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Abstract This paper presents an IP model for a vehicle routing and
scheduling problem from the domain of freight railways. The problem
is non-capacitated but allows non-binary integer flows of vehicles be-
tween transports with departure times variable within fixed intervals.
The model has been developed with and has found practical use at Green
Cargo, the largest freight rail operator in Sweden.
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1 Introduction

The increasing competition within the railway transportation sector requires
long-term sustainable and effective resource utilisation methods for companies
such as Green Cargo, the largest rail freight operator in Sweden.

In many countries in Europe, railroads have traditionally been state-owned
organisations with diverse interests in e.g. passenger traffic, freight traffic, in-
frastructure and real estate investments. The Swedish state railway was properly
deregulated in all these aras around the millennium, creating separate compa-
nies with dedicated resources. Before the deregulation, locomotives were used
for passenger traffic in the day-time and freight traffic at night. Today, vehicles
are dedicated to one type of traffic, which has brought about utilisation patterns
such as in figure 1. In 2005, Green Cargo is facing heavy reinvestments in its
locomotive fleet.

If Green Cargo would be able to even out (level) the production resource
requirements at peak times less investments would be needed. Green Cargo thus
aims at a levelled week-day production.
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Fig. 1. Vehicle utilization pattern

1.1 Timetable

Swedish railway companies have to adhere to timetables partly designed by the
government authorities. Green Cargo as well as other operators bids for allo-
cation slots in the track network based on information about traffic patterns
and customer requirements. If no slot conflicts arise, the operators receive their
bids. However, the service potential is in some sense beyond the control of the
individual operators.

1.2 Locomotive optimisation

The locomotive optimisation process determines the turn-round plan for all loco-
motives. In the fleet assignment process, a sequence of timetable slots is assigned
to each locomotive by optimising planning tools based on network models. Fur-
thermore, multiple locomotives and deadhead passive transports usage is deter-
mined, and options for maintenance is provided.

There are a number of rules or preconditions that a solution to this problem
has to comply with: only specific points for switching locomotives exist, specific
locomotives switching times are required, pulling power at specific lines are pre-
specified as is the type of locomotives that can be utilised.

Normally, the timetable slots are considered as given in this process. How-
ever, the flexibility of scheduling rail freight timetables is greater than that of
passenger railways as long as customer requirements are catered for. If the slots
were allowed to be shifted in time, this would enable several locomotive turns to
take place which would otherwise be considered infeasible. IL.e. it is not enough to
only generally reduce the peaks of the traffic. To reduce the number of locomo-
tives in the turn-round plans, the turns have to be made at the right moments
as well.
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Locomotives thus need to be at the right location at the right time consid-
ering that customer, resource sharing (e.g. crew and waggons) and turn-round
requirements as well as input from operators sharing the track resources also have
to be taken into account when determining the slots. Both duration (travelling
time) and end points of the slot are determined by these factors.

There have been no commercially available tools to help the planners bridge
the gap between timetable slot planning and locomotive turn-round planning.
The idea presented here introduce the opportunity to modify the slot positioning
in the early phase of the timetabling process so as to enable the locomotive
optimisation process to achieve better results while retaining quality in terms of
customer service level performance. A further optimised locomotive turn-round
plan will also result in less reinvestment requirements making it an important
incentive for conducting this research.

2 Problem description

Minimum cost network flow models have been extensively used (see e.g. [1]) to
compute an optimal allocation of a set of scheduled transports to vehicles. The
transports are normally represented as nodes in a network and the fact that a
vehicle, used by one transport, can also be used by an other one, as a (directed)
arc between their corresponding nodes. Classical network flow models of this
kind usually have set partitioning structure and binary flow variables so that
each transport is allocated to a unique vehicle. They also usually include one or
more depot-nodes and are acyclic either in the plane or on a cylinder.

A straightforward generalisation of this type of flow model for cyclic sched-
ules without depots, allows (small) integer values for the flows and have been
used for engine routing in rail transportation (see e.g. [2]). In such models, ad-
ditional integer variables are associated with each node to encode how many
vehicles travel with each transport. Flow is conserved on each node without any
depots giving cyclic schedules for each vehicle. Lower and upper bounds on the
node variables variables capture the minimum and maximum number of vehicles
required and usable by each transport. In addition, multiple commodities can
be used to encode heterogeneous vehicle fleets.

