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Abstract. In railways systems the timetable is typically represented as
a weighted digraph on which itinerary queries are answered by shortest
path algorithms, usually running Dijkstra’s algorithm. Due to the con-
tinuously growing size of real-world graphs, there is a constant need for
faster algorithms and many techniques have been devised to heuristically
speed up Dijkstra’s algorithm. One of these techniques is the multi-level

overlay graph, that has been recently introduced and shown to be ex-
perimentally efficient, especially when applied to timetable information.
In many practical application major disruptions to the normal oper-
ation cannot be completely avoided because of the complexity of the
underlying systems. Timetable information update after disruptions is
considered one of the weakest points in current railway systems. This
determines the need for an effective online redesign and update of the
shortest paths information as a consequence of disruptions. In this paper,
we make a step forward toward this direction by showing some theoretical
properties of multi-level overlay graphs that lead us to the definition of a
new data structure for the dynamic maintenance of a multi-level overlay
graph of a given graph G while weight decrease or weight increase oper-
ations are performed on G. Our solution is theoretically faster than the
recomputation from scratch and allows fast queries.

Keywords. Timetable Queries, Speed-up techniques for shortest paths

1 Introduction

The computation of shortest paths is a central requirement for many applica-
tions, such as route planning or search in huge networks. In a railways system,
timetables are typically represented as weighted directed graphs and itinerary
queries are answered by shortest path algorithms, usually running Dijkstra’s al-
gorithm. Due to the continuously growing size of real-world graphs, there is a
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constant need for faster algorithms and in the course of the years a large number
of techniques have been devised to heuristically speed up Dijkstra’s algorithm.

In most of the above mentioned practical application major disruptions to the
normal operation cannot be avoided because of the complexity of the underlying
systems. This determines the need for an effective online redesign and update of
the shortest paths information as a consequence of these disruptions. Timetable
information update after disruptions is considered one of the weakest points
in current railway systems, and it has received little attention in the scientific
literature. Hence, there is a constant need of dynamic algorithms that are faster
than the recomputation from scratch of shortest paths, especially when applied
to huge graphs as those resulted from many practical applications.

Previous works There are numerous approaches to speed-up single-pair shortest
path computations when the graph is static [1–10]. On the one hand, there are
speed-up techniques that are based on pruning strategies of the search space
of Dijkstra’s algorithm (see, e.g., [3, 6, 8]). On the other hand, there are speed-
up techniques that require to preprocess the graph at an off-line step so that
subsequent on-line queries take only a fraction of the time used by Dijkstra’s al-
gorithm. The known preprocessing techniques are based on different approaches:
geometric information [10], hierarchical decomposition [1, 4, 9, 11–13], landmark
distances [2, 3], and arc-labelling [14]. For a survey of speed-up techniques for
shortest paths computation see [15].

Despite the great job done in the last years in this area, very few solutions
have been proposed that are suitable to be used in a dynamic environment, where
modifications can happen to the underlying graph and preprocessed information
on shortest paths have to be recomputed. Up to now only dynamic approaches
based on geometric information and landmark distances are known as that in [16,
17]. Unfortunately, the known theoretical approaches for dealing with dynamic
shortest path problems are based on a matrix representation of shortest path
information, whose size is at least quadratic (see, e.g., [18]) to the number of
nodes of the graph. For instance, for graphs representing timetable information,
with typically millions of nodes and edges, such an approach cannot be applied.

Results of the paper One of the speed-up techniques for shortest paths requiring
preprocessing is known as multi-level overlay graph and it has been introduced in
[4]. Given a weighted directed graph G and a sequence S1, S2, . . . , Sl of subsets
of V such that V ⊃ S1 ⊃ S2 ⊃ . . . ⊃ Sl, a multi-level overlay graph is defined
as M(G; S1, ..., Sl) = (V, E ∪ E1 ∪ E2 ∪ . . . ∪ El), where Ei, 1 ≤ i ≤ l, is a set
containing the so called i-level edges, which are additional edges determined by
the nodes in Si that represent pre-computed shortest paths in G. When a s-t
distance query is asked, this hierarchical decomposition allows to build a graph
Mst(Vst, Est) whose size is much smaller than the size of the original graph G,
and such that the distance from s to t is the same in Mst and in G. Thus, an
s-t distance query can be answered faster in Mst than in G.

In [4], multi-level overlay graphs have been shown to be experimentally ef-
ficient when applied to timetable information, as it has been done with other
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multi-level approaches (see, e.g., [9]). In [19] a dynamic approach has been pro-
posed to update a variation of the multi-level overlay graphs. Experiments on the
Western European road network, show that this technique is potentially suitable
for practical application. However, there is no theoretical and experimental study
about the efficient dynamic maintenance of this data structure after disruptions.

