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Abstract. In this paper a new concept of robustness is introduced and
the corresponding optimization problem is stated. This new concept is
applied to transportation network designs in which the set of scenar-
ios arising from the uncertainty of the parameters follows a probability
distribution. The p-robustness concept is aimed to problems where the
feasibility of the solutions is not affected by the uncertainty of the pa-
rameters. In order to compare the solution with those of other concepts
of robustness already known, some computational experiments with real
data are included.

1 Introduction

Transportation network design is based on the estimation of the future utilization
of the system. Furthermore, the characteristics of the network to be designed also
depend on the expected number of trips. Thus a railway for high-speed trains
will be constructed if the forecasted patronage is high; otherwise, a more con-
ventional railway will be built. Usually, the estimation of the future demand is
based on the current mobility patterns for which the new infrastructure does not
exist yet. Therefore, data obtained by samples or some analytical models and
gathered in the origin-destination matrix are uncertain. This leads to mathemat-
ical programs with uncertain coefficients. Traditionally, this kind of models have
been addressed by stochastic programming techniques (Rockafellar and Wets
[9]). A classical and different approach is that of the sensitivity analysis, where
the sensitivity of the solution regarding the nominal value of the parameters is
evaluated.

In the past decade Robust Optimization was introduced. Those models for
which small changes of the input data lead to small changes of the solution are
called robust counterparts. Different models and techniques have been recently
introduced (Ben-Tal and Nemirovski [1], [3]); Bertsimas and Sim [5], [6]). Most of
these works have focused on the non feasibility of the solutions and assume that
all the scenarios have the same probability. However, there are many problems in
which uncertainty does not affect the feasibility of the solutions but their value.
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The concept proposed in this paper is aimed to these cases and is insensitive to
outlier scenarios.

The paper is structured as follows. In Section 2 we introduce our new ro-
bustness concept. Section 3 presents algorithms to find networks satisfying such
new conditions. In Section 4 we show the main results obtained after our com-
putational experience. The paper finishes with some conclusions.

2 A new robustness concept

Traffic network design problems, see [4], in which the parameters and/or the
topology of the network are to be determined, are examples of network design
problems tackled in this work. Classical formulations assume fixed values in the
parameters of the model. In this work we allow some of them to be uncertain,
for instance the origin-destination matrix. In this work, we consider that the
network desing problem can be formulated as
maximize Z = U(N,0),
subject to: N € N

[NDP]

In the rest of the paper we will consider that each feasible network N € N has
a utility which depends on the random parameter 6, which might be the origin-
destination matrix, the budget,... Let U(N, §) denote such utility function.

Since function U depends on the random variable 6, we can state that U
itself is also a random variable. Therefore we cannot guarantee that a network
is better (meaning that it has greater utility) than another. The concept of p-
robustness chooses a network which is better than any other feasible network
with probability p.

Definition 1. Let p € [0,1]. N; =, N; if
Pr{U(N;,0) > U(N;,0)} > p.
Definition 2. N* € ' is p-robust with respect to 0 iff:
N*Z, N VNeN (1)

The concept of p-robustness generalizes the classical optimization problems in
network design, in which parameters are assumed to be known. In such cases
0 only takes value 6 with probability 1 and the probability of a network being
better than another is zero or one. Therefore a network is p > 0 robust if

U(N*,0) > U(N,0) VNeN

which is equivalent to the concept of global optimum in a network design prob-
lem.
Some considerations on this concept of robustness must be underlined:

1. The concept of p-robustness is not affected by outliers in the parameter 6.
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2. The definition of p-robustness is not given from a linear programming prob-
lem.

3. Classical design criteria are used to define the utility function and, therefore,
the concept of being better.

In order to illustrate the concept of p-robustness we will make use of this ex-
ample. In Figure 1, the problem of locating a highway under three possible sce-
narios is considered: Sy, Se and S3. There are four possible locations, Ny, ..., Ny.
Three of those locations fit one possible scenario and location N, try to satisfy
several possible scenarios. That one can be considered as a robust solution, a
priori. In this problem the unknown parameter 6 represents the demand and
is considered a random variable which can take values 2 = {54, 52, S5} with
probability Pr(S1) = 0.2, Pr(S2) = Pr(S3) = 0.4.

