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Abstract. The Train Timetabling Problem (TTP) consists in finding a
train schedule on a railway network that satisfies some operational con-
straints and maximizes a profit function which counts for the efficiency
of the infrastructure usage. In practical cases, however, the maximization
of the objective function is not enough and one calls for a robust solution
that is capable of absorbing as much as possible delays/disturbances on
the network. In this paper we propose and analyze computationally four
different methods to find robust TTP solutions for the aperiodic (non
cyclic) case, that combine Mixed Integer Programming (MIP) and ad-hoc
Stochastic Programming/Robust Optimization techniques. We compare
computationally the effectiveness and practical applicability of the four
techniques under investigation on real-world test cases from the Italian
railway company (Trenitalia). The outcome is that two of the proposed
techniques are very fast and provide robust solutions of comparable qual-
ity with respect to the standard (but very time consuming) Stochastic
Programming approach.

Keywords: timetabling, integer programming, robustness, stochastic
programming, robust optimization.

1 Introduction

The Train Timetabling Problem (TTP) consists in finding an effective train
schedule on a given railway network. The schedule needs to satisfy some op-
erational constraints given by capacities of the network and security measures.
Moreover, it is required to exploit efficiently the resources of the railway in-
frastructure. In many situations, the efficiency is measured as the distance of
the solution from an input “ideal schedule” that optimally satisfies the network
demands.

In practice, however, the maximization of some objective function is not
enough: the solution is also required to be robust against delays/disturbances
along the network. Very often, the robustness of optimal solutions of the origi-
nal problem turns out to be not enough for their practical applicability, whereas
easy-to-compute robust solutions tend to be too conservative and thus unneces-
sarily inefficient. As a result, practitioners call for a fast yet accurate method to
find the most robust timetable whose efficiency is only slightly smaller than the
theoretical optimal one.

The purpose of the present paper is to propose and evaluate new methods
to find robust and efficient solutions to the TTP, in its aperiodic (non cyclic)
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version described in [2]. Our approach combines Mixed Integer Programming
(MIP) with Stochastic Programming (SP) and Robust Optimization techniques.
We developed a solution framework whose main building blocks are: (1) a solver,
used to obtain a tentative timetable by solving an event-based MIP model; (2)
a (local) trainer that uses Stochastic Programming or Robust Optimization
techniques to improve the robustness of the tentative solution by changing the
train departure/arrival times without altering the combinatorial structure of
the tentative timetable (train precedences being preserved); and (3) a black-box
validation tool, used to quantify the robustness of the solutions found by different
approaches.

The paper is organized as follows. In Section 2 we present the TTP in de-
tail and give a natural event-based MIP formulation. In Section 3 we present
our overall solution framework, whose two main building blocks are described in
Sections 4 and 5. Extensive computational results are given in Section 7, show-
ing that two of the new methods we propose are very fast and provide robust
solutions of comparable quality with respect to the standard (but very time con-
suming) Stochastic Programming approach. Finally, some conclusions are drawn
in Section 8.

2 The Nominal Model

In this section we describe the specific aperiodic TTP problem we consider, and
give a basic event-based formulation for the “nominal” version where robustness
is not taken into account.

Following [2], the aperiodic TTP can be formulated as follows: Given a rail-
way network, described as a set of stations connected by tracks, and an ideal
train timetable, find an actual train schedule satisfying all the operational con-
straints and having a minimum distance from the ideal timetable.

The entities involved in the description of the problem are the following:

railway network: a graph N = (S,L), where S is the set of stations and L is
the set tracks connecting them.

trains: a train is a simple path on the railway network N . The set of trains is
denoted by T . For each train h ∈ T we have an ideal profit πh (the profit of
the train if scheduled exactly as in the ideal timetable), a stretch penalty θh
(the train stretch being defined as the difference between the running times
in the actual and ideal timetables) and a shift penalty σh (the train shift
being defined as the absolute difference between the departure times from
the first station in the actual and ideal timetables).

events: arrivals and departures of the trains at the stations. The set of all the
events is denoted by E. With a small abuse of notation, we will denote by
thi both the i-th event of train h and its associated time. We also define
– A: set of all arrival events
– D: set of all departure events

whereas AS , DS and ES denote the restriction of the above sets to a partic-
ular station S. Each train h is associated with an ordered sequence of length
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len(h) of departure/arrival events thi such that thi+1 ≥ thi , the first and last
event of train h being denoted by th1 and thlen(h), respectively.

