
7th Workshop on
Algorithmic Approaches for
Transportation Modeling,
Optimization, and Systems

ATMOS 2007, November 15–16, 2007, Sevilla, Spain

Edited by

Christian Liebchen
Ravindra K. Ahuja
Juan A. Mesa

OASIcs – Vo l . 7 – ATMOS 2007 www.dagstuh l .de/oas i c s

Editors
Christian Liebchen Ravindra K. Ahuja Juan A. Mesa
Institute of Mathematics SCALE Center Higher Technical School of Engineers
TU Berlin University of Florida Department of Applied Mathematics II
Straße des 17. Juni 136 Gainesville, FL 32611 University of Sevilla
10623 Berlin, Germany United States 41092 Sevilla, Spain
liebchen@math.tu-berlin.de ahuja@ufl.edu jmesa@us.es

ACM Classification 1998
F.2 Analysis of Algorithms and Problem Complexity, G.1.6 Optimization, G.2.2 Graph Theory, G.2.3
Applications

ISBN 978-3-939897-04-0

Published online and open access by
Schloss Dagstuhl – Leibniz-Center for Informatics GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany.

Publication date
November, 2007.

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works license:
http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the author’s moral rights:

Attribution: The work must be attributed to its authors.
Noncommercial: The work may not be used for commercial purposes.
No derivation: It is not allowed to alter or transform this work.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.ATMOS.2007.i

ISBN 978-3-939897-04-0 ISSN 2190-6807 http://www.dagstuhl.de/oasics

OASIcs – OpenAccess Series in Informatics

OASIcs aims at a suitable publication venue to publish peer-reviewed collections of papers emerging from
a scientific event. OASIcs volumes are published according to the principle of Open Access, i.e., they are
available online and free of charge.

ISSN 2190-6807

www.dagstuhl.de/oasics

ATMOS 2007 Preface:

Algorithmic Approaches for Transportation

Modeling, Optimization, and Systems

Ravindra K. Ahuja1, Christian Liebchen2, and Juan A. Mesa3

1 Supply-Chain and Logistics Engineering Center (SCALE),
University of Florida, Gainesville, USA

ahuja@ufl.edu
2 Institute of Mathematics, Technical University Berlin, Germany

liebchen@math.tu-berlin.de
3 Higher Technical School of Engineers, University of Sevilla, Spain

jmesa@us.es

We are very pleased to present the proceedings of the ATMOS 2007 workshop
which represents the very best of research in the field of scheduled transporta-
tion. ATMOS 2007 is being held on November 15 and November 16, 2007 in
Sevilla, Spain. ATMOS 2007 is novel in two aspects. First, whereas previous
ATMOS workshops were satellite workshops to major European conferences in
computer science (ICALP 2001 & 2002, ESA 2003–2006), ATMOS 2007 is pre-
ceded by a fall school on “Robust Network Design and Delay Management”.
This school is sponsored by the European research project ARRIVAL, which
stands for “Algorithms for Robust and online Railway optimization: Improving
the Validity and reliAbility of Large scale systems”, funded by the European
Commission.

The second aspect in which ATMOS 2007 is novel, is a broadened scope.
Until 2006, ATMOS was an acronym for “Algorithmic Methods and Models for
Optimization of Railways.” This year, for the first time, we have opened up the
scope of ATMOS by enlargening its focus to encompass all modes of scheduled
transportation: rail, road, air, and shiplines. Now the ATMOS acronym stands
for “Algorithmic Approaches for Transportation Modeling, Optimization, and
Systems.” Though we invited papers from researchers in all modes of transporta-
tion, most of the submitted papers still focused on railroad applications. Thus,
like previous years, ATMOS 2007 is going to be mostly a railroad workshop. In
that perspective, ATMOS 2007 collects the very best and latest of research in
the field of railroad: modeling, algorithms, and applications.

Transportation networks all around the world are experiencing unprece-
dented growth. Policy makers and corporate leaders are very concerned about
the ability of the nations’ infrastructure to handle this growth. Congestion is be-
coming a major economic barrier to the free flow of both, passengers and goods,
in our cities and across continents, with railroads, highways, airports, and mar-
itime ports all laboring under record levels of volume, steadily increasing energy
costs, employee shortages, reduced funding, and additional challenges of security
and severe weather. It is thus incumbent upon us as a society to work together
to discover new and innovative techniques whereby all scheduled transportation

ATMOS 2007 (p.i-iv)
7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems
http://drops.dagstuhl.de/opus/volltexte/2007/1237

ii Ravindra K. Ahuja, Christian Liebchen, and Juan A. Mesa

providers can improve the utilization, productivity, and reliability of the existing
infrastructure.

