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Abstract. In this paper we provide efficient robust algorithms for shunt-
ing problems concerning the reordering of train cars over a hump. In par-
ticular, we study algorithms able to cope with small disruptions, as tem-
porary and local unavailability and/or malfunctioning of key resources
that can occur and affect planned operations. To this aim, a definition of
robust algorithm is provided. Performances of the proposed algorithms
are measured by the notion of price of robustness. Various scenarios are
considered, and interesting results are presented.
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1 Introduction

Optimization of railways involves many planning and scheduling activities span-
ning several time horizons. In this paper, among short term planning phases, we
consider the shunting problem, that is the scheduling of activities at a shunting
yard in depots or stations.

In railroad shunting yards, incoming freight trains are split up and re-
arranged according to their destinations. In stations and train depots, passenger
trains are parked overnight or during low traffic hours. In either case we are
given an ordering of arriving units, i.e., either cars, or trains or train units, and
we have to decide how to use the tracks of the shunting yard to reorder the
units according to a required departure sequence. Possible scheduling activities
are limited by the fixed number of available tracks, by their length and by the
way tracks may be approached. Many results have been reached in literature
on shunting problems by assuming a perfect knowledge of the incoming and
outcoming sequences of units (e.g., [4–6, 8, 10, 11]).
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On the other hand, a recent approach looks at the shunting problem as an
online problem: since the trains could accumulate lateness before arriving at the
depot, the time of arrival of each train could be unpredictable. The tracks must
thus be assigned online, as the trains arrive, on the basis of departure times and
previous assignments [13, 7].

These two approaches lack in reality, since small disruptions, concerning tem-
porary and local unavailability and/or malfunctioning of key resources, can occur
and then affect, e.g., the planned incoming unit sequence, but it is also unlikely
that we have no idea about the order of the sequence, as in the online approach.
What we need is a robust solution to the shunting problem that maintains feasi-
bility by applying available recovery capabilities in the case of disruptions. This
avoids both a recalculation from scratch of a new schedule and a complete online
approach to the problem.

What is robustness for an optimization problem? Several attempts have been
tried in order to provide a formal definition which is able to capture many dif-
ferent peculiarities (see for instance [1, 3, 9]). Recently, a special issue on robust
optimization has been published in the central publication forum of the mathe-
matical programming society [2].

However, the notion of robustness in every day life is much broader than that
pursued in so-called robust optimization so far. In the most restricted sense, a
robust plan stays unchanged in every likely scenario. The basic idea of robust-
ness is given by a problem and some knowledge imperfection with which one
has to cope. That is, the solution provided for a given instance of the problem
must hold even though some changes in such an instance occur. This kind of
robustness is not always suitable if some recovery strategies are not introduced.
Moreover, in many practical applications, there might be the possibility to in-
tervene before some scheduled operations are being performed. This suggests to
study robustness with respect to available recovery capabilities. Usually, mod-
ifications that may occur are restricted to some specified subset of all possible
ones. It is reasonable to require that if a disruption occurs, one would like to
maintain as much as possible a pre-computed solution taking into account some
“soft” recovery strategies. Recoverability should be simple and fast. Moreover
there are cases where recoverability is necessary in order to still have some useful
solution for a problem. A solution that undergoes slight changes is called robust
even though it could require the use of some recovery capabilities.

In this paper we provide a definition for robust algorithms and a definition
for the corresponding price of robustness. We follow directions given in [12], and
emphasize algorithmic aspects. The purpose/hope is to capture useful properties
that help to overcome the standard notion of robustness. Intuitively, given an
optimization problem P , a set of possible disruptions, and a set of available
recovery strategies Arec, we define the corresponding robustness problem RP .
An instance i of P becomes a set M(i) of instances obtained by applying any
possible disruption to i. A robust algorithm Arob takes i as input and outputs
a feasible solution for any instance in M(i) with the chance to apply available
recovery strategies. In other words, given an instance i of P and a disruption
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j ∈ M(i), a solution s for i provided by Arob can be turned into a feasible
solution for j by applying some recovery strategies allowed by Arec. Solution s

is then called a robust solution. Clearly, robust solutions provided by Arob can
be far from the optimum. Such a distance is measured by the price of robustness.
In [12] the aim is to provide the best robust solution, i.e., the one that minimize
the price of robustness. We are interested in finding efficient robust algorithms,
and evaluating them by comparing the corresponding prices of robustness.

