmits them to the servos. In this mode,
the aircraft has a specific mission defined in a high level
language. Thereby, there are three control levels: the
mission, the navigation and the stabilization.

If MCU0, possibly crashed, sends no more commands
and the radio-command is unreachable, the system
switches to the failsafe mode: the engines are stopped and
the aircraft glides to the ground.

In conclusion, Paparazzi is a realistic real-time
embedded system exhibiting a quite complex behavior.
Yet, unlike most equivalent industrial systems, the
sources are freely available.

3. Modeling with AADL
Unlike other WCET benchmarks, PapaBench is close

to actual running systems, rendering the experimentation
results more realistic and making it possible also to
handle real effects of task chaining. In order to cope with
the Paparazzi embedded system, we have first produced
an AADL model describing the whole system. Unlike
other benchmarks, PapaBench is not a collection of
independent programs but provides a full application.
Consequently, we need a way to split it in tasks and to
model the dynamic behavior of the system: AADL is
widely used in avionics field to achieve this goal.

3.1. About AADL

We have decided to depict this application in AADL
(Architecture Analysis and Design Language) because it
is a formal specification of real-time embedded, fault-
tolerant, securely-partitioned, dynamically-configurable
systems. It covers the domain of distributed multiple-
processor hardware architectures as found in avionics,
robotics and automotive.

A system modelled in AADL consists of an
application software mapped to an execution platform.

It describes how components are combined into
subsystems, how they interact and how they are allocated
to hardware components.

AADL has ten basic component's types divided into
three categories: software, hardware and composite. Data,
thread, thread group, process and subprogram constitute
the first category. The hardware category holds
processors, memories, buses and devices. The “system” is
the only composite element.

3.2. AADL Usage

An AADL model depicts the overall application with
an accurate model of the whole embedded system. As
AADL provides a textual and graphical view of the
system, the user can easily understand the internal
application work.
Moreover, the well-defined AADL language and its
openness may be used to perform automatic processing.
For example, different schedules may be generated from
the description: in our experimentation, we plan to use
CHEDDAR [14] for this task. In particular, we plan to
use the scheduling results and the AADL model of the
application to analyse the WCET of a whole application
running cycle. This analysis may be used to evaluate the
full system workload or to handle hardware dependencies
between tasks in order to improve the WCET accuracy.

Finally, although the model is based on a real
application and while we do not perform functional
simulation, we have some freedom to change it according
to our experimentation needs. We may add / delete
components, change components properties and / or add
new properties to evaluate application parameters. As we
are especially interested in timing constraints in WCET
and scheduling analysis, an AADL model can be very
useful to evaluate these properties without having to
change the application structure.

3.3. Paparazzi AADL Model

We found the different control levels and the
corresponding timing constraints in the report on the
Paparazzi project [11].
Based on this reference, and after analyzing the C files of
the embedded software, we have identified a list of tasks
executed in this application as well as their timing
constraints and their precedence rules. We have also
determined the interrupts used to drive the hardware.
Table 1 on next page shows the tasks and the interrupts
executed by MCU1. Table 2 displays those treated by
MCU0. We provide for each task and interrupt an
identifier used in the following section, a description and
the appropriate frequency.

The precedence rules that sets an order on tasks
execution are depicted as a graph in Figure 2. This order
is required by data dependencies (edges marked with 1)
or control dependencies (edges marked with 2). The
dashed arrows reflect the precedence rules valid in
manual mode, the plain arrows represent the precedence
rules in automatic mode and the thick ones are valid in
both modes. The white circles reveal tasks executed only
in manual mode, the gray circles are tasks executed in
automatic mode and the dark ones are executed in both

2

ECRTS 2006
6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2006/678

modes.
In manual mode, MCU1 receives information from

the radio command (T1) and transmit it to MCU0 (T2).
MCU0 executes T6, T7 and T8 to analyze radio-
command instructions, to perform stabilization and to
return the flight commands. Then T3 and T4 occurs to
receive data from MCU0 and send it to servos. T4 enables
the interrupt I1 to send information to the servos. This
scenario persists as long as the system stays in this mode.

The automatic mode is activated by a radio command
order or when the radio command is no more reachable.
AADL provides modes to record the system operational
mode. Variation in operational modes is triggered by
events.

In automatic mode, T9 analyses the messages held by
the GPS. The navigation (T10) is realized at the same
frequency as the GPS information delivery, it also
controls the mission to consider exceptional events. In
this mode T10, T11 and T12 occur always in this order
before the stabilization task T7. They cannot execute
separately. They are followed by [T7, T8, T3, T4]. Note
that the repetition of [T7, T8, T3, T4] is constrained by
their period which is less than the period of T10, their

execution time and the execution time of the previous
tasks : these tasks may be viewed as the feedback control
loop that must satisfy the navigation commands. In both
modes, MCU0 reports changes in the aircraft path, in the
operational mode, in the navigation and so on to the
ground station in a task executed at 10 Hertz.

At the hardware level, the Paparazzi system has two
subsystems, one for each micro-controller. Each system
describes the execution process as a set of threads
defining the tasks and interrupts executed in its context,
the list of devices and the relations between components.

3.4. Variable Complexity

In AADL, each component type can be characterized
by a set of properties. To include the timing constraints in
our model, we added for each thread the period property
and the dispatch protocol that can be either aperiodic,
sporadic or periodic. An aperiodic task occurs at arbitrary
times but can be delayed for a limited time, while a
sporadic one occurs at irregular intervals with a
maximum or minimum period between two consecutive
executions. The properties of the components can be
changed or extended in order to reflect the user demands.

The inputs / outputs in Paparazzi are managed as
aperiodic interrupts. Usually, the avionics software does
not support interrupts because the WCET cannot be
accurately computed with the current techniques.
However, we are not compelled to use the static
scheduling provided in the Paparazzi C code. One may
consider the AADL model, its tasks (including interrupts)
and its matching code in C sources but different
scheduling and timing properties may be experimented
according to our needs. This leads us to define several
models, from the simplest one to the most realistic one.

We can begin to work with the simpler configuration
of the system, assuming that all tasks and interrupts are
periodic. Then, we may improve our analysis toward
more complex configurations, close to the real application
behavior. In the AADL model, it is easily achieved by
varying the “Dispatch_Protocol” property value in the set:
“periodic”, “sporadic” and “aperiodic”.

We can also consider the preemption between tasks.
For this purpose, we extended AADL with a new
property, called “Preemption”, only applicable to the
threads. This property indicates the preemption type that
may be one of “System_Preemption”,
“Time_Sharing_Preemption” or “Non_Preemptive”. We
must also choose a preemptive scheduling protocol for
the processor. This new property offers a framework for
many kind of studies including WCET computation.

As an example of use of these different levels of
complexity, we plan to experiment an approach allowing
the WCET computation for a complete cycle of the
application. We intend to begin our WCET analysis with
the basic level where we will consider periodic tasks and
periodic interrupts with no preemption, in order to define
a possible schedule with the scheduler.

4. PapaBench Genesis
Source code, schematics and documentation of the

Paparazzi project [12] are freely released under the GNU

3

Figure 2: Precedence Rules Graph

ID Description Frequency

T6 Managing Radio orders 40Hz

T7 Stabilization 20Hz

T8 Send Data to MCU1 20Hz

T9 Receive GPS Data 4Hz

T10 Navigation 4Hz

T11 Altitude Control 4Hz

T12 Climb Control 4Hz

T13 Reporting Task 10Hz

I4 SPI interrupt of MCU0 -

I5 Modem interrupt -

I6 GPS interrupt -

Table 2: MCU0 tasks and interrupts

ID Description Frequency

T1 Receive Radio-Command orders 40Hz

T2 Send Data to MCU0 40Hz

T3 Receive MCU0 values 20Hz

T4 Transmit Servos 20Hz

T5 Check Failsafe 20Hz

I1 Transmission Servos interrupt -

I2 SPI interrupt of MCU1 -

I3 Radio interrupt -

Table 1: MCU1 tasks and interrupts

MCU0

MCU1
T1

T2

T3

T6

T7

T9

T10T11

T12
21

1

1

1
1

1
1

T8 T13
1

2

T4

T5

1

1

MCU0

MCU1
T1

T2

T3

T6

T7

T9

T10T11

T12
21

1

1

1
1

1
1

T8 T13
1

2

T4

T5

1

1

ECRTS 2006
6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2006/678

license. This section explains our analysis of Paparazzi,
the transformation process to obtain PapaBench and the
changes required to compile the benchmark.

