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Abstract. We discuss timetables in ex-urban bus traffic that consist
of many trips serviced every day together with some exceptions that
do not repeat daily. Traditional optimization methods for vehicle and
crew scheduling in such cases usually produce schedules that contain
irregularities which are not desirable especially from the point of view of
the bus drivers. We propose a solution method which improves regularity
while partially integrating the vehicle and crew scheduling problems.
The approach includes two phases: first we solve the LP relaxation of
a set partitioning formulation, using column generation together with
Lagrangean relaxation techniques. In a second phase we generate integer
solutions using a new combination of local branching and various versions
of follow-on branching. Numerical tests with artificial and real instances
show that regularity can be improved significantly with no or just a minor
increase of costs.

1 Introduction

We discuss timetables in ex-urban bus traffic that consist of many trips serviced
every day together with some exceptions that do not repeat daily. In particular,
service trips to schools, production facilities, or public swimming baths are often
subject to change, e.g., trips may be operated every day except on Sunday, or on
Monday only. Unless specifically imposed, traditional vehicle and crew scheduling
usually produces irregular crew schedules which are undesired in practice. A crew
schedule is called irregular if it cannot be repeated many times. Similar to airline
crew scheduling (see [10]), regularity is an important aspect for crew schedules in
public transport since regular solutions can improve operational reliability and
can reduce training costs. Furthermore, regular solutions are less error-prone,
and crews often prefer to repeat itineraries. In current practice, companies often
try to increase regularity of crew scheduling solutions by one of the following
heuristic two-phase procedures:

– All first - irregular second : First, the planner solves a crew scheduling prob-
lem for a particular period with both regular and irregular trips. In a second
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step, he or she fixes the subset of crew duties that can be operated over
the whole period and reoptimizes all unfixed trips. Notice that the second
problem may also contain some regular trips.

– Regular first - irregular second : The set of service trips is divided into regular
and irregular trips. First, a crew scheduling problem for the set of regular
trips is solved while the irregular trips are left for subsequent optimization.

In both cases, the second problem has a sparse schedule and, thus, likely requires
extensive deadheading, and even its optimal solution yields high costs. On the
other hand, if the second problem contains many trips, the corresponding solu-
tion has low cost but low regularity as well.

As stated earlier, we are concerned with the regularity of crew schedules
and not with the regularity of vehicle schedules. In fact, vehicles are rather
insensitive to the quality of their schedules as opposed to drivers. In order to
test our approaches, we will concentrate on scenarios where crew scheduling
plays the major role. This holds particularly for ex-urban scenarios as we will
see in the following section.

As some authors point out, the crew scheduling problem in public transit is
basically a multi-criteria optimization problem with operational cost as a very
important optimization criterium but involving several others such as number
of line changes, total number of duties, number of duties with only one piece of
work, and so on. However, to the best of our knowledge, solution approaches to
improve the regularity of crew schedules in public bus transport, simultaneously
minimizing costs, have not been described in literature before.

We have developed two basic approaches to cope with irregularities in crew
schedules. In this paper we propose a novel combination of local branching and
follow-on branching that improves the regularity of crew schedules while cost
optimality is maintained. As the second approach, [16] compares four bi-objective
metaheuristics that include both cost and regularity as objective functions. The
latter approach can be used to get a quick estimate of the solution quality
obtained with the first approach.

This paper is organized as follows. In Section 2, we give a problem definition
for the ex-urban vehicle and crew scheduling problem with irregular timetables.
We discuss other approaches related to public (bus) transport from literature in
Section 3 and give a formal model definition in Section 4. In the next section,
we describe how local branching and user-defined branching rules can be used
to steer the solution method to regular crew scheduling solutions. Finally, we
provide computational results on real-world and randomly generated instances
in Section 6. The paper is concluded with a short summary (Section 7).

2 Problem Definition

2.1 Basic Process of Vehicle and Crew Scheduling

Starting point of the vehicle and crew scheduling process is a timetable that has
been determined based on customer demand. A timetable defines a set of trips
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that are used to carry passengers. Generally, it is assumed that start and end
locations for all trips are fixed as well as their start and end times. Given a set of
timetabled trips, the vehicle scheduling problem (VSP) can be stated as follows:
find an assignment of trips to vehicles such that

– each trip is assigned exactly once,
– each vehicle performs a feasible sequence of trips,
– each sequence starts and ends at the same depot, and
– asset and operational costs are minimized.