We apply these definitions in a practical context given by shunting problems
introduced in [11]. In a shunting plan, disruptions are given by different orders
of the incoming trains/cars, new trains/cars, missing trains/cars, or faulty in-
frastructures like tracks. We provide robust shunting plans able to cope with
bounded number of disruptions. We also study various levels of robustness ac-
cording to different recovery capabilities.

The paper is organized as follows: Section 2 introduces the shunting prob-
lem in a hump yard as given in [11]. Section 3 introduces a model concerning
robustness for optimization problems. Section 4 gives a robust interpretation to
shunting problems arising in practical context, and for each problem we provide
robust algorithms and evaluate their price of robustness. Finally, Section 5 gives
some conclusive remarks and discusses some open problems.

2 Shunting Over a Hump

In this section we introduce the shunting problem in a hump yard as given in [11].
The problem is specified by an input train Tin composed of n cars and an output
train Tout given by a permutation of Tin cars. Each car is assigned with a unique
label. The considered hump yard appears as in Figure 1.

switches

classification tracks

w

c

IN/OUT track

Fig. 1. Hump yard infrastructure composed of w classification tracks, each of size c.

There is an input track where trains arrive and a set of switches by which
cars composing the incoming train can be shunted over the available classification
tracks. A classification track is approached from a single side and works like a
stack. The number of available classification tracks is denoted by w, and their
size, i.e., the number of cars that can fit into a classification track, by c. This
layout supports a sorting operation by repeatedly doing the so called track pull
(operation) which is made up of:
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– Connect the cars of one classification track into a pseudotrain;
– Pull the pseudotrain over the hump;
– Disconnect the cars in the pseudotrain;
– Push the pseudotrain slowly over the hump, yielding single cars that run

down the hill from the hump towards the classification tracks;
– Control the switches such that every single car goes to a specified track.

The goal is to reorder Tin according to Tout by repeatedly performing the
track pull operation (an example of reordering by means of track pulls can be
seen in Figure 2). The cost of the reordering is measured by the number of track
pulls. Clearly, at least one pull must be performed.

We consider three different variants of the shunting over a hump problem by
specifying constraints for c and w. Namely,

Case 1- c bounded, w unbounded;
Case 2- c unbounded, w bounded;
Case 3- c and w unbounded.

In [11] a polynomial algorithm for each case is given. In particular, a 2-
approximation algorithm for Case 1-, and optimal algorithms for Case 2- and
Case 3-, are provided.

It is worth mentioning a further algorithm presented in [11] that solves the
shunting problem when c is bounded and the input train is unknown in advance.
Equivalently this can be seen as the order of the cars in Tin is the reverse of the
order in Tout. The proposed solution provides a set of different operations for
each car. In the remainder of the paper we refer to such an algorithm as Aout.

Before concluding this section we need to describe how the set of track pulls
operations is specified and represented in [11] since we make use of the same
notation. In general, a shunting plan has to specify a sequence of track pull
operations, given by the track whose cars are pulled, and for every car which
track it is sent to. Tracks are named according to the time they are pulled,
i.e., T = {1, . . . , h}. This means that one physical track might get several such
names (numbers) if it is pulled several times during the shunting plan. In such
situations, the logical track is annotated by the name of a physical one. Of
course, if there is no limit on the number of tracks (w ≥ h), there is no need to
reuse a track, and this annotation by names of physical tracks is not necessary.
With this numbering of the tracks, the itinerary of a car can be described by
the sequence of logical tracks it visits. For the task at hand, it is convenient to
specify this sequence as a bitstring or code b1 · · · bh where the different bits stand
for the logical tracks, and there is a 1 if and only if the car visits that track.
Now, if track i is pulled, the new destination of a car is given by the position of
its next 1 in its code, i.e., the lowest index j > i with bj = 1.

A shunting plan must specify a track pulls sequence T and it has to associate
a code to each car. Codes length is determined by the length of T and cars may
share the same code.

