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Abstract. During the last years, impressive speed-up techniques for DIJKSTRA’s
algorithm have been developed. Unfortunately, recent research mainly focused on
road networks. However, fast algorithms are also needed for other applications
like timetable information systems. Even worse, the adaption of recently devel-
oped techniques to timetable information is more complicated than expected.
In this work, we check whether results from road networks are transferable to
timetable information. To this end, we present an extensive experimental study
of the most prominent speed-up techniques on different types of inputs. It turns
out that recently developed techniques are much slower on graphs derived from
timetable information than on road networks. In addition, we gain amazing in-
sights into the behavior of speed-up techniques in general.

1 Introduction

Computing shortest paths in networks is used in many real-world applications like rout-
ing in road networks, timetable information, or air-plane scheduling. In general, DIJK-
STRA’s algorithm [1] can solve this problem. Unfortunately, the algorithm is too slow
to be used on huge datasets, e.g. the US road network has more than 20 million nodes.
In order to reduce query times for typical instances like road or railway networks, sev-
eral speed-up techniques have been developed during the last years (see [2, 3] for an
overview). Most recent research [4, 5] even made the calculation of the distance within
a road network a matter of microseconds.

Unfortunately, due to the availability of huge road networks, recent research focused
only on such networks [6]. However, fast algorithms are needed for other applications
as well. One might expect that all speed-up techniques can simply be used in any other
application, yet several problems arise: on the one hand, several assumptions which
hold for road networks may not hold for other networks, e.g. in timetable information
bidirectional search is prohibited as the arrival time is unknown in advance. Perfor-
mance is the other big issue. The fastest methods [4, 5] heavily exploit properties of
road networks in order to gain their huge speed-ups. Furthermore, most of the devel-
oped techniques only work in static scenarios, i.e. edge weights do not change between
two requests. However, in railway networks, delays occur frequently. Thus, a solution
for the dynamic timetable information problem is required.
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In this work, we evaluate the most prominent speed-up techniques on different types
of input classes. At a glance, using the techniques on time-expanded [7] graphs for
timetable information seems promising. Since road networks seem to have similar prop-
erties as railway networks—both incorporate some kind of natural hierarchy and both
are sparse—one might expect that speed-up techniques yield the same performance as
on road networks. However, our study reveals that speed-up techniques perform sig-
nificantely worse on time-expanded graphs than on road networks. Even worse, the
speed-ups obtained are below the blow-up factor of approximately 250 that exists be-
tween the time-dependent and time-expanded model [7]. As a consequence, a plain
time-dependent DIJKSTRA on the time-dependent graph is faster than any speed-up
techniques on the corresponding time-expanded graph. With the obtained results, we
conclude that for pure performance issues the time-dependent model is somewhat su-
perior to the time-expanded model. In addition, delays seem to be incorporated easier
by the time-dependent approach.

In addition, our extensive experimental study leads to intriguing insights into the be-
havior of speed-up techniques. For small world inputs, the biggest speed-up is achieved
by simply switching from uni- to bidirectional search and almost all speed-up tech-
niques do not yield an additional speed-up. Moreover, we reveal the influence of den-
sity and diameter on the techniques. As most algorithms have only been tested on road
networks, these new results are of independent interest.

1.1 Related Work

Systematic experiments of speed-up techniques can only be found in [8]. However,
in their work, the authors only use condensed railway networks and after its publica-
tion, several additional speed-up techniques have been developed which we incorporate
in this work. In [9] additional tests—besides road networks—on grid graphs are per-
formed.

There has been some research on adapting speed-up techniques to timetable in-
formation. In [10] basic speed-up techniques are used in time-dependent and time-
expanded timetable informations graphs. In [11], the multi-level speed-up technique is
applied on railway graphs. Geometric containers were evaluated in [12] on such graphs
as well. However, to our best knowledge, no extensive tests incorporating all recently
developed speed-up techniques have been published yet.

1.2 Overview

This paper is organized as follows. The most prominent speed-up techniques are shortly
introduced in Section 2. In Section 3 we briefly discuss existing approaches for mod-
eling timetable information as graphs. For all three approaches we discuss advantages
and disadvantages with a focus on the effort of adapting speed-up techniques to each
model. Our extensive experimental study is located in Section 4, where we evaluate the
speed-up techniques from Section 2 on several real-world and synthetic datasets. Our
work is concluded by a summary and possible future work in Section 5.
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2 Speed-Up Techniques

Here, we briefly present those speed-up techniques which are evaluated in Section 4
(for a more detailed overview see [2, 3]). Due to the fact that many speed-up techniques
exist, we restrict ourselves to the most prominent ones and to those which do not need a
layout of the input graph. In addition, we do not consider transit-node routing, as it was
especially tuned for road networks [5]. For all techniques, we use the most sophisticated
variant.

Bidirectional DIJKSTRA. The most straightforward speed-up technique is bidirec-
tional search. An additional search is started from the target node and the query stops
as soon as both searches meet. The tuning parameter of this approach is the way for-
ward and backward search are alternated. We here use a strategy that strictly alternates
between both searches, balancing the work between them. Note that most sophisticated
methods are bidirectional approaches.