Lower bounds on the node variables vary in known cases from 0 on (poten-
tial) passive transports (service trains) to 2 for heavy freight transports which
require at least two engines. Upper bounds larger than the corresponding lower
ones encode the possibility to relocate additional accompanying vehicles with a
planned transport that is already served with the required number of vehicles.
With a cost function penalising the total number of vehicles needed and any
nonproductive relocation of the vehicles we get a straight forward and practi-
cal model which has seen several years of practical use in e.g. the Swedish rail
industry.

Normally, the network is statically generated using temporal non-overlap and
distance conditions on the transports. It would, however, be of great practical
value if this kind of model could be generalised to allow for rescheduling of
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the transports in cases where this would significantly reduce the cost of the
vehicle usage. Using time windows for the departure times of the transports and
an initial network with connections between any two transports which arrive
and depart from the same location, breaks the locality (and hence, the network
structure) of the model since a transfer of a vehicle (turn) from one transport
to another may pose requirements on the placement of the transports within
its time window which can be incompatible with requirements posed by another
transfer.

Problems of this general type are variants of the “multiple Travelling Sales-
man Problem” (m-TSP). The case with time windows is normally referred to
as a “multiple Travelling Salesman Problem with Time Windows” m-TSPTW.
See e.g. [3,1,4,5,6,7]. This problems is normally (e.g. [8]) considered as a special
case of the extensively studied class “Vehicle Routing Problems” (VRPs) [9,10].
One could also argue that the m-TSPTW is an uncapacitated variant of the
“Vehicle Routing Problems with Time Windows” (VRPTW) which is also well
studied, albeit using mainly other methods than the one proposed here. See e.g.
[11,12,13,14,15,16,17,18]. They are also part of the larger problem of assigning
engines to pre-scheduled transports based on more general transport and vehicle
properties referred to as “Locomotive Scheduling Problems” (see e.g. [5]).

The problem under study here differs from most of those studied in this
literature by allowing non binary (but small integer) flows between nodes in the
network. This corresponds to multiple (required and/or optional) temporally
overlapping visits in the m-TSPTW. The problem does not include any finite
capacities on vehicles as in VRPTW but neither does it have the simple set
partitioning structure of the m-TSPTW type of problem. The model presented
here uses a single commodity but should be straight forward to generalise for
heterogeneous vehicle fleets. However, the practicality of such a generalisation
has not been investigated.

The paper presents an IP-model for this problem which can be used to ef-
ficiently and exactly solve practical problems up to the size of those occurring
in real life transportation planning for moderate sizes (< 3 hours) of departure
time windows using a state-of-the-art commercial solver.

The model and its implementation for the solution of a fully operational large
scale practical case is presented. The transports in this case are train transports
with a fixed schedule whose departure times are relaxed from +15 up to +90
minutes and the vehicles considered are the engines used to pull the trains.
Performance results for solving several version of the practical problem using
CPLEX 9 [19] on a PC-type workstation are also reported.

3 Model parameters

The model is parametrised by a number of constants and variables with associ-
ated bounds which will be summarised here. The constraints and objective func-
tion will be presented in section 5 below. Note that we have chosen to present the
variable bounds, which are, of course, also parameters to the model, in connec-



An Efficient MIP Model for Locomotive Scheduling 5

tion with the respective variables below. Note also that the problem is periodic,
i.e. that the transport schedule is repeated after a fixed period CT. The individ-
ual vehicle schedules may, on the other hand, take several such periods before
they are repeated.

3.1 Constants

n
cT
t;
Di

ZOZ', ldz

M

The number of transports in the problem.

Cycle Time (period after which the transport schedule is repeated).
Travel time for transport i. We require each ¢; to be positive and
strictly smaller than CT.

Penalty per vehicle accompanying a transport above that of its ve-
hicle requirement.

Origin and destination locations for transport i.

Setup time (turn-time) for the exchange of one or more vehicles be-
tween transport ¢ and j. We require each r;; to be positive and fulfil
the inequality ¢; + r;; < CT'. This requirement is quite natural in
most cyclic transportation problems where travel times and setup
times are typically small in comparison with the cycle period.

Any “sufficiently large” constant (“big M”) used to linearise the model.

3.2 Decision variables (discrete)

Cij, Cy;
}/ij7 ilj
Si
E;

Integer variable, determining how many vehicles are turned (trans-
ferred) from transport ¢ to transport j. In the train case considered
here, the lower bound, X ; is normally 0 and the upper bound X ;
either 1 or 2. T

Boolean variables, used to determine if a turn (if any) from transport
1 to transport j crosses the period limit C'T" one or more times.
Integer variables, which for any optimal solution will have the values
}/ij = Cinij and Y;/j = Cz(inj respectively.