In this paper, we make a first step forward toward this direction by propos-
ing a theoretical study that leads us to the definition of a new data structure
for the dynamization of a multi-level overlay graph, while weight decrease or
weight increase operations are performed on the original graph. In particular,
let be given a multi-level overlay graph M(G; S1, ..., Sl) of a given weighted
directed graph G = (V, E), with n nodes and m edges. We show theoretical
properties of M(G; S1, ..., Sl) that allow us to: (i) store the information on M
in a data structure requiring O(n + m + |⋃l

i=1
Ei|) optimal space; (ii) compute

M in O(|S1|(m + n log n)) worst case time; (iii) answer s-t distance queries as
in [4], in O(m + |S1|2 + |Vst| log |Vst|) worst case time, |Vst| < n; (iv) dynamize
the newly introduced data structure with the additional storage of |S1| shortest
paths trees. In fact, we show that, if a modification (either a weight decrease or a
weight increase operation on an edge) occurs on G, to update M(G; S1, ..., Sl), it
is sufficient to update the stored |S1| shortest paths trees. We propose a dynamic
algorithm that requires O(|S1|(m+n)) space, O(|S1|(m+n) log n) preprocessing
time, and O(|S1|n+m+∆

√
m log n) worst case time to deal with a modification,

by using the fully dynamic algorithm in [20]. Here, ∆ is the number of pairs in
S1 × V that change the distance as a consequence of a modification, and hence
∆ = O(|S1|n).

We show that the proposed dynamic solution is asymptotically better than
the recomputation from scratch in the case of sparse graphs; while, in the case
of random graphs (that are connected with high probability) and dense graphs,
the dynamic algorithm is better than the recomputation from scratch when
∆ = o(|S1|n/ log n), that is a log n factor far from its maximum value. However,
since the graphs representing timetables are usually huge in size, it is important
to keep the space occupancy of the dynamic algorithm within the optimal space
of the static algorithm. To this aim we fix |S1| = O(1), thus reducing the query
time to O(m + |Vst| log |Vst|).

2 Multi-Level Overlay Graphs

Let us consider a weighted directed graph G = (V, E, w), where V is a finite
set of nodes, E is a finite set of edges and w is a weight function w : E → R

+.
The number of nodes and the number of edges of G are denoted by n and m,
respectively. Given a node v ∈ V , we denote as N(v) the neighbors of v, that
is the nodes in the adjacency list of v. A path in G between nodes u and v is
denoted as P = (u, . . . , v). The weight of P is the sum of the weights of the
edges in P and we denote it by weight(P ). A shortest path between nodes u and
v is a path from u to v with the minimum weight. The distance between u and
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v is the weight of a shortest path from u to v and is denoted as d(u, v). In the
remainder of the paper, we will assume that graphs are connected.

Multi-level overlay graphs have been introduced in [4] and represent a speed-
up technique to improve the computation of single-pair shortest paths. Infor-
mally, a multi-level overlay graph M of G is a graph obtained by adding edges
to G which represent precomputed shortest paths in G. Once M has been com-
puted, for each pair of nodes s, t ∈ V it is possible to compute a subgraph Mst

of M, such that the distance from s to t in Mst is equal to the distance from s to
t in G, and Mst is smaller than G. In what follows we give a brief description of
multi-level overlay graphs. For more details on multi-level overlay graphs, refer
to [4].

Given G and a sequence S0, S1, . . . , Sl of subsets of V such that V ≡ S0 ⊃
S1 ⊃ S2 ⊃ . . . ⊃ Sl, a multi-level overlay graph is defined as M(G; S1, ..., Sl) =
(V, E ∪E1 ∪E2 ∪ . . .∪El), where Ei, 1 ≤ i ≤ l, is a set containing the so called
i-level edges, which are additional edges determined by shortest paths among
nodes in Si. In particular, for each (u, v) ∈ Si × Si, the pair (u, v) belongs to Ei

if and only if there exists a path from u to v in G and for each shortest path P
from u to v in G no internal node of P belongs to Si. The weight of a level edge
(u, v) is d(u, v).

In [4] the authors show that, to build level i of an overlay graph M, |Si|
single source shortest paths trees, each rooted in a node x in Si, have to be
computed on a graph Gi

x obtained from G by assigning to each edge (u, v) of G
a new weight wi

x(u, v) = (w(u, v), tix(u, v)), where tix(u, v) is defined as follows:

tix(u, v) =

{

−1 if u belongs to Si \ {x}
0 otherwise

Then, the results of the execution of a simple variation of Dijkstra’s algorithm
on Gi

x are the pairs (d(x, z), si
x(z)), for each node z ∈ V . Here d(x, z) is the

distance from x to z in G and si
x(z) is the sum of tix(u, v) for each (u, v) belonging

to the computed shortest path from x to z in Gi
x. At this point, it remains only

to select which pairs (x, z) ∈ Si ×Si are i-level edges. This can be easily checked
because (x, z) is an i-level edge if and only if si

x(z) = 0 and d(x, z) 6= ∞.
Graph M(G; S1, ..., Sl) can be used to speed-up single-pair distance queries.

Based on the source node s and the target node t, a subgraph Mst of M is
determined; in a real world graph G, the size of Mst is smaller than that of the
original graph. In [4], the authors show that the distance from s to t is the same
in G and in Mst. Hence, the shortest path from s to t is computed in Mst.