(partial) schedule: a time assignment to all the events associated with a sub-
set of trains.

objective: maximize the overall profit of the scheduled trains, the profit of train
h being computed as

πh − σh shifth − θh stretchh

i.e., the train profit decreases if the actual timetable diverges from the ideal
one; trains with negative profit are intended to remain unscheduled and do
not contribute to the overall profit.

Operational constraints include:

time window: it is possible to shift an event from its ideal time only within a
given time window;

headway time: for safety reasons, a minimum time distance between two con-
secutive arrival/departure events from the same station is imposed;

track capacity: overtaking between trains is allowed only within stations (as-
sumed of infinite capacity).

Although one is allowed to leave some trains unscheduled, to simplify our
presentation we consider first a non-congested network where one is required to
schedule all the trains. A natural event-based model in the spirit of the Periodic
Event Scheduling Problem (PESP) formulation used in the periodic (cyclic)
case [11] can be sketched as follows:

z∗ = max
∑
h∈T

ρh

thi+1 − thi ≥ dhi,i+1 ∀h ∈ T, i = 1, . . . , len(h)− 1 (1)

|thi − tkj | ≥ ∆a ∀thi , tkj ∈ AS ,∀S ∈ S (2)

|thi − tkj | ≥ ∆d ∀thi , tkj ∈ DS ,∀S ∈ S (3)

thi+1 < tkj+1 ⇔ thi < tkj ∀thi , tkj ∈ DS ,∀S (4)

ρh = πh − σh|th1 − t
h
1 | − θh((thlen(h) − t

h
1 )− (thlen(h) − t

h
1 )) ∀h ∈ T (5)

l ≤ t ≤ u ∀t ∈ E (6)
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where t denotes the ideal time of event t.
Constraints (1) impose a minimum time difference di,i+1 between two con-

secutive events of the same train, thus imposing minimum trip durations (trains
are supposed to travel always at the maximum allowed speed for the track) and
minimum rests at the stations.

Constraints (2)-(3) model the headway times between two consecutive arrival
or departure events in the same station (∆d and ∆a being the minimum depar-
ture and arrival headway, respectively). Since these constraints are nonlinear and
we do not know in advance the order in which events occur at the stations, we
need to introduce a set of binary variables xh,ki,j to be set to 1 iff thi ≤ tkj along
with big-M coefficients M , so that conditions

|thi − tkj | ≥ ∆

can be translated to

thi − tkj ≥ ∆−Mxh,ki,j

tkj − thi ≥ ∆−Mxk,hj,i

xh,ki,j + xk,hj,i = 1

Constraints (4) model the track capacity. Given the linearization of con-
straints (2)-(3), it is easy to translate

thi < tkj ⇔ thi+1 < tkj+1

as

xh,ki,j = xh,ki+1,j+1

Constraints (5) define the profits of the trains.
Finally, constraints (6) correspond to the user-defined time windows of each

event.
It is important to notice that, although we are interested in integer values

(minutes) for the events to be published in the final timetable, we do not force
the integrality of variables tj . This has the important consequence that, after
fixing the event precedence variables x, the model becomes a plain linear model.
On the other hand, the possible fractional value of the final time variables t
need to be handled somehow in a post-processing phase to be applied before
publishing the timetable. An easy procedure is to simply round down all the
t-values even if this results into a slightly infeasible published timetable, so as to
guarantee that all events arise not earlier than their published time value. In a
sense, this policy amounts to using an “infinite” time discretization during the
optimization phase, the difference between the actual and the published event
times being perceived by the travellers as a small (less than one minute) delay.
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As far as the objective function is concerned, the nonlinear term

|th1 − t
h
1 |

gives the shift sh of train h and can be easily linearized as

sh ≥ th1 − t
h
1

sh ≥ t
h
1 − th1

sh ≥ 0

If we are given a congested network we have to choose which trains to schedule
in order to maximize the overall profit. This requires the introduction of new
binary variables zh such that

zh = 1⇔ train h is scheduled

and the modification of constraints (2)-(3) linking different trains in order to
make them active only if both involved trains are scheduled. In particular

|thi − tkj | ≥ ∆

becomes

|thi − tkj | ≥ ∆(zh + zk − 1)

Notice that these modifications do not introduce further big-M coefficients.
Moreover, we need to modify the definition of the profit variables in order to
only count scheduled trains. Constraints (5) become

ρh ≤ πh − σh|th1 − t
h
1 | − θh((thlen(h) − t

h
1 )− (thlen(h) − t

h
1 )) +M(1− zh)

and we add constraints

ρh ≤ πhzh

3 The Overall Framework

In the nominal model, train travel times are always assumed to be minimal
with respect to the safety operational constraints. However this is unlikely to
happen in practice as travel times are often affected by delays. Therefore, safety
operational constraints are too optimistic and one needs to address robustness
issues, i.e., to modify the model in some way that allows one to gain a certain
amount of robustness against delays while retaining an acceptable timetable
efficiency.