According to the previous notation, Aout provides n different bitstrings, one
per car. Each string specifies the route that the corresponding car has to perform
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Fig. 2. Example of a shunting plan given by Aout when c = 3 and the number of track
pulls is set to 5. Cars from 11 down to 1 are associated with codes 00000, 00001, 00010,
00011, 00100, 00110, 01000, 01100, 10000, 10001, 11000 respectively. The track where
Tout is composed is not shown.

among the shunting yard in order to be placed in the desired position according
to Tout. Moreover such an algorithm is optimal with respect to the minimum
number of track pulls. For the sake of simplicity, it is assumed that Tout is
composed on a track not used for shunting operations but that can contain the
full train. A running example of Aout is shown in Figure 2. The sequence of
track pulls is given by T = {1, 2, 3, 4, 5} from right to left among classification
tracks. In the example c = 3 and the number of track pulls is set to 5. The set
of codes of length 5 provided by a feasible solution is such that at each position
at most three codes have the corresponding bit set to 1. This implements the
constraint on c and implies that at most eleven different codes can be generated.
Cars from 11 down to 1 are associated with codes 00000, 00001, 00010, 00011,
00100, 00110, 01000, 01100, 10000, 10001, 11000 respectively. Figure 2 shows
the subsequent configurations obtained after each track pull and reorder of the
pulled cars according to their codes.

Note that, when Tin is known, two cars might be assigned with the same
code. This would imply that they will have the same order in Tout as in Tin.
Two cars that are consecutive in Tout can get the same code if they are in the
correct order in Tin. A maximal set of cars in Tout that has this property is called
a run.
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Definition 1. In a shunting plan, for each code x, a pure run is the maximal
set of cars associated with x.

Let opt(k, c, w) ≥ 1 be the number of track pulls needed by an optimal
shunting plan in order to manage k cars/runs with tracks size c and w tracks
(in cases 1- and 3-, w = ∞; in cases 2- and 3-, c = ∞). Let apx(k, c, w) be the
best known approximation algorithm for the corresponding shunting problem,
and let apxr be its approximation ratio. Whenever clear by the context we skip
parameters equal to ∞ from previous notation.

3 Robustness

In this section, in the spirit of [12], we introduce a model concerning robustness
for optimization problems. In particular, given an arbitrary optimization prob-
lem P , we first show how to turn P into a robustness problem RP . Then, we
define which feasible solutions for P solve RP , that is, we formally define the
notion of robust solutions. Finally, we define the concept of robust algorithm for
RP .

Moreover, we quantify the price of robustness of a robust algorithm. As usual,
by using the theoretical best robust algorithm for RP , we define the price of
robustness of the problem RP .

Without loss of generality, we always consider minimization problems. In the
remainder, a minimization problem P is always characterized by the following
parameters.

– I, the set of instances of P ;
– F , the function that associate to any instance i ∈ I the set of all feasible

solutions for i;
– f : S → R the objective function of P , where S =

⋃

i∈I F (i).

Based on a minimization problem P , we can define a robustness problem RP

as it follows.

Definition 2. A robustness problem RP is given by the triple (P, M,Arec),
where:

– P is an optimization problem;
– M : I → 2I is a modification function for instances of P ;
– Arec is a class of recovery algorithms for P . Each element of Arec takes as

input a triple (i, s, j) ∈ I × S × I and outputs a solution s′ ∈ S.

Given an instance i ∈ I for P , an element s ∈ F (i) is a robust solution for i

with respect to RP if and only if the following relationship holds:

∃A ∈ Arec : ∀j ∈ M(i), A(i, s, j) ∈ F (j).



Robust Algorithms and Price of Robustness in Shunting Problems 181

s′

s

I

Arob(i)

F (j)

A ∈ Arec

S

F (i)

i

s̄

Si

j

M(i)

Fig. 3. Robustness problem: I, set of instances; S, set of solutions; M(i), set of instances
obtainable after a disruption; F (i), set of feasible solutions for i; Si, set of recoverable
solutions; s̄, optimal solution for i; s, robust solution obtained by Arob; s′, recovered
solution obtained by an algorithm A ∈ Arec.