ALT [13]. Goal directed search, also called A∗ [14], pushes the search towards a tar-
get by adding a potential to the priority of each node. Given a 2-dimensional layout,
the usage of Euclidean potentials requires no preprocessing. The ALT algorithm, in-
troduced in [13], obtains the potential from the distances to certain landmarks in the
graph. Although this approach requires a preprocessing step, it is superior with respect
to search space and query times. In this work, we use the latest variant of ALT, intro-
duced in [15], with 16 maxCover landmarks as representative of goal-directed search.
The main advantages of ALT is its simple implementation and it can be used—without
modification for most updates—in a dynamic and time-dependent scenario [16], i.e.
edge weights may change between two queries. The main downside of ALT are very
fluctuating query times.

Arc-Flags [17, 18]. This approach uses a pruning strategy, i.e. by attaching additional
data to edges, a modified DIJKSTRA checks whether an edge can or cannot be on the
shortest path to the target. More precisely, the Arc-Flag approach partitions the graph
into cells and attaches a label to each edge. A label contains a flag for each cell indi-
cating whether a shortest path to the corresponding cell exists that starts with this edge.
As a result, Arc-Flag DIJKSTRA often only visits those edges which lie on the shortest
path of a long-range query. However, no speed-up can be achieved for queries within a
cell and the effort of the preprocessing is very high. In this work, we use the variant as
described in [19].

Highway Hierarchies [20]. This approach is a purely hierarchical method, i.e. an ap-
proach trying to exploit the hierarchy of a graph. Therefore, the network is contracted
and then “important” edges—the highway edges—are identified. By rerunning those
two steps, a natural hierarchy of the network is obtained. The contraction phase builds
the core of a level and adds shortcuts to the graph. The identification of highway edges
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(a) Dijkstra (b) ALT (c) REAL (d) Arc-Flags

Fig. 1. Search Space of some of the examined (bidirectional) speed-up techniques.

is done by local DIJKSTRA executions. In this work, we use the variant of Highway Hi-
erarchies (HH) as described in [20]. This variant stops building the hierarchy at a certain
point and computes a distance table containing all distances between the core-nodes of
the highest level. The advantages of HH are very low preprocessing and query times (15
minutes of preprocessing on the Western European road network result in query times
of 0.5 ms). However, this approach loses performance when using other metrics than
travel times [21].

RE/REAL [9]. Reach [22] is a centrality measure based on the intuition that a node is
important, if it is situated in the middle of long shortest paths. In [22], reach is used as
node-label in order to prune the search. Some crucial disadvantages, e.g. preprocessing
time, are remedied by enriching the graph by shortcuts in [9]. In addition, this ap-
proach naturally combines with ALT yielding impressive speed-ups in road networks.
The RE algorithm is a bidirectional reach-pruning DIJKSTRA on a shortcut-enriched
graph, while REAL is the combination of RE and ALT. Note that RE can be inter-
preted as a hierarchical method. RE has similar advantages and disadvantages like HH,
but preprocessing takes longer than for HH. The advantage of RE over HH is its sound
combination with ALT, which cannot be combined with HH easily [21].

Example. Figure 1 shows the search space of some of the above mentioned speed-up
techniques running the same query on the German road network. More precisely, the
source of the query is the university of Karlsruhe, the target the university of Mannheim.
A black edge depicts that it has been relaxed by the forward search, blue edges show
the backward search. Note that for REAL, shortcuts are inserted into the graph which
we unpack for visualization. As a consequence, the search space may look bigger than
for other techniques, but the number of settled nodes may be smaller.

We observe that ALT gives the search an excellent sense of goal-direction but al-
most all nodes are visited near source and target of the query. By adding reach to ALT
this drawback is compensated by pruning unimportant nodes. The search space of Arc-
Flags seems to be only slightly bigger than the actual shortest path.
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3 Modeling Timetable Information

In this section, we briefly present existing approaches to model (dynamic) timetable
information as graphs (cf. [7] for details). In addition, we discuss problems of adapting
speed-up techniques to these models and how well delays can be covered.

Fig. 2. Condensed network of the European
timetable information data, provided by Ha-
Con [23] for scientific use.

Condensed Model. The easiest model is the
condensed model. Here, a node is introduced
for each station and an edge is inserted iff
a direct connection between two stations ex-
ist. The edge weight is set to be the min-
imum travel time over all possible connec-
tions between these two stations. The ad-
vantage of this model is that the resulting
graphs are small and we are able to use speed-
up techniques without modification. Unfortu-
nately, several drawbacks exist. First of all,
this model does not incorporate the actual
departure time from a given station. Even
worse, travel times highly depend on the time of the day and the time needed for chang-
ing trains is also not covered by this approach. As a result, the calculated travel time
between two arbitrary stations in such a graph is only a lower bound of the real travel
time. Furthermore, delays can hardly be incorporated by this model.

Station A Station B
Station C

Fig. 3. Time-dependent model.