The computation of Mst uses the tree of connected components of M (also
called component tree), which is denoted as TM. Formally, TM is defined in what
follows. For each level i, let us consider the subgraph of G that is induced by the
nodes in V \Si. The set of connected components of this subgraph is denoted by
Ci. For a node v ∈ V \Si, let Cv

i denote the component in Ci that contains v. The
nodes of TM are the connected components in C1 ∪ C2 ∪ . . . ∪ Cl. Additionally,
there is a root Cl+1 and, for each node v ∈ V , a leaf Cv

0 in the tree. The parent
of a leaf Cv

0 is determined as follows. Let i be the largest level with v ∈ Si. If
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i = l, the parent is the root Cl+1. Otherwise, the level with smallest index where
v is contained in a connected component is level i + 1, and the parent of Cv

0 is
the component Cv

i+1. The parent of the components in Cl is the root Cl+1. For
the remaining components Ci ∈ Ci, the parent is the component Cu

i+1, u ∈ Ci.
The subgraph Mst of M is computed as follows. Let L be the level such that

Cs
L = Ct

L is the lowest common ancestor of Cs
0 and Ct

0 in TM. Then, the path
(Cs

0 , Cs
k, Cs

k+1
, . . . , Cs

L = Ct
L, . . . , Ct

k′+1
, Ct

k′ , Ct
0), from Cs

0 to Ct
0 in TM induces

a subgraph Mst = (Vst, Est) of the multi-level overlay graph M as follows. For
each component C ∈ {Cs

0 , Cs
k, Cs

k+1
, . . . , Cs

L−1
} ∪ {Ct

0, C
t
k′ , Ct

k′+1
, . . . , Ct

L−1
}, all

edges of level i incident to a node in component C belong to Est. Further, all
edges of level L belong to Est. Vst contains the nodes induced in G by edges in
Est. Once Mst has been computed, a s-t-distance query is answered by running
Dijkstra’s algorithm on Mst. In [4], it has been experimentally shown that it is
better to build Mst and run Dijkstra’s algorithm on Mst, rather than running
Dijkstra’s algorithm on G.

3 Computation of multi-level overlay graphs

In this Section we first give some theoretical properties of multi-level overlay
graphs (that are proved in [21]), then we show how to use these properties to
build a new algorithm for the computation of M.

3.1 Characterization of level edges

Given a digraph G and the sets S1, . . . , Sl, the computation of M consists of
calculating the level edges Ei, for each i = 1, 2, . . . , l. For each (u, v) ∈ Si × Si,
(u, v) is an i-level edge if and only if for each shortest path P from u to v in
G no internal node of P belongs to Si. That is, if there exists a shortest path
from u to v that contains a node in Si different from u and v, then the pair
(u, v) is not an i-level edge. For a fixed source u, and for each v ∈ V , let us
denote as Pu(v) the set of nodes x such that x is different from u and v, and
x belongs to at least one shortest path from u to v in G. Furthermore, given
x ∈ V , let us denote as maxlevel(x) the maximum level containing x, that is
maxlevel(x) = max{j | x ∈ Sj}.

Definition 1. Given u, v ∈ V , the barrier level su(v) of pair (u, v) is:

su(v) =

{

max{maxlevel(x) | x ∈ Pu(v)} if Pu(v) 6≡ ∅
0 if Pu(v) ≡ ∅

Informally, the barrier level su(v) of pair (u, v) is the maximum level containing
a node in Pu(v). Next lemma gives a property of level edges and barrier levels.

Lemma 1. Let j ∈ {1, 2, . . . , l} and u, v ∈ Sj. The pair (u, v) is a j-level edge
if and only if there exists a path from u to v in G and su(v) < j.
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For each i = 1, 2, . . . , l, in order to test whether a pair (u, v) ∈ Si ×Si is a i-level
edge it is sufficient to compute su(v). Since su(v) does not depend on a specific
level i and S1 ⊃ S2 ⊃ . . . ⊃ Sl, then, we only need to compute su(v), for each
(u, v) ∈ S1 ×S1. It is clear that an edge (u, v) can belong to more than one level
of M, thus implying the necessity of multiple storing of each level edge. The
next lemma gives a property that allows us to store a level edge only once.

Lemma 2. If e = (u, v) ∈ ⋃l

i=1
Ei, then there exist j, k ∈ N, 1 ≤ j ≤ k ≤ l,

such that e ∈ Ei, ∀i ∈ {j, j + 1, . . . , k}, and e /∈ Ei, ∀i /∈ {j, j + 1, . . . , k}.

Lemma 2 allows us to store the multi-level overlay graph as follows. For each
edge (u, v) belonging to

⋃l

i=0
Ei, with E ≡ E0, we store a triple

wM(u, v) = (d̄(u, v), f (u, v), ℓ(u, v)).

If (u, v) is a level edge, d̄(u, v), f (u, v) and ℓ(u, v) are defined as follows:

– d̄(u, v) is equal d(u, v);
– f (u, v) is the smallest level j, with 1 ≤ j ≤ l, such that (u, v) ∈ Ej . Since, by

Lemma 1, (u, v) is a j-level edge only if su(v) < j, then f (u, v) = su(v) + 1;
– ℓ(u, v) is the largest level k, with f (u, v) ≤ k ≤ l, such that (u, v) ∈ Ek. Let

k′ = maxlevel(u) and k′′ = maxlevel(v), then ℓ(u, v) = min{k′, k′′}.

If (u, v) is not a level edge, then (d̄(u, v), f (u, v), ℓ(u, v)) = (w(u, v), 0, 0). By
these definitions, to assign wM(u, v), we need to know whether (u, v) is a level
edge or not. The following lemma gives us a condition to recognize a level edge.

Lemma 3. The pair (u, v) ∈ S1 × S1 is a level edge if and only if there exists a
path from u to v in G and su(v) < min{maxlevel(u), maxlevel(v)}.

In conclusion, in order to build M, we need to compute su(v) for each u, v ∈ S1.