Two trips are said to be compatible if they can be covered by the same ve-
hicle. Trips operated in sequence by the same vehicle are linked by deadheads.
Deadheads are vehicle movements or idle times (or both) without carrying pas-
sengers. A vehicle is idle if it stands (idle) at a location other than the depot.
A vehicle block is a sequence of compatible trips that starts with a pull-out trip
and ends with a pull-in trip. A pull-out trip connects the depot with the start
location of the first trip while a pull-in trip moves a vehicle from the end location
of the last trip to the depot. A daily schedule (duty) for one vehicle can thus
include several vehicle blocks. Figure 1 depicts an example of a daily schedule
for one vehicle with two blocks.

Crew scheduling plays an important role in the operational planning pro-
cess since crew costs generally dominate vehicle costs. Instead of assigning trips
to vehicles as in the preceding phase, we now assign tasks to crews. A basic
assumption is that all crews are equal since individual crew members are not
considered.

The crew scheduling problem (CSP) is defined as follows: find a set of duties
for a given set of tasks such that

– each task is covered by a duty that can be performed by a single driver,
– each duty satisfies a wide variety of federal laws, safety regulations, and

(collective) in-house agreements, and
– labor costs are minimized.

A task is a sequence of activities (such as performing trips or deadheading)
between two consecutive relief points and represents an elementary portion of
work that can be assigned to a driver. A relief point defines a location and time
where a driver may change his vehicle. In traditional crew scheduling, i.e., a
vehicle first - crew second approach, relief points subdivide vehicle blocks that
were obtained in the preceding phase.

A piece of work is a sequence of tasks without a (long) break for which a driver
stays with the same vehicle. Consequently, duties are composed of pieces of work
separated by breaks. Duties start with a sign-on and end with a sign-off activity.
Typically, there are several duty types in practical applications, each with a
different rule set. Examples of working rules are minimum/maximum driving
time, minimum break length, allowed start and end time, or maximum spread
(length) of a duty. Moreover, companies often limit the (minimum/maximum)
number or percentage of duties of a particular type. For instance, the percentage
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of split duties that have two pieces of work - one in the early morning and another
in the late afternoon with a long break in the middle - is often restricted. Figure
1 shows the schedule of one crew that consists of two pieces of work. Note that
the first two tasks remain unassigned.

vehicle block I vehicle block II

A B B B C B A A C B A A B

vehicle duty

dep
ot

dep
ot
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ot
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A C trip from A to C

C A

relief pointB C deadhead from B to C

piece of work I piece of work II
task VItask I task II task III task IV task V

crew duty
piece of work III

Fig. 1. Schedule of one vehicle and one crew

The objective is often to first minimize the number of duties and second
the total working time. Therefore, high fixed crew costs and an hourly rate for
working time are taken into account. Crew scheduling problems, however, are
often subject to non-linear costs, e.g., overtime bonuses.

[4] shows that the CSP with either working time or spread time constraints
is NP-hard. Although duty constraints differ from application to application,
we assume that the CSP has at least one of these constraints and is, therefore,
NP-hard.

Vehicle and crew scheduling is traditionally approached in a sequential man-
ner which means that vehicle schedules are determined before crew schedules.
However, integrating vehicle and crew scheduling and solving both simultane-
ously can basically reveal further potential to save costs, because of increasing
the degrees of freedom and, consequently, size of the solution space.

The integrated vehicle and crew scheduling problem (VCSP) for a given set of
timetabled trips, depots, and relief points can be stated as follows: find minimum
cost sets of vehicle blocks and crew duties such that both vehicle and crew
schedule are feasible and mutually compatible. Vehicle and crew schedule are
compatible if each trip is covered and each deadhead used in the vehicle schedule
is also covered by exactly one duty while all deadheads not contained in the
vehicle schedule are not part of any duty. The VCSP is NP-hard since (at least)
the crew scheduling part is NP-hard.



Branching Strategies to Improve Regularity 111

2.2 Crew Scheduling for Ex-Urban Services

Public transport scenarios can be categorized according to the structure of the
underlying transportation network. Urban service provides connections within
the city while ex-urban (regional) service connects the city with the suburbs
and minor towns in the region of the city. Of course, many companies offer
a mixture of both categories. Many regional scenarios have in common that
the line network is star-shaped around the depots with only few relief points.
Furthermore, distances between relief points are such that drivers are virtually
tied to their vehicle in order to reach the relief points. In other words, pieces
of work often correspond to vehicle blocks. When traditional vehicle and crew
scheduling (vehicles first - crew second) is applied in an ex-urban setting, vehicle
blocks are likely to be too long to meet break requirements, or drivers cannot
return to their home depot. Conclusively, crews must be scheduled at the same
time as vehicles or before vehicles in order to guarantee the feasibility of the
crew schedule. In the remainder of this section, we will assume that drivers may
only change their vehicles in depots (ex-urban scenario).