4.1. System Instantiation and Restriction

The Paparazzi distribution is only available for a
Linux environment but may be configured for several
aircraft configurations. As we are not interested in the
details of the hardware control, PapaBench is only bound
to the default aircraft configuration. It includes a MC3030
radio-command, a Twinstar3 model-making aircraft, the
flight plan used during the first European MAV Flight
Competition held in Braunschweig Germany on July 13
2004 and a classic ground station as described in
section 2.

The first generation of the embedded system enables
us to save C header files, generated from XML sources.
These XML files contain the configuration of the
airframe, the radio commands and the flight plan that
constitutes the mission. They make the Paparazzi project
applicable to many different aircrafts and allow to realize
different flight plans. After the generation, we saved the
generated header files and included them in the
benchmark without having to preserve the XML sources.

Then we analyzed the static sources and the generated
headers in order to create PapaBench. We have excluded
the sources of the ground station in charge of monitoring
the flight, displaying statistics, programming the mission
and generating the embedded system sources: they are
composed of a mixture of OCAML and Perl programs not
really involved in the embedded system.

4.2. Mapping the AADL Model

Using the OTAWA project [15, 16], a framework to
experiment WCET computations and binary static
analyses, we have developed a program generating the
Program Call Graph (PCG) of an executable file and
some other statistics about the executed binaries.
The PCG gives a general idea of the complexity of the
application and it enables the user to have a clear view of
the function call chains without reverting to the sources.
They also provide a map of the tasks identified in the
logical analysis of the system to the matching
implementation in the C sources.
The PCG of Fly-By-Wire and Autopilot are represented
in Figures 3 and 4 respectively. The grey ellipses
represent task implementation code. The identifier of this
task is marked in a dark label.

In the Autopilot PCG, T10 is course_pid_run and
either nav_home if the system is in failsafe mode, or
nav_update in automatic mode. The dashed ellipses show
interrupts interfering with the execution of the subsystems
tasks. One may notice that some subprograms are not part
of any task: this code is only called at startup time and is
not involved in the system execution during the flight.

4.3. Compilation Details

Our objective was to enable a user to compile the
benchmark, without the requirement of the whole
Paparazzi building environment, for different
architectures. Until now, we have experimented the

compilation for PowerPC and x86 architectures using the
GCC compiler suite but it should be easy to adapt
PapaBench to other configurations.

To compile the benchmark, one must extract the
archive and edit the default configuration files, in the
conf/ directory, to change the top directory path and the
compiler command according to the target architecture.
A simple call to make in the distribution top directory
should compile everything.

It is important to mention that PapaBench includes
headers files from the AVR C libc library project
containing macros providing access to the AVR hardware
registers like IO ports, timers, and so on. As the
benchmark does not target hardware simulation, either the
hardware registers only matter by their temporal
properties, or they may be simply considered as simple
memory accesses.

As they are mapped to low addresses (between 0x20
and 0x100), this might be impeding for some platforms
where the addresses of interrupts vectors appear at this
location. Fortunately, we can get rid of this problem by
assigning in the compilation flags a compatible value to
the SFR_OFFSET definition, which is the base of the
hardware register addresses.

5. Comparison with Other Benchmarks
Benchmarking constitutes a critical part of the design

process. As real applications are not easily available to
researchers due to the confidentiality criteria surrounding
the industrial estate, real-time benchmarks are rare and
often disconnected from the surrounding particularities of
real-time systems. This section gives an overview of these
benchmarks and compare them to PapaBench.

5.1. Other Benchmarks

Real-time benchmarks are usually a collection of
basic algorithms found in real-time systems.

4

Figure 4: Autopilot PCG

Figure 3: Fly-By-Wire PCG

main

uart_init

adc_init

uart_print_string

adc_buf_channel

servo_init

spi_init

test_ppm_task

uart_transmit

servo_transmit

check_failsafe_task

send_data_to_autopilot_task

T1

T4

check_mega128_values_task
T2

SPI_Interruption

Servo_Interruption

Radio_Interruption

T3

T5

last_radio_from_ppm

servo_set

to_autopilot_from_last_radio

spi_reset

main

uart_init

adc_init

uart_print_string

adc_buf_channel

servo_init

spi_init

test_ppm_task

uart_transmit

servo_transmit

check_failsafe_task

send_data_to_autopilot_task

T1

T4

check_mega128_values_task
T2

SPI_Interruption

Servo_Interruption

Radio_Interruption

T3

T5

last_radio_from_ppm

servo_set

to_autopilot_from_last_radio

spi_reset

main

modem_init

spi_init

adc_init

link_fbw_init

gps_init

nav_init

ir_init

estimator_init

periodic_task

parse_gps_msg

radio_control_task

use_gps_pos

uart_init

adc_buf_channel

estimator_propagate_state

navigation_task

stabilisation_task

link_fbw_send

nav_update

course_pid_run

altitude_pid_run

climb_pid_run

nav_home

approaching
fly_to

fly_to_xy

inflight_calib

ir_gain_calib

estimator_update_state_gps

estimator_update_ir_estim

reporting_task
T7

T10

T11

T12

T8
T9

T6

SPI_Interruption

Modem_Interruption

GPS_Interruption

altitude_control_task

receive_gps_data_task

climb_control_task

ir_update

estimator_update_state_infrared

roll_pitch_pid_run

T13

main

modem_init

spi_init

adc_init

link_fbw_init

gps_init

nav_init

ir_init

estimator_init

periodic_task

parse_gps_msg

radio_control_task

use_gps_pos

uart_init

adc_buf_channel

estimator_propagate_state

navigation_task

stabilisation_task

link_fbw_send

nav_update

course_pid_run

altitude_pid_run

climb_pid_run

nav_home

approaching
fly_to

fly_to_xy

inflight_calib

ir_gain_calib

estimator_update_state_gps

estimator_update_ir_estim

reporting_task
T7

T10

T11

T12

T8
T9

T6

SPI_Interruption

Modem_Interruption

GPS_Interruption

altitude_control_task

receive_gps_data_task

climb_control_task

ir_update

estimator_update_state_infrared

roll_pitch_pid_run

T13

ECRTS 2006
6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2006/678

MiBench [7], for example is a set of 35 embedded
applications divided into six suites, each one targeting a
specific area of the embedded market. The six categories
are: 1) automotive and industrial control, 2) consumer
devices, 3) office automation, 4) networking, 5) security
and 6) telecommunications. All the programs are
available in standard C source code and are portable to
any platform that has compiler support. Some
modifications has been made to the source to promote the
portability of the benchmark and the extensibility of the
data set. Where appropriate, MiBench provides a small
and large data set. The small data set represents a light-
weight, useful embedded application of the benchmark,
while the large data set provides a real-world application.
This benchmark has many similarities to the EEMBC
suite as described on their website [17] but MiBench is
composed of freely available source code. We only
compare the category (1) of MiBench suite with
PapaBench because other categories are not used in hard
real-time systems.

The SNU Real-Time Benchmarks suite [8], consists
of C sources collected from numerical calculation
programs and DSP algorithms as binary search program,
fast Fourier transform, Fibonacci series function,
insertion sort, square root calculation, matrix
multiplication and many other programs. The benchmarks
have the following structural constraints: no
unconditional jumps, no exit from loop bodies, no
'switch' statement, no 'do...while' construct, no multiple
expressions joined by 'or', 'and' operations and no library
calls. These restrictions are caused by the limited
capabilities of the compiler involved in the experimental
analysis environment used by the benchmark creators.