3.2 Computation of barrier levels

Given G = (V, E, w), the sets S1, . . . , Sl and u, v ∈ S1, then su(v) can be com-
puted by running Dijkstra’s shortest paths algorithm on a graph Gu obtained
by suitably labelling the edges of G. Formally, for each u ∈ S1, Gu is defined as
follows: Gu = (V, E, wu), where wu(x, y) = (w(x, y), mu(x)) for each (x, y) ∈ E.
Here, w(x, y) is the weight of (x, y) in G, and

mu(x) =

{

maxlevel(x) if x 6≡ u
0 otherwise

As shown in [22], Dijkstra’s algorithm finds the single source shortest paths in
a weighted graph when the edge weights are elements of a closed semiring. In
what follows, we define an algebraic structure that is a closed semiring in such a
way that, if weights wu of edges in Gu are elements of this algebraic structure,
then (d(u, v), su(v)) is the distance between u and v in Gu. Here, d(u, v) is the
distance from u to v in G.
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Definition 2. (K, minK,⊕K) is an algebraic structure where:

– K = {(w, i) | w ∈ R
+, i ∈ N} ∪ {(∞, 0)}.

– Given a1 = (w1, i1) and a2 = (w2, i2) in K, the relation ≤K is defined by

a1 ≤K a2 ⇔ w1 < w2 ∨ (w1 = w2 ∧ i1 ≥ i2)

– Given a1, a2 ∈ K,

minK{a1, a2} =

{

a1 if a1 ≤K a2

a2 otherwise

– Given a1 = (w1, i1) and a2 = (w2, i2) in K,

a1 ⊕K a2 =

{

(w1 + w2, max {i1, i2}) if a1 6= (∞, 0) ∧ a2 6= (∞, 0)
(∞, 0) if a1 = (∞, 0) ∨ a2 = (∞, 0)

The properties of (K, minK,⊕K) are shown in the next theorem.

Theorem 1. (K, minK,⊕K, (∞, 0), (0, 0)) is a closed semiring.

Theorem 1 allows us to define the weight of a path and the distance from u to
v in Gu as in the next definition.

Definition 3. Let u ∈ S1 and v ∈ V ,

– let P = (u ≡ x1, x2, . . . , xk ≡ v) be a path from u to v in Gu, the weight
of P in Gu is defined as weightK(P ) = wu(x1, x2) ⊕K wu(x2, x3) ⊕K . . . ⊕K

wu(xk−1, xk)
– the distance from u to v in Gu is defined as

du(v) = minK{weightK(P ) | P is a path from u to v in Gu}
if there exists a path from u to v in Gu, while du(v) = (∞, 0) otherwise.

Theorem 2. Let G = (V, E, w) be a weighted directed graph and u ∈ V . If Gu =
(V, E, wu) is a graph where wu : E → K, such that wu(x, y) = (w(x, y), mu(x))
for each (x, y) ∈ E, then du(v) = (d(u, v), su(v)), for each v ∈ V .

Theorems 1 and 2 allows us to run Dijkstra’s algorithm to compute d(u, v)
and su(v). Hence, in order to compute all level edges of M, we run Dijkstra’s
algorithm on Gu, for each node u ∈ S1. As a result, we obtain a shortest paths
tree Tu rooted in u such that, each node v ∈ Tu is labeled with the distance from
u to v in Gu that is, the pair (d(u, v), su(v)).

3.3 Computation of M and TM

First of all we have to compute the graphs Gu, for each u ∈ S1. We assume that
the sets S1, . . . , Sl are given in input as a linked list LS1

of the nodes in S1 and
an array S of size n such that, for each node v ∈ V , S[v] = maxlevel(v). The
array S allows us to check in constant time whether a node belongs to a given
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Input a graph G = (V,E, w), a node u ∈ V , the array S

Output the graph Gu = (V, E,wu)

Procedure Label

1. for each (x, y) ∈ E do
2. if x 6≡ u then
3. wu(x, y) := (w(x, y), S[x])
4. else
5. wu(x, y) := (w(x, y), 0)

Fig. 1.

level. As a consequence, for each u ∈ S1, we can build graph Gu in linear time
using Procedure Label in Figure 1.

Now, we show how to compute a multi-level overlay graph M as an adjacency
list in O(n + m + |⋃l

i=1
Ei|) optimal space. The solution we propose is given in

Figure 2. Lines 1 and 2 initialize wM(u, v) for each (u, v) ∈ E. The block at
Lines 4–19 is performed for each node u in S1. Line 5 computes Gu, while Line
6 computes d(u, v) and su(v), for each v ∈ V (see Theorems 1 and 2). Lines
7–17 use d(u, v) and su(v) to compute wM(u, v) for each v ∈ S1. To this aim,
block at Lines 7–13 visits the adjacency list of u and, using S, tests whether
v ∈ N(u) belongs to S1 (Line 8). In the affirmative case, Lines 10 and 11 test
whether (u, v) is a level edge (see Lemma 3) and, possibly, overwrites wM(u, v)
(see Lemma 2). Finally, Line 12 marks v to record that the edge (u, v) has been
already visited and added to M as a level edge. Subsequently, for each pair (u, v)
such that v ∈ S1 and v is unmarked (see Line 15), Lines 16–17 test whether the
pair (u, v) is a level edge (see Line 16) and, possibly, add (u, v) to M and set
wM(u, v) (see Line 17). Finally, Line 18 unmarks each v ∈ V .

Lemma 4. Procedure ComputeOverlay requires O(|S1|(m + n log n)) time.