Time-Dependent Model. This model tries
to remedy the main disadvantages of the con-
densed model. The main idea is to use time-
dependent edges. Hence, each station is also
modeled by a single node and an edge is again
inserted iff a direct connection between two
stations exist. But unlike for the condensed
model, several weights are assigned to each
edge. Each weight represents the travel time of a train running from one station to an-
other. The edge used during a query is then picked according to the departure time from
the station. See Fig. 3 for a small example. The advantage of this model is its still small
size and the obtained travel time is feasible. Furthermore, delays can easily be incorpo-
rated: the corresponding weight—representing the delayed connection—of an edge can
simply be increased. However, adapting speed-up techniques to time-dependent graphs
is more complicated than expected. While for time-independent graphs speed-ups of
over one million can be achieved [5], best results for time-dependent graphs only yield
speed-ups of factor 5 [16]. In addition, this model does not cover transfer times, yet
this can be remedied as shown in [24]. Note that the time-dependent model can be in-
terpreted as an extension of the condensed model. In this work we evaluate speed-up
techniques on the condensed model in order to select techniques that are worth adapting
to the dynamic time-dependent model.
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Fig. 4. Time-expanded model.

Time-Expanded Model. This model does
not rely on time-dependent edge weights and
thus it is much easier to use existing speed-up
techniques in this model. Here, a node is used
for each arrival and departure event. An edge
is inserted for each connection between two
events. Figure 4 gives an example. The main
downside of this approach is that the result-
ing graphs are much bigger than for the time-dependent approach. For our datasets,
the number of nodes is roughly 250 times higher. Note that such graphs are strongly
connected as timetables are periodic.

In general, most unidirectional speed-up techniques can be used out-of-the-box on
such a time-expanded graph. However, sophisticated methods gain their speed-ups from
bidirectional search that needs to know the exact target node. Even worse, RE and HH
only work correctly if used in a bidirectional manner. Unfortunately, in this model each
node represents a specific event within the network and thus it is complicated to pick the
target node from which to start the backward search. In addition, some unidirectional
approaches, e.g. unidirectional ALT, also need the exact target node in order to work
properly. Another pitfall originates from the model. The ordering of nodes within a
station is very important for the correctness of timetable information queries. Whenever
a delay occurs, trains may arrive in a different order than expected, leading to a complete
change of the inner-edge structure of a station. As a consequence, delays yield changes
in the topology within the network which results in a bigger effort of updating the
preprocessed data of the speed-up techniques. Thus, adapting techniques to a dynamic
time-expanded model appears to be very complicated.

Note that transfer times are not covered correctly. For this reason, this model is
called the simple time-expanded model. However, this can be remedied by an extended
model, but the graph size additionally increases by a factor of approximately 2. In this
work, we evaluate the speed-up techniques on the static simple time-expanded model
in order to pick the most promising technique that is worth adapting to the dynamic
extended time-expanded model.

4 Experiments

In this section, we present an extensive experimental evaluation of the speed-up tech-
niques on different types of graphs. Our implementation is written in C++ using solely
the STL. As priority queue we use a binary heap. Our tests were executed on one core
of an AMD Opteron 2218 running SUSE Linux 10.1. The machine is clocked at 2.6
GHz, has 16 GB of RAM and 2 x 1 MB of L2 cache. The program was compiled with
GCC 4.1, using optimization level 3.

Default Settings. Unlike otherwise stated, we use the following settings. For ALT, we
use 16 maxCover landmarks. In our Arc-Flag setup, we use 128 cells obtained from
METIS [25]. In addition, we evaluate the hierarchical RE algorithm [9] and Highway
Hierarchies (HH) [20]. The performance of both approaches highly depends on the cho-
sen preprocessing parameters which we here tune manually. For HH, we use a distance
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table as soon as the contracted graph has less than 10 000 nodes. Moreover, we evaluate
the combination of RE and ALT, named REAL, without reach-aware landmarks [26].

Unless otherwise stated, we determine the query-performance of all algorithms by
running 10 000 random queries. We log the average execution time and number of set-
tled nodes of the queries. By settled nodes we denote the number of nodes taken from
the priority queues.

4.1 Timetable Information

Condensed Model. We start our experimental study with the condensed network of
Europe, based on timetable information data provided by HaCon [23] for scientific
use. The graph has 29 578 nodes and 86 566 edges. In order to check whether speed-
ups derive from the topology of the network or if they are due to the used metric we
use—besides travel times—three additional metrics: distance depicts the real distance
between two stations, unit assigns weight 1 to each edge, and random reassigns each
edge weight with a value between 1 and 1000 picked uniformly at random. The resulting
figures are shown in Tab. 1.

We observe that plain DIJKSTRA settles the same number of nodes independent of
the applied metric. However, query times vary: DIJKSTRA is two times faster on the dis-
tance metric than on the random one. The number of DECREASEKEY operations causes
these different running times. Surprisingly, switching to bidirectional DIJKSTRA has a
completely different impact for different metrics. While for travel times and distances,
a speed-up of factor 2 is observed, queries using the unit metric get 12 times faster.
We observe several direct connections within the network. Thus, setting the weight of
these edges to 1 drastically reduces search space of bidirectional DIJKSTRA as forward

Table 1. Performance of speed-up techniques on the condensed railway network of Europe. Fig-
ures are based on 10 000 random queries. Prepro shows the computation time of the preprocess-
ing in minutes and the eventual additional bytes per node needed for the preprocessed data. For
queries, the search space is given in number of settled nodes, execution times are given in mil-
liseconds. Due to the graph size, we use the distance table for HH as soon as the core has less
than 1 000 nodes.