Table 1 reflects the values U(N;, S;) for ¢ = 1,2,3,4 and j = 1,2,3. Note
that 6 = S; corresponds with an outlier value, that is, a situation in which the
transportation demand is unusually high, and makes the utility of some possible
locations to be very high as well.

Sl S2 S3
(0.2)|(0.4)|(0.4)
N | 10| O 0
N2 | | 3 0

N3[05( O 3
N4 |07 | 1515

Fig. 1. Example

This problem has the structure of a decision problem, and we refer to all
possible values of 6 as scenarios.
We consider the following decision criteria:

C1: Mazimizing the expectation. This criterion, which appears in stochastic math-
ematical programming, is strongly influenced by outliers, since it chooses the
network N7 with the highest mathematical expectation (because of the out-
lier) despite of the fact that Ny has utility 0 with probability 0.8.

C2: Absolute robustness. A network N, is said to be absolute robust if it satisfies:

in U(N,,S;) = ma in U(N;,S;).

dnin, (Na, ;) fpax min (N3, S5)
In this criterion one implicitly assume that that all scenarios are equiproba-
ble. In this example we could have divided scenarios S and Ss into two other
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scenarios each, having this way four scenarios with probability 0.2. This is a
conservative criterion and chooses the only network having a positive utility
in any possible scenario: Ny.
Robust deviation: A network N is said to satisfy the robust deviation crite-
rion if:

maxg,co [U(N},S;) — U(Ng, S5)] =

miny,ex maxs;cq [U(NF, S;) — U(Ny, Sj)]

where N7 is the best network for scenario S; (in Figure 2 the cells of (N, Sj)
are emphasized by grey circles). The i*" component of column C3 shows the
value maxg, e [U(Ny, S;) — U(N7, S;)]. One can observe that the minimum
component is achieved in Ny = N;. This criterion is affected by outliers, since
scenario S is essential in the final decision.

Bertsimas-Sim robustness. This criterion calculates the optimum of the prob-
lem so that constraints are satisfied with certain probability, having this way
the following problem:

max Y
st Pr{Y <U(N,0)} > ¢ (2)
NeN

If in this example we consider the value § = 0.5, column C4 shows the
maximum value of the utilities guaranteed with a minimum probability of
0 = 0.5. This criterion is robust to outliers but is conservative with respect
to the value of the mathematical expectation.

C5: p—robustness. Applying to this example the value p = 0.5 one obtains that

the network N5 is p-robust, that is, one has that
>
N2 ;p Nla N2 ;p N3a N2 ~p N4'

Note that this criterion is robust with respect to outliers and it has a math-
ematical expectation greater than criterion C4.

SI|S2|S3
(0.2)](0.4)((0.4)

NI qi ol2/o03]o0
|t (@) o el o] 9|1 |x
nsfos| o (@) 13 o |95 ]os

N4|07|15]15]1.3[07]93]|1.5

CI|C2|C3|C4|C5

Fig. 2. Criteria
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2.1 p*—robustness

The design problems we have proposed in this work may not have p-robust
solutions for certain values of p, which naturally lies in the range (0,1]. For
instance, a 1-robust solution would be that one which is optimal in all possible
values of # which is, in general, not possible. The concept of p*-robustness is
introduced so as to indicate the maximum value of p for which one can find
p-robust solutions, denoted from now on by p*. Note that for p € (0, p*] one can
always find p-robust solutions.

Definition 3. Given p € [0, 1] we define
NDP(p) ={N €N/ N is ap— robust solution to NDP}

We will denote

p* =sup{p € [0,1]/ NDP(p) # {0}}
Now some considerations on this new concept.

1. NDP(0) = N and therefore the concept of p*—robustez is well defined.

2. Note that if 0 < p < ¢ < 1 then NDP(q) € NDP(p). This way one has that
for all p € [0,p*) there exist p-robust solutions to NDP.

3. An interesting decision criterion is to choose as final solution to NDP the
network maximizing the mathematical expectation of the utility among the
p-robustness networks. Taking the maximum value p* could make the set
NDP(p*) too small.