Proof. Lines 1–2 require O(n + m) time. Line 5 requires O(n + m) time and is
performed |S1| times, thus requiring O(|S1|(n+m)) overall time. Line 6 is a Dijk-
stra’s computation and hence requires O(m+n log n) time; since it is performed
|S1| times, it requires O(|S1|(m+n log n)) overall time. Lines 7–13 require O(n)
worst case time and are performed |S1| times, thus requiring O(n|S1|) overall
time. Lines 14–17 require O(n) worst case time and are performed |S1| times,
thus requiring O(n|S1|) overall time. Line 18 requires O(n) worst case time and
is performed |S1| times, thus requiring O(n|S1|) overall time. It follows that the
total time needed to build M is O(|S1|(m + n log n)).

The component tree TM is computed by visiting the subgraphs of G induced
by nodes in V \Si, for each i = 1, 2, . . . , l. This can be done in O(l(n+m)) worst
case time. Since l ≤ |S1|, the time needed to compute TM does not increase the
overall preprocessing time. The component tree TM is stored in a data structure
denoted as TM and described in what follows:



234 Francesco Bruera et al.

Input a graph G = (V,E, w), the array S, the list LS1

Output the graph M = (V,E ∪ E1 ∪ E2 ∪ . . . ∪ El, wM)

Procedure ComputeOverlay

1. for each (u, v) ∈ E do
2. wM(u, v) := (w(u, v), 0, 0)
3. for each u ∈ LS1

do
4. begin
5. Gaux := Label(G, u, S)
6. Dijkstra(Gaux, u)
7. for each v ∈ N(u) do
8. if S[v] ≥ 1 then
9. begin
10. if (su(v) < min{S[u], S[v]} and d(u, v) 6= ∞) then
11. overwrite wM(u, v) as (d(u, v), su(v) + 1, min{S[u], S[v]})
12. mark(v)
13. end
14. for v := 1 to n do
15. if S[v] ≥ 1 and unmarked(v) then
16. if (su(v) < min{S[u], S[v]} and d(u, v) 6= ∞) then
17. add (u, v) to M with wM(u, v) := (d(u, v), su(v) + 1, min{S[u], S[v]})
18. for each v ∈ V do unmark(v)
19. end

Fig. 2.

– for each i = 1, 2, . . . , l, we store in a circularly linked list, denoted as Ci,
the connected components at level i of the set Ci. For each C ∈ Ci, the
corresponding element in C contains the nodes in C \ ⋃

v∈C

Cv
i−1 and a link

to its parent Ci+1. Given a node v ∈ V , we denote as C
v
i the element of Ci

corresponding to Cv
i ;

– components in C0 (i.e., leaf components) are represented by an array C0. This
array is indexed by nodes in V and C0[v] contains a link to the element of
TM corresponding to the parent of Cv

0 in TM;
– the list Cl+1 contains only one element representing the nodes in Sl.

3.4 Distance queries

As in [4], we answer s-t distance queries in two phases. First, we compute the
subgraph Mst = (Vst, Est) of M described in Section 2, then we run Dijkstra’s
algorithm on Mst. Procedure ComputeMst in Figure 3 shows the computation
of Mst by using our data structures. In detail, Line 1 finds the path from Cs

0

to Ct
0 in the component tree. Lines 2–6 add to the edge set Est of Mst all edges

of level i incident to a node in component C = Cx
i , with x ∈ {s, t} and i < L.

Lines 7–10 add to Est all edges of level L.

Lemma 5. Procedure ComputeMst requires O(m + |S1|2) worst case time.
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Input a multi-level overlay graph M, the component tree TM, nodes s and t

Output the graph Mst

Procedure ComputeMst

1. Find the path (Cs
0, C

s
k, Cs

k+1, . . . , C
s
L = C

t
L . . . , Ct

k′+1, C
t
k′ , C

t
0) in TM

where Cs
L = Ct

L is the lowest common ancestor of Cs
0 and Ct

0 in TM

2. for each C ∈ {Cs
0, C

s
k, Cs

k+1, . . . , C
s
L−1} ∪ {Ct

0, C
t
k′ , C

t
k′+1, . . . , C

t
L−1} do

3. for each v ∈ C do
4. for each (v, z) in M do

5. if (v, z) ∈
L−1

∪
j=i

Ej then

6. add (v, z) to Est and z to Vst

7. for each v ∈ C
s
L do

8. for each (v, z) in M do
9. if (v, z) ∈ EL then
10. add (v, z) to Est and z to Vst

Fig. 3.

Proof. Line 1 requires O(m) time. In fact, in the worst case, each set C ∈
{Cs

0, C
s
k, Cs

k+1
, . . . , Cs

L−1, C
s
L} ∪ {Ct

0, C
t
k′ , Ct

k′+1
, . . . , Ct

L−1}, contains only one node.
Therefore the number of these sets visited by the algorithm is at most |Vst| ≤
n = O(m). Lines 2-10 require O(m + |S1|2) time. In fact, they consider the

edges of M which belong either to E or to
⋃l

i=1
Ei, and |⋃l

i=1
Ei| ≤ |S1|2. For

each considered edge, Lines 2-10 requires constant time. In fact, the test at Line
5 can be done by checking whether ((i ≤ f (v, z) ≤ L − 1) ∨ (i ≤ ℓ(v, z) ≤
L − 1) ∨ (f (v, z) < i ∧ ℓ(v, z) > L − 1)), and the test at Line 9 can be done by
checking whether f (v, z) ≤ L ≤ ℓ(v, z). Hence, Lines 2–10 require O(m + |S1|2)
time.