travel times distance unit random
PREPRO QUERY PREPRO QUERY PREPRO QUERY PREPRO QUERY

min B/n #sett. ms min B/n #sett. ms min B/n #sett. ms min B/n #sett.
Dijkstra 0.0 0 14761 3.48 0.0 0 14603 2.82 0.0 0 14691 3.35 0.0 0 14549
BiDijkstra 0.0 0 7520 1.83 0.0 0 8615 1.69 0.0 0 1158 0.27 0.0 0 1515
uni ALT 0.1 128 1191 0.47 0.1 128 1007 0.37 0.1 128 1840 0.90 0.1 128 1835
ALT 0.1 128 348 0.21 0.1 128 374 0.21 0.1 128 109 0.10 0.1 128 108
uni Arc-F. 0.6 47 236 0.13 0.5 47 327 0.14 0.6 47 160 0.08 0.7 47 178
Arc-Flags 1.1 94 50 0.03 1.0 94 75 0.03 1.1 94 19 0.01 1.5 94 26
RE 0.1 27 272 0.13 0.1 20 258 0.12 0.1 16 377 0.15 0.8 22 739
uni REAL 0.2 155 116 0.12 0.2 148 87 0.09 0.2 144 687 0.64 0.9 150 751
REAL 0.2 155 72 0.08 0.2 148 70 0.07 0.2 144 66 0.09 0.9 150 81
HH 0.1 46 88 0.04 0.1 78 226 0.11 0.1 24 338 0.12 0.1 38 125
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and backward search meet earlier. This observation also holds somewhat weaker for the
random metric, here the speed-up is of factor 10.

Analyzing our speed-up techniques, all approaches are able to preprocess the graph
in less than 1 minute. The fastest technique is bidirectional Arc-Flags having query
times of below 30 µs for all metrics. As for bidirectional DIJKSTRA, the lowest query
times are achieved for the unit metrics which is again due to direct connections. RE
requires the lowest amount of additional memory and thus has the best combination
of query times and preprocessing. Nevertheless, as we use the condensed model, the
obtained travel times cannot be used in a real world environment (cf. Section 3).

Time-Expanded Model. Our second set of experiments is executed on three simple time-
expanded graphs (cf. Section 3). The first shows the local traffic of Berlin/Brandenburg,
has 2 599 953 nodes and 3 899 807 edges, the second one represents local traffic of the
Ruhrgebiet (2 277 812 nodes, 3 416 597 edges), and the last graph depicts long distance
connections of Europe (1 192 736 nodes, 1 789 088 edges). Table 2 gives an overview
of the performance of speed-up techniques on these instances.

Note that RE, ALT, and HH cannot be used out-of-the-box for time-expanded net-
works (cf. Section 3). In order to gain insights in the performance of these techniques,
we also use bidirectional speed-up techniques by picking a random event at the tar-
get station. Thus, these bidirectional experiments are intended to give hints whether it
is worth focusing on adapting bidirectional search to such graphs. Only unidirectional
Arc-Flags—with a partitioning by station—are applicable, which perform roughly 12-
18 times faster than unidirectional DIJKSTRA. But when switching to bidirectional
search we gain another speed-up of factor 6-10. Thus, it may be worth focusing on
the question how to use bidirectional search in this scenario. However, we observe very
long preprocessing times for Arc-Flags on these networks. Although other approaches
have smaller search space, e.g. REAL, the smaller computational overhead of Arc-Flags
yields smaller query times. However, only ALT and HH can preprocess all graphs in
below one hour. RE seems to have problems on the local traffic networks as prepro-
cessing takes longer than 3 hours and speed-ups are only mild, while this does not hold

Table 2. Performance of speed-up techniques on time-expanded railway networks.

Berlin/Brandenburg Ruhrgebiet long distance
PREPRO QUERY PREPRO QUERY PREPRO QUERY

min B/n #sett. ms min B/n #sett. ms min B/n #sett. ms
Dijkstra 0 0 1299830 406.2 0 0 1134420 389.2 0 0 609352 221.2
BiDijkstra 0 0 496281 151.3 0 0 389577 122.8 0 0 143613 43.8
uni ALT 10 128 383921 133.6 10 128 171760 64.7 5 128 71194 26.0
ALT 10 128 47764 22.9 10 128 59516 30.5 5 128 31367 15.0
uni Arc-F. 2240 24 172362 72.2 2323 24 158174 66.4 1008 24 74737 32.4
Arc-Flags 4479 48 24004 9.2 4646 48 28448 10.7 2016 48 10560 3.5
RE 182 39 27095 25.5 290 45 38397 39.8 63 43 8978 8.3
uni REAL 192 167 20062 22.2 300 173 16649 21.1 68 171 6335 8.8
REAL 192 167 4159 6.6 300 173 7867 13.3 68 171 2479 4.5
HH 38 263 5285 56.1 65 202 9528 196.2 12 386 1930 7.3
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for long distance connections. Regarding query times, HH has also problems with both
local traffic networks: on Berlin/Brandenburg, HH is only 3 times faster than bidirec-
tional DIJKSTRA, and on the Ruhrgebiet, HH is even slower. The problems of RE/HH
derive from a weaker hierarchy within the local networks compared to the long-distance
graph. Local traffic networks do not incorporate high-speed trains while the latter do.