The benchmarks mentioned above are disconnected
from the surrounding particularities of real time systems.
Their functions found are executed alone out of the
context of a real application. On the other hand,
PapaBench tasks are embedded in a real system with hard
timing constraints. This feature allows the analysis of
effects of tasks on the execution of other ones. It is
worthy to use such an application because of its
similarities with the industrial real-time applications.

5.2. Code Characteristics

We have used the OTAWA framework to characterize
the PapaBench code as well as MiBench and SNU R-T
codes. Tables 3 gives, for each benchmark, the branching
rate, the memory access rate, the average size and the
maximum size of basic blocks. Figure 5 provides, for
each task of the benchmarks, the rate of memory accesses
(black area), of branching instructions (gray area) and of
other instructions.

First, we can see that PapaBench has small basic
blocks except for T1 and T9 where the maximum size of
basic blocks is 137 and 110 respectively: it seems that the
radio management and GPS data analysis require a lot of
computations. SNU RT functions also have small basic
blocks except for jdfcint and MiBench_Automotive has
big basic blocks for the majority of its tasks : MiBench is
too much oriented toward computations unlike the other
benchmarks.

We found a high level rate of memory accesses in the
three benchmarks which reflects the importance of the
memory hierarchy analyses in the WCET computation.
While, in case of PapaBench, it is caused by lots of
hardware register accesses, other benchmarks seem to
have a too big memory foot print.

To sum up, PapaBench has some similarities with
other real-time benchmarks as they all have close
memory access and branching rates. This also confirms
that these benchmarks are close to real applications. Next
section will show that differences exist and these statistics
are not enough to characterize a benchmark.

5.3. Loop Complexity

CFG and syntax tree representations are not enough
for static WCET computation since they don't identify
bounded execution paths. Hence these representations
have to be completed by some information to restrain the
number of executable paths to consider in the analysis. In
this paragraph, we discuss the PapaBench loop
complexity and compares it with the other benchmarks.

Graph (a) of Figure 6 displays for each benchmark,
the loops repartition among 5 nested levels. The darker
column represents top level loops counts and the columns
get brighter as the level is deeper. Moreover, graph (b)
reflects the variability level of loops maximum iteration
numbers. We distributed benchmarks loops over three
levels: 1) for loops with fixed iteration number, 2) for
loops with little variation in the iteration number
(depending on parameters with a constant during the

5

MI(Memory instruction rate), BI (Branching Instructions)
Figure 5: Instruction repartition

0% 20% 40% 60% 80% 100%

T1
T2
T3
T4
T5
T6
T7
T8
T9

T10
T11
T12
T13

basicmath_smal
basicmath_large

bitcount
qsort_small
qsort_large

susan
bs

crc
fft1

fft1k
fibcall

fir
insertsort

jdfcint
lms

ludcmp
matmul
minver

qurt
select

MI
BI
Others

PapaBench

MiBench
(Aut om ot ive
and Indust rial

con t rol)

SNU R-T

RB RM ASBB MSBB

PapaBench 0,093 0,383 7,06 137

MiBench
(Automotive &
industrial control)

0,181 0,275 4,63 150

SNU R-T 0,15 0,341 5,27 89
RB (Branching rate), RM (Memory access rate), ASBB & MSBB (average

& maximum size of Basic Blocks)
Table 3: Statistics

ECRTS 2006
6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2006/678

function call) and 3) for loops with high variability degree
(induced by loops nesting with an inner loop bound
depending on the outer loop induction variable).

The loops encountered in PapaBench are mostly for
loops, we have only two while statements. The for loops
maximum iteration number is fixed but the while loops
analyses gives a maximum iteration number of 0 or 1.
Thus, we mostly do not have variations in loop bounds.
Moreover, we can notice that PapaBench loops are simple
with no nesting as shown in graph (a). On the other hand,
MiBench and SNU-RT benchmarks contain different
nesting levels of loops with variable iteration numbers.
A high level of variability makes WCET analyses more
complicated or increases the approximation pessimism
since the user have to provide an upper bound of loops
iterations. If the loop bound is not represented in a fine
way (as constants for example), the real number of
iteration may be over-estimated due to loops nesting and
the variability of loops bounds. However, the PapaBench
case and our experience in avionics software show that
we have more often simple loops with a fixed number of
iterations. This makes WCET calculation accurate and
closer to the real WCET. In the other hand, it seems that
other benchmarks exhibit over-complicated program
structures.

6. Conclusion
Benchmarking is a critical problem in WCET

computation because real applications are not easily
available due to the confidentiality criteria surrounding
the industrial estate. In this paper, we introduced
PapaBench, a complete real-time embedded application
derived from a real application used to control a UAV.
This prominent feature makes it mostly useful in WCET
and scheduling analyses and unique among the other
existing benchmarks. We have given a whole description
from the system point of view, using an AADL model,
and an instruction level analysis. We have also compared
it with existing real-time benchmarks to denote
similarities and advantages that makes it useful and
unique in WCET computation domain.

In the near future, we plan, to perform new analyses
of the PapaBench AADL model: we will consider two
levels of complexity, for the periodicity of tasks and
interrupts. These restrictions will be used to validate a
WCET computation approach based on the whole
application cycle. Note that PapaBench sources and
AADL model are available at
http://www.irit.fr/recherches/ARCHI/
MARCH/rubrique.php3?id_rubrique=22.

7. References
[1] Y.-T. S. Li, S. Malik. Efficient Microarchitecture Modeling and

Path Analysis for Real-Time Software. 16th IEEE Real-Time
Systems Symposium, pages 298-307, December 1995.

[2] Y.-T. S. Li, S. Malik. Cache Modeling for Real-Time Software:
Beyond Direct Mapped Instruction Caches. 17th IEEE Real-Time
Systems Symposium, 1996.

[3] C. Ferdinand et al. Applying Compiler Techniques to Cache
Behavior Prediction. ACM SIGPLAN Workshop on Languages,
Compilers, and Tools Support for Real-Time Systems: 37–46.

[4] F. Muller. Generalizing Timing Predictions to Set-
Associative Caches. Technical Report TR 96-66, Institut für
Informatik, Humboldt-University, July 1996.

[5] Y. Tan, V. Mooney. Integrated Intra- and Inter-Task Cache
Analysis for Preemptive Multi-Tasking Real-Time
Systems. 8th

International Workshop, SCOPES 2004, in Lecture Notes on
Computer Science, LNCS3199, pages 182–199, 2004.

[6] I.Wenzel, B.Rieder, R. Kirner, P. Puschner. Automatic Timing
Model Generation by CFG Partitioning and Model Checking.
Design, Automation and Test in Europe, Volume 1, pages 606-611.
March 2005.

[7] M.R. Guthaus, J.S. Ringenberg. Austin, T. Mudge and R.B.
Brown. MiBench: A Free, Commercially Representative
Embedded Benchmark Suite. 4th Workshop on Workload
Characterization, Dec. 2001, Austin, TX.

[8] SNU Real-Time Benchmark Suite.
http://archi.snu.ac.kr/realtime/benchmark.

[9] P. Feiler, D. P. Glush, J. J. Hudak, B. A. Lewis. Embedded System
Architecture Analysis Using SAE AADL, June 2004.

[10] SAE International. Architecture Analysis & Design
Language (AADL), August 2004.

[11] P. Brisset. Drones civils perspectives et réalités. Technical report,
Ecole nationale de l'aviation civile, August 2004.

[12] www.recherche.enac.fr/paparazzi
[13] ATMEL Corporation. ATMega128 complete datasheet.

http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf
[14] F. Singhoff, J. Legrand, L. Nana. AADL resource requirements

analysis with Cheddar. LYSIC/EA 3883.
[15] H. Cassé, C. Rochange, P. Sainrat. An open Framework for

WCET Analysis. IEEE Real-Time Systems Symposium-WIP
session, pages 13-16, Lisbon, December 2004.