Corollary 1. An s-t distance query is answered in O(m+ |S1|2 + |Vst| log |Vst|)
time.

4 Maintenance of Multi-Level Overlay Graphs

In this section we propose a dynamization of the algorithm given in Section 3.3,
whose aim is to maintain the information on M(G; S1, ..., Sl), when a sequence of
update operations on the weights of G are performed. The dynamic environment
we consider is defined as follows.

– We are given the following data structures:
1. a weighted directed graph G = (V, E, w);
2. a sequence S1, S2, . . . , Sl of subsets of V such that V ⊃ S1 ⊃ S2 ⊃ . . . ⊃

Sl, stored in the array S[ ] as defined in Section 3;
3. the set S1 stored in the list LS1

as defined in Section 3.3;
4. a multi-level overlay graph M(G; S1, ..., Sl) = (V, E∪E1∪E2∪ . . .∪El),

where Ei, 1 ≤ i ≤ l, is the set of i-level edges , stored as adjacency lists;
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5. the component tree TM of M(G; S1, ..., Sl) stored in the data structure
TM as defined in Section 3;

– We are given a sequence σ = 〈σ1, σ2, . . . , σh〉 of modifications, where a modi-
fication is either a weight decrease or a weight increase operation on an edge
of G.

– Every time a modification occurs we have to update the information on
M(G; S1, ..., Sl), without recomputing it from scratch.

First of all, notice that the topology of the original graph G never changes as a
consequence of a weight decrease or a weight increase operation, and the same
happens to data structures S[ ], LS1

and TM. This implies that we can answer
s-t distance queries as described in Section 3.4, by simply constructing Mst and
computing the distance from s to t in Mst. Hence, in what follows we concen-
trate on the description of the dynamic algorithm to update M(G; S1, ..., Sl). As
shown in Section 3, the information needed to compute M(G; S1, ..., Sl) can be
stored in |S1| shortest paths trees. In particular, for each node u ∈ S1, we need to
store and maintain a shortest paths tree Tu such that, for each node v ∈ Tu, the
distance of v is the pair (d(u, v), su(v)). Using this information we can recognize
if edge (u, v) appears as a level edge: by Lemma 3, (u, v) is a level edge if and
only if su(v) < min{maxlevel(u), maxlevel(v)} and there exists a path from u
to v in G. As a consequence, every time a weight decrease or a weight increase
operation occurs on G, it is sufficient to update the |S1| shortest paths trees Tu,
u ∈ S1. To this aim, we apply to each Tu, the fully dynamic algorithm proposed
in [20] to update shortest paths.

The algorithm in [20] works for any graph and its complexity depends on the
existence of a so called k-bounded accounting function for G as defined below.

Definition 4. [20] Let G = (V, E, w) be a weighted graph, and s ∈ V be a source
node. An accounting function for G = (V, E, w) is any function A : E → V such
that, for each (x, y) ∈ E, A(x, y) is either x or y, which is called the owner of
(x, y). A is k-bounded if, for each x ∈ V , the set of the edges owned by x has
cardinality at most k.

As an example, if G is planar then, there exists a 3-bounded accounting
function for G, while for a general graph with m edges k = O(

√
m). Furthermore,

it is easy to see that, if G has average degree equal to d (d = m/n), then there
exists a k-bounded accounting function for G where k = O(d).

In detail, for any sequence of weight increase and weight decrease operations,
if the final graph has a k-bounded accounting function, then the complexity of
the algorithm in [20] is O(k log n) worst case time per output update.

To obtain this bound, every time a node z changes the distance to the source,
the algorithm in [20] needs to know the right edges adjacent to z that have to
be scanned. To efficiently deal with this problem, the algorithm requires some
auxiliary data structure that stores the information given in the next definition.

Definition 5. [20] Let G = (V, E, w) be a weighted graph, and s ∈ V be a source
node. The backward level (forward level) of edge (z, q) and of node q, relative to
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node z, is the quantity b levels(z, q) = d(s, q)−w(z, q) (f levels(z, q) = d(s, q)+
w(z, q)).

The intuition behind Definition 5 is that the level of an edge (z, q) provides
information about the shortest available path from s to q passing through z. For
instance, let us suppose that, while processing a weight decrease operation, the
new distance of z, denoted as d′(s, z), decreases below b levels(z, q), i.e., there
exists an edge (z, q) such that b levels(z, q)−d′(s, z) = d(s, q)−w(q, z)−d′(s, z) >
0, i.e., d(s, q) > d′(s, z) + w(q, z). This means that we have found a path to q
shorter than the current shortest path to q. In this case, scanning the edges (z, q)
in nonincreasing order of b level ensures that only the right edges are considered,
i.e., edges (z, q) such that also q decreases the distance from s. The case of a
weight increase operation is analogous.

To apply the above strategy, the algorithm of [20] needs to maintain explicitly
the information on the b level and the f level for all the neighbors of each node.
This might require the scanning of each edge adjacent to an updated node.