Researchers working in scheduled transportation networks all around the
world are developing new models and algorithms that would improve the pro-
ductivity of resources and improve network capacity. Mathematical models and
tools are gaining greater acceptance in the transportation industry. Senior execu-
tives are realizing that they need to develop decision support systems to improve
efficiency, productivity, and network capacity. Transportation companies cannot
rely forever on the insight and gut feelings of experienced practioners, but need
to infuse the manual decision-making with the modeling and algorithmic intel-
ligence. The transportation community is looking up to the academicians and
entrepreneurs to develop software solutions which they can use to improve their
operations. The optimization is in the air and it is up to us to create success
stories and make such systems an integral part of decision making processes.
ATMOS workshops are playing an important role in this task by promoting ex-
change of ideas between researchers and dissemination of ideas from researchers
to practitioners.

In response of our invitation for papers, we received 30 submissions by au-
thors of 12 countries, therein four outside Europe. All submissions were reviewed
by at least two members of the ATMOS 2007 Program Committee, comprising
of the two co-chairs plus the following experts:

– Matteo Fischetti, University of Padova, Italy
– Dennis Huisman, Erasmus University Rotterdam and Dutch Railways, The

Netherlands
– Gilbert Laporte, HEC Montréal and GERAD, Canada
– Janny Leung, Chinese University of Hong Kong, China
– Juan A. Mesa, University of Sevilla, Spain
– Matthias Müller-Hannemann, Technical University Darmstadt, Germany
– Klaus Nökel, PTV AG, Germany
– Leena Suhl, University of Paderborn, Germany
– Christos Zaroliagis, University of Patras, Greece

We would like to take this opportunity to thank them for their timely help and
professional service. We also thank all external referees who helped in the paper
selection.

As the result of this rigorous refereeing and selection process, we accepted
only 14 papers4 – still constituting a new maximum in the series of ATMOS
workshops. Indeed, we had to decline some very good papers from presentation.
On the brighter side, the selected papers are of excellent quality and we hope
the best research conducted in the field. The papers to be presented feature high
diversity: there are papers on large-scale integer programming as well as online
optimization, in railroad as well as bus services, passenger railroad as well as
freight railroad, traditional topics such as timetabling and recent developments

4 Luigi Moccia et al. refrained from publishing their accepted paper in this proceedings
volume.

ATMOS 2007 Preface iii

such as intermodal services, and emerging mathematical technologies such as
robust optimization.

In addition to these contributed papers, this proceedings volume also features
invited papers by the ATMOS 2007 invited speakers, and by lecturers of the
ARRIVAL fall school 2007:

– Ricardo Garćıa, Ángel Maŕın, Juan A. Mesa, Federico Perea, and Doroteo
Verastegui. A new concept of robustness. Pages 1–14

– Jens Clausen. Applied Railway Optimization in Production Planning at DSB
S-tog – Tasks, Tools and Challenges. Pages 15–29

– Jens Clausen. Disruption Management in Passenger Transportation – from
Air to Tracks. Pages 30–47

– Artyom Nahapetyan, Ravindra Ahuja, F. Zeynep Sargut, Andy John, and
Kamalesh Somani. A Simulation/Optimization Framework for Locomotive
Planning. Pages 259–276

Finally, we would like to thank the editors of the Dagstuhl Seminar Proceedings
for the opportunity to publish these proceedings within DROPS. In this ATMOS
workshop, we are looking forward to many insightful lectures and constructive
discussions.

A collection of selected papers will be published by John Wiley & Sons, Ltd.
in a special issue of Networks, to be guest edited by Christian Liebchen and
Ravindra K. Ahuja. This special issue of Networks, entitled

Optimization in Scheduled Transportation Networks

will also include other contributed papers. We request authors of ATMOS 2007
Proceedings to revise their papers and contribute to the special issue. We will
also invite other authors to contribute papers to this special issue. The deadline
for receiving the full papers is December 31, 2007.