Summarizing, the fastest techniques yield only mild speed-ups of a factor below
80. And this speed-up can only be achieved when using bidirectional search. As a con-
sequence, the blow-up of time-expanded graphs of factor 250 over the condensed—
and hence also time-dependent—graphs cannot be compensated. Plain DIJKSTRA on a
corresponding condensed network would be faster—with respect to query times—than
any other speed-up technique on the time-expanded model. Note that our input from
Tab. 1 covers even more stations than any input from Tab. 2. Also note that plain DI-
JKSTRA can be used in a dynamic time-dependent scenario [27], and time-dependent
ALT achieves an additional speed-up of factor 5 over plain DIJKSTRA [16].

4.2 Road Networks

Like railway networks, road graphs incorporate some kind of hierarchy. Hence, one
might expect that speed-up techniques have similar performance on those two types
of networks. We evaluate the German road network, provided by PTV AG [28] for
scientific use. It has 4 377 307 nodes and 10 667 837 edges. We use three different met-
rics: travel times, distance, and random. The latter reassigns edge weights uniformly
at random from 1 to 1000 to each edge. We hereby want to test whether the speed-up
techniques rely on the topology of the network or the speed-up derive from the used
metric. The results can be found in Tab. 3.

As expected, plain DIJKSTRA settles the same number of nodes for each metric.
Stunningly, query times vary heavily when switching metrics: DIJKSTRA’s algorithm is
two times faster on the distance metric than on the random. This derives from the num-
ber of DECREASEKEY operations of the used priority queue. However, when switching
from uni- to bidirectional DIJKSTRA, the situation changes. Surprisingly, the number

Table 3. Performance of speed-up techniques on the German road graph using different metrics.

travel times distance random
PREPRO QUERY PREPRO QUERY PREPRO QUERY

min B/n #settled ms min B/n #settled ms min B/n #settled ms
Dijkstra 0 0 2214820 1078.2 0 0 2159310 625.8 0 0 2256530 1335.4
BiDijkstra 0 0 1210570 545.0 0 0 1428140 405.7 0 0 1006260 530.0
uni ALT 23 128 139121 51.2 18 128 95385 33.823 23 128 143551 59.4
ALT 23 128 22150 12.4 18 128 45496 23.1 23 128 21433 12.2
uni Arc-F. 976 39 24290 10.6 720 39 59094 24.2 1139 39 24509 14.0
Arc-Flags 1952 78 1092 0.5 1440 78 13038 5.4 2278 78 897 0.4
RE 18 22 5080 3.1 20 27 10666 9.4 20 30 4879 3.5
uni REAL 41 150 1804 1.8 38 155 1642 2.1 43 158 2369 2.7
REAL 41 150 1035 1.2 38 155 1556 2.343 43 158 1130 1.4
HH 4 99 682 0.5 9 122 3602 3.8 5 83 1039 0.9
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of settled nodes is not the same for each metric. The reason for this are the motorways
which are favored differently by each metric.

Analyzing the speed-up techniques, we observe very high preprocessing times for
Arc-Flags which is due to the high number of DIJKSTRA executions during prepro-
cessing. However, Arc-Flags yields the fastest query times although the search space
is higher than for HH which is due to a smaller number of additional operations for
Arc-Flags, yet HH can preprocess the complete German network much faster than any
other technique. This result is not very surprising since HH was tuned for road networks
and exploits properties of the (European) datasets. For example, curves on motorways
are often modeled by a path with many degree-2 nodes which are shortcut during the
preprocessing of HH. The same holds for RE. For ALT, we observe that the number
of settled nodes is almost the same for travel times, unit, and random. This holds for
the uni- and bidirectional variant. However, for distance the situation is different: The
unidirectional variant is faster on this metric while the bidirectional is slower. As a con-
sequence, REAL (the combination of RE and ALT) has a surprising performance on
this metric. The undirectional variant is faster than the bidirectional one.

Summarizing, the distance metric seems to be very different from the other met-
rics. For the latter, Arc-Flags yield best query performances on road networks but for
the price of high preprocessing times. HH seem to have the best trade-off between
perprocessing time and query performance. But for distance, unidirectional REAL out-
performs all other techniques.

Similarity to Railway Networks. Comparing Tabs. 2 and 3 we observe different perfor-
mance of speed-up techniques on time-expanded graphs and road networks. So, at least
for the time-expanded model the assumption of similar properties seems not to hold.
However, comparing Tabs. 1 and 3, and taking the difference in size into account, it
seems as if road networks can be used as alternative for condensed railway networks.
But as graph sizes are very different from each other, we perform another test on a road
network of similar size like the European railway network. We choose the road network

Table 4. Performance of speed-up techniques on the Luxemburg road network.

travel times distance unit random
PREPRO QUERY PREPRO QUERY PREPRO QUERY PREPRO QUERY

min B/n #sett. ms min B/n #sett. ms min B/n #sett. ms min B/n #sett.
Dijkstra 0.0 0 15293 3.12 0.0 0 15230 2.87 0.0 0 15441 2.69 0.0 0 15156
BiDijkstra 0.0 0 7691 1.63 0.0 0 9526 1.77 0.0 0 7304 1.28 0.0 0 7056
uni ALT 0.1 128 1375 0.53 0.1 128 1052 0.37 0.1 128 1099 0.41 0.1 128 1122
ALT 0.1 128 448 0.21 0.1 128 451 0.21 0.1 128 458 0.21 0.1 128 456
uni Arc-F. 0.3 37 470 0.17 0.3 37 614 0.23 0.3 37 421 0.15 0.4 37 435
Arc-Flags 0.7 74 178 0.06 0.6 74 250 0.09 0.6 74 133 0.05 0.8 74 144
RE 0.1 28 532 0.21 0.1 29 348 0.16 0.1 22 358 0.12 0.1 34 385
uni REAL 0.2 156 229 0.20 0.2 157 105 0.10 0.2 150 171 0.14 0.2 162 174
REAL 0.2 156 119 0.11 0.2 157 86 0.09 0.2 150 97 0.08 0.2 162 101
HH 0.1 219 91 0.05 0.1 140 241 0.12 0.1 69 299 0.14 0.1 204 111
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of Luxemburg which has nodes 30 746 and 71 655 edges. Again, we use the four metrics
travel times, distance, unit and random. The resulting figures can be found in Tab. 4.