Crews can easily be scheduled before vehicles if there is a single depot and
vehicle changes outside the depot are not allowed (or drivers can walk from all
relief opportunities to the depot). In such a case, we first solve an independent
crew scheduling problem (ICSP) that we define as follows. Given the traveling
times between all pairs of locations and a set of tasks which corresponds to the
set of service trips, find a minimum cost set of duties such that all tasks are
covered by feasible duties (see also [8]). Since each duty starts and ends at the
depot, the vehicle rotations that result from the crew scheduling solution can
be put together to form a feasible vehicle schedule (using a vehicle scheduling
method). The approach to schedule crews before vehicles is also referred to as
partial integration (see [1]). However, the number of vehicles is not necessarily
minimal in contrast to a fully integrated approach. Notice that a feasible vehicle
schedule can also be constructed when there are multiple depots and duties that
start and end at the same depot. If continuous attendance is required, and a
driver must not stay on his or her (idle) vehicle during a break, each piece of
work must start and end at the same depot. As a result, drivers spend their
breaks in a depot and take the same or a different vehicle for the consecutive
piece of work.

2.3 Vehicle and Crew Scheduling with Irregular Timetables

We will now formally define the vehicle and crew scheduling problem with irreg-
ular timetables. Let F be a timetable with tasks f1, . . . , fn where task fi starts
earlier than fi+1. Furthermore, a reference crew schedule R = {R1, . . . , Ru}
with duties Ri = {fi1, . . . , fip} that is compatible to timetable F is given. The
integrated vehicle and crew scheduling problem with irregular timetables (VCSP-
IT) for timetable F ′ 6= F and given depots, relief points, and a reference crew
schedule R can be stated as follows: find minimum cost sets of vehicle blocks
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and crew duties such that both vehicle and crew schedule are feasible and mu-
tually compatible. Furthermore, crew schedule D = {D1, . . . , Dv} should have
a small distance to reference schedule R. A crew schedule with a small distance
to reference R is called similar or regular. However, minimizing costs remains
the primary objective.

The perception of distance between two crew schedules can differ from com-
pany to company. A very simple distance measure is to count the number of
duties in the new crew schedule that could not be preserved from the refer-
ence crew schedule. In the following, we will describe a more elaborate dis-
tance measure that basically counts the number of task sequences not preserved
from the reference. Let Q = F ∩ F ′ be the set of regular tasks that are part
of both timetables. A regular pair S ⊆ Q is an ordered pair of regular tasks
(fi, fi+k) that are operated consecutively in both reference R and new crew
schedule D. We denote by S1 the first task of regular pair S while S2 cor-
responds to the second task. Notice that an irregular trip may be operated
between fi and fi+k, but no regular trip. Clearly, a regular trip to cannot be
at the first (second) position of more than one regular pair. However, it may
be at the first position in one pair and at the second in another pair. Further-
more, a regular chain T = (S1, . . . , Sj) = ((S1

1 , S
2
1), . . . , (S1

j , S
2
j )) with j ≥ 1

and S2
i = S1

i+1, 1 ≤ i < j − 1 is an ordered sequence of interconnected regular
pairs. T̃ denotes the number of regular tasks of regular chain T . Furthermore,
let S̄ and T̄ denote the set of all regular pairs and chains, respectively. We define
distance measure σp(σc) that corresponds to the number of regular tasks that
are not part of a regular pair (chain).

σp = |Q| − 2|S̄| (1)

σc = |Q| −
∑
T∈T̄

T̃ (2)

Of course, there are numerous other distance measures possible. However, we be-
lieve that our measures give an intuitive approach to regularity of crew schedules.
Therefore, we will focus on σp and σc in the remainder of this paper. However,
our approaches also work with other distance measures.

3 Literature Review

In this section, we review state-of-the-art models and solution methods for crew
scheduling with irregular timetables from both public transport (bus and rail-
way) and airline perspectives. Since we are concerned about the regularity of
crew schedules, we do not consider vehicle scheduling in our literature review.
As we will see, the literature on irregular timetables in public bus transport is
virtually non-existent. Therefore, we include railway and airline settings in our
review.

Solution approaches can mainly be categorized into regularity and reschedul-
ing approaches. Regularity approaches build a solution from scratch for a given
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(long) period where the solution should inherently contain as many regular pat-
terns as possible. In rescheduling methods, a reference schedule is given and a
new solution for a (short) period is constructed where the new solution should
be as similar as possible to the reference. In the following, we will review models
and solution methods based on both approaches.

