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Abstract. This paper deals with large-scale crew scheduling problems
arising at the Dutch railway operator, Netherlands Railways (NS). We
discuss several methods to partition large instances into several smaller
ones. These smaller instances are then solved with the commercially
available crew scheduling algorithm TURNI. In this paper, we compare
several partitioning methods with each other. Moreover, we report some
results where we applied different partitioning methods after each other.
With this approach, we were able to cut crew costs with 2% (about 6
million euro per year).

1 Introduction

In [13] it was shown that very large Crew Scheduling Problems can be solved
using state of the art Operations Research (OR) techniques. At NS we use similar
techniques to solve our Crew Scheduling Problem (CSP). We present several
methods to handle even larger cases than presented in the referred paper.

NS is the main Dutch railway operator of passenger trains, employing in
total 3,000+ drivers and 3,500+ conductors in 29 crew depots. A typical crew
scheduling instance of NS related to a single duty type (driver or conductor) on
each workday requires assigning about 14,000 timetabled trips to 1,000+ duties
in 29 crew depots. Additionally, we would like to solve the problem for a complete
week, which even gives a new dimension to the problem. This produces set-
covering instances that are much larger than those addressed in the literature so
far, and they have many additional nasty crew-depot constraints. Furthermore,
these figures also imply that each duty covers about 14 trips on average, which
is a higher number than airlines usually encounter. As described in [1], due
to the complex set of labor rules, automated support in the crew scheduling
process is absolutely necessary. Therefore, NS has been using the automated
crew scheduling system TURNI since 2000. TURNI was developed by Double-
Click, which has customized it several times to cope with the complex rules
that govern NS crew schedules. For NS, the software is considered to be a black
box where data are inserted and duties are returned. During the years of using
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the software, we got the impression that although the system was capable of
handling large instances, the results could be improved using the characteristics
of our problem. E.g. experiments showed that re-optimizing a part of a solution
resulted in better solutions. Next to that the developed working method handled
the global (weekly) constraints in a rigid way. To explain this we present Figure 1.
In this figure, a few possible duties are plotted. They are assigned to a certain
base (A or B) and have a certain length. The vertical line indicates the moment
in the night where no trains are operated.

Fig. 1. Duties example

The problem is too large to solve it as a single instance. In the initial working
method we created a CSP for each weekday and solved it. We could easily
assign the trips to a single weekday because there are almost no trains running
through the night, so there is a natural moment in time to split the problem. For
each sub-problem we made a guess of the contribution to the global problem.
This was fixed and there was no interaction between the sub-problems. E.g. the
average duration of the duties for a crew depot is 8:00 hours. The sub-problem
for the weekday was limited to an average of 7:40 hours and the problem for
the weekend was limited to an average of 8:30. In this way the global average
would be approximately 8:00 hours. We developed a method were we constructed
and solved sub-problems iteratively. We iterated between large and small sub-
problems and between day based and week based problems. The results of the
solutions were passed to the consecutive problems. This method resulted in an
improvement of about 2% on the solution costs. This paper will describe this
method and the results in detail. The remainder of this paper is organized as
follows. The concept of crew scheduling at NS is explained in more detail in
Section 2. We will describe the characteristics of the problem which are used
in the iterative approach. In Section 3, we briefly discuss some theory which is
the basis for our method. Afterwards, in Section 4, we will present our method
and we will analyze some examples of sub-problems that are constructed. The
computational results of our method are presented in Section 5. Finally, we finish
this paper with some concluding remarks.
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2 Crew planning at NS

In Figure 2, we give a schematic overview of the crew planning process for drivers
and conductors at NS. Other crew members (at ticketing offices, the call center,
mechanics, etc.) fall outside the scope of this paper. The crew scheduling problem
(CSP) is the problem of assigning tasks to anonymous duties. These tasks are
given by the timetable and by the rolling stock schedule (see [11] for a discussion
on all planning problems at NS). More formally, a task is the smallest amount
of work that has to be assigned to one driver. A duty is the work for one crew
member from a specific crew base on a certain day.