[16] H. Cassé, C. Rochange, P. Sainrat. OTAWA, a framework for
experimenting WCET computations. 3rd European Congress on
Embedded Real-Time, Toulouse, December 2005.

[17] EEMBC Real-Time benchmarks . http://www.eembc.com.

6

(a) Loops Depth (b) Loop Bound Variability
Figure 6: Loop Complexity Analysis

PapaBench MiBench SNU R-T
0

5

10

15

20

25

30

35

40

45

50

55

Level 1
Level 2
Level 3
Level 4
Level 5

PapaBench MiBench SNU R-T

0
5

10
15
20
25
30

35
40
45
50
55
60
65
70

75
80

Fixed

Low Variability
High Variability

ECRTS 2006
6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2006/678

http://archi.snu.ac.kr/realtime/benchmark
http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf
http://www.recherche.enac.fr/paparazzi
http://http://www.irit.fr/recherches/ARCHI/MARCH/rubrique.php3?id_rubrique=22
http://http://www.irit.fr/recherches/ARCHI/MARCH/rubrique.php3?id_rubrique=22

PLRU Cache Domino Effects

Christoph Berg
Saarland University, Compiler Design Lab, Saarbrücken, Germany

cb@cs.uni-sb.de

June 9, 2006

Abstract

Domino effects have been shown to hinder a tight prediction
of worst case execution times (WCET) on real-time hardware.
First investigated by Lundqvist and Stenström, domino effects
caused by pipeline stalls were shown to exist in the PowerPC
by Schneider. This paper extends the list of causes of domino
effects by showing that thepseudo LRU (PLRU) cache re-
placement policy can cause unbounded effects on the WCET.
PLRU is used in the PowerPC PPC755, which is widely used
in embedded systems, and some x86 models.

1 Introduction

Embedded systems play a key role in any modern product.
When employed in safety-critical environments like airbag
controllers in cars or fly-by-wire systems in air crafts, thetim-
ing must meet conditions imposed by the environment. The
execution time of the tasks running on the embedded pro-
cessor must always be lower than a given deadline. Timing
analysis is used to derive an upper bound on the execution
time, calledworst case execution time (WCET). Computing
the WCET of a program requires upper bounds for the num-
ber of iterations of all loops in the program. On every path
through the program, the worst case execution times for all in-
structions (or alternatively, basic blocks) has to be computed
and added up. The longest of these paths is then called the
critical path, and its maximum runtime is the WCET.

1.1 Timing Anomalies

In a simple world, timing analysis could just assume the local
worst case for all instructions in a pipeline. When the cache
state is not be precisely known, a memory access not classified
by the abstract cache state as a cache hit would be considered
a cache miss, variable-latency instructions would just take the
longest time, etc. We could then add up all individual times
and get a safe WCET bound.

Unfortunately, this is not safe. Out-of-order pipelines
might reorder instructions such that an longer initial delay
(e.g., a cache miss) could cause an overallfaster completion
of the whole sequence. Similarly, a speedup of an instruction
can lead to a longer runtime for the whole sequence. This

effect is called atiming anomaly, and was first described by
Lundqvist and Stenström [3, 2].

While we can easily get a rough intuition about what a tim-
ing anomaly is, a general, hardware-independent definitionis
difficult, see [4] for a recent result. We will not detail the
definition in this paper.

1.2 Domino Effects

A special case of timing anomalies is thedomino effect, where
– after a (possibly empty) prologue – a sequence of instruc-
tions is executed in a loop and depending on the initial stateof
a component (usually the pipeline, but also the cache, as we
will see later), the loop body runtime will take different values
without convergence. The presence of domino effects means
that we cannot unroll a bounded (or even any) number of iter-
ations of a loop and assume in the analysis that the remaining
iterations behave the same. Schneider was able to demon-
strate actual domino effects caused by the PowerPC PPC755
pipeline [5].

2 Domino Effects in Caches

We will look at cache behavior when a sequence of memory
accesses is repeated indefinitely. We will only consider single
cache sets.1

2.1 FIFO

FIFO caches require very little update logic, a round-robin
counter points the next way to be replaced. The downside is
that this causes domino effects.

Figure 1 shows a 2-way FIFO cache with the access se-
quence a-b-c. Starting with an empty cache leads to a repeated
cache content b-c at the end of each iteration, where each cy-
cle has 3 cache misses (marked by ‘x’ in the figure). Starting
with c-a in the cache leads to a cycle over 2 iterations with a
total of 3 cache misses, alternatingly 1 and 2 per iteration.2

1There are cache architectures where the sets are not independent, but that
only makes timing effects more unpredictable.

2This is the same example as in [2].

1ECRTS 2006
6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2006/672

. . c a
a: a . x c a
b: b a x b c x
c: c b x b c
a: a c x a b x
b: b a x a b
c: c b x c a x
a: a c x c a
b: b a x b c x
c: c b x b c
a: a c x a b x
b: b a x a b
c: c b x c a x

Figure 1: 2-way FIFO cache, empty cache is worst case

2.2 LRU

The LRU update logic is complex, and LRU caches with more
than 4 ways are rare in practice.

LRU caches do not exhibit domino effects. When iterating
a over sequence of instructions, it is easy to see that the cache
contents at the end of the first iteration are the same as at the
end of every other iteration. This “memory-less” property of
LRU makes the cache analysis both easy and precise [1].

2.3 PLRU

Pseudo LRU replacement is a variant of LRU where the
“ages” of the lines in the cache are not linearly ordered, but
arranged in a tree (see Fig. 2). The advantage is that this needs
fewer state bits and hence needs a less complex update logic.
PLRU has an average case performance comparable to LRU,
but the worst case performance, which matters for the WCET
prediction, is worse.

Heckmann has shown that only 3 to 4 ways of an 8-way
PLRU cache can be tracked in cache analysis [1]. This article
adds domino effects to the list of problems with analyzing
PLRU caches.

PLRU definition. PLRU maintains a tree of cache ways.
Every inner tree node has a bit pointing to the subtree that
contains the leaf to be replaced next. Figure 2 shows a 4-
way example. In the left picture, the three state bitsb0, b1, b2

point to the second way to be replaced next. In practice, 8-
way PLRU is used. The replacement logic is the same, with
7 state bits, and an additional level in the tree. For simplicity,
we consider 4-way in this article. Note that 2-way PLRU is
equivalent to 2-way LRU.

On a cache update, and similarly on a cache hit, the state
bits on the path leading to the accessed way will be flipped,
i.e. making them pointing away from that way. The right pic-
ture shows the cache state after the replacement of ‘b’ by ‘e’.
The path to the second way consists of bitsb0 andb1, so these
have been flipped.

0 1

0 1 0 1

0 1

0 1 0 1

b0

b1 b2

b0

b1 b20

a c d

0

0

a b c d e

1

1 0

Figure 2: 4-way PLRU

a b c d 0 0 0
a: a b c d 1 1 0
e: a b e d 0 1 1 x
a: a b e d 1 1 1
f: a b e f 0 1 0 x
a: a b e f 1 1 0
g: a b g f 0 1 1 x
a: a b g f 1 1 1
e: a b g e 0 1 0 x
a: a b g e 1 1 0
f: a b f e 0 1 1 x
a: a b f e 1 1 1
g: a b f g 0 1 0 x
a: a b f g 1 1 0
e: a b e g 0 1 1 x
a: a b e g 1 1 1
f: a b e f 0 1 0 x
a: a b e f 1 1 0
g: a b g f 0 1 1 x

Figure 3: 4-way PLRU cache,b is never evicted

PLRU examples. Figure 3 shows that PLRU does not use
the cache optimally. The access sequence a-e-a-f-a-g contains
only 4 distinct elements, yet 4-PLRU misses for every second
access when started with a-b-c-d in the cache.3

Figure 4 shows that a PLRU cache can take several itera-
tions to stabilize. The fourth iteration is the first that exhibits
3 misses as all the following iterations do.