Integer variable used to encode the number of vehicles allocated to
transport i. A lower bound S; on this variable encodes the vehicle
requirement of the transport while an upper bound S; limits the
number of vehicles usable/transportable by it.

For the train case where only engine vehicles are considered, these
limits are normally S; = 1 and S; = 2 unless the transport is a
scheduled potential vehicle relocation transport, in which case the
the lower bound may be S; = 0, indicating that the transport need
not be performed unless needed to balance the vehicle flow of the
model.

Integer variable used to encode the number of vehicles accompanying
a transport in addition to the number required S; by the transport
itself.
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3.3 Time point variables (continuous)

d; Continuous variable denoting the departure time of train i. The de-
parture time window of the transport 7 is encoded as the bounds d;
and d; of d;. For any i, we require that 0 < d; < d; < CT.

This formulation does not guarantee that the arrival times d; + ¢; will always
be smaller than CT which influence the formulation of the constraints relating
the arrival and departure events of the transports. The following section gives
a case analysis of the situations that can occur and motivates the constraint
formulation given in the section following it.

4 Turning over the cycle time border

The cases are illustrated by figures where a coloured vertical bar represents the
transports. The length of the coloured bar is the travel time of the transport (the
interval between scheduled departure time and arrival time). The surrounding
transparent bar illustrates the departure time window of the transport so that
the coloured bar may be placed anywhere within the transparent one.

There are four main cases for a turn to transport ¢ to transport j to consider,
each one described below.

A, The turn, if chosen, will never cross the cycle time boarder i.e.

di +ti+rij <dj

> ]
Ay The turn, if chosen, is certain to cross the cycle time boarder exactly
once. i.e:
(di + ti +1ij > dj) A (d_i-i-ti—i-?“ij —CTSQ)
Ao A more rare case which has nevertheless to be taken into account

is when the turn, if chosen, is certain to cover two periods. Note
that in this case (as well as sometimes, in A;), two instances of the
transport that crosses the boarder have to be considered, one leaving
the period and one entering the period, i.e:

(@+ti+riijT>d_j)
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This is hardly ever desirable, at least not if the period time is long in
comparison with the longest travel time. In the Swedish rail freight
problem the period time is a week and the longest transport travel
time normally less than 24 hours.

In the model below we will penalise this case twice as hard as A;
which in practise means that turns of this type are almost never found
in an optimal solution. An alternative model could with some loss
of generality instead explicitly forbid this type of turn by introduc-
ing constraints forcing X;; = 0 whenever (d; + t; +1;; — CT > d;)
which would in the general case reduce the number of booleans in
the model to half. In practise, however, the gain is marginal since we
introduce the booleans only where they are needed and this case is
as already mentioned rare.

The case where d; + t; + r;; > 2CT can be safely ignored since we
require the constants to fulfil ¢; + r;; < CT and ¢; < CT.

A more complex case occur when the time windows overlap so that the turn
may or may not cross the cycle time boarder one or more times but the exact
number depends on the assignment of the departure time variables.

For typical distributions of time windows in the rail freight case, we see
mainly cases where the time window limits will place us in situations where we
cannot determine if we are in case Ay or Aq, only rarely whether we are in case
A; or As but almost never in ones where we cannot exclude at least one of the
three. This fact can be used to reduce the number of boolean variables needed
in the model significantly.

In the general case it is possible to distinguish the following sub-cases:

B The turn may cross the cycle time limit once or not at all, i.e:

(di +t; +7ij Sd_j)/\(d_i-i-ti—f-?“ij >ﬁ>/\(d_i+ti+7“ij —CT§ﬁ>
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By The turn may cross the cycle time limit twice but maybe only once.
Le:

(%‘Fti—f—?}‘j >d_j)/\(%+ti+7“ij—CTSd_j)/\(d_i+ti+7“ij—CT>ﬁ)

| |
Bs The turn may cross the cycle time border twice, once or not at all.

Le:
(di +t; + 73 Sd_j)/\(d_i+ti+7“ij—CT>%)

In the constraints given below we will not distinguish between these three sub-
cases but treat them collectively as a single case B which will simplify the pre-
sentation of the model. In a practical implementation it does make sense to
distinguish between them since we need to introduce two booleans per possible
turn only in the B3 case which is very rare.