3.1 Regularity Approaches

[18] describe an airline crew scheduling problem with many irregular flights. The
authors seek to find a set of pairings (duties) that cover all flights in the planning
period (one month) where essentially the total number of man-days is minimized.
The number of man-days of a pairing is equal to the number of days it lasts. The
secondary objective is to minimize costs. Furthermore, a large portion (between
9% and 54%) of all flights is not flown on every day of the planning period.
The authors propose a heuristic that systematically merges irregular flights into
pairings that only consist of regular flights. Their computational tests involve
two real-world data instances with 8,876 and 9,504 flights where the ratio of
irregular flights was 54% and 9%, respectively. Their experiments revealed that
the instances could be solved in 41 and 92 minutes on an IBM RS/6000 model
900. Moreover, their method could find better solutions than manual planning
by experienced engineers. Although the primary objective was to minimize the
number of man-days, the approach manages to produce regular crew schedules.
For the first instance, 81% of the pairings were regular while 92% of the pairings
were flown every day for the second one. However, the authors do not report the
impact on operational costs since regular pairings may contain a lot of (paid)
waiting time.

[10] introduce the weekly airline crew scheduling model with regularity. The
model captures the trade-off between regularity and costs in a weekly sched-
ule. The set of flights is partitioned into groups in such a way that regularity
is easily obtainable in each group. A g-regular group for g = 4, . . . , 7 contains
flights that can be repeated on g consecutive days of the week. By definition,
regular flights i from a g-regular group have gi ≥ g. Each g-regular group is
subsequently partitioned by g-regular pairings. All flights not assigned to a g-
regular group, g = 4, . . . , 7, are called irregular flights and must be assigned to
irregular pairings. In their model, the authors assign penalty costs to irregular
flights. Penalty costs decrease with increasing regularity. However, the complete
regularity model is intractable and, thus, the authors resort to an approximate
model and solution methodology. In particular, pairings are produced in decreas-
ing order of regularity. 7-regular pairings are produced first and an appropriate
subset is computed to form 7-regular pairings in the final weekly solution. The
flight schedule is reduced by all flights already covered by 7-regular pairings.
In the next stage, the remaining flights can only be covered by 6-regular pair-
ings. The process iterates until irregular pairings are generated and the complete
flight schedule is partitioned. Computational results with three real-world data
instances show that problems with at most 492 flights can be solved in 47 hours
computational time. The tests were performed on two clusters: one consisting of
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16 machines each with Quad Pentium Pro 200MHz/256 MB main memory and
the other comprised of 48 machines each with Dual Pentium II 300MHz/512
MB main memory. The solutions reported improve existing solutions used by
the airline both in terms of regularity and costs.

3.2 Rescheduling Approaches

We distinguish between unplanned and planned rescheduling. Unplanned resche-
duling of crews is necessary when the planned crew schedule cannot be executed
due to irregular operations or disruptions. Planners usually aim to determine new
crew assignments that make as few changes to the original schedule as possible.
In other words, planners like to find a new solution with a small distance to the
original (reference) solution. Unplanned crew rescheduling is also referred to as
crew recovery. Typically, the underlying flight schedule may be changed in crew
recovery problems, i.e., flights may be delayed or even canceled, if no feasible re-
covery scheme is found in a given timeframe. Note that the underlying timetable
must not be altered in the problem stated in the preceding section. Furthermore,
typical scenarios for crew recovery include local disruptions while irregular trips
are often spread over the complete timetable. In conclusion, solution approaches
for crew recovery do not seem to be well suited for our problem stated in Section
2. However, recent approaches to airline crew rescheduling (recovery) include,
among others, [12], [6], [14], and [13].

In planned crew rescheduling the changes in the underlying timetable are
typically known in advance. [9] describes the planned crew rescheduling problem
in a railway setting at NS which is the largest passenger railway operator in the
Netherlands. At NS crew scheduling is performed in two stages. First, solutions
for an annual plan are constructed, i.e., for a general Monday, Tuesday, and so
on. In a second phase, the general days are adapted to individual days where
specific changes in the timetable for those days are considered. The author states
that the changes in the timetable are mainly due to track maintenance or extra
service trips that are both usually known in advance. He suggests a set covering
formulation where original duties are replaced by new (similar) duties such that
all tasks of the modified timetable are covered and total costs of the new duties
are minimized. He uses a heuristic based on column generation in combination
with Lagrangian relaxation and an elaborate set covering heuristic to compute
integer solutions. The computational experiments involve two real-world sce-
narios and were performed on personal computer with a Pentium IV 3.0 GHz
processor/512 MB main memory. The instances with 5,683 and 7,740 tasks had
355 (6.2%) and 827 (10.6%) expired tasks, respectively. For the first instance,
only 12.6% of the original duties needed modifications while the ratio increased
to 29.5% for the second instance. The author could solve the first instance in
approximately 9 hours and the second one in less than 16 hours.