Fig. 2. Crew planning process

At NS, the crew scheduling process has been split in two stages. First, the
crew schedules for the annual plan are constructed. Secondly, the crew rosters are
created, where the crew members are assigned to operate the duties. This paper
will focus on the first phase, the generation of the duties for the annual plan.
This plan deals with a generic Monday, Tuesday and so on. This generic annual
plan is modified about 6 times a year as a result of changes in timetable and
rolling stock schedules. The other parts of the process fall outside the scope of
this paper (for crew rostering, we refer to [8] and for crew re-scheduling to [10]).
In the CSP that is solved for generating the generic annual plan, some rostering
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aspects are also taken into account. For instance, the average duty length over
all duties on a certain crew base should not exceed 8 hours. The reason is that,
if this time is exceeded, then it is impossible to construct rosters where the
average working time per week is less than 36 hours (in principle each full-time
crew member works 9 days in two weeks). The number of night duties (duties
with a working period between 1:00h and 5:00h) in a roster is also limited. This
constraint should also be validated at a weekly basis. Moreover, it is important
that to obtain a fair division of the work over the week for the different crew
members, the work should be fairly spread over the different bases. The latter
constraints are typical for the Dutch situation and are known as “Sharing Sweet
& Sour” rules. They aim at allocating the popular and the unpopular work as
fairly as possible among the different crew bases. For instance, some routes are
more popular than others and intercity trains are preferred over regional trains.
For a detailed description of these rules, we refer to [1]. One example is the
percentage of work on intercity trains. Of the work assigned to a depot for a
week, at least 25% should be on the intercity trains. Again, we could require
every weekday to contain at least 25% of this work but it is better to check this
constraint for a complete week.

3 Models and Algorithms for CSP

In this section, we give a short overview on models and algorithms that are used
to solve the CSP. Moreover, we provide a mathematical formulation for a CSP
containing 2 days without tasks overnight.

The airline industry has used OR models and techniques to solve crew schedul-
ing problems for many years, see e.g. [2], [6] and [9]. However, in the railway
industry the sizes of the crew scheduling instances are, in general, a magnitude
larger than in the airline industry. The latter has made the application of these
models in the railway industry prohibitive until recently. Developments in hard-
ware and software enable the railway industry to use these models nowadays as
well, see [4, 13, 14, 7], among others.

The CSP can be modeled as a set covering problem with additional con-
straints. If we consider the problem for a whole week where this is only a minor
interaction between the different days, we get a special structure of the math-
ematical program. To show this, we give a mathematical formulation for the
problem with two days. Let T 1 and T 2 be the set of tasks for day 1 and 2,
respectively. Furthermore, D1 and D2 denote the set of duties for these days.
The subset D1

i (D2
i ) of D1 (D2) consists of the set of duties containing task i.

The binary decision variables xj (and yj) indicate whether duty j ∈ D1(D2) is
included in the solution or not. Every duty j has positive costs cj . Furthermore,
let S be the set of additional constraints and let ls and us be the lower and
upper bound for constraint s ∈ S. Finally, let vs

j (and ws
j ) be the weight of duty

j ∈ D1(D2)for constraint s. Then we can formulate this CSP as follows:
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min
∑

j∈D1

cjxj +
∑

j∈D2

cjyj (1)

∑

j∈D1

i

xj ≥ 1 ∀i ∈ T 1, (2)

∑

j∈D2

i

yj ≥ 1 ∀i ∈ T 2, (3)

ls ≤
∑

j∈D1

vs
jxj +

∑

j∈D2

ws
jyj ≤ us ∀s ∈ S, (4)

xj ∈ {0, 1} ∀j ∈ D1, (5)

yj ∈ {0, 1} ∀j ∈ D2. (6)

Equation (1) is the objective function, which states that the sum of the duty
cost is minimized. Constraints (2) and (3) guarantee that for each task i, at least
one duty that contains this task is selected. Note that only duties of day 1 (2)
can contain tasks of day 1 (2). It may sometimes be better to perform a task
more than once. If, for example, the number of tasks going out of a crew base
differs from the number of tasks going into the crew base on a day, overcovering
is necessary. Moreover, even if overcovering is unnecessary, it may be cheaper to
allow overcovering. By allowing overcovered tasks it can be that other tasks can
be covered easier, resulting in a larger decrease in costs than the extra money
for the overcovered task. Constraints (4) are additional constraints. Consider as
an example of an additional constraint, a crew depot for which the total number
of duties on both days is limited to 50. Then ls = 0, us = 50 and vs

j (w
s
j ) = 1

for all duties belonging to this depot and vs
j (w

s
j ) = 0 for all other duties. For

some additional constraints it is allowed to violate the constraint at the cost
of a penalty. These constraints are moved to the objective function, along with
the penalty. The last two sets of constraints (5,6) indicates that the decision
variables are binary.