5 Model constraints and objective

The cases labelled Ag through A, above are all, if used as turns in a solution,
determined to cross the cycle time limit either once, twice or not at all. The cases
labelled B; on the other hand are indeterminate and will be collectively encoded
using the two boolean decision variables C;; and Cj;. To be able to treat the
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A and B cases separately we will define four mutually exclusive subsets of the
possible turns.
Let

Ao ={(i,5) | (0 <i,j <n)Ad; +t; + 1y < d;}
Av = {(i,5) [ (0 <d,j <n) A (di+ti + 155 > dj) A (d_i+ti+n-j—CT§@)}
As = {{i, ) [ (0 <i,j <n) A (di +ti + 145 — CT > dj)}

and

B={(,7)]0<i,j<n}\(AUA UAs)

We will need to explicitly represent the decision variables only for the case
B. Observe also that Ay, A1, A> and B have no elements in common.

Since the main objective of the model is to minimise the number of vehicles
used by a solution and this corresponds exactly to the number of vehicles turned
over the cycle time limit, the objective function will treat each of these cases
(except Ag which can never contribute to the cost) separately. We also introduce
a term in the cost function which penalises the use of additional vehicles for
transports that do not need them. These are in most cases necessary to balance
the flow of the model but should be avoided if possible. The penalty is weighted
by the (temporal) length ¢; of the transport and a factor p; specific to each
transport.

This factor should in most cases be smaller than 1 to give the number of
vehicles the appropriate influence on the total cost. Potential passive transports
(with vehicle demand S; = 0) will generally have a larger factor p; than those
in which a vehicle relocation is accompanying an existing transport.

Minimise
Ziigyea Xij + X jyear2Xi; + T jyes (Yig + Vi) + Zocicn Eipits

subject to
1. The number of vehicles turned from transport ¢ is equal to the num-
ber used by it

Vi(Yjegjidi=to;} Xij) — Si = 0)

and the number of vehicles turned to transport j is equal to the
number used by it

Vi(Yietrilidi=t10,3 Xij) — S5 = 0)

The candidate turns are chosen such that the destination ld; of the
source transport ¢ and the origin lo; of the sink j is identical. One
way to relax this condition somewhat is described in section 6 below.
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2. Turn time constraints.

dj —d; +CT Cij + CT Cj; > ti + 15
Xij— Y +MCij <M Vi, j ((i,7) € B)
Xij =Y, +MCj; <M

and
Si—E; =5 Vi

3. Cyj, Cj; boolean, C}; < Cj;
4. S;, Xi; (implicitly) integer -
5. Variable bounds @ S dz S di, i § Sz S Si, Xi]' S Xij S Xij for VZ‘]

5.1 Constraint notes

The flow (conservation) constraints (1) ensure that each transport is supplied
with as many vehicles as it needs and that the flow is balanced. To ensure that
this is always possible we need to introduce a “sufficiently large” set of “potential”
passive transports into the problem.

How this is done in general is not further discussed in this paper. However
a straight forward heuristic to introduce additional such transports of a fixed
maximum duration is outlined in section 6 below.

The turn time constraints (2) and their use of the boolean variables (3) are
the core of the model. Note that Cj; = lej = 0 if and only if d; +t; + ri; < dj,
that Cij =1> C,Z] if and only if d; +1t; + Tij — CT < dj and ﬁnally that
Cij = Cj; = 1if and only if d; +t; + r;; — CT > d; corresponding exactly to
the three A-cases above. Note also that unnecessarily assigning 1 to C;; while
Xi; > 0 will be penalised by forcing Y;; to become equal to X;; and similarly
for C}; and Y.

E; is defined by the equation S; — E; = S; to be the excess number of vehicles
travelling with transport i. The requirement that C{j < C;; removes an obvious
symmetry from the model. In practise the effect of this constraint is minor since
the case where both booleans are needed, almost never occurs.

A key feature of the model and the main reason that it scales relatively well
in practise is that the integrality constraints on S;, and X;; (4) need not be
enforced by the solver. In each leaf in the search tree branching on the boolean
variables C;; and ng the part of the coefficient matrix involving these variables
will be a pure minimal cost flow). The same is obviously not the case for the
part of the coefficient matrix involving the departure time variables d; but since
these variables are related to the decision variables S; and X;; only through the
booleans (Cy;, C};), each assignment of the d; that is consistent with a complete
(integral) assignment of the booleans will also be consistent with the optimal
assignment to the decision variables S; and X;.