The only approach for public bus transport we are aware of is described in [2].
However, the authors do not provide any details on their approach which is part
of the commercial software package HASTUS/CrewOpt (see [5]). They rather
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emphasize the practical importance of generating efficient solutions that are
similar to a reference crew schedule (when the underlying timetable is changed).

4 Mathematical Formulation

In this section, we will give the formulation that will be used in the remainder of
this chapter. Recall that we assumed that drivers may only change their vehicles
in depots (ex-urban scenario). Therefore, we propose to solve the independent
crew scheduling problem (ICSP - see Section 2) first and, then, put the vehi-
cle rotations from the crew scheduling solution together such that the vehicle
schedule is feasible. In Section 5 we will seek to improve the regularity of crew
schedules for the independent crew scheduling problem.

Let T be the set of tasks. Furthermore, we define K as the set of all feasible
duties and K(t), t ∈ T as the set of duties that cover task t. The cost of duty
k ∈ K is denoted by ck. Finally, decision variables xk indicate whether duty k is
selected in the solution or not. The ICSP can be formulated as set partitioning
problem: ∑

k∈K

ckxk → min (3)

s.t.
∑

k∈K(t)

xk = 1 ∀t ∈ T , (4)

xk ∈ {0, 1}. (5)

The objective (3) is to minimize the total costs of the selected duties, and con-
straints (4) assure that each task will be covered by exactly one duty. When the
equality sign in constraints (4) is replaced by a greater or equal sign ”≥”, we
obtain a set covering formulation. Then, tasks may be assigned to more than one
driver where the additional drivers are passengers. The set covering formulation
is computationally more attractive than the set partitioning formulation (see
[20]). In the remainder of this paper, we will consider a set covering formulation.

5 Solution Approaches

5.1 Basic Approach and Test Instances

The purpose of this section is to present two solution approaches that improve the
regularity of crew schedules compared to traditional crew scheduling. For both
approaches we use model (3)-(5) and apply a column generation algorithm in
combination with Lagrangian relaxation. We solve the corresponding Lagrangian
dual with a subgradient algorithm to obtain approximate dual values. The col-
umn generation pricing problem corresponds to a resource constrained shortest
path problem and is solved with a dynamic programming algorithm. For details,
see [16] and [11].
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The columns generated in the column generation phase serve as input to the
second phase where an appropriate integer solution is sought. In the following,
we suggest two methods for the second phase that take the trade-off between
costs and regularity into account. In particular, we propose a novel combination
of local branching and follow-on branching in Section 5.

Our solution approach is based on the observation that (independent) crew
scheduling problems have thousands of optimal solutions. This is mainly due to
degeneracy.

In Table 1 we give the average number of optimal solutions for indepen-
dent crew scheduling problems with 80, 100, and 160 trips (tasks). We used the
randomly generated test instances from [7]. In accordance with [8] we consider
five different types of duties: one tripper type with one piece of work between
30 minutes and 5 hours, and four types consisting of two pieces of work. Each
group of a given number of trips involved 10 instances.

We enumerated at most 2,500 different optimal solutions per instance with
the branch-and-bound implementation of ILOG CPLEX 9.1.3. The root node
of the branch-and-bound tree was solved with a column generation algorithm,
i.e. we did not regenerate columns during tree search. As we can see in Table 1,
the average number of different optimal solutions can be very high in indepen-
dent crew scheduling problems. Furthermore, the number of optimal solutions
increases if a mere 0.01% deviation to the optimal solution value is allowed.

#trips #instances opt. tolerance

solved 0.00% 0.01%

80 10 1,052 1,115
100 9 723 945
160 9 1,807 2,046

Table 1. Average number of optimal solutions on Huisman data instances

The basic idea of our solution method is to systematically search an optimal
solution among all optimal solutions that is as similar as possible to a given
reference solution. In particular, we use local branching cuts to select suitable
solution subspaces and explore these subspaces with an adapted version of follow-
on branching. Some preliminary results were presented in [17].