Let us explain the rationale underlying this definition. Given i ∈ I, M(i)
represents all the instances for P that can be obtained by applying all possible
modifications to i. Such modifications model disruptions that can arise with
respect to the current input for P . Algorithms in Arec represent the capability
of recovering against possible disruptions. An input triple (i, s, j) ∈ I × S × I

for every A ∈ Arec is made of the input instance i for the original optimization
problem P , a feasible solution s for i, and a possible disruption j for i, i.e.,
a modification of i. If j ∈ M(i), and s is a robust solution, then there must
exists an algorithm A ∈ Arec such that starting from s it obtains a new solution
s′ ∈ F (j). A possible scenario for this situation is depicted in Fig. 3, where
Si represents the subset of feasible solutions for i that can be recovered by an
algorithm A ∈ Arec when a disruption j ∈ M(i) occurs.

A robust algorithm is any algorithm that computes robust solutions for RP .

Definition 3. Given RP = (P, M,Arec), a robust algorithm for RP is any
algorithm Arob such that ∀i ∈ I, Arob(i) is robust with respect to RP .

It is worth to mention that, if a robustness problem RP = (P, M,Arec) is
based on a single recovery algorithm A, Arec ≡ {A}, that fulfills the following
condition:

∀(i, s) ∈ I × S, ∀j ∈ M(i), A(i, s, j) = s

then RP represents the so called strict robustness problem. Note that, in this
case, a robust algorithm Arob for RP must provide a solution s for i such that s

is feasible for each possible modification j ∈ M(i). This means that, since A has
no capability of recovering against possible disruptions, then Arob has to find
solutions that “absorb” any possible disruption.

Now, let us consider again Fig. 3. Note that, if s̄ denotes the optimal solution
for P when the input instance is i, it is possible that s̄ is not in Si; this implies
that every robust solution for i may be “very far” from s̄. A “good” robust
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algorithm should find the best solution in Si for P , for each possible input
i ∈ I. The goodness of a robust algorithm is measured by the concept of price
of robustness as in the following definition.

Definition 4. The Price of Robustness of a robust algorithm Arob for a robust-
ness problem RP is given by

PoR(RP , Arob) = max
i∈I

{

f(Arob(i))

min{f(x) : x ∈ F (i)}

}

.

For every instance i, the price of robustness of Arob is given by the maximum
ratio between the cost of the solution provided by Arob and the optimal solution.
The price of robustness of RP is given by the minimum price of robustness among
all possible robust algorithms. Formally,

Definition 5. The Price of Robustness of a robustness problem RP is given by

PoR(RP ) = min{PoR(RP , Arob) : Arob is a robust algorithm for RP }.

Definition 6. A robust algorithm Arob is exact for a robustness problem RP if
PoR(RP , Arob) = 1.

Definition 7. A robust algorithm Arob is optimal for a robustness problem RP

if PoR(RP , Arob) = PoR(RP ).

In the remainder, by “optimal” we may refer either to an optimization prob-
lem in the standard meaning or to a robustness problem in the meaning of
Definition 7. Which definition must be applied will be clear by the problem we
are referring to, if it is either an optimization problem or a robustness problem
respectively.

4 Disruptions and Recoverability

In this section we evaluate the price of robustness defined in Section 3 in practical
contexts arising from the shunting problems described in Section 2. In the fol-
lowing P is one of the three shunting optimization problems defined in Section 2.
For Case 1-, for instance, P is defined by

– f : number of track pulls;
– I : pair (Tin, Tout) where train Tin is defined as a sequence of cars and train

Tout is a permutation of Tin cars;
– F (i) : set of all feasible solutions for a given pair i ≡ (Tin, Tout) ∈ I, i.e.

any sequence of track pulls combined with a set of codes (one per car) that
transform Tin in Tout when c is bounded.

Sections 4.1 and 4.2 are devoted to two different modification function M

respectively. Concerning classes of recovery algorithms we consider the following
three possibilities.
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A1
rec: ∀A ∈ A1

rec, ∀(i, s) ∈ I × S, ∀j ∈ M(i), A(i, s, j) = s, i.e., there are no
recovery strategies to apply (strict robustness);

A2
rec: ∀A ∈ A2

rec, ∀(i, s) ∈ I × S, ∀j ∈ M(i), A(i, s, j) = s′, where s′ may differ
from s by at most one code, i.e., at most one pure run may be assigned with
a new code of the same length;

A3
rec: ∀A ∈ A3

rec, ∀(i, s) ∈ I × S, ∀j ∈ M(i), A(i, s, j) = s′, where s′ may differ
from s by all the set of codes, i.e., every pure run may be assigned with a
new code of the same length.