We observe that for the most important—at least in our application—metric, i.e.
travel times, all speed-up techniques perform very similar as on the condensed railway
network. Differences in the unit and random metrics derive from direct connections
within the railway network that do not exist in road networks. We conclude that road
networks can be used as alternative data for the condensed model if timetable data is
lacking.

Important Subgraphs. The European road networks include roads which are closed
to public traffic, e.g. pedestrian zones, etc. By removing these roads from the Ger-
man network, the number of nodes decreases to 3 523 370 and the number of edges to
8 133 531, respectively. As these roads seem unimportant to shortest path computation,
one might expect that the performance of the evaluated speed-up techniques hardly
changes whether they are included or not. In addition, degree-1 and degree-2 nodes
seem to be unimportant for shortest paths as well: Nodes with degree 1 can only be
starting or ending points of a route and degree 2 nodes can often be shortcut. Table 5
shows the results of all speed-up techniques if non-public roads are excluded, using the
2-core as input (3 183 701 nodes, 8 280 625 edges), the graph with shortcut degree-2
nodes (3 723 319 nodes, 9 363 584 edges), and the 2-core with shortcut degree-2 nodes
(1 828 995 nodes, 5 469 750 edges). As metric, we use travel times.

Comparing the results from Tabs. 3 and 5, we observe that the search space of uni-
and bidirectional DIJKSTRA decreases with the size of the subgraphs. Astonishingly,
this does not hold for query times: shortcutting degree-2 nodes yields higher query
times than using the 2-core. The reason for this is that the number of edges differ: the
2-core has less edges than the other subgraph. However, this fact has no influence on
bidirectional ALT. The algorithm has the same performance on the first three subgraphs
and surprisingly, the performance is almost the same as on the full graph. Only when
using the shortcut 2-core search spaces decrease which is due to graph size.

Table 5. Performance of speed-up techniques on different subgraphs ofthe German road graph.

only public no deg. 2 2-core 2-core + no deg. 2
PREPRO QUERY PREPRO QUERY PREPRO QUERY PREPRO QUERY

min B/n #settled min B/n #settled min B/n #settled min B/n #settled
Dijkstra 0 0 1 729 390 0 0 1 809 350 0 0 1 580 610 0 0 913 476
BiDijkstra 0 0 974 453 0 0 978 311 0 0 855 943 0 0 497 760
uni ALT 14 128 112 814 17 128 119 778 14 128 106 668 8 128 59 907
ALT 14 128 21 914 17 128 19 589 14 128 19 757 8 128 10 668
uni Arc-F. 610 37 20 583 794 40 19 683 638 42 19 655 335 48 11 755
Arc-Flags 1 220 74 1 067 1 588 80 710 1 276 83 1 038 670 96 618
RE 6 18 2 328 17 22 5 139 14 27 4 764 12 31 4 958
uni REAL 20 146 855 34 150 1 838 28 155 1 652 20 159 1 500
REAL 20 146 506 34 150 1 105 28 155 950 20 159 856
HH 2 45 660 4 115 679 4 128 677 4 207 661
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The most interesting behavior is that of HH. On each subgraph the performance is
almost the same as on the full graph. Recalling the way the hierarchy is built the reason
is obvious. Preprocessing of HH starts with a contraction step of roughly building the 2-
core and shortcutting degree-2 nodes. Thus, HH has no advantage when applying these
steps before preprocessing.

4.3 Other Inputs

In order to gain further insights into the behavior of speed-up techniques, our last test-
sets use data that is completely different from road or railway networks. On the one
hand, we test the performance of speed-up techniques in small world graphs and on the
other hand, we want to evaluate the influence of density and diameter of the input on
the performance of speed-up techniques. For our density testset we use unit-disc graphs
used in the field of sensor networks (see [29] for a survey) with different average de-
grees. Our diameter testset uses multi-dimensional grid graphs with different numbers
of dimensions as inputs.

Small World. Up to this point, we concentrated on graphs with some kind of hierarchy.
In this test we use small world graphs as input without such a property. The first dataset
represents the internet on the router level, i.e. nodes are routers and edges represent
connections between routers. The network is taken from the CAIDA webpage [30] and
has 190 914 nodes and 1 215 220 edges. The second graph is a citation network, i.e.
nodes are papers and edges depict whether one paper cites another one. It is obtained
from crawling the literature database DBLP [31] and has 268 495 nodes and 2 313 294
edges. The final dataset is a co-authorship [32] network (299 067 nodes and 1 955 352
edges) which is also obtained from the DBLP: Nodes represent authors and two authors
are connected by an edge if they have written a paper together. The results for these
data is shown in Tab. 6.