In order to solve the robust problem we designed the following general frame-
work:
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nominal problem solution: we start by formulating the model in a mathe-
matically tractable way and solve it (not necessarily to optimality) with an
appropriate solver.

robustness training: borrowing an expression typical of AI field, starting from
the nominal problem solution we “train” the model to robustness, typically
by exploiting a restricted set of samples (scenarios). This crucial step can be
implemented in different ways, and will be described in the sequel.

robustness validation: once we have obtained a robust solution, we evaluate
its actual robustness by using a validation tool, thus allowing a fair compar-
ison of different training methods.

4 Validation Model

Validation is often carried out inside the model itself, as is the case when a SP
approach is used. However, we decided to implement an external simulation-
based validation module that is independent from the optimization model itself,
so that it can be of general applicability and allows one to compare solutions
coming from different methods. The module is required to simulate the reac-
tion of the railways system to the occurrence of delays, by introducing small
adjustments to the planned timetable (received as an input parameter).

The guidelines used in designing the validation tool can be summarized as
follows:

– limited adjustability in response to delays with respect to the given timetable.
It is our belief that timetabling robustness is not concerned with major
disruptions (which are to be handled by the real time control system and
require human intervention) but is a way to control delay propagation, i.e.,
a robust timetable has to favor delay compensation without heavy human
action. As a consequence, at validation time no train cancellation is allowed,
and event precedences are fixed with respect to the planned timetable.

– speed of validation. The validation tool should be able to analyze quickly the
behavior of the timetable under many different scenarios.

Given these guidelines, we designed a validation model which analyzes a
single delay scenario ω at a time. As all precedences are fixed according to the
input solution to be evaluated, constraints (1-3) all simplify to linear inequalities
of the form:

ti − tj ≥ di,j

where di,j can be a minimum trip time, a minimum rest, or an headway time.
We will denote with P the set of ordered pairs (i, j) for which a constraint of
type (4) can be written. The problem of adjusting the given timetable t under
a certain delay scenario ω can thus be rephrased as the following simple linear
programming model with decision variables tω:

min
∑
j∈E

(
tωj − tj

)
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tωi − tωj ≥ di,j + δωi,j ∀(i, j) ∈ P (7)
tωi ≥ ti ∀i ∈ E (8)

Constraints (7) correspond to linear inequalities just explained, in which the
nominal right-hand-side value δi,j is updated by adding the (possibly zero) extra-
time δωi,j from the current scenario ω.

Constraints (8) are non-anticipatory constraints stating the obvious condition
that one is not allowed to anticipate any event with respect to its published value
in the timetable. Since these values are known, these constraints act as simple
lower bounds on the decision variables. As far as the upper bounds are concerned,
we impose none, since we allow an unlimited stretch of the timetable to recover
from delays, i.e., a feasible timetable is always achievable.

The objective function is to minimize the “cumulative delay” on the whole
network.

Given a feasible solution, the validation tool keeps testing it against a large
set of scenarios, one at a time, gathering statistical information on the value
of the objective function and yielding a concise figure (the average cumulative
delay) of the robustness of the timetable.

5 Finding Robust Solutions

In this section we present three different approaches to cope with robustness. In
order to have tractable models, we introduced two simplifying hypotheses: (1)
all input trains have to be scheduled; (2) all event precedences are fixed “in a
clever way”. This can be achieved by freezing the x and z variables in the MIP
model of Section 2 according to an efficient heuristic solution.

5.1 A Fat Stochastic Model

Our first attempt to solve the robust version of the TTP was to use a standard
scenario-based SP formulation akin to the one proposed by Kroon, Dekker, and
Vromans [6] for the periodic TTP. The model can be outlined as:

min
1
|Ω|

∑
j∈E,ω∈Ω

(
tωj − tj

)
∑
h∈T

ρh ≥ (1− α)z∗ (9)

tωi − tωj ≥ di,j + δωi,j ∀(i, j) ∈ P,∀ω ∈ Ω (10)
tωi ≥ ti ∀i ∈ E,∀ω ∈ Ω (11)

ti − tj ≥ di,j ∀(i, j) ∈ P (12)
l ≤ t ≤ u (13)
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The structure of the model is similar to that used in the validation tool, but
takes into account several scenarios at the same time. Moreover, the nominal
timetable values tj are now viewed as decision variables to be optimized–their
optimal value will define the final timetable to be published. The model keeps
a copy of the original (linear) model with a modified right hand side for each
scenario, along with the original model; the original variables and the correspon-
dent second-stage copies in each scenario are linked through non-anticipatory
constraints.