3 Solution algorithms

In this section we propose algorithms, both heuristic and exact, which find a
solution to our problem, provided such solution exists.

The first (heuristic) algorithm we propose reduces the set of all feasible net-
works to a set of networks which are not worse than any other network in all
possible scenarios to, later on, find the p-robust networks, if any. Find below a
pseudocode of such algorithm:

Notice that the algorithm above does not necessarily return p-robust solu-
tions, for two reasons:

1. Not all possible networks have to be generated, only until a stop criterion is
satisfied. R

2. In step 4, we find p-robust solutions in the set N which, as we mentioned
before, does not have to be the whole set of feasible networks.

An interesting question that should be addressed is which values of p are
considered to be good. Notice that having a 0.3-robust solution might not be
desirable. Therefore we now provide an algorithm which finds the maximum p for
which there are p-robust solutions of complexity O(n?) on the number of feasible
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Table 1. Heuristic algorithm

0. (Initialization) Let {61,...,60,} a ramdom sample of parameter 6.
Set N = {0}
1. (Generating solutions) Find N’ a feasible solution. N' = N U {N'}
2. (Update the solution set) For each N € N do
If N2, Nand N' # N set N =N — N
IfNZ, N andN';é]\AfsetN:N—N'. Go to 3.
3. (Stop criterion) If a stop criterion is satisfied go to 4, otherwise go to 1.
4. (Find p-robust solutions in /\A/')

Table 2. Exact algorithm

(Input data)
N= {N1,...,Ng},{01,...,0m} possible scenarios,
PERnxn, pij:1Vi,j
fork=1,...,mdo
fori=1,...,q do
forj=1,...,q9do
if U(N;,0r) < U(Nj, 6) then
pij = pij — Pr(6k)
end if
end do
end do
end do

networks, assuming the number of possible scenarios fixed. Such algorithm is
exact, provided that the set of all feasible networks is known.

Notice that p;; is the probability of network N; being better than network
Nj. Therefore, network N; is better than all other networks with probability
Die = min; p;;. As a conclusion, p* = max; p;e gives us the maximum p for
which there are p-robust solutions, the set {N; : p;e = p*} consisting of all p*-
robust networks. This algorithm can be inserted as the step 4 of the previously
introduced heuristic algorithm, all networks V; such that p;e > p being p-robust
solutions, if any.

4 Computational experiments

In this section we show the computational results obtained from three different
situations.
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4.1 p—robust location of a highway: uncertainty in the
origin-destination matrix

In this section we perform tests in the model of [8]. In such model it is assumed
that one can travel directly from the origin to the destination at a speed v or,
alternatively, using the highway. It is considered that one can access the highway
at a speed of v, and once one is travelling on the highway the speed is w > v.
All users will choose to take the highway if and only if their travelling times are
decreased.

This model has been applied to the Spanish region of Castilla La Mancha,
which has 918 councils. Since this number is too high, we have considered three
situations. Problem 1 consists of all cities with more than 50000 inhabitants,
Problem 2 studies all cities with more than 5000 inhabitants and in Problem 3
we only consider cities with more than 1000 inhabitants. In Table 7 it is shown
the number of demand pairs analyzed, the percentage of the demand analyzed
over all 918 councils and the number of networks considered. In the first step of
the heuristic algorithm previously proposed, we generated highways in a uniform
way over the feasible space, without applying any intelligent strategy.

Table 3. Problem definitions

Problem Cities # pairs o —d % demand

Problem 1 6 15 27.0
Problem 2 67 2211 65.2
Problem 3 290 41905 91.3

Our uncertain parameter is the origin-destination matrix. In this computa-
tional experience we estimated such matrix following those procedures:

S1: Surveys. The INE (Spanish Statistics Agency) made a poll in 2000 where it
was asked in which city citizens lived and to which city they would go to
study or work.

S2: FEquiprobability model. Trips are done from one site to the others with a
probability which depends on their size.

S3: Gravitational model. The number of travels from one origin to a destination
is proportional to the product of their populations and inversely proportional
to their distance squared.

S4: FEzxponential model I. This model is similar to the gravitational model but
using as deterrence function exp(—gd), 0 being a parameter which can be
estimated from the average distance between cities and d being the distance
between cities. In matrix S4 we have taken 3 considering that the average
travel distance is around 90 kilometers.