Figure 5 shows an example with the access sequence i-f-
e-g-i-e-b. The left sequence starts with a-b-c-d in the cache,
the right one with an empty cache. For the first two iterations,
both caches miss on the same accesses (the cache content is
even the same at the end of the first iteration, though in a dif-
ferent order). Starting from the third iteration, the left cache
misses 3 times per iteration, the right cache only 2 times.

2.4 Avoiding Domino Effects

There is no generally safe initial cache state in the context
of domino effects as any state can cause non-converging loop
runtimes. With a given program and initial state, we can prove
the presence or absence of effects, but in many embedded sys-
tem context, modifying the program is infeasible, and the ini-
tial state can also be unknown or undefined. Modifying the

3Example similar to Fig. 3 in [1].

2

b e c a 0 0 0
c: b e c a 0 0 1
a: b e c a 0 0 0
b: b e c a 1 1 0
e: b e c a 1 0 0
b: b e c a 1 1 0
c: b e c a 0 1 1
d: b d c a 1 0 1 x
c: b d c a 0 0 1
a: b d c a 0 0 0
b: b d c a 1 1 0
e: b d e a 0 1 1 x
b: b d e a 1 1 1
c: b d e c 0 1 0 x
d: b d e c 1 0 0
c: b d e c 0 0 0
a: a d e c 1 1 0 x
b: a d b c 0 1 1 x
e: a e b c 1 0 1 x
b: a e b c 0 0 1
c: a e b c 0 0 0
d: d e b c 1 1 0 x
c: d e b c 0 1 0
a: d a b c 1 0 0 x
b: d a b c 0 0 1
e: e a b c 1 1 1 x
b: e a b c 0 1 1
c: e a b c 0 1 0
d: e d b c 1 0 0 x
c: e d b c 0 0 0
a: a d b c 1 1 0 x
b: a d b c 0 1 1
e: a e b c 1 0 1 x
b: a e b c 0 0 1
c: a e b c 0 0 0
d: d e b c 1 1 0 x

Figure 4: 4-way PLRU cache, convergence in the forth cycle

compiler not to produce code exhibiting domino effects seems
impossible, given the simplicity of our FIFO examples.

At first glance, it might seem that for PLRU, we can im-
prove our knowledge of the cache state by not just taking into
account the ordering of the blocks in the cache but also in-
clude the tree state bits. However, we can reorder the ways
such that the tree bits always point left, and modify the cache
update accordingly. As with FIFO caches, we will have
domino effects in this simplified cache.

3 Summary

Timing anomalies and domino effects cause the complexity of
timing analysis to grow. Several causes are known, this article
adds PLRU caches to the list.

To achieve better predictability, some embedded system de-
signers lock all but two PLRU ways, leaving a 2-way LRU
subset. We are currently working on cache models that will
hopefully be able to extract more precise information from a
non-locked cache despite the presence of timing anomalies.

a b c d 0 0 0 0 0 0
i: i b c d 1 1 0 x i . . . 1 1 0 x
f: i b f d 0 1 1 x i f . . 1 0 0 x
e: i e f d 1 0 1 x i f e . 0 0 1 x
g: i e f g 0 0 0 x i f e g 0 0 0 x
i: i e f g 1 1 0 i f e g 1 1 0
e: i e f g 1 0 0 i f e g 0 1 1
b: i e b g 0 0 1 x i b e g 1 0 1 x
i: i e b g 1 1 1 i b e g 1 1 1
f: i e b f 0 1 0 x i b e f 0 1 0 x
e: i e b f 1 0 0 i b e f 0 1 1
g: i e g f 0 0 1 x i g e f 1 0 1 x
i: i e g f 1 1 1 i g e f 1 1 1
e: i e g f 1 0 1 i g e f 0 1 1
b: i e g b 0 0 0 x i b e f 1 0 1 x
i: i e g b 1 1 0 i b e f 1 1 1
f: i e f b 0 1 1 x i b e f 0 1 0
e: i e f b 1 0 1 i b e f 0 1 1
g: i e f g 0 0 0 x i g e f 1 0 1 x
i: i e f g 1 1 0 i g e f 1 1 1
e: i e f g 1 0 0 i g e f 0 1 1
b: i e b g 0 0 1 x i b e f 1 0 1 x
i: i e b g 1 1 1 i b e f 1 1 1
f: i e b f 0 1 0 x i b e f 0 1 0
e: i e b f 1 0 0 i b e f 0 1 1
g: i e g f 0 0 1 x i g e f 1 0 1 x
i: i e g f 1 1 1 i g e f 1 1 1
e: i e g f 1 0 1 i g e f 0 1 1
b: i e g b 0 0 0 x i b e f 1 0 1 x

Figure 5: 4-way PLRU cache, domino effect starting in the
third iteration

References

[1] R. Heckmann, M. Langenbach, S. Thesing, and R. Wil-
helm. The influence of processor architecture on the de-
sign and the results of WCET tools.IEEE Proc., 91(7),
July 2003.

[2] T. Lundqvist.A WCET Analysis Method for Pipelined Mi-
croprocessors with Cache Memories. PhD thesis, School
of Computer Science and Engineering, Chalmers Univer-
sity of Technology, 2002.

[3] T. Lundqvist and P. Stenström. Timing anomalies in
dynamically scheduled microprocessors. Number 20 in
IEEE Real-Time Systems Sym. (RTSS’99), Dec. 1999.

[4] J. Reineke, B. Wachter, S. Thesing, R. Wilhelm, I. Polian,
J. Eisinger, and B. Becker. A definition and classification
of timing anomalies. 6th Intl Workshop on Worst-Case
Execution Time (WCET) Analysis, July 2006.

[5] J. Schneider.Combined Schedulability and WCET Anal-
ysis for Real-Time Operating Systems. PhD thesis, Uni-
versiẗat des Saarlandes, Dec. 2002.

3

Towards Formally Verifiable WCET Analysis for a Functional

Programming Language

Kevin Hammond∗ Christian Ferdinand † Reinhold Heckmann† Roy Dyckhoff∗

Martin Hofmann‡ Steffen Jost∗ Hans-Wolfgang Loidl‡ Greg Michaelson§

Robert Pointon§ Norman Scaife¶ Jocelyn Sérot¶ Andy Wallace§

Abstract

This paper describes ongoing work aimed at the
construction of formal cost models and analyses
to yield verifiable guarantees of resource usage in
the context of real-time embedded systems. Our
work is conducted in terms of the domain-specific
language Hume, a language that combines func-
tional programming for computations with finite-
state automata for specifying reactive systems. We
outline an approach in which high-level informa-
tion derived from source-code analysis can be com-
bined with worst-case execution time information
obtained from high quality abstract interpretation
of low-level binary code.

1 Introduction

The EU Framework VI EmBounded project (IST-
2004-510255) aims to automatically determine
strong resource bounds for high-level programming
language features. We aim to obtain formally veri-
fiable certificates of bounds on resource usage from
a source program through automatic analysis.

1.1 The Hume Language

Our work is undertaken in the context of
Hume [13], a functionally-based domain-specific
high-level programming language for real-time em-
bedded systems. Hume is designed as a lay-
ered language where the coordination layer is used
to construct reactive systems using a finite-state-
automata based notation; while the expression

∗School of Computer Science, University of St Andrews,
North Haugh, St Andrews, Scotland, KY16 9SX.
email: {kh,rd,jost}@dcs.st-and.ac.uk.