To bound the number of edges scanned by the algorithm each time that
a node is updated, the set of edges adjacent to each node is partitioned in
two subsets: any edge (x, y) has an owner, denoted as owner(x, y), that is ei-
ther x or y. For each node x, ownership(x) denotes the set of edges owned
by x, and not-ownership(x) denotes the set of edges with one endpoint in
x, but not owned by x. If G has a k-bounded accounting function then, for
each x ∈ V , ownership(x) contains at most k edges. Furthermore, the edges in
not-ownership(x) are stored in two priority queues as follows:

1. Bs,x is a max-based priority queue; the priority of edge (x, y) (of node y) in
Bs,x, denoted as bs(x, y), is the computed value of b levels(x, y);

2. Fs,x is a min-based priority queue; the priority of edge (x, y) (of node y) in
Fs,x, denoted as fs(x, y), is the computed value of f levels(x, y).

While the definition of accounting function can be borrowed from [20] as it is,
the definition of backward and forward levels have to be adapted to our context.
To this aim, we need to define two further binary operators in K working on
quantities defined in Gu: ⊖K and maxK.

Definition 6. For each v ∈ V , for each (q, v) ∈ E, and for each u ∈ S1,

du(v) ⊖K wu(q, v) = (d(u, v), su(v)) ⊖K (w(q, v), mu(v))
= (d(u, v) − w(q, v), su(q)).

Definition 7. Given a1, a2 ∈ K,

maxK{a1, a2} =

{

a1 if a2 ≤K a1

a2 otherwise.

It is easy to see that K is closed under maxK and that maxK is associative,
while ⊖K is defined on a subset of K×K, given by distances and weights in Gu.
According to the definition of operators ⊖K and ⊕K, we redefine the notions of
backward level and forward level as follows.
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Definition 8. Let u ∈ S1, and let (v, q) and q be an edge and a node in Gu,
respectively. The backward level and forward level of (v, q) are defined, respec-
tively, as follows:

b levelu(v, q) = du(q) ⊖K wu(v, q)

f levelu(v, q) = du(q) ⊕K wu(v, q)

We store these information in the following data structures:

– for each v ∈ V , ownership(v), that is the set of edges owned by v, stored as
a linked list (note that, an ownership function for the graph G = (V, E, w)
is also an ownership function for graphs Gu, for each u ∈ S1; hence, these
information have to be stored only once);

– for each v ∈ V , not-ownership(v), that is the set of edges with an end-
point in v but not owned by v. For each v ∈ V and for each Gu, u ∈ S1,
not-ownership(v) is stored in two priority queues as follows:

1. Bu(v) is a max-based priority queue; the priority of edge (v, q) in Bu(v),
is the computed value of b levelu(v, q) in Gu with respect to source u.
Here, the maximum is computed as in Definition 7;

2. Fu(v) is a min-based priority queue; the priority of edge (v, q) in Fu(v),
is the computed value of f levelu(v, q) in Gu with respect to source u.

Hence, in order to use the algorithm in [20] to update trees Tu, u ∈ S1, we have
to compute and store the above data structures before the sequence of edge
modifications occurs. Algorithm ComputeOverlay given in Section 3.3 is not
suitable to be used in the dynamic environment described above since it does not
store trees Tu, u ∈ S1. In fact, it computes only one shortest paths tree at a time
and computes M stepwise. Thus, we propose a new preprocessing algorithm,
denoted as PreprocessOverlay and shown in Figure 4. This algorithm is
similar to ComputeOverlay but it first computes all the |S1| shortest paths
trees along with the above auxiliary data structures, and then uses these trees
to compute M.

PreprocessOverlay works as follows. Line 1 computes an accounting func-
tion of G as the sets ownership(v) and not-ownership(v), for each v ∈ V . The
instructions at Lines 3–9 are performed for each u ∈ S1. In particular, Lines 4
and 5 compute and store the graphs Gu and the shortest paths trees Tu. Lines
6–8 compute the queues Bu(v) and Fu(v) for each node v ∈ V . Lines 10 and 11
initialize wM(u, v) for each (u, v) ∈ E. Then, Lines 12–26 compute wM(u, v),

for each (u, v) ∈ ⋃l

i=0
Ei using the information on d(u, v) and su(v), for each

u ∈ S1 and for each v ∈ V , stored in the trees Tu. The computation of wM(u, v)
is performed as in ComputeOverlay.

The correctness of the Procedure PreprocessOverlay is a straightforward
consequence of Lemmata 2 and 3, and Theorems 1 and 2. The time complexity
of Procedure PreprocessOverlay is given in the next lemma.

Lemma 6. Procedure PreprocessOverlay requires O(|S1|(m+n) log n) time.
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Input a graph G = (V,E, w), the array S, the list LS1

Output the graph M = (V,E ∪ E1 ∪ E2 ∪ . . . ∪ El, wM)

Procedure PreprocessOverlay

1. Compute an accounting function for G

2. for each u ∈ LS1
do

3. begin
4. Gu := Label(G, u, S)
5. Tu := Dijkstra(Gu, u)
6. for each v ∈ V do
7. for each (v, q) ∈ not − ownership(v) do
8. compute b levelu(v, q), f levelu(v, q) and add (v, q) to Bu(v) and Fu(q)
9. end
10. for each (u, v) ∈ E do
11. wM(u, v) := (w(u, v), 0, 0)
12. for each u ∈ LS1

do
13. begin
14. for each v ∈ N(u) do
15. if S[v] ≥ 1 then
16. begin
17. if (su(v) < min{S[u], S[v]} and d(u, v) 6= ∞) then
18. overwrites wM(u, v) as (d(u, v), su(v) + 1, min{S[u], S[v]})
19. mark(v)
20. end
21. for v := 1 to n do
22. if S[v] ≥ 1 and unmarked(v) then
23. if (su(v) < min{S[u], S[v]} and d(u, v) 6= ∞)then
24. add (u, v) to M with wM(u, v) := (d(u, v), su(v) + 1, min{S[u], S[v]})
25. for each v ∈ V do unmark(v)
26. end

Fig. 4.