The most interesting observation is that the biggest speed-up is achieved by sim-
ply switching from uni- to bidirectional DIJKSTRA. This derives from the very small

Table 6. Performance of speed-up techniques on small world graphs.

router citations coAuthorship
PREPRO QUERY PREPRO QUERY PREPRO QUERY

min B/n #settled ms min B/n #settled ms min B/n #settled ms
Dijkstra 0 0 94 717 89.0 0 0 134 136 190.8 0 0 153 885 125.5
BiDijkstra 0 0 216 0.3 0 0 742 1.5 0 0 320 0.4
uni ALT 2 128 23 430 36.8 2 128 28 853 68.6 2 128 38 173 51.5
ALT 2 128 320 1.7 2 128 850 4.7 2 128 667 2.2
uni Arc-F. 351 102 5 453 12.9 1 488 138 46 318 113.7 507 105 28 225 62.8
Arc-Flags 702 204 42 0.1 2 977 276 231 0.7 1 014 209 117 0.3
RE 174 11 820 1.7 1 922 18 3 465 8.4 417 10 445 0.9
uni REAL 176 139 22 493 44.2 1 924 146 27 898 90.3 419 138 34 163 67.5
REAL 176 139 337 2.3 1 924 146 762 6.0 419 138 522 2.9
HH 38 1815 20 488 1 307.7 862 532 89 696 928.9 246 2982 61 703 1 713.7
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diameter of the graph (less than 8 for all instances). Stunningly, only Arc-Flags yield
an additional but only mild speed-up. Taking the huge preprocessing of more than 10
hours into account, the usage of Arc-Flags cannot be justified. Any other approach is
even slower than bidirectional DIJKSTRA which is mainly due to computational over-
head. Analyzing HH, this approach seems to have serious problems with small world
graphs. The reason is the stopping criterion (cf. [20]). Normally, bidirectional search
can be stopped as soon as both search spaces meet. But for HH, this does not hold: the
search has to be continued as long as both searches have reached the highest core or
when the forward search settles the target node.

We conclude that—as long as bidirectional search is allowed—no speed-up tech-
nique is applicable. However, the situtation changes if a scenario arises with small-
world graphs and prohibited bidirectional search. In such a scenario, unidirectional
ALT yields the best tradeoff between preprocessing time and query performance.

Sensor Networks. During the last years, the field of sensor networks has drawn wide
attention. At a glance, routing in such networks has similar properties as routing in road
networks. Thus, we evaluate so called unit disk graphs which are widely used for exper-
imental evaluations [33] in that field. Such graphs are obtained by arranging nodes on
the plane and connecting nodes with a distance below a given threshold. It is obvious
that the density can be varied by applying different threshold values. In our setup, we
use graphs with about 1 000 000 nodes and an average degree of 5, 7, and 10, respec-
tively. As metric, we use the distance between nodes according to their embedding. The
results can be found in Tab. 7.

Uni- and bidirectional DIJKSTRA settle roughly the same number of nodes inde-
pendent of the average degree but query times again increase with higher density due
to more relaxed edges. Analyzing ALT, the bidirectional variant is twice as fast as
the unidirectional algorithm for the instance with degree 5 while for degree 10, both
approaches are equal to each other with respect to query times. The decreasing search
space of unidirectional ALT is due to the increasing number of edges. With more edges,
the shortest path is very close to the flight distance between source and target. In such

Table 7. Performance of speed-up techniques on unit disk graphs with different average degree.

average deg. 5 average deg. 7 average deg. 10
PREPRO QUERY PREPRO QUERY PREPRO QUERY

min B/n #settled ms min B/n #settled ms min B/n #settled ms
Dijkstra 0 0 487 818 257.3 0 0 521 874 330.1 0 0 502 683 399.0
BiDijkstra 0 0 299 077 164.4 0 0 340 801 225.1 0 0 325 803 269.4
uni ALT 8 128 22 476 17.1 8 128 16 634 15.1 10 128 14 561 16.0
ALT 8 128 9 222 8.5 8 128 10 565 11.8 10 128 11 749 15.6
uni Arc-Flags 53 80 8 556 7.9 299 112 16 445 16.8 801 160 21 413 24.2
Arc-Flags 105 160 2 091 1.8 598 224 4 761 4.6 1 602 320 7 019 7.5
RE 4 20 848 0.5 46 42 13 783 14.3 1 153 54 83 826 104.5
uni REAL 12 148 307 0.4 54 170 2 072 3.2 1 163 182 8 780 13.6
REAL 12 148 291 0.4 54 170 2 394 4.1 1 163 182 11 449 21.7
HH 2 251 203 0.2 12 549 5 068 8.5 71 690 23 756 49.1
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instances, the potentials deriving from landmarks are very good. Arc-Flags yield very
good query times but again for the price of high preprocessing times. Hierarchical meth-
ods work very good on average degrees of 5 and 7. For a degree of 10 preprocessing
and query times increase drastically. For RE, a reason is that node-labels are used for
pruning the search. With increasing density, many edges are never used by any shortest
path. As these edges cannot be pruned by using node-labels, query times increase.

Summarizing, for low densities, hierarchical methods like HH/RE yield the best
results on these instances, while ALT wins for high average degrees. Although Arc-
Flags are faster with respect to query times, preprocessing is much faster for ALT.