†AbsInt GmbH, Saarbrücken, Germany.
email: {cf,heckmann}@absint.com

‡Ludwig-Maximilians Universität, München.
email: {mhofmann,hwloidl}@informatik.uni-muenchen.de

§Depts. of Comp. Sci. and Elec. Eng., Heriot-Watt
University, Riccarton, Edinburgh, Scotland.
email: {G.Michaelson, A.M.Wallace}@hw.ac.uk

¶LASMEA, Université Blaise-Pascal, Clermont-Ferrand,
France.
email: Jocelyn.SEROT@univ-bpclermont.fr
This work has been supported by EU Framework VI grant
IST-2004-510255 and by EPSRC Grant EPC/0001346.

layer is used to structure computations using a
strict purely functional rule-based notation that
maps patterns to expressions. The coordination
layer expresses reactive Hume programs as a static
system of interconnecting boxes. If each box has
bounded space cost internally, it follows that the
system as a whole also has bounded space cost.
Similarly, if each box has bounded time cost, a
simple schedulability analysis can be used to de-
termine reaction times to specific inputs, rates
of reaction and other important real-time proper-
ties. Expressions can be classified according to a
number of levels where lower levels lose abstrac-
tion/expressibility, but gain in terms of the proper-
ties that can be inferred. For example, the bounds
on costs inferred for recursive functions will usu-
ally be less accurate than those for non-recursive
programs, and cannot always be deduced.

Previous papers have considered the Hume lan-
guage design in the general context of program-
ming languages for real-time systems [13], and
specifically functional notations for bounded com-
putations [12], described a heap and stack anal-
ysis for FSM-Hume [14], and considered the re-
lationship of Hume with classical finite-state ma-
chines [17]. The main contribution of this paper
is to outline a worst-case execution time analysis
for Hume combining high- and low-level informa-
tion, where source-level information on the costs of
recursive functions, conditional expressions etc. is
combined with machine-level information on cache
behaviour, pipelines etc.

We will illustrate the design of Hume with a
simple control example for a reactive system: the
controller for a drinks vending machine. Figure 1
shows the Hume box diagram for this system, and
the code is shown below. Note that * in an input
or output position is used to indicate that that po-
sition is ignored, and that all inputs and outputs
are matched asynchronously.

type Cash = int 8;

data Coins = Nickel | Dime;

data Drinks = Coffee | Tea;

data Buttons = BCoffee | BTea | BCancel;

-- vending machine control box

1ECRTS 2006
6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2006/677

Figure 1: Hume example: vending machine box diagram

box control

in (coin :: Coins, button :: Buttons,

value :: Cash)

out (drink :: Drinks, value’ :: Cash,

return :: Cash)

match

(Nickel, *, v) -> (*, v + 5, *)

| (Dime, *, v) -> (*, v + 10, *)

| (*, BCoffee, v) -> vend Coffee 10 v

| (*, BTea, v) -> vend Tea 5 v

| (*, BCancel, v) -> (*, 0, v)

;

vend drink cost v =

if v >= cost then (drink, v-cost, *)

else (*, v, *);

Functional languages have rarely been applied
to hard real-time systems, partly because they are
perceived as hard to cost. The most widely used
soft real-time functional language is the impure,
strict language Erlang [1], which has been suc-
cesfully used in many large commercial applica-
tions. However, there have also been attempts to
apply pure functional languages to soft real-time
settings (e.g. [24, ?, 25]). Few, if any, of these
approaches provide strong cost models, however.
Synchronous dataflow languages such as Lustre [6]
or Signal [11] have strong similarities with a func-
tional approach, being similarly declarative. The
primary difference from our approach is that Hume
also supports asynchronicity, is built around state
machines, and provides a highly-expressive pro-
gramming environment including rich data struc-
tures, recursion, and higher-order functions, while
still providing a strong cost model.

2 A Source-Level Cost Model
for Hume Expressions

Our approach involves producing a formally verifi-
able upper bound cost model for Hume programs
that is related to actual execution costs. We can

use this model to produce high-level static analy-
ses for determining bounds on recursive calls, iter-
ative loops etc. In this paper, we use an abstract
machine approach, where execution costs are as-
sociated with abstract machine instructions, and
where these costs are related to Hume source forms
through formal translation. In this way, the math-
ematical cost model can be insulated from changes
in the concrete architecture, being effectively pa-
rameterised by cost information for each abstract
machine operation. A correspondence proof (omit-
ted here, for brevity) formally relates the high-level
model to costs expressed in terms of the abstract
machine. In this way, we are able to prove that
the source level timing information we give here
is an upper bound on actual exection costs, pro-
vided only that the timing information for each
abstract machine instruction is a true upper bound
on the execution cost of that instruction, includ-
ing effects of pipelining and cache behaviour. The
use of purely functional expressions within Hume
boxes simplifies both the construction of the cost
model and the corresponding proofs, by avoiding
the need for dataflow analysis, alias analysis and
other consequences of the use of side-effects. This
also improves the accuracy of the result.

As a proof-of-concept, we have chosen a simple,
high level stack-based machine, the Hume Abstract
Machine (or HAM). The approach can, however,
be generalised to other abstract machine designs
or to direct compilation, as required.

The formal statement V, η
t

t′
p

p′
m

m′ e ; `, η′

may be read as follows: given the value environ-
ment V and initial heap η, expression e evaluates
in a finite number of steps to a result value stored
at location ` in the modified heap η′, provided that
there were t time, p stack and m heap units avail-
able before computation. Furthermore, at least t′

time, p′ stack and m′ heap units are unused after
evaluation. We illustrate the approach by showing
a few sample rules covering key expression forms.

Variables are simply looked up from the envi-
ronment and the corresponding value pushed on

2

the stack. The time cost of this is the cost of
the PushVar instruction, shown here as Tpushvar.
Concrete values for this constant can be obtained
using either measurement-based approaches [2] or
abstract interpretation (see Section 3). There is no
heap cost.

V(x) = `

V, η
t′ + Tpushvar

t′
p′ + 1

p′
m

m x ; `, η
(Variable)

There are three rules for conditionals: two sym-
metric cases where the condition is true or false,
respectively; and a third case to deal with excep-
tions (omitted here). In the case of a true/false
condition the time cost is the cost of evaluating
the conditional expression, plus the cost of eval-
uating an If instruction Tiftrue/Tiffalse plus
the cost of executing the true/false branch, plus
the cost of a goto if the condition is false.

V, η
t1
t′1

p

p′
m

m′ e1 ; `, η′

η′(`) = (bool, ff)

V, η′
t′1 − Tiffalse

t′3

p′ + 1

p′′
m′

m′′ e3 ; `′′, η′′

V, η
t1

t′3 − Tgoto

p

p′′
m

m′′

if e1 then e2 else e3 ; `′′, η′′

(Conditional False)

The Call rule deals with calls to some function
fid, whether or not this is recursive. Each argu-
ment to the call is evaluated, and then the func-
tion is applied used App. The cost of the call
is Tcall and the cost of completing the call is
Tslide, where the underlying Slide instruction
removes function arguments from the stack, whilst
preserving the return value.

V, η(i−1)
t(i−1)

ti

p(i−1)
pi

m(i−1)
mi

ei ; `i, ηi

V, ηk
tk − Tcall

t′a

pk

p′
mk

m′ App
(
fid , [`k, . . . , `1]

)
; `, η′

V, η0
t0

t′a − Tslide

p0

p′ + k

m0

m′ fid ek · · · e1 ; `, η′

(Call)

These rules can be easily extended to cover other
expression forms and boxes, so giving a complete
cost model for Hume. From this cost model, it is
possible to derive a number of behavioural proper-
ties. The most important are that the cost model
correctly captures the potential change in time and
memory usage and that the result of execution is
always left as an extra value on the stack. In order
to produce this proof, we construct a formal trans-
lation from Hume to HAM, and prove for each case
that the costs of the HAM translation are precisely
captured in the cost model for the Hume source.

We have produced a prototype implementation
of an analysis for space usage with non-recursive
functions, based on this cost model [14], and cali-
brated against our abstract machine implementa-
tion. We are now working on extending the anal-
ysis to recursive functions and to include time in-
formation.