5.2 Local Branching to Find Regular Crew Schedules

Local branching (see [3]) is an exact solution method for general mixed integer
programs. The basic idea of local branching is to define suitable solution sub-
spaces that are efficiently explored with a generic MIP solver. In other words,
local branching cuts are added to strategically define subspaces that are tactically
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explored with a black-box solver. The procedure can be viewed as a two-level
branching scheme that aims at finding good incumbent solutions at early stages
of the computation. The underlying assumption is that small instances of a prob-
lem can be efficiently solved with a generic solver while large instances cannot.

Given a feasible start solution x̄ ∈ {0, 1}|K| of ICSP we define the Hamming
distance

∆(x, x̄) =
∑
k∈L0

(1− xk) +
∑

k∈K\L0

xk (6)

where L0 = {k ∈ K : x̄k = 1} denotes the support of x̄. The distance ∆(x, x̄)
counts the number of variables in x that flip their values with respect to x̄ (either
from 1 to 0 or from 0 to 1). For a given neighborhood parameter κ ∈ N+, the
solution space can be partitioned with local branching cuts:

∆(x, x̄) ≤ κ (left branch), (7)
∆(x, x̄) ≥ κ+ 1 (right branch). (8)

For an appropriate value κ, subspace ∆(x, x̄) ≤ κ can be efficiently explored
with a generic MIP solver. If the subspace contains a new incumbent x̄2, the
scheme is reapplied to the right branch where two new subspaces are constructed:
∆(x, x̄2) ≤ κ and ∆(x, x̄2) ≥ κ+ 1. On the other hand, if subspace ∆(x, x̄) ≤ κ
does not contain a new incumbent, the remaining (large) subspace ∆(x, x̄) ≥
κ+ 1 has to be explored with a MIP solver.

For independent crew scheduling, we use a local branching scheme to first
explore regions of the solution space that contain solutions similar to a given
reference crew schedule R. Similar to equation (1) let σpk be the number of tasks
of duty k that are not part of a regular pair. Then, we solve the ICSP (possibly
to optimality) with a modified objective function to obtain a start solution x̄ as
a basis for local branching. The start solution should be similar to the reference
crew schedule and should have sufficiently low costs. Therefore, we replace the
original cost ck of column k by ĉk = ck + ασpk and define α in such a way that
σpk dominates the modified cost. Finally, we restore the objective function and
use x̄ to define the initial neighborhood for local branching.

According to our experience the choice of parameter α is crucial for the
performance of the solution procedure. If α is too small, we get a start solution
with low costs and low similarity. As a consequence, it is difficult to improve
the similarity with local branching. On the other hand, if α is too large, the
computational burden to find a minimum cost solution can be very high. In our
computational experiments we found that α ∈ [150, 400] is a robust parameter
setting.

5.3 Follow-On Branching to Find Regular Crew Schedules

In order to simplify the exposition, we will briefly recall the basic idea of follow-
on branching. Branching on follow-ons relies on a general branching strategy for
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set partitioning problems that was introduced by [15]. The branching scheme is
based on the following property. Given a fractional solution to a set partitioning
problem, we can identify two rows (tasks) fi ∈ T and fj ∈ T such that the
subset K(fi, fj) of columns that contain fi and fj has the property

0 <
∑

k∈K(fi,fj)

xk < 1. (9)

The remaining fraction of cover for each constraint must be provided by columns
that do cover both rows at the same time. Thus, an effective constraint branching
scheme is to require to cover two rows fi and fj by the same column on one
branch and by different columns on the other. [19] slightly modify the scheme to
maintain tractability. They only consider trips (rows) fi and fj that correspond
to trips operated consecutively in a duty (column). Furthermore, the authors
show that this modification still constitutes a correct branching scheme. We
refer to this strategy as branching on follow-ons since we impose which task
can follow task fi in the solution. Moreover, we refer to the task pair (fi, fj)
as follow-on. Notice that each regular pair Si ∈ S̄ is also a follow-on. In the
following, we will describe how follow-on branching is used to construct regular
crew schedules.

A regular crew schedule contains as many regular pairs and chains as possible.
We modify the follow-on branching scheme in such a way that an (cost) optimal
solution has a high regularity as well. In the following, we will propose three
novel adaptations of follow-on branching: branching on regular pairs (fo-r1 ),
regular chains (fo-r2 ), and pieces of work (fo-r3 ).