The three different classes of recovery algorithms imply three different ro-
bustness problems RP for each shunting problem P . On the other hand, by
definition, every upper bound to the price of robustness of each shunting prob-
lem with A1

rec holds for A2
rec as well as every upper bound obtained with A2

rec

holds for A3
rec. Moreover, every lower bound obtained with A3

rec holds for A2
rec

as well as every lower bound obtained with A2
rec holds for A1

rec.
Note that each of the three defined classes of recovery algorithms can not

change/extend the scheduled track pulls sequence defined by a shunting algo-
rithm Arob. This is motivated by the fact that the cost of a shunting plan is
assumed to be proportional to the number of track pulls (see Section 2). Re-
covery capabilities, instead, should be cheap operations since they can not be
planned a priori but are used at run time.

In what follows, for every instance i = (Tin, Tout) we denote by ri and ni the
number of runs and cars respectively in Tin.

4.1 One Car With Unexpected Incoming Position

Given an instance i = (Tin, Tout) of the shunting optimization problem P , let
M(i) represent all possible instances (T ′

in, Tout) obtainable from i by changing
the order of just one car in Tin. For each of the three cases of Section 2 we study
feasibility of robust shunting plans for the three different classes of recovery
algorithms defined above.

Before approaching every possible case, the following lemma describes which
practical situation a robust plan must be able to absorb/recover with respect to
a car incoming with an unexpected position. In detail, the lemma shows that if
a car arrives at a position different than expected, then at most one additional
pure run with respect to the original situation is needed.

Lemma 1. Let v be a car arriving at the hump in a different position than
expected. At most one additional pure run must be managed with respect to the
expected case.

Proof. If v composed a pure run itself, every shunting plan is robust since the
same code assigned to v is valid also in the actual case. The same holds in all
cases where the change in the incoming position of v does not affect its relative
position with respect to the pure run it belongs to.

If v was the first (last, resp.) car of its original run, and it arrives after (before,
resp.) some cars of that run then it becomes itself a pure run unless it can be
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joint with some other pure runs. All the other cars of its original pure run still
compose a pure run since their relative order did not change.

If v was part (in the middle) of a pure run then v may arrive either before its
original pure run (case a), or in the middle but before its expected placement
(case b), or in the middle but after its expected placement (case c), or after its
original pure run (case d). If case a occurs, then v with all cars of the original
pure run after the expected position of v still compose a run but the remaining
part of the original pure run can not be assigned with the same code. If case b
occurs, then same arguments of case a still hold. If case c occurs then the first
part of the original pure run until the expected position of v plus v compose a
pure run, while the remaining cars must be another pure run. If case d occurs,
then same arguments of case c still hold. Summarizing, in all cases at most one
additional pure run is created. �

In a shunting plan, Lemma 1 is reflected in the need of at most one additional
code.

Lemma 2. For every input train Tin and considering A1
rec, any robust shunting

algorithm Arob must provide a unique code to each car of Tin.

Proof. Assume by contradiction that two cars v and w have the same code in
Arob. Without loss of generality, let v being expected before w in Tin. This
means that v should appear before w also in the outgoing train. Arob is assumed
to be robust for any possible change of one car position. Let us consider the
disruption where w precedes v in Tin. Since Arob associates the same code to v

and w, then w will appear before v also in the outgoing train. This contradicts
the hypothesis that Arob is a robust shunting algorithm with respect to any
change in the position of one car. �

Case 1-. As mentioned in Section 2, the solution proposed in [11] provides a
2-approximation of the optimum, i.e., apxr = 2. However, such a solution can
not be used for robustness purposes when considering A1

rec since it does not fulfil
condition of Lemma 2. On the other hand, Aout turns out to be optimal (in the
meaning of Definition 7).

Theorem 1. Considering A1
rec, there exists an optimal robust shunting algo-

rithm Arob such that PoR(RP , Arob) = max
i∈I

opt(ni,c)
opt(ri,c)

.

Proof. We make use of Aout described in Section 2, i.e., we have one different code
for each car without considering runs. Such a solution is clearly feasible for any
change in the cars order since it is completely independent on the incoming order.