Sevilla, November 2007
Ravindra K. Ahuja, Christian Liebchen, and Juan A. Mesa
PC Co-chairs of ATMOS 2007 and Organizer of the ARRIVAL Fall School 2007

iv

ATMOS 2007 - Abstracts Collection

Selected Papers from the 7th Workshop on

Algorithmic Approaches for Transportation

Modeling, Optimization, and Systems

Ravindra K. Ahuja1, Christian Liebchen2, Juan A. Mesa3

1 Innovative Scheduling Inc., USA
2 TU Berlin, DE

3 Universidad de Sevilla, E

Abstract. Proceedings of the 7thWorkshop on Algorithmic Approaches

for Transportation Modeling, Optimization, and Systems, held on No-

vember 15 and November 16, 2007 in Sevilla, Spain.

Keywords. Operations research, scheduled transport, railway optimiza-

tion

Solving Large Scale Crew Scheduling Problems by using
Iterative Partitioning

Erwin Abbink

This paper deals with large-scale crew scheduling problems arising at the Dutch
railway operator, Netherlands Railways (NS). We discuss several methods to
partition large instances into several smaller ones. These smaller instances are
then solved with the commercially available crew scheduling algorithm TURNI.
In this paper, we compare several partitioning methods with each other. More-
over, we report some results where we applied di�erent partitioning methods
after each other. With this approach, we were able to cut crew costs with 2%
(about 6 million euro per year).

Keywords: Crew scheduling, large-scale optimization, partitioning

Joint work of: Abbink, Erwin; Van't Wout, Joel; Huisman, Dennis

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1168

ATMOS 2007
7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems
http://drops.dagstuhl.de/opus/volltexte/2007/1184

http://drops.dagstuhl.de/opus/volltexte/2007/1168

2 R. K. Ahuja, Ch. Liebchen, J. A. Mesa

A Simulation/Optimization Framework for Locomotive
Planning

Ravindra K. Ahuja

In this paper, we give an overview of the Locomotive Simulater/Optimizer (LSO)
decision support system developed by us for railroads. This software is designed
to imitate locomotive movement across a rail network, and it simulates all four
major components of the system; trains, locomotives, terminals, and shops in an
integrated framework. It includes about 20 charts that allow evaluating system
performance using standard measures. LSO can be used by locomotive man-
agement to per- form "what-if" analysis and evaluate system performance for
di�erent input data; it provides a safe environment for experimentation. We have
tested the software on real data and output showed that the software closely imi-
tates day-to-day operations. We have also performed di�er- ent scenario analysis,
and reports illustrate that the software correctly re�ects input data changes.

Keywords: Railroad simulation, locomotive engine planning

Joint work of: Nahapetyan, Artyom; Ahuja, Ravindra K.; Sargut, F. Zeynep;
John, Andy; Somani, Kamalesh

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1182

Experimental Study on Speed-Up Techniques for
Timetable Information Systems

Reinhard Bauer

During the last years, impressive speed-up techniques for Dijkstra's algorithm
have been developed. Unfortunately, recent research mainly focused on road
networks. However, fast algorithms are also needed for other applications like
timetable information systems. Even worse, the adaption of recently developed
techniques to timetable information is often more complicated than expected.

In this work, we check whether results from road networks are transferable
to timetable information. To this end, we present an extensive experimental
study of the most prominent speed-up techniques on di�erent types of inputs. It
turns out that recently developed techniques are much slower on graphs derived
from timetable information than on road networks. In addition, we gain amazing
insights into the behavior of speed-up techniques in general.

Keywords: Speed-up techniques, timetable information, shortest path

Joint work of: Bauer, Reinhard; Delling, Daniel; Wagner, Dorothea

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1169

http://drops.dagstuhl.de/opus/volltexte/2007/1182
http://drops.dagstuhl.de/opus/volltexte/2007/1169

ATMOS 2007 - 7th Workshop on Algorithmic Approaches for Transportation
Modeling, Optimization, and Systems 3