The objective is to minimize the cumulative delay over all events and sce-
narios. The original objective function

∑
ρh is taken into account through con-

straint (9), where α ≥ 0 is a tradeoff parameter and z∗ is the objective value of
the reference solution.

For realistic instances and number of scenarios this model becomes very time
consuming (if not impossible) to solve–hence we called it “fat”. On the other
hand, also in view of its similarity with the validation model, it plays the role of
a kind of “perfect model” in terms of achieved robustness, hence it will be used
for benchmark purposes.

5.2 A Slim Stochastic Model

Given the computing time required by the full stochastic model, we looked for
an alternative model to solve, which is simpler yet meaningful for our problem.
In particular, we propose the following recourse-based formulation:

min
∑

(i,j)∈P,ω∈Ω

wωi,js
ω
i,j

∑
h∈T

ρh ≥ (1− α)z∗ (14)

ti − tj + sωi,j ≥ di,j + δωi,j ∀(i, j) ∈ P,∀ω ∈ Ω (15)
sωi,j ≥ 0 ∀(i, j) ∈ P,∀ω ∈ Ω (16)

ti − tj ≥ di,j ∀(i, j) ∈ P (17)
l ≤ t ≤ u (18)

In this model we have just one copy of the original variables, plus the recourse
variables sωi,j which account for the unabsorbed extra times δωi,j . It is worth noting
that the above “slim” model is inherently smaller than the fat one. Moreover,
one can drop all the constraints of type (15) with δωi,j = 0, a situation that occurs
very frequently in practice since most extra-times in a given scenario are zero.

As to the objective function, it involves a weighted sum of the the recourse
variables. Finding meaningful values for the weights wωi,j turns out to be very
important. Indeed, we will show in Section 7 how to define the weights so as
to produce solutions whose robustness is comparable with that obtainable by
solving the (much more time consuming) fat model.
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5.3 Light Robustness

A different way to produce robust solutions is to use the Light Robustness ap-
proach proposed recently by Fischetti and Monaci [3]. This method is based on
the consideration that, in essence, robustness is about putting enough slack on
the constraints of the problem. In its simpler version, the LR counterpart of the
LP model

min{cTx : Ax ≤ b, x ≥ 0}

reads

min f(γ) (19)
Ax+ β − γ ≤ b (20)

cTx ≤ (1 + α)z? (21)
x ≥ 0 (22)

0 ≤ γ ≤ β (23)

where βi is a positive parameter giving the desired protection level (or slack) on
constraint i, and γi ≥ 0 is a decision variable giving the corresponding unsatisfied
slack. The objective is to minimize a given function f of the γ variables (typically,
a linear or quadratic expression). Moreover there is a bound (controlled by α)
on the efficiency loss due to the increased robustness of the solution.

In our TTP model, a typical constraint reads

ti − tj ≥ di,j

and its LR counterpart is simply

ti − tj + γi,j ≥ di,j +∆i,j γi,j ≥ 0

where ∆i,j is the required protection level parameter.

6 Solution of stochastic models

The stochastic models were solved using the SAA method (see [1],[10],[12] and
[7]).

Sampling of delays has been carried out by using the following per-line model.
A line L is defined as a sequence of stations operated by trains during the 24
hours. Each line section (the path between two consecutive stations i and j) can
have a certain probability P(i,j) to be affected by delay. Also, each time interval
[l, k] in the 24-hour time horizon can have a certain probability of delay, say
P[l,k]. Then each single train h has its own probability Ph of arriving in the last
line station with some amount of delay. The actual delay incurred by train h
operating on section (i, j) in time interval [l, k] is computed using the following
formula:

δh(i,j)([l, k]) = PhP[l,k]

P(i,j)∑
(i,j)∈L P(i,j)
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where we normalize section delay probabilities in order to distribute the cumu-
lative delay incurred by train T operating on line L through each line section.

We also implemented latin hypercube variance reduction technique when sam-
pling from each distribution P(i,j), P[l,k] and Ph; see [8].

7 Computational Results

We carried our tests on four single-line medium-size TTP instances provided by
the Italian railway company, Trenitalia. The main characteristics of the instances
are outlined in Table 1.