From Lemma 2, PoR(RP ) ≥ max
i∈I

opt(ni,c)
opt(ri,c)

. Moreover, from [11], the solution

provided by Aout is optimal in Case 1- when one unique code per car must be
assigned. �

Even though Aout is optimal for A1
rec, i.e., PoR(RP , Arob) = PoR(RP ), it is

not exact since in general opt(n, c) ≥ opt(r, c).
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It is worth noting that the number of codes provided by the shunting algo-
rithm Arob of Theorem 1 is at most c times the number of codes provided by
the optimal solution. In fact, we are in the case of tracks of bounded size c, and
hence there cannot be more than c cars associated with the same code. This
implies that if a run is composed by more than c cars, it must be split into more
classification tracks.

Theorem 2. Considering A2
rec, there exists a polynomial robust shunting algo-

rithm Arob such that PoR(RP , Arob) = max
i∈I

apx(ri,c)+1
opt(ri,c)

≤ 2 + max
i∈I

1
opt(ri,c)

= 3.

Proof. By Lemma 1, the change in the order of one car may produce at most one
additional pure run, hence at most one additional code is necessary to cope with
such occurrence. By the solution proposed in [11] for Case 1-, the need of one
additional code might imply the need of one additional track pull since it might
be that codes of the original solution are already the maximum number available
to manage ri runs. However we are under Case 1- assumptions, i.e., unbounded
number of tracks. This implies that Arob must provide one additional track pull.
This can be obtained by calculating codes as in [11] for Case 1- and then adding
one bit (initially set to zero) corresponding to the new pull. In order to conclude
the proof we need to show that the modification of at most one code as defined
by A2

rec is enough in order to make the solution provided by Arob feasible with
respect to M .

Let v be the car implementing disruption M . From Lemma 1, the actual
situation is given by at most two pure runs instead of the pure run to which v

belonged. Without loss of generality, let the actual pure run containing v be the
one that composed the bottom part of the expected original pure run. Then an
algorithm in A2

rec simply assigns the same code as planned by Arob to v and its
actual pure run, and the same code but with the first bit set to one to the top
part of the expected original pure run.

By construction, in the first pulled track there is only part of the original
pure run to which v was expected to belong. This implies that the number of
cars composing such a new run is less than c, otherwise they could not have been
associated with the same code by Arob. Once the first pull has been performed,
the pulled run will be placed on top3 of the second part of the pure run composing
the expected pure run containing v, since their codes differ by just the first bit.
Hence the expected pure run is now built and the shunting plan continues as
was originally scheduled by Arob. �

As already said, every upper bound for A2
rec holds for A3

rec. Up to now no
better upper bound for A3

rec has been found than that of A2
rec.

Cases 2- and 3-. When considering A1
rec, similar arguments of Theorem 1 can

be applied, and the following corollary holds.

3 Clearly there can be other cars in the middle but this does not influence the solution
since codes exactly determine the outgoing order of the cars.
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Corollary 1. In Case 2- (Case 3- resp.), and considering A1
rec, there exists an

optimal robust shunting algorithm Arob such that PoR(RP , Arob) = max
i∈I

opt(ni,w)
opt(ri,w)

(PoR(RP , Arob) = max
i∈I

opt(ni)
opt(ri)

resp.).

When considering A2
rec, in both Case 2- and Case 3-, for non-trivial plans we

do not need to use one additional track since any track is big enough to contain
the whole train. Hence, there is always enough space to wait for the missing
car/run. The only exceptions arise when the number of track pulls required
by the optimal shunting plan is too small in order to restore the expected car
positions. For instance, this happens when Tin ≡ Tout. By applying similar
arguments of Theorem 2, we can show the following theorem.

Theorem 3. In Case 2- (Case 3-, resp.), considering A2
rec, there exists

a polynomial robust shunting algorithm Arob such that PoR(RP , Arob) =

max
i∈I

opt(ri,w)+1
opt(ri,w) = 1 + max

i∈I

1
opt(ri,w) = 2 (PoR(RP , Arob) ≤ 1 + max

i∈I

1
opt(ri)

= 2,

resp.).

Concerning the price of robustness of the problem, the following theorem
holds.

Theorem 4. In Cases 1-, 2- and 3-, and considering A2
rec, PoR(RP ) ≥ 2.