3 WCET Analysis using Ab-
stract Interpretation

Our objective is to develop a combined high- and
low- level analysis for worst-case execution time.
We will achieve this by extending the stack and
heap cost model presented above with the addition
of parameters representing actual timing costs.
Our ultimate aim is to produce accurate worst-case
cost information from source level programs.

The AbsInt aiT tool (described below) uses ab-
stract interpretation to efficiently compute a safe
approximation for all possible cache and pipeline
states that can occur at a given program point.
These results can be combined with ILP (Integer
Linear Programming) techniques to safely predict
the worst-case execution time and a corresponding
worst-case execution path.

The AbsInt analysis works at a code snippet
level, analyzing imperative C-style code snippets
to derive safe upper bounds on the worst-case time
behavior. Whilst the AbsInt analysis works at
a level that is more abstract than simple basic
blocks, providing analyses for loops, conditionals
and non-recursive subroutines, it is not presently
capable of managing the complex forms of recur-
sion which occur in functional languages such as
Hume. We are thus motivated to link the two lev-
els of analysis, combining information on recursion
bounds and other high-level constructs from the
Hume source analysis with the low-level worst-case
execution time analysis from the AbsInt analysis.

3.1 WCET Prediction

Static determination of worst-case execution time
(WCET) in real-time systems is an essential part
of the analyses of overall response time and of qual-
ity of service [4, 18]. However, WCET analysis is a
challenging issue, as the complexity of interaction
between the software and hardware system com-
ponents often results in very pessimistic WCET
estimates. For modern architectures such as the
Motorola PPC755, for example, WCET prediction
based on simple weighted instruction counts may
result in an over-estimate of time usage by a factor
of 250. Obtaining high-quality WCET results is
important to avoid seriously over-engineering real-
time embedded systems, which would result in con-

3

Figure 2: Phases of WCET computation

siderable and unnecessary hardware costs for the
large production runs that are often required.

Three competing technologies can be used for
worst-case execution time analysis: experimen-
tal (or testing-based) approaches [26], probabilistic
measurement [2, 3] and static analysis. Experi-
mental approaches determine worst-case execution
costs by (repeated and careful) measurement of
real executions, using either software or hardware
monitoring. However, they cannot guarantee up-
per bounds on execution cost. Probabilistic ap-
proaches similarly do not provide absolute guar-
anteed upper bounds, but are cheap to construct
and deliver more accurate costs than simple exper-
imental approaches [2].

Motivated by the problems of measurement-
based methods for WCET estimation, AbsInt
GmbH has investigated a new approach based on
static program analysis [16, 15]. The approach
relies on the computation of abstract cache and
pipeline states for every program point and execu-
tion context using abstract interpretation. These
abstract states provide safe approximations for all
possible concrete cache and pipeline states, and
provide the basis for an accurate timing of hard-
ware instructions, which leads to safe and precise
WCET calculations that are valid for all executions
of the application.

3.2 Phases of WCET Computation

In AbsInt’s approach [9] the WCET of a program
task is determined in several phases (see Figure 2):

• CFG Building decodes, i.e. identifies in-
structions, and reconstructs the control-flow
graph (CFG) from an executable binary pro-
gram;

• Value Analysis computes address ranges for

instructions accessing memory;

• Cache Analysis classifies memory references
as cache misses or hits [10];

• Pipeline Analysis predicts the behavior of
the program on the processor pipeline [16];

• Path Analysis determines a worst-case exe-
cution path of the program [22].

The cache analysis phase uses the results of the
value analysis phase to predict the behavior of the
(data) cache based on the range of values that can
occur in the program. The results of the cache
analysis are then used within the pipeline analy-
sis to allow prediction of those pipeline stalls that
may be due to cache misses. The combined re-
sults of the cache and pipeline analyses are used
to compute the execution times of specific pro-
gram paths. By separating the WCET determi-
nation into several phases, it becomes possible to
use different analysis methods that are tailored to
the specific subtasks. Value analysis, cache analy-
sis, and pipeline analysis are all implemented us-
ing abstract interpretation [7], a semantics-based
method for static program analysis. Integer lin-
ear programming is then used for the final path
analysis phase.

The techniques described above have been incor-
porated into AbsInt’s aiT WCET analyzer tools,
that are widely used in industry [20, 5, 8, 27, 19].
For example, they have been used to demonstrate
the correct timing behavior of the new Airbus
A380 fly-by-wire computer software in a certifica-
tion process according to DO178B level A [23, 21].
For this purpose, aiT for MPC755 and aiT for
TMS320C33 will be qualified as verification tools
according to DO178B.

3.3 Linking the Analyses

In order to link the two levels of analysis, we must
base the costs for time potentials in the cost model
(Tpushvar etc) on actual times for execution on
the Hume Abstract Machine using information ob-
tained from the aiT tool. In this way, we will have
constructed a complete time cost model and anal-
ysis from Hume source to actual machine code.

Pragmatically, in order to obtain timing infor-
mation from the aiT tool, our high level analysis
must be adapted to output information on the lim-
its on recursion bounds and other high-level con-
straints derived from the program source that can
be fed to the aiT tool using its native system spec-
ification language (aiS). This information must be
provided in terms of the compiled executable code
that has been produced from the Hume source
rather than directly from the source itself. It will

4

Cost aiT bound Prob. bound
for M32 for PPC
(cycles) (µs)

Tiftrue 30 0.051
Tiffalse 30 0.051
Tpushvar 109 0.110
Tmatchint 30. . .32 0.047
Tmatchedrule 11 0.039
Tmatchrule 22 0.053
Tmatchnone 11 0.040
Tconsumeset 82 —
Tmkint 220 . . . 223 0.046
Tcopyarg 110 0.045

Figure 3: WCET bounds on HAM instructions

therefore also be necessary to provide details of the
compilation process in an appropriate form.

3.3.1 Preliminary WCET Results

This section reports timing results obtained using
the aiT tool using the IAR C-compiler for the Re-
nesas M32C. The M32C is a 32-bit architecture de-
signed for typical automotive applications. It has a
complex instruction set and a three-stage pipeline,
but neither data nor instruction cache. Instruc-
tion cache analysis is therefore disabled. Figure 3
gives timings obtained from aiT for some sample
HAM abstract machine instructions on the M32,
and the corresponding costs on a 1.25GHz Pow-
erPC G4 obtained using a probabilistic approach
over 1,000,000 executions of each instruction (we
have not yet been able to obtain probabilistic cost
information for the M32, though we expect to be
able to achieve this soon). While there are some
clear differences in the underlying implementation
of the instructions on the two architectures (no-
tably for Tmkint, which allocates heap in external
memory), there are also broad similarities.

An interesting observation is that combining
the WCET costs of individual HAM instructions
gives a result that is usually within 1-2% of the
WCET bound of the complete sequence of instruc-
tions. While this observation certainly holds as
long as the code on the M32C is executed from
internal memory with single cycle access time, for
slower, external memory, the internal instruction
buffer of the M32C might have a bigger influence.
This means that for “simple” architectures, WCET
bounds for Hume-like languages can be computed
by considering WCET bounds of individual ab-
stract machine instructions.

4 Conclusions

We have introduced Hume and shown how a cost
model can be constructed to expose time, stack
and heap cost information. We have also out-
lined how our work can be extended in order to
synthesise worst-case execution time costs using
a combination of source- and binary-based anal-
ysis. Our work is formally based and motivated:
we aim to construct formal models of behaviour at
source program and abstract machine levels; have
provided elsewhere a formal translation between
these levels; and will synthesise actual worst-case
execution time costs using abstract interpretation
of binary programs.

References

[1] J. Armstrong, S.R. Virding, and M.C.
Williams. Concurrent Programming in Er-
lang. Prentice-Hall, 1993.