Models for Railway Track Allocation

Ralf Borndörfer

The optimal track allocation problem (OPTRA) is to �nd, in a given railway net-
work, a con�ict free set of train routes of maximum value. We study two types of
integer programming formulations for this problem: a standard formulation that
models block con�icts in terms of packing constraints, and a novel formulation
of the `extended' type that is based on additional `con�guration' variables. The
packing constraints in the standard formulation stem from an interval graph and
can therefore be separated in polynomial time. It follows that the LP-relaxation
of a strong version of this model, including all clique inequalities from block con-
�icts, can be solved in polynomial time. We prove that the LP-relaxation of the
extended formulation can also be solved in polynomial time, and that it produces
the same LP-bound. Albeit the two formulations are in this sense equivalent, the
extended formulation has advantages from a computational point of view. It fea-
tures a constant number of rows and is amenable to standard column generation
techniques. Results of an empirical model comparison on mesoscopic data for
the Hanover-Fulda-Kassel region of the German long distance railway network
are reported.

Keywords: Track allocation, train timetabling,integer programming, column
generation

Joint work of: Borndörfer, Ralf; Schlechte, Thomas

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1170

Maintenance of Multi-level Overlay Graphs for Timetable
Queries

Francesco Bruera

In railways systems the timetable is typically represented as a weighted digraph
on which itinerary queries are answered by shortest path algorithms, usually
running Dijkstra's algorithm.

Due to the continuously growing size of real-world graphs, there is a constant
need for faster algorithms and many techniques have been devised to heuristi-
cally speed up Dijkstra's algorithm. One of these techniques is the multi-level
overlay graph, that has been recently introduced and shown to be experimentally
e�cient, especially when applied to timetable information.

In many practical application major disruptions to the normal operation can-
not be completely avoided because of the complexity of the underlying systems.
Timetable information update after disruptions is considered one of the weakest
points in current railway systems, and this determines the need for an e�ective

http://drops.dagstuhl.de/opus/volltexte/2007/1170

4 R. K. Ahuja, Ch. Liebchen, J. A. Mesa

online redesign and update of the shortest paths information as a consequence
of disruptions.

In this paper, we make a step forward toward this direction by showing some
theoretical properties of multi-level overlay graphs that lead us to the de�nition
of a new data structure for the dynamic maintenance of a multi-level overlay
graph of a given graph G while weight decrease or weight increase operations
are performed on G. Our solution is theoretically faster than the recomputation
from scratch and allows fast queries.

Keywords: Timetable Queries, Speed-up techniques for shortest paths, Dy-
namic maintenance of shortest paths

Joint work of: Bruera, Francesco; Cicerone, Sera�no; D'Angelo, Gianlorenzo;
Di Stefano, Gabriele; Frigioni, Daniele

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1171

Solving a Real-World Train Unit Assignment Problem

Valentina Cacchiani

We face a real-world train unit assignment problem for an operator running
trains in a regional area. Given a set of timetabled train trips, each with a
required number of passenger seats, and a set of train units, each with a given
number of available seats, the problem calls for an assignment of the train units
to trips, possibly combining more than one train unit for a given trip, that ful�lls
the seat requests.

With respect to analogous case studies previously faced in the literature, ours
is characterized by the fairly large number of distinct train unit types available
(in addition to the fairly large number of trips to be covered). As a result,
although there is a wide margin of improvement over the solution used by the
practitioners (as our results show), even only �nding a solution of the same
value is challenging in practice. We present a successful approach, based on
an ILP formulation in which the seat requirement constraints are stated in a
�strong� form, derived from the description of the convex hull of the variant of
the knapsack polytope arising when the sum of the variables is restricted not to
exceed two, illustrating computational results on our case study.

Keywords: Train Unit Assignment, Integer Linear Programming, Heuristic
Algorithm, Convex Hull

Joint work of: Cacchiani, Valentina; Caprara, Alberto; Toth, Paolo

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1172

http://drops.dagstuhl.de/opus/volltexte/2007/1171
http://drops.dagstuhl.de/opus/volltexte/2007/1172

ATMOS 2007 - 7th Workshop on Algorithmic Approaches for Transportation
Modeling, Optimization, and Systems 5

Periodic Railway Timetabling with Event Flexibility

Gabrio Curzio Caimi

This paper addresses the problem of generating con�ict-free periodic train sched-
ules for large railway networks. We follow a two level approach, where a simpli�ed
track topology is used to obtain a macro level schedule and the detailed topology
is considered locally on the micro level.