Often CSPs are solved day by day. Even then the resulting set covering
problems are extremely large. Therefore, column generation techniques are often
applied to tackle the large number of duties. We assume that the reader is
familiar with the basic ideas of column generation (recent surveys on this topic
are [2, 15, 5]).

TURNI uses column generation combined with Lagragian relaxation. In the
remainder of this section, we give a short description on how TURNI works.
TURNI is based on a heuristic presented in [3], which is designed for solving
very large scale set covering instances. This Lagrangian-based heuristic, called
CFT-heuristic, in which CFT stands for Caprara, Fischetti and Toth, forms
the bases of TURNI. The main characteristics of the algorithm are a dynamic
pricing scheme for the variables, coupled with subgradient optimization and
greedy algorithms, and the systematic use of column fixing to obtain improved
solutions. We will not discuss these characteristics in detail but we would like to
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stress that, as a result of the algorithm, not only the final set of created duties is
presented, but also a large number of “good” duties are available. We will use this
additional information for constructing our sub-cases as described in Section 4.4.
The process of creating duties from the tasks is called duty generation. The duties
to be generated have to satisfy all constraints concerning a single duty, like rules
about maximum length and rules for the breaks. When the graph is created,
duties can be generated by finding a feasible path through the graph which
starts and finishes in the same depot. A path is a feasible path when it satisfies
all rules concerning the duty length and meal breaks. The costs of the arcs are
defined in such a way that the total cost of a path is equal to the reduced cost
of a duty. By finding the shortest, feasible path and checking whether its cost
is negative or not, it is possible to check if there are still duties with negative
reduced costs.

4 The partitioning method

Our method is based on two observations. First of all, the global constraints are
to be validated on a weekly basis. The original method used a static partitioning
of the complete problem into separate days of the week (Friday, Saturday and
Sunday). Before a solution was computed an estimate was made on the effect
the sub-problem would have on the complete problem. For example, the average
duration of the duties must be below 8 hours per week per crew depot. For the
sub-problem for the Friday this was set to a maximum average of 7:40 hours
and for Saturday and Sunday this was set to a maximum of 8:30. Overall this
will result in an average that is below 8:00 hours. These constraints were based
on rules of thumb that were used by the planners for years during the manual
planning. We observed that planning for a complete week and taking into account
the real week constraint could lead to a better overall solution. The second
observation was that in some cases the solution was improved if, for instance,
the solution for one crew depot was re-scheduled. For this the duties and tasks
for that depot were given to the TURNI software and the solution for this
smaller problem was better than the original solution. This also indicated that
solving the larger instance was becoming difficult for the current implementation.
Combining the two observations, we reasoned that we could possibly improve
the overall solution if we would take the solution for one or more depots for
the separate days and combine them into a case for the complete week. Next to
that, we reasoned that it would be good to have several iterative combinations
of depots in order to minimize the effect of optimizing over a sub-problem. Next
to that we are interested in the effect variation in size of the cases. The most
important dimensions in scheduling are time and location of the activities. It
seems natural to use this dimensions to partition the overall problem. We will
now describe the different partitioning methods one by one.



102 Erwin Abbink, Joël van ’t Wout and Dennis Huisman

4.1 Weekday partitioning

In this method we create a sub-problem per weekday. All trips belonging to the
same weekday are combined in a sub-problem. Not all weekdays are included.
Monday, Tuesday until Friday are very similar. Therefore we choose one (the
Friday) of the weekdays as a pattern weekday. At the end, the solution for this
weekday will be used as a solution for the other weekdays too. The differences
between the weekdays will be handled manually. For the Saturday and the Sun-
day a separate solution is created. The advantage of this method is that it can
be used without an initial solution. Because tasks of different weekdays cannot
be scheduled together in a single duty at NS, this method is a good option to
create an initial solution. In fact, this method was used as the only partitioning
method during the first years of using the system

4.2 Geographical partitioning

The primary geographical partitioning is the depot to which a duty is created and
assigned. After an initial solution is created we can combine all duties assigned
to a depot for all weekdays. This results in 29 sub-problems. These sub-problems
are very small and do not provide much room for improvement. Therefore we
create some larger cases by clustering some depots based on the geographical
location. We create small partitions where on average 3 depots are clustered and
we create large partitions where on average 7 depots are clustered.