This means that the optimal solution to the problem obtained by relaxing
the integrality constraints on S; and X;; (but not on Cj; and ;) will also be
an optimal solution to the original problem.
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5.2 Minimising deviation from a given timetable

In a setting where we start with a given time table and relax the departure
and arrival times to allow a reduction of the total vehicle requirement of the
schedule we may also want to minimise the deviation from the original time table
starting from one in which the vehicle cost has been minimised. The following
supplementary optimisation step can then be used for a given solution in which
the Yi;, Y}, Ci; and Cj; variables have have been determined. Let d;"*/ denote
the original (unrelaxed) departure times and let the corresponding d; variables
have the same bounds as in section 5. Then introduce the following additional
variables:

w; the amount of time that train 7 is changed with respect to the original
time table.

the amount of time that the departure of train i is moved earlier
the amount of time that the departure of train i is moved later

Minimise
> w
0<i<N
subject to
1. Vi(d; +w; > d{") determining the amount of time that transport
i is early .
2. Vi(d; — w;” < d{"") determining the amount of time that transport
1 is delayed
3. w; +w; —w; = 0 relating positive, negative and absolute movement
of departure of train i
4. V’L,j(dl—dj <2M — M *Yy; —M*Y;IJ—I—CT*C”—FCT*C& —ti—Tij)
enforcing the turns of a previously determined solution.

In principle it should be possible to combine these two models into a third
one weighing departure time deviation against vehicle cost but doing so in the
straightforward way breaks the clean separation of the discrete decision variables
X;; and S; on the one hand and the continuous departure time variables d; on
the other. In practise such a model does not scale at all well. In addition it
would probably be very difficult in practise to determine suitable weights for the
deviation variables w; in the combined cost function. In the empirical results
reported below the result of minimising the deviation for each given solution to
the main problem is given in the deviation column.

6 System generated service trains

By changing the flow equations (1) in the above model, we can capture the
introduction of (additional) passive transports (service trains), to reduce the
overall need of vehicles somewhat.
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Let dist(l1,2) be a function defining geographical distance between locations
l; and Il and m a limit on the distance traversed by an (additional) passive
transport. Replace the flow equations in the model above with:

Vi((¥je 1j1dist (1d, to) <myXid) = Si = 0)

Vj((Zie{i|dist(ldi,loj)§m}Xij) - 5;=0)

The turn time 7;; for such turns ¢, j must be adapted to reflect the additional
time taken to relocate the vehicle and the cost function extended with a term
that reflects the cost for driving a service train:

Y pecdi; Xij

where C' = {(i, j) |dist(lo;,ld;) > 0} and d;; is a cost factor that may or may not
reflect the actual distance between Id; and lo;. In the experiments below m was
set to one hour and each d;; to a factor corresponding to p;t; for a preplanned
passive transport, of duration ¢; of one hour which in turn was twice of that of a
vehicle accompanying an active transport of that duration.

The rest of this extended model is identical to that of section 5.

7 Empirical results

The following performance results have all been produced using data extracted
from production data of the largest Swedish rail freight company GREEN CARGO.
The case contains almost all transports handled by the most common type of
vehicle in use, the electrical RC locomotive, and covers a full week. The problems
solved below were generated by introducing a fixed amount of slack for each
departure time in the production plan.

The number of transports in each of the generated problems is 1304. This
includes a small number of statically generated potential passive transports of
vehicles used to balance the flow in the network. In general relocation of vehicles
are performed either as accompanying transports travelling with “real” trans-
ports or as passive transports (deadheads) where the vehicle travels by itself
through the network. In both these cases the number of vehicles travelling with
a scheduled transport exceeds the minimum required to perform the transport.

In the solutions reported below, accompanying transports has been freely
introduced (though penalised) and moved around between transports that allow
them. Passive transports on the other hand are eliminated wherever that leads to
an improved objective. Dynamically generated new passive transports (as section
6) are introduced only in a separate set of problems and even then they are
limited to a maximum traversal time of 60 minutes (while the average transport
time is about four hours). Allowing additional passive transports in this way
typically reduces the number of vehicles somewhat but introduce the need to
schedule additional tasks on the infrastructure resources.
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Note that introducing slack uniformly is not completely realistic. In reality
customer requirements or limits on infrastructure capacity may not allow free
rescheduling of the transports within their time windows. To some extent this
can be improved by introducing individual slacks for each transport and weighted
binary relations between arrival and departure events that encode e.g. transfers
of cars and cargo. In the performance results reported here, no such additional
constraints were used. Nevertheless a production version the software used to
generate these problems is currently in use at Green Cargo in their planning of
locomotives.