Proof. Line 1 requires O(m) time (see [23]). Lines 4–5 require O(|S1|(m +
n log n)) time. Lines 6–8 requires O(|S1|m log n) time. Lines 10–11 requires
O(n + m) time. As in ComputeOverlay, Lines 12–26 require O(n) worst case
time and are performed |S1| times, thus requiring O(n|S1|) overall time. Sum-
ming up these values, the total time needed by PreprocessOverlay to build
M(G; S1, . . . , Sl) is O(|S1|(m + n) log n).

The space requirements to store M(G; S1, . . . , Sl) and the additional data struc-
tures used for the maintenance of M is O((n + m)|S1|).

The data structure computed by PreprocessOverlay has to be updated
during the sequence σ = 〈σ1, σ2, . . . , σh〉 of modifications on G. Our dynamic
solution starts after each σi and works in three phases as follows:

Procedure DynamicOverlay

1. Update Gu, for each u ∈ S1;
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2. Apply the fully dynamic algorithm for shortest paths given in [20] to each
Tu, u ∈ S1;

3. Perform Lines 10–26 of PreprocessOverlay to build M using the new
values of d(u, v) and su(v), updated at phase 2 above.

Let δu be the set of nodes in Gu that change either the distance or the shortest
path to u as a consequence of a weight decrease or a weight increase operation. If
we denote as ∆ the quantity

∑

u∈S1
|δu| and considering a k-bounded accounting

function for G, then the cost of the algorithm is given in the next lemma.

Lemma 7. The fully dynamic algorithm requires O(|S1|n + m + k∆ log n) time
per operation.

Proof. Phase 1 requires O(|S1|n) time. By definition of ∆, Phase 2 requires
O(k∆ log n) worst case time as shown in [20]. Phase 3 requires O(|S1|n + m)
worst case time as shown in the proof of Lemma 6. Thus, the fully dynamic
algorithm requires O(|S1|n + m + k∆ log n) time per operation.

The correctness of Phases 1 and 3 above is straightforward, while the cor-
rectness of Phase 2 comes from [20].

5 Discussion

In this section we propose a critical evaluation of our dynamic solution. The aim
of this discussion is to capture the values of parameters |S1| and ∆ that make
our fully dynamic solution better than the recomputation from scratch. Since no
theoretical results is known for the construction of a multi-level overlay graph of
a given graph, we compare the new fully dynamic solution DynamicOverlay

with the optimal space solution ComputeOverlay given in Section 3.3, that
requires O(|S1|(m + n log n)) time.

We first bound the value of ∆. Notice that by definition ∆ = O(|S1 × V |) =
O(|S1|n). We analyze the cases of sparse graphs, random graphs and dense
graphs. In any case, we derive the values of ∆ for which the dynamic algo-
rithm is better than the recomputation from scratch, that is the values of ∆ for
which O(|S1|n+m+k∆ log n) is asymptotically better than O(|S1|(m+n log n)).
More precisely, the values of ∆ such that:

|S1|n + m + k∆ log n = o(|S1|(m + n log n))

Since |S1|n + m = o(|S1|(m + n log n)), then we need the values of ∆ such that:

k∆ log n = o(|S1|(m + n log n)) (1)

Sparse graphs In this case m = O(n). This implies that k = O(1). Hence, by
inequality (1) we obtain:

∆ log n = o(|S1|n log n)

∆ = o(|S1|n)
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Random graphs In this case we consider random graphs that are connected with
high probability, that is graphs such that m = O(n log n) (see [24]). This implies
that k = O(log n). Hence, by inequality (1) we obtain:

∆ log2 n = o(|S1|n log n)

∆ = o(|S1|n/ log n)

Dense graphs In this case m = O(n2). This implies that k = O(n). Hence, by
inequality (1) we obtain:

n∆ log n = o(|S1|n2)

∆ = o(|S1|n/ log n)

Summarizing, in the case of sparse graphs DynamicOverlay is asymptotically
better than the recomputation from scratch by applying ComputeOverlay;
while, in the case of random graphs and dense graphs, DynamicOverlay is
better than the recomputation from scratch by applying ComputeOverlay

when ∆ is at least a log n factor far from its maximum value.
Now we need to bound the value of |S1|. Let us consider the space needed

by the dynamic algorithm, which is O(|S1|(n + m) + |⋃l

i=1
Ei|), compared with

the space needed by the static solution, which is O(n + m + |⋃l

i=1
Ei|). Notice

that, the value |S1| appears in the space requirements of the dynamic algorithm.
To keep the space occupancy of the dynamic algorithm within that of the static
algorithm, we need to fix |S1| = O(1). In this case, the time needed to perform an
s-t query, given in Section 3.4, becomes O(m + |Vst| log |Vst|). A very ambitious
open problem in this area is to develop a theoretical framework that help to
properly choose the sets S1, S2, . . . , Sl in order to speed up as much as possible
shortest path queries.
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