[2] G. Bernat, A. Burns, and A. Wellings.
Portable Worst-Case Execution Time Anal-
ysis Using Java Byte Code. In Proc. 12th
Euromicro Intl. Conf. on Real-Time Systems,
Stockholm, June 2000.

[3] G. Bernat, A. Colin, and S. M. Petters.
WCET Analysis of Probabilistic Hard Real-
Time Systems. In Proc 23rd IEEE Real-Time
Systems Symp. (RTSS 2002), Dec 2002.

[4] A. Burns and A.J. Wellings. Real-Time
Systems and Programming Languages (Third
Edition). Addison Wesley Longman, 2001.

[5] Susanna Byhlin, Andreas Ermedahl, Jan
Gustafsson, and Björn Lisper. Applying static
WCET analysis to automotive communica-
tion software. In 17th Euromicro Conf. on
Real-Time Systems, (ECRTS’05), July 2005.

[6] P. Caspi, D. Pilaud, N. Halbwachs, and
J. Place. Lustre: a Declarative Language
for Programming Synchronous Systems. In
Proc. ACM Symp. on Princ. of Prog. Langs.
(POPL ’87), 1987.

[7] P. Cousot and R. Cousot. Abstract interpreta-
tion: a unified lattice model for static analysis
of programs by construction or approximation
of fixpoints. In ACM Symp. on Princ. of Prog.
Langs. (POPL ’77), pages 238–252, 1977.

[8] Ola Eriksson. Evaluation of static time
analysis for CC systems. Technical report,
Mälardalen University, August 2005.

5

[9] C. Ferdinand, R. Heckmann, M. Langen-
bach, F. Martin, M. Schmidt, H. Theiling,
S. Thesing, and R. Wilhelm. Reliable and pre-
cise WCET determination for a real-life pro-
cessor. In Proc. EMSOFT 2001, First Work-
shop on Embedded Software, Springer-Verlag
LNCS 2211, pages 469–485, 2001.

[10] Christian Ferdinand. Cache Behavior Predic-
tion for Real-Time Systems, Saarland Uni-
versity, Saarbrücken, Germany. PhD thesis,
1997.

[11] T. Gautier, P. Le Guernic, and L. Besnard.
Signal: A declarative language for syn-
chronous programming of real-time systems.
In G. Kahn, editor, Functional Programming
Languages and Computer Architecture, vol-
ume 274 of Lect Notes in Computer Science,
pages 257–277. Springer-Verlag, 1987.

[12] K. Hammond. Is it Time for Real-Time Func-
tional Programming? In Trends in Functional
Programming, volume 4. Intellect, 2004.

[13] K. Hammond and G.J. Michaelson. Hume:
a Domain-Specific Language for Real-Time
Embedded Systems. In Proc. Conf. Genera-
tive Programming and Component Engineer-
ing (GPCE ’03), Lecture Notes in Computer
Science. Springer-Verlag, 2003.

[14] K. Hammond and G.J. Michaelson. Pre-
dictable Space Behaviour in FSM-Hume. In
Proc. Implementation of Functional Langs.
(IFL ’02), Madrid, Spain, volume 2670 of
Lecture Notes in Computer Science. Springer-
Verlag, 2003.

[15] R. Heckmann, M. Langenbach, S. Thesing,
and R. Wilhelm. The influence of proces-
sor architecture on the design and the results
of WCET tools. Proceedings of the IEEE,
91(7):1038–1054, July 2003. Special Issue on
Real-Time Systems.

[16] M. Langenbach, S. Thesing, and R. Heck-
mann. Pipeline modeling for timing analy-
sis. In Proc. Intl. Static Analysis Symp. SAS
2002, Springer-Verlag LNCS 2477.

[17] G. Michaelson, K. Hammond, and J. Sérot.
The Finite State-ness of Finite State Hume. In
Trends in Functional Programming, Volume
4. Intellect, 2004.

[18] Johan Nordlander, Magnus Carls-
son, and Mark Jones. Programming
with Time-Constrained Reactions.
http://www.cse.ogi.edu/pacsoft/
projects/Timber/publications.htm.
2006.

[19] P. Puschner and A. Burns. A Review of
Worst-Case Execution-Time Analysis. Real-
Time Systems, 18(2/3):115–128, 2000.

[20] Daniel Sandell, Andreas Ermedahl, Jan
Gustafsson, and Björn Lisper. Static timing
analysis of real-time operating system code.
In 1st International Symposium on Leveraging
Applications of Formal Methods (ISOLA’04),
Cyprus, October 2004.

[21] Daniel Sehlberg. Static WCET analysis of
task-oriented code for construction vehicles.
Master’s thesis, Mälardalen University, Octo-
ber 2005.

[22] Jean Souyris, Erwan Le Pavec, Guillaume
Himbert, Victor Jégu, Guillaume Borios, and
Reinhold Heckmann. Computing the worst
case execution time of an avionics program by
abstract interpretation. In Proceedings of the
5th Intl Workshop on Worst-Case Execution
Time (WCET) Analysis, pages 21–24, 2005.

[23] Henrik Theiling and Christian Ferdinand.
Combining abstract interpretation and ILP
for microarchitecture modelling and program
path analysis. In Proceedings of the 19th IEEE
Real-Time Systems Symposium, pages 144–
153, Madrid, Spain, December 1998.

[24] S. Thesing, J. Souyris, R. Heckmann,
F. Randimbivololona, M. Langenbach,
R. Wilhelm, and C. Ferdinand. An abstract
interpretation-based timing validation of hard
real-time avionics software. In Proc. 2003
IEEE Intl. Conf. on Dependable Systems and
Networks (DSN 2003), pages 625–632, 2003.

[25] M. Wallace and C. Runciman. Extending a
Functional Programming System for Embed-
ded Applications. Software: Practice & Expe-
rience, 25(1), January 1995.

[26] Z. Wan, W. Taha, and P. Hudak. Real-time
FRP. In ACM Intl. Conf. on Functional Pro-
gramming (ICFP ’01), Sep 2001.

[27] Ingomar Wenzel, Raimund Kirner, Bernhard
Rieder, and Peter Puschner. Measurement-
based worst-case execution time analysis. In
Proc. IEEE Workshop on Software Tech.
for Future Embedded and Ubiquitous Systs.
(SEUS’05), pages 7–10, 2005.

[28] Yina Zhang. Evaluation of methods for
dynamic time analysis for CC-systems AB.
Technical report, Mälardalen University,
2005.

6

http://www.cse.ogi.edu/pacsoft/projects/Timber/publications.htm
http://www.cse.ogi.edu/pacsoft/projects/Timber/publications.htm

	intro.679.pdf
	vol004-oasics-frontmatter
	intro.679

	WCET-abstracts-collection.680
	2006 WCET Abstracts Collection 6th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
	 F. Mueller

	WCET_Reineke.671
	WCET_Schliecker.676
	WCET_GustafssonJan.667
	WCET_Kebbal.675
	WCET_Kirner.669
	WCET_Falk.673
	WCET_Burguiere.670
	WCET_Schwarzer.674
	WCET_Nemer-2.678
	1. Introduction
	2. The Paparazzi Project
	3. Modeling with AADL
	3.1. About AADL
	3.2. AADL Usage
	3.3. Paparazzi AADL Model
	3.4. Variable Complexity

	4. PapaBench Genesis
	4.1. System Instantiation and Restriction
	4.2. Mapping the AADL Model
	4.3. Compilation Details

	5. Comparison with Other Benchmarks
	5.1. Other Benchmarks
	5.2. Code Characteristics
	5.3. Loop Complexity

	6. Conclusion
	7. References

	WCET_Berg.672
	WCET_Hammond.677
	Introduction
	The Hume Language

	A Source-Level Cost Model for Hume Expressions
	WCET Analysis using Abstract Interpretation
	WCET Prediction
	Phases of WCET Computation
	Linking the Analyses
	Preliminary WCET Results

	Conclusions
	References