Proof. As we have already remarked, by Lemma 1 the change in the order of
one car might imply the need of one additional code which in turn implies the
need of one additional track pull. Such a pull must be planned a priori by Arob

since every algorithm in A2
rec, by definition, affects only codes. This implies

PoR(RP ) ≥ 1 + max
i∈I

1
opt(ri,c)

= 2 for Case 1-, PoR(RP ) ≥ 1 + max
i∈I

1
opt(ri,w) = 2

for Case 2- and PoR(RP ) ≥ 1 + max
i∈I

1
opt(ri)

= 2 for Case 3-. �

By Theorems 3 and 4, the following corollary can be stated.

Corollary 2. There exists a robust algorithm in Case 2- (and one in Case 3-)
that is optimal when considering A2

rec.

4.2 One New Car

Another possible modification M is given by the arrival of one unexpected car v

that was not scheduled in the original train but has to be consider in the actual
shunting.

In all Cases 1-, 2-, 3-, v should be assigned, in general, with a new code.
Again this might reflect the need of one further track pull.

Theorem 5. If we consider A1
rec, no robust shunting algorithm exists.

Proof. In order to have a robust shunting plan with A1
rec, v should be assigned a

priori by Arob with a code independent of its outgoing placement. On the other
hand, each code exactly determines the outgoing position of the corresponding
car with respect to all other cars, and the claim holds. �
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However, if we use A2
rec or A3

rec it is possible to find a robust shunting plan. In
particular, according to the incoming position of v, it might be enough to assign
with it the same code of some already existent pure run. If v has to be placed
at the end of the outgoing train, it may also happen that there are some spare
codes available and the problem is easily solvable. If no codes are available (this
happens if the size of the codes is already minimized according to the number
of cars) or the incoming position of v does not allow the merge with an existent
pure run, then we need some recovery strategy. Again, the strategy must be as
less “invasive” as possible.

Theorem 6. In Case 1-, considering A2
rec, there exists a polynomial robust

shunting algorithm Arob such that PoR(RP , Arob) = max
i∈I

opt(ni+1,c−1)+1
opt(ri,c)

Proof. A possible solution Arob is to use Aout (that assigns one different code
for each car) by considering tracks of size c−1 instead of c and considering code
0 assigned to the new possible car. Clearly, decreasing tracks size and preserving
code 0 from being used, implies an increase of needed track pulls. Moreover we
add one further bit, initially set to zero, in the rightmost position of each code.
In this way there are no consecutive integers represented by the provided set of
codes. This implies that wherever a new car should be considered there is always
an available code to which an algorithm in A2

rec can change code 0. Moreover c

constraint is preserved by having considered c − 1 instead of c. �

In order to better understand the intuition behind proof of Theorem 6, we
make use of an example. Assume we have tracks of size c−1 = 3 and we consider
5 tracks, then the available codes (as in the example of Figure 2) are: 00000,
00001, 00010, 00011, 00100, 00110, 01000, 01100, 10000, 10001, 11000 that must
be assigned to the unexpected car and to cars from 10 to 1 respectively. If the new
car must be inserted, for instance, between cars 2 and 1 we have many available
codes (namely, 10010, 10011, 10100, 10101, 10110, 10111). An algorithm in A2

rec

could change, for instance, 00000 in 10100. Contrary, if we need to insert the new
car between 10 and 9, then we do not have available codes since there is nothing
in between 00001 and 00010. The new car may get code 00001 if it arrives after
car 10 or code 00010 if it arrives before car 10 and car 9. If the new car arrives
before car 10 but after car 9 then we get in trouble since there is no way to
insert it between 9 and 10 without changing other codes. In order to cope with
this case we can consider a different set of codes in which we do not allow to
have two codes representing two consecutive integers. The new set of codes will
be given by 000000, 000010, 000100, 000110, 001000, 001100, 010000, 011000,
100000, 100010, 110000. Now we have available codes in between any pair.

Theorem 7. In Case 2- (Case 3-, resp.), and considering A2
rec, there ex-

ists a polynomial robust shunting algorithm Arob such that PoR(RP , Arob) =

max
i∈I

opt(ni+1,w)+1
opt(ri,w) (PoR(RP , Arob) = max

i∈I

opt(ni+1)+1
opt(ri)

, resp.).