The support of a regular pair (fi, fj) ∈ S̄ is defined as:

g(fi, fj) =
∑

k∈K(fi,fj)

xk. (10)

Since we aim at generating regular crew schedules we branch on a candidate
regular pair (fi, fj) ∈ S̄ where 0 < g(fi, fj) < 1 is satisfied. Branching scheme
fo-r1 selects the regular pair with the best support among all regular pairs.

fo-r1 : (fi, fj) = arg max
(fi,fj)∈S̄

g(fi, fj) (11)

However, if S̄ = ∅ we choose the follow-on with fi, fj ∈ T and max g(fi, fj).
Branching scheme fo-r2 does not rely on the support of single regular pairs,

but tries to fix regular chains of maximum length. Recall that T̄ is associated with
the set of regular chains. Furthermore, we associate K(Ti) with the set of duties
that cover regular chain Ti. The set of candidate regular chains T̄c contains all
regular chains Ti ∈ T̄ where 0 < g(Ti) < 1 with g(Ti) =

∑
k∈K(Ti)

xk is satisfied.
Algorithm 1 depicts branching scheme fo-r2 where we try to branch on a regular
chain of maximum length if there are candidate chains.

Notice that scheme fo-r2 corresponds to the latter scheme fo-r1 if the set of
candidate regular chains T̄c only consists of chains of length two.
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Algorithm 1: Branching on regular chains (fo-r2 )
Find candidates
Compute set of candidate regular chains T̄c = {Ti : 0 < g(Ti) < 1}.
Branching
if T̄c 6= ∅ then

Branch on follow-on fi, fj ∈ T with max g(fi, fj)
end
else

Initialize T̄max
c = {Ti ∈ T̄c : |Ti| = maxTj∈T̄c |Tj |}

Branch on regular chain Ti ∈ T̄max
c with max g(Ti)

end

Finally, we propose branching scheme fo-r3 where we branch on a piece
of work whenever that piece of work forms a regular chain. If several pieces
correspond to candidate regular chains, we select the piece with the maximum
number of tasks. Algorithm 2 presents how branching on regular pieces of work
is performed.

Algorithm 2: Branching on regular pieces of work (fo-r3 )
Find candidates
Compute set of candidate regular chains T̄c = {Ti : 0 < g(Ti) < 1}.
Branching
if T̄c 6= ∅ then

Branch on follow-on fi, fj ∈ T with max g(fi, fj)
end
else

if ∃Ti ∈ T̄c : Ti is piece of work then
Initialize T̄cp = {Ti ∈ T̄c : Ti is piece of work}
Branch on regular chain Ti ∈ T̄cp with |Ti| = maxTj∈T̄cp |Tj | and
max g(Ti)

end
else

Initialize T̄max
c = {Ti ∈ T̄c : |Ti| = maxTj∈T̄c |Tj |}

Branch on regular chain Ti ∈ T̄max
c with max g(Ti)

end

end
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5.4 Local and Follow-On Branching to Find Regular Crew
Schedules

Local branching and follow-on branching can be combined. In particular, we
embed follow-on schemes fo-r1 to fo-r3 into local branching to explore neigh-
borhoods ∆(x, x̄) ≤ κ. We hope to explore neighborhoods ∆(x, x̄) ≤ κ in such
a way that (1) an new incumbent is found fast and (2) the new incumbent has
a smaller distance than other solutions in the neighborhood. If the reference so-
lution is of high quality, a valuable follow-on might be selected first and might
reduce the computational time to explore the neighborhood. To sum up, we
strategically define subspaces with local branching and tactically explore them
with follow-on branching.

6 Computational Results

We test our approaches on real-world and randomly generated data instances.
We consider two real-world and eight randomly generated data instances. The
artificial instances were generated as described in [8]. However, all instances have
a single depot and drivers may only change their vehicle in that depot. We make
these assumptions in order to reflect a typical ex-urban scenario (see Section 2).
Furthermore, we assume that a reference crew schedule is known for each data
instance.

In Table 2 we give details on the data instances that result from solving
the linear relaxation of the ICSP with a column generation algorithm. The last
two instances correspond to real world problems while the others were randomly
generated. We report the ratio of irregular trips in percent (%irr), the number of
rows (#rows), columns (#cols), and non-zeros (#nnz ). For each data instance
the ratio of irregular trips refers to the number of new trips, i.e., trips that are not
in the reference schedule, compared to the total number of trips. In the second
part of the table we give details on the column generation phase: the number of
iterations (#iter), and the computational time spend on master (cpu ma) and
pricing problem (cpu pr). To maintain comparability between both approaches,
we used operating costs as single objective in the column generation phase.
In addition to the assumptions stated above we apply the following parameter
settings for our branching approach:

The computational time to find an integer solution is limited to 2 hours (7,200
seconds). In our local branching implementation, at most 20% of the variables
of the incumbent may flip their values. Furthermore, the computational time
to explore subspaces ∆(x, x̄i) ≤ κ (left branches) is limited to 15 minutes (900
seconds). If the time limit is reached and no new incumbent is found, we reduce
the size of the subspace by 50% to speed-up its exploration. For further details
we refer to [3].