S5: Ezponential model II. In this case the chosen parameter 3 makes the average
travel distance be around 150 kilometers.
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The total demand in all scenarios has been forced to be the same so that matrices
from S2 to S5 have the same travel pattern. That is, the attracted-generated
demand in each city is the same in the four cases considered, being different in
their spacial distribution.

We have used the following criteria:

Ci: Best location with respect to the scenario (matrix) Si, i =1,...,5
C6: Best highway for the mathematical expectation.
CT7: Regret Optimization.
C8,C9,C10,C11: Robust Optimization of Bertsimas-Sim) p = 0.8,0.6, 0.4, 0.2, respectively.
C12: Minimum deviation.

C13: 0.5—robustness.

Table 4 shows the highways chosen for Problem 1 for the considered criteria. The
values in the cells are the total travelling time in the network. Since the goal is
to minimize such total time, we must maximize the utility U(N;,S;). Figure 3
shows the location of the highways and their access points.

Table 4. Solution to Problem 1

Ni S1 S2 S3 S4 S5 Criterion

N1 12062839702 28883313021 16154267014 24676276092 18692831932 C13

N2 11988012356 29194839746 16069677561 24845510865 18828968001 C1,C3, C10,C11
N3 12298245628 29100143634 16229629691 24672528156 18656209259 C5,C9

N4 12425246717 28211062229 16308102751 24276679346 18807462054 C2,C4,C6,C7,C8, C12

The same criterion is used in tables 5 and 6 and their corresponding figures
4y5.

Table 5. Solution to Problema 2

Ni S1 S2 S3 S4 S5 Criterion
N1 16053503414 53019291022 10761024144 45302154763 34988292110 (C2,C3-C9,C11-C13
N2 16038156696 53074579244 10762657906 45335914217 35001117559 C1,C10

As a conclusion, in Problem 1 it is observed that our robustness concept
and other concepts introduced in the literature choose different corridors. In
problems 2 and 3, all criteria locate the highway on the same corridor, different
criteria having only small differences between them. Our criteria coincides with
the maximization of the mathematical expectation.
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Fig. 3. Problem 1
Table 6. Solution to Problem 3

Ni S1 S2 S3 S4 S5 Criterio
N1 18438919997 74925928034 15401578244 64022301823 49479085419 C2,C4,C7,C8
N2 18420801443 74939621002 15394489341 64023930579 49468576625 C3,C5,C6,C9,C11,C12,C13
N3 18399175078 74959084514 15394912582 64032727329 49470962232 C1,C10

4.2 Fitting to a segment

A well studied problem in practice is that of fitting a straight line y = bz +a to a
bunch of points. This problem has been modelled as an optimization in which the
set of points is known, {(x;,y;)} desde i = 1...,m. The most common criterion
is the least square method, which is affected by outliers and has motivated the
study of robust estimators of a and b with respect to outliers.

In this section we illustrate the application of our concept of p-robustness
to this optimization problem. Note that each solution (straight line) is feasible,
so it is not appropriate its use. Nevertheless, our goal is to estimate a straight
line which allows us to predict the value of y of a future (unknown) z. In this
procedure each observation (z;,y;) represents a realization (a city) that can be
done in the future. Therefore each point (z;,y;) defines a future scenario S;, 2
being the set of available points. The utility of a straight line V; =y = b;xz +a;
in scenario S; = (x;,y;) is the negative value of the error:

U(Nj, Si) = — |yi — bjw; + aj] . (3)
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Fig. 4. Problem 2

In this problem we have taken p = 0.5, that is, IV ;p Nj if the absolute error of
Ny is lower than that of N; in at least %5 points (scenarios).