An almost-optimal heuristic solutions for each of these instances was com-
puted by P. Toth and his group using the algorithm described in [2], and used
as a reference solution to freeze the event precedences and to select the trains
to schedule.

We implemented our framework in C++ and carried out our tests on a AMD
Athlon64 X2 4200+ computer with 4GB of RAM running Linux 2.6. The MIP
solver used was ILOG CPLEX 10.1 (see [4]).

Instance #Stations #Trains

BZVR 27 127

BrBO 48 68

MUVR 48 48

PDBO 17 33

Table 1. Instance characteristics

As far as scenarios are concerned, for each train on the line and for each sce-
nario we generated a corresponding 5% (on average) extra-time, drawn from an
exponential distribution, and distributed it proportionally to its train segments.

Given this setting, the first test we performed was aimed at comparing the
different training methods for each reference solution with different values of the
tradeoff parameter α, namely 1%, 5%, 10%, 20% and 40%. In particular, we
compared the following alternative methods:

– fat : fat stochastic model (50 scenarios)
– slim1 : slim stochastic model with uniform objective function–all weights

equal (400 scenarios)
– slim2 : slim stochastic model with enhanced objective function (400 scenar-

ios), where events arising earlier in each train sequence receive a larger weight
in the objective function. More specifically, if the i-th event of train h is fol-
lowed by k events, its weight in the objective is set to k+1. The idea beyond
this weighing policy is that early extra-times in a train sequence are likely
to propagate to the next ones, so they are more important.
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– LR: light robustness model, with objective function as in slim2 and pro-
tection level parameters set to ∆ = −µ ln 1

2 , where µ is the mean of the
exponential distribution. This is the protection level required to absorb a
delay of such distribution with probability 1

2 .

The results are shown in Table 2 and graphical representations (for two
instances) are given in Figure 1.
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Fig. 1. Comparison of different training models applied to the best reference solution
for each instance. The x-axis gives the efficiency loss (α) while the y-axis reproduces
the confidence intervals of the validation figure (run with 500 scenarios).
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According to the figure, slim2 always yields a very tight approximation of fat,
while slim1 is often poorer. As to LR, it usually produces good results (although
not as good as slim2 ) when the tradeoff parameter α is small–which is the most
relevant situation in practice.

As to computing times, the fat model is one order of magnitude slower than
slim1 and slim2, although it uses only 50 scenarios instead of 400. LR is ex-
tremely faster than any other method, more than two orders of magnitude w.r.t
the fast stochastic models.

While the validation output gives a reliable measure of how robust a solu-
tion is against delays, other figures exist that summarize somehow the “static”
structure of a solution. These figures are useful to get insights into the structure
of the solutions obtained with different training methods. In particular, we used:
the weighted average distance (WAD) (see [6]) of the allocated buffer from the
starting point. The WAD of the single train h is calculated as

WADh =
1

thlen(h) − t
h
1

len(h)−1∑
i=1

si,i+1(thi+1 + thi )/2
thlen(h) − t

h
1

where si,i+1 is the amount of buffer allocated from ti to ti+1. The WAD is a
number between 0 and 1 which measures how the buffers are distributed along
the train trip. For example, a value of 0.5 means that the same amount of buffer
is allocated in the first half and in the second half of the trip; values smaller
or bigger than 0.5 relate to a shift in buffer distribution towards the begin or
the end of the trip, respectively. The WAD of an entire line is calculated as the
mean of all the WADs of the trains of the line.

A comparison of the various WADs for two instances is reported in Figure 2.
It can be seen that there is a significative correlation between the degree of ap-
proximation of the various WADs with respect to “perfect WAD” (WADfat) and
the robustness of the solution–as computed by the validation tool and reported
in Figure 1.

Figure 3 illustrates how the buffers are distributed along the line for a sample
instance. It is clear that slim2 produces a very tight approximation of fat, while
slim1 does not. It is worth noting that LR uses a smoother allocation of buffers,
while slim1 yields a better approximation of their oscillations, but misses the
global allocation policy. In this respect, slim2 performs quite well instead. This
is due to the fact that LR does not exploit directly the scenario information,
thus it has to cope with very little information.

8 Conclusions

In this paper we have introduced and compared different methods to obtain
robust train timetabling solutions. While the standard fat stochastic model is,
as expected, too slow (if not intractable) for practical instances, two approx-
imated models, namely the slim stochastic and light robustness, provide very
good results in a short amount of time.
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Fig. 2. Comparison of different training models from the WAD point of view (WAD is
given within its confidence intervals).
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