To increase the solution space in the interface of the two levels, we propose
an extension of the well-known Periodic Event Scheduling Problem (PESP) such
that it allows to generate �exible time slots for the departure and arrival times in-
stead of exact times. This Flexible Periodic Event Scheduling Problem (FPESP)
formulation considerably increases the chance to obtain feasible solutions (exact
train routings) subsequently on the micro level, in particular for stations with
dense peak tra�c. Total trip time and the time slot sizes are used as multiple
objectives and weighted and/or constrained to allocate the �exibility where it is
most useful.

Tests on an instance of the 2007 service intention of the Swiss Federal Rail-
ways demonstrate the advantage of the FPESP model, while it only moderate
increases its solution time in most cases.

Keywords: Train scheduling, Timetable, Flexibility, Periodic Event Scheduling
Problem, Mixed Integer Programming

Joint work of: Caimi, Gabrio Curzio; Fuchsberger, Martin; Laumanns, Marco;
Schüpbach, Kaspar

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1173

Solution of the Train Platforming Problem

Alberto Caprara

In this paper we study a general formulation of the train platforming problem,
which contains as special cases all the versions previously considered in the
literature as well as a case study from the Italian Infrastructure manager that
we addressed. In particular, motivated by our case study, we consider a general
quadratic objective function, and propose a new way to linearize it by using
a small number of new variables along with a set of constraints that can be
separated e�ciently by solving an appropriate linear program. The resulting
integer linear programming formulation has a continuous relaxation that leads
to strong bounds on the optimal value. For the instances in our case study, we
show that a simple diving heuristic based on this relaxation produces solutions
that are much better than those produced by a simple heuristic currently in use,
and that often turn out to be (nearly-) optimal.

Keywords: Train Platforming, Train Routing, Branch-and-Cut-and-Price, Quadratic
Objective Function, Linearization

http://drops.dagstuhl.de/opus/volltexte/2007/1173

6 R. K. Ahuja, Ch. Liebchen, J. A. Mesa

Joint work of: Caprara, Alberto; Galli, Laura; Toth, Paolo

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1174

Robust Algorithms and Price of Robustness in Shunting
Problems

Sera�no Cicerone

In this paper we provide e�cient robust algorithms for shunting problems con-
cerning the reordering of train cars over a hump. In particular, we study algo-
rithms able to cope with small disruptions, as temporary and local availability
and/or malfunctioning of key resources that can occur and a�ect planned oper-
ations. To this aim, a de�nition of robust algorithm is provided. Performances
of the proposed algorithms are measured by the notion of price of robustness.
Various scenarios are considered, and interesting results are presented.

Keywords: Shunting, Hump Yard, Disruption, Robustness, Recoverability, Ro-
bust Algorithm

Joint work of: Cicerone, Sera�no; D'Angelo, Gianlorenzo; Di Stefano, Gabriele;
Frigioni, Daniele; Navarra, Alfredo

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1175

Applied Railway Optimization in Production Planning at
DSB S-tog - tasks, tools and challenges

Jens Clausen

E�cient public transportation is becoming increasingly vital for modern capi-
tals. DSB S-tog a/s is the major supplier of rail tra�c on the infrastructure of
the city-rail network in Copenhagen. S-tog has experienced a demand for increas-
ing volume and quality of the transportation o�ered to the customers, and has
concurrently been met with demands for higher e�ciency in the daily operation.

The plans of timetable, rolling stock and crew must hence allow for a high
level of customer service, be e�cient, and be robust against disturbances of
operations. It is a highly non-trivial task to meet these con�icting goals. S-tog
has therefore on the strategic level decided to use software with optimization
capabilities in the planning processes.

We describe the current status for each activity using optimization or simula-
tion as a tool: Timetable evaluation, rolling stock planning, and crew scheduling.
In addition we describe on-going e�orts in using mathematical models in activ-
ities such as timetable design and work-force planning. We also identify some
organizatorial key factors, which have paved the way for extended use of opti-
mization methods in railway production planning.

http://drops.dagstuhl.de/opus/volltexte/2007/1174
http://drops.dagstuhl.de/opus/volltexte/2007/1175

ATMOS 2007 - 7th Workshop on Algorithmic Approaches for Transportation
Modeling, Optimization, and Systems 7

Keywords: Operations research