For this situation we have considered that the cities of Problems 2 and 3
define the bunch of points {(x;,y;)}. In such cases we have 67 and 290 cities, re-
spectively. All cities have been considered equally important, that is, they define
equiprobable scenarios. In order to maintain the scheme used in previous tests
we have represented them according to their size, although it has not been con-
sidered in the computational experiments. Figure 6 shows the results of the first
least square fit and the 0.5-robustness. That is, in the last set of undominated
straight lines, there is no N* satisfying N* ;0’5 N’ for every other network N'.
This problem has been overcome in two ways:

1. Calculating p*-robustness in Problem 2 and Problem 3.

2. Calculating 0.5-(nearly)robust solutions. That is, constraints in the definition
of 0.5-robustness has been relaxed to: a solution N* is 0.5-(nearly)robust if
N* Z¢5 N’ for the highest number of solutions N’. In Problem 2, a 0.5-
(nearly)robust solution has been obtained, which is better than 7051 out of
7387 solutions with probability 0.5. For Problem 3 we did find a 0.5-robust
solution.

Figure 6 shows the computational results obtained. There are no 0.5-robust
solutions for Problem 2. We calculated the p*-robustness, whose value was p* =
0.462, leading to 11 different p*-robust solutions. In Problem 3, the value of p*
was 0.5. In this case, the p*, 0.5 and 0.5-(nearly)robustness coincide. It is worth
noting that in general similar solutions were obtained.

Solutions obtained for different methods are similar. In figure 7, the effect of
the outliers in the least-squares fit is represented. An outlier has been added and
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Fig. 5. Problem 3
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Fig. 6. Solution to the problem of fit to a straight line.

the straight line has been estimated, for five different values of the outlier. All
of them have the same component x = 3.5 * 10°, while the y components were
y1 =2%10%, yo = 4% 10°, y3 = 6 % 10°, 14 = 8 % 10°, y5 = 10 * 10°.

The following experiments are meant to investigate the effect of outliers in
the p-robust estimation of the regression lines, which is evaluated in Figure 8.
For Problem 2 (left hand side graphic), when one adds an outlier the value of
p* changes to % and the number of p*-robust solutions change from 11 to only
2, the two ones closer to the outlier. In Problem 3, the p*-robust solution is not
affected by the outlier. Adding an outlier makes the 0.5-robust solution become
(145/291)-robust (145/291 = 0.49), therefore the 0.5-(nearly)robust solution is
now a different one.
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Fig. 7. Effect of the outliers in the solution to the least-square fit problem.
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Fig. 8. Effect of the outliers in the solution to the p—robustness fit problem.

4.3 Computational considerations

Our goal in this paper was to propose a new robustness concept for a class of
network design problems. In further research we will focus on efficient algorithms
for its calculation.

In the three different classes of problems presented in sections 4.1 and 4.2,
we generated solutions by sweeping the feasible set, with the idea of not leaving
areas of such feasible set without being explored more than obtaining a good
initial solution, because in the definition of p-robustness one has to check all
NeN.

As a note, it is worth underlying that the model developed in Problem 3 in
Section 4.1 had a computational time of 5 days. The latter fact made us reduce
the number of networks considered for this problem with respect to Section 4.1.
This shows the need to develop efficient algorithms, in which we should use
selective rules to sweep the feasible set.

A second fact in the complexity of our heuristic algorithm is that the eval-
uation of the p-robustness requires an effort depending on the number of final
solutions considered, which is shown in table 8. One observes that for the re-
gression problem that number is very high, which could cause a computational
cost impossible to meet. In this example we only exclude solutions which are
dominated in all possible scenarios by any of the previously selected solutions.
We will pay special attention to the development of elimination strategies.
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Table 7. Number of solutions evaluated in previous sections.

Problem Model in Section 4.1 Model in Section 4.2

Problem 1 92256 -
Problem 2 93774 10000
Problem 3 95256 10000

Table 8. Number of solutions N kept in the last iteration

Problem Model in Section 4.1 Model in Section 4.2

Problem 1 43 —

Problem 2 41 7387

Problem 3 47 8707
Conclusions

In this work we have introduced a new robustness concept for network design
problems. We show that such new concept gives rise to solutions different from
other robustness concepts studied in the literature. We have also proven that, in
regression problems, p-robust solutions do not always exist and, therefore, new
concepts such as p*-robustness and p-(nearly)robustness have been introduced.

Algorithms, both heuristic and exact, have been proposed to calculate p-
robust and p*-robust solutions. From our experimental experience we deduce
that it is worth investigating new strategies in order to obtain more efficient
algorithms.
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