4.3 Line based partitioning

The railway product is defined by railway lines. Trains are operated along several
railway lines at a certain frequency. The idea is to combine the depots into groups
when there are many trains that connect these stations. We call this line base
partitioning. A snapshot of the train services of the NS is given in Figure 3.

One can see that there are several series running between e.g. Amsterdam
Centraal and Utrecht Centraal, which makes them good candidates to group
into one depot cluster.

4.4 Partitioning based on column information

The last partitioning method we present is based on the information that is
generated by the scheduling algorithm. As indicated in Section 3, TURNI uses a
mechanism to rank duties according to their likelihood to be selected in an opti-
mal solution. In this way good duties are created which have a high probability
to be part of the optimal solution. Duties that have no contribution to a good
solution are removed from the set, while new duties that have a positive con-
tribution are added. Therefore the total set of duties is continually improving.
TURNI not only returns the duties which are in the final solution, but it also re-
turns these good duties which were generated during the solution process. These
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Fig. 3. Part of the Dutch railway network
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duties can be used to give the information we are looking for. If two tasks ap-
pear together in many duties, it is likely that these two tasks will be assigned to
the same duty in the optimal solution. If, on the other hand, two tasks (almost)
never appear together in a duty, these tasks will probably be assigned to different
duties in the optimal solution. Now, it is possible to give each pair of duties in
the current solution a score which can be used as a measure for inserting a pair
into a partition. This score is based on how often tasks from these two duties
appear together in the set of all duties. We calculate the score for each pair as
follows. First, we count for each combination of tasks in these duties, say t1 and
t2, the number of duties in the whole set that covers task t1 and t2. Then, we
add all these numbers. In this way, we can construct a graph G = (V, E), where
the duties are represented by the vertices, and the edges represent the fact that
the score is positive. We define a weight q(u, v) for each edge (u, v) ∈ E. This
weight corresponds to the score calculated above. We want to find a partition
of the vertices of G into k equal subsets V1, ..., Vk, such that the total weight of
the edges between different subsets is minimized, or more formally

min
∑

(u,v)∈E,u∈Vi,v∈Vj ,i 6=j

q(u, v). (7)

We use a generic algorithm for graph partitioning based on [12] to solve this
problem. For the details, we refer to [16].

5 Results

5.1 Experimental Design

All experiments were carried out on the same hardware (Pentium IV, 3 GHz,
1Mb RAM). First we evaluated the different partitioning methods by running
them after a base run in which we used the weekday partitioning. After that
we made a final run in which all methods were applied sequentially. We used
a maximum computation time of 6x24 hours in total. This means if a prob-
lem is partitioned into two sub-problems, both sub-problems have a maximum
computation time of 3 days. In the final run, where all methods are used se-
quentially, parallel machines were used and the maximum computation time per
sub-problem was set to 1 day.

5.2 Computational results

In Table 1 we present the results of the experiments. The numbers in the method
columns indicate the orders of applying the method. An empty cell indicates that
the method was not used in the experiment. In the last two columns, we report
the number of duties and the relative improvement compared to the base case.
We choose to report the number of duties instead of the objective function,
because the value of the objective function is mainly determined by the number
of duties.
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Table 1. Results

Weekday Geo. Large Geo. Small Line Column Info. #Duties ∆Duties

1 1 7432 -
2 1 2 7339 -1,3%
3 1 2 7318 -1,5%
4 1 2 7335 -1,3%
5 1 2 7331 -1,4%
6 1 2 3 4 5 7287 -2,0%

The results show that all partitioning methods (except the base one with
only weekdays) perform more or less the same. For all of them, the number of
duties is reduced by approximately 1.5%. An even larger improvement could
be obtained by applying all methods sequentially after each other. In this case,
several machines were used and the different sub-problems were run in parallel.
In this way, an improvement of 2.0% could be obtained resulting in a saving of
about 6 million euros. This final solution was implemented in practice for the
crew schedules corresponding to the timetable of the year 2007.

6 Conclusions

In this paper we described a method that improved the usage of an advanced crew
scheduling algorithm using iterative partitioning of the problem. The method is
being used for creating the schedules of a large number of drivers. We have shown
that applying some basic partitioning techniques can have a significant added
value when combined with some advanced mathematical methods. Overall the
efficiency was improved with about 2%. The method is automated which not only
enables us to create an efficient production plan, but also gives us the possibility
to use it for what-if scenario analyses. In the past the scenarios were only studied
for a single weekday. With this method, the analyses are more reliable because
the complete week is taken into account.
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