All computational experiments with the branching schemes were performed
on a personal computer running Windows XP with an Intel Pentium IV 2.2 GHz
processor and 2 GB of main memory.
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instance %irr #rows #cols #nnz #iter cpu ma cpu pr

art320 1 5.0 320 100,944 857,215 31 245 140
art320 2 5.0 320 60,128 384,478 21 143 85
art400 1 5.0 400 72,673 459,906 22 125 122
art400 2 5.0 400 57,769 352,592 21 130 77
art640 1 5.0 640 156,044 1,227,320 41 1,006 1,673
art640 2 5.0 640 104,595 643,113 28 572 695
art800 1 5.0 800 135,572 852,337 37 1,060 2,054
art800 2 5.0 800 162,209 1,158,539 39 1,773 2,887
real430 4.4 430 98,710 1,204,084 31 391 297
real433 4.8 433 103,516 1,236,954 31 411 257

Table 2. Description of data instances

In Table 3 we show results on the regularity of crew schedules when we apply
local branching (locbr) and follow-on branching (fo-r1, fo-r2, fo-r3 ) as described
in Section 5. Furthermore, we compare our method with the default branch-and-
bound implementation of ILOG CPLEX 9.1.3 (cpx-def ) and local branching in
combination with default branching of CPLEX (locbr cpx-def ). For each method
we give the average over the ten instances described in Table 2. In Table 3 we
report the computational time in seconds spent in the second (integer) phase
(cpu ip), the optimality gap in percent (%gap) and three regularity measures.
The regularity measures are defined as follows. The percentage of preserved
duties (%prd) refers to the percentage of duties in the new crew schedule that
could be (exactly) kept from the reference crew schedule. Similarly we define the
percentage of preserved regular pairs (%prp). The average regular chain length
of a crew schedule corresponds to the average number of regular tasks in a duty.
In this context, the percentage of the average chain length (%avgcl) refers to the
average regular chain length of the new crew schedule compared with average
regular chain length of the reference crew schedule. For example, if the reference
schedule has on the average 8 regular tasks per duty, and the average regular
chain length in the new crew schedule is 4 tasks, then avgcl = 4

8 = 50%.
As can be seen from Table 3 branching scheme fo-r1 provides the best results

in terms of solution time and solution quality. Recall that objective function
and, thus, solution quality refer to operational costs. On the other hand, local
branching considerably improves the regularity of the new crew schedules, e.g.,
the number duties that can be kept from the reference. Basically, we generally
observe an increase of solution time and decrease of solution quality if local
branching is used. However, local branching in combination with scheme fo-r1
gives a better solution quality than the default version of CPLEX. To sum up, we
conclude that local branching effectively improves the regularity while follow-on
branching scheme fo-r1 is well suited to improve solution quality and time. The
combination of both methods leads to improved solutions in terms of both cost
and regularity compared to a traditional approach with CPLEX. A reason for
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regularity measures

method cpu ip %gap %prd %prp %avgcl

cpx-def 2,437 1.93 6.3 53.5 31.0
fo-r1 2,095 0.42 7.7 54.4 31.2
fo-r2 3,649 2.20 8.2 56.8 33.7
fo-r3 4,247 2.81 6.6 55.0 32.5

locbr cpx-def 6,420 2.60 27.4 79.0 50.1
locbr fo-r1 5,492 1.55 28.0 80.2 51.2
locbr fo-r2 5,806 3.81 32.3 81.1 54.5
locbr fo-r3 6,270 3.70 25.6 80.0 51.2

Table 3. Results on regularity for branching approaches

the good performance of fo-r1 might be that branching on sequences from the
reference leads to high quality solutions if the reference schedule is also of high
quality.

7 Summary

In this paper, we discussed the ex-urban vehicle and crew scheduling problem
with a single depot and irregular timetables. Unless specifically imposed, tra-
ditional vehicle and crew scheduling usually produces irregular crew schedules
which are undesired in practice. We presented solution approaches that improve
the regularity of crew schedules compared to traditional crew scheduling. In
particular, we proposed a novel combination of local branching and follow-on
branching. A computational study that involved randomly generated and real-life
data showed the applicability of the proposed techniques. In fact, our branching
scheme lead to improved solutions in terms of both cost and regularity compared
to a traditional approach with CPLEX. A current limitation of our approach is
that we do not consider a full integration of vehicle and crew scheduling. In-
stead, we focussed on an ex-urban scenario where drivers are virtually tied to
their vehicle.
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