Proof. In Case 2-, similarly to proof of Theorem 6, we preliminarily assign code
0 to the new car and we use one different code for each car. All codes will be
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again not consecutive with respect to their integer representation by scheduling
one additional initial track pull. In doing so, between two codes provided by Arob

there is always a code available to which code 0 can be changed by an algorithm
in A2

rec. The claim then follows by observing that the proposed algorithm in [11]
for Case 2- is optimal. Similar arguments hold for Case 3-. �

Lemma 3. Considering A2
rec, any robust shunting algorithm Arob must provide

one different code for each car.

Proof. Assume by contradiction that two cars v and w have the same code in
Arob. Arob is assumed to be robust for a new car to be inserted in any position.
Let z be an unexpected new car that must be inserted between v and w. Without
loss of generality, let the code a priori associated with z by Arob be inappropriate
for the desired positioning of z. It is easy to verify that, in general, the insertion
of z in between v and w requires a different code for z and for either v or w.
Contrary, A2

rec allows to change at most one code, hence the claim holds. �

The following corollary is a direct consequence of Lemma 3.

Corollary 3. In Case 1- (2- and 3-, resp.), and considering A2
rec,

PoR(RP , Arob) ≥ max
i∈I

opt(ni+1,c)
opt(ri,c)

(PoR(RP , Arob) ≥ max
i∈I

opt(ni+1,w)
opt(ri,w) and

PoR(RP , Arob) ≥ max
i∈I

opt(ni+1)
opt(ri)

, resp.).

Theorem 8. In Case 1- (2- and 3-, resp.), and considering A3
rec, there ex-

ists a polynomial robust shunting algorithm Arob such that PoR(RP , Arob) =

max
i∈I

apx(ri+1,c)
opt(ri,c)

(PoR(RP , Arob) = max
i∈I

opt(ri+1,w)
opt(ri,w) and PoR(RP , Arob) =

max
i∈I

opt(ri+1)
opt(ri)

, resp.).

Proof. Arob simply computes a set of codes for the expected train by considering
one additional pure run implied by a possible new car. If a new unexpected car
v arrives, any algorithm in A3

rec is able to reassign all codes, hence inserting v

in the desired position. �

Theorem 9. In Case 1- (2- and 3-, resp.), and considering A3
rec, PoR(RP ) ≥

max
i∈I

opt(ri+1,c)
opt(ri,c)

(PoR(RP ) ≥ max
i∈I

opt(ri+1,w)
opt(ri,w) and PoR(RP ) ≥ max

i∈I

opt(ri+1)
opt(ri)

,

resp.).

Proof. The proof simply follows by observing that the new unexpected car, ac-
cording to its required position, may constitute itself a pure run. The need of
one further code is then necessary. �

From Theorem 8 and Theorem 9 the following corollary holds.

Corollary 4. There exists a robust algorithm in Case 2- (and one in Case 3-)
that is optimal when considering A3

rec.
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5 Conclusion

In this paper we have provided robustness in the context of shunting of train
cars. Robustness by itself is a not well defined property for optimization problems
when recovery strategies are available and/or necessary. We have focalized our
attention on the definition of robustness algorithms. An algorithm is said to be
robust according to some allowed recovery strategy, and against some specified
disruptions, if it provides a solution which is valid also if a disruption occurs by
possibly applying available recovery strategies. We also provide a measure for the
price of robustness for an algorithm as the ratio between its performances and
the performances of an optimal algorithm both applied on the expected input
(without disruptions). The definition turns out to capture interesting proper-
ties among our evaluations on different shunting problems and scenarios. The
proposed robust algorithms show how robustness heavily affects performances.
Some algorithms that are optimal (in the robust meaning) with respect to some
disruptions may become even unfeasible in other contexts. Another central is-
sue concerns the available recovery capabilities. Intuitively, the more available
recovery strategies are powerful, the less is the price of robustness for a robust al-
gorithm. Contrary, we have shown that there are cases where increasing recovery
capabilities does not affect obtained results.

This paper can be considered as a step forward in the definition and the
application of notions concerning robustness. Many other applications related
or not to shunting problems (or more in general to railways problems) can be
studied by following the used approach. Another interesting future work would
be also to study the dual of robust algorithms, i.e., recovery algorithms. What
would be the design of a recovery algorithm once fixed the power/capabilities of
a class of robust algorithms?
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