Grid Graphs. Our last testset exploits the influence of graph diameter on the perfor-
mance. Here, we vary the diameter of a graph by using multi-dimensional grid graphs
with 2, 3, and 4 dimensions. The number of nodes is set to 250 000, and thus, the num-
ber of edges is 1, 1.5, and 2 million, respectively. Edge weights are picked uniformly at
random from 1 to 1000. These results can be found in Tab. 8.

Like for sensor networks, unidirectional DIJKSTRA settles the same amount of
nodes on all graphs. But due to more edges relaxed query times increase with an in-
creasing number of dimensions. As the diameter shrinks with increasing an number
of dimensions, bidirectional DIJKSTRA settles less nodes on 4-dimensional grids than
2-dimensional grids. We already observed this effect more drastically for small world
graphs (cf. Tab. 6). This analysis also holds for the performance of uni- and bidirectional
ALT. Our hierarchical representatives RE/HH perform very good on 2-dimensional
grids but significantely lose performance when switching to higher dimensions. The
main reason is that the contraction phase of the algorithms fail.

Summarizing, ALT has the best trade-off with respect to preprocessing and query
times on higher-dimensional grids. Only Arc-Flags are faster but for the price of a much
higher effort in preprocessing. Hierarchical methods like RE/HH can only compete with
ALT on 2-dimensional grids.

Table 8. Performance of speed-up techniques on the grid graphs with different numbers of di-
mensions.

2-dimensional 3-dimensional 4-dimensional
PREPRO QUERY PREPRO QUERY PREPRO QUERY

min B/n #settled ms min B/n #settled ms min B/n #settled ms
Dijkstra 0 0 125 675 36.7 0 0 125 398 78.6 0 0 122 796 137.5
BiDijkstra 0 0 79 962 24.2 0 0 45 269 28.2 0 0 21 763 20.3
uni ALT 1 128 5 452 2.5 2 128 4 223 3.8 3 128 5 031 7.5
ALT 1 128 2 381 1.5 2 128 1 807 2.2 3 128 1 329 2.5
uni Arc-Flags 45 64 4 476 1.9 415 94 8 996 5.7 1 559 122 25 125 26.8
Arc-Flags 89 128 1 340 0.6 830 189 1 685 1.0 3 117 244 2 800 2.3
RE 13 31 3 797 2.1 220 102 18 177 27.1 2 243 89 20 587 40.2
uni REAL 14 159 799 0.8 222 230 5 081 10.6 2 246 217 10 740 30.3
REAL 14 159 829 0.9 222 230 3 325 8.5 2 246 217 3 250 11.6
HH 2 1682 583 0.6 32 1954 17 243 95.8 680 662 61 715 343.0
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5 Conclusion and Outlook

We learned a lot about the performance of the most prominent speed-up techniques
on graph classes other than road networks. For timetable information, the speed-up
achieved on time-expanded graphs is much smaller than the speed-up on road network,
even without necessary modifications that will most probably decrease performance.
Even worse, the speed-up obtained by all techniques is below the blow-up factor of
approximately 250 between time-dependent and corresponding time-expanded graphs.
We observed that plain DIJKSTRA yields lower query times on a condensed network
than any other speed-up techniques on the time-expanded graphs. Recall that the time-
dependent model can be interpreted as an extension of the condensed one. In [27], it is
shown that plain DIJKSTRA can be used in a dynamic time-dependent scenario easily,
and time-dependent ALT achieves an additional speed-up of factor 5 over plain DIJK-
STRA [16]. In addition, incorporating delays seems to be easier in the time-dependent
model than in the time-expanded one. We conclude that it is promising to work on the
dynamic time-dependent model for solving the timetable information problem.

Regarding time-expanded data, we do not see an alternative to real-world data: on
other inputs, all examined speed-up techniques perform completely different than on
our real-world time-expanded datasets. However, road networks seem to be a good al-
ternative for condensed graphs and thus, also for the time-dependent model. We expect
that an approach working well in a (dynamic) time-dependent road network will also
perform well on (dynamic) time-dependent railway networks.

Concerning speed-up techniques in general, we gained further and interesting in-
sights by our extensive experimental study. Hierarchical approaches seem to have prob-
lems with high-density networks, the chosen metric has a high impact on achieved
speed-ups, edge-labels are somewhat superior to node-labels, and small diameters yield
big speed-ups for bidirectional search. As a consequence, the choice of which technique
to use highly depends on the scenario. However, of all examined speed-up techniques,
ALT provides a reasonable trade-off of preprocessing time and space on the one hand
and achieved speed-up on the other hand. Although this approach is slower on hier-
archical inputs it is more robust with respect to the input. In addition, ALT works in
dynamic and time-dependent scenarios.

We see a lot of future work for speed-up techniques on timetable information sys-
tems. First of all, we plan to tackle the dynamic time-dependent approach. However,
as soon as we do multicriteria routing, e.g. minimize number of transfers, the time-
expanded model has several advantages over the time-dependent one [7]. Thus, it seems
promising to develop new speed-up techniques tailored for the time-expanded model
that exploit specific properties of these graphs. We assume that such highly specialized
techniques can compete with the time-dependent approach. However, the problem of
incorporating delays in expanded graphs persists.
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