The tables below reports for each slack size (in minutes) the number of
booleans needed to encode the turn time constraints which should give a rough
indication of the MIP size. Furthermore the tables reports properties of the op-
timal solution found in terms of the number of vehicles, the total amount of
“accompanying” and (additional) “passive” time in minutes. Performance results
include the number of nodes, iterations and runtime in seconds as reported by
CPLEX 9 for each slack size. The runtime reported is those reported by CPLEX
on an 2.4 GHz Pentium 4 processor using about 2 GB of main memory. For the
larger cases caching the node tree to disk was used whenever it became larger
than the main memory. The strategy used was the default branch and bound
(cut) heuristic of CPLEX 9 [19].

Once the optimal solution for the locomotive turnrounds has been found a
new timetable is generated minimising the sum of deviations from the original
timetable. This problem is linear and no performance results of these runs are
given. The resulting deviation (in minutes) is given in each table to give an
indication of how much the original time table had to be changed to achieve the
corresponding improvement of the main objective.

The result reported in table 1 is without additional passive transports as out-
lined in section 5 while those in table 2 were obtained using the method outlined
in section 6 to generate additional passive transports where this improved the
objective.

Table 1. Without additional passive transports

Slack |Booleans||Vehicles|Accompanying|Deviation Nodes Iterations | Runtime
minutes minutes minutes h:mm:ss
+0 - 117 50835 - - 6803 (0)| 0:00:05
+15 | 1027 116 50206 5107 0 7208 | 0:00:07
+30 | 1995 112 51107 13763 50 (1) 9056 | 0:00:54
+45 | 2836 105 51177 20841 40 10158 | 0:01:19
+60 | 3913 99 49402 35651 714 (251) 28565 | 0:08:22
+75 | 4930 97 49411 48486 21101 (3547) 630926 | 1:53:40
+90 | 5876 90 50385 69067 ||156441 (74849)|9245253|23:22:43

In both cases the £0 case is for network solving, not MIP. The result reported
for the +90 cases was obtained with a integrality gap of 0.05% which guaranties a
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Table 2. Allowing short additional passive transports

Slack |Booleans||Vehicles | Passive | Accompanying|Deviation Nodes Iterations | Runtime
minutes minutes minutes minutes h:mm:ss
+0 - 116 276 49006 - - 7105 (0)| 0:00:07
+15 | 1127 113 247 50459 5274 0 7182 | 0:00:08
+30 | 2178 110 247 50429 15067 50 9323 | 0:01:06
+45 | 3132 104 116 51354 23456 50 (40) 10624 | 0:01:36
+60 | 4346 98 218 49264 40258 647 (435) 31029 | 0:08:53
+75 5456 95 203 50185 5541 14506 (1818) 403299 | 1:15:32
+90 | 6538 88 612 52293 64147 ||182364 (60220)|9870645 [26:04:30

solution with an optimal number of vehicles and a solution within approximately
3 days of passive transport time from the optimum. Using the 0.01% default
gap of CPLEX 9 gave a runtime about four times as long and only a marginal
improvement of the objective.

8 Conclusions

The model presented generalises the m-TSPTW problem to multiple required
and upper bounded optional visits to each location. It is shown how it can be
applied to an important practical problem in rail transportation and that cases of
realistic size can be solved using a standard (though state-of-the-art) commercial
solver.

Innovative features of the model include the use of boolean variables to sep-
arate the integer and continuous parts of the problem and maintaining the flow
character of the integer part of the problem for each complete assignment of the
booleans.

Application of the model produces a modified timetable which accommodates
the requirements for an efficient locomotive turn-round plan. The practical use-
fulness of the model and its scalability is demonstrated on a set of problems
derived from a real case in the Swedish rail freight industry.

Significant savings can be realised for a uniform fleet of locomotives, in terms
of locomotives planned, by utilising the presented method.

Future work would include identifying methods to compute better lower
bounds and possibly to investigate if decomposition methods traditionally used
for VRPTW type problems can be used to further improve the performance of
solvers using the model. Multicommodity variants of the model may also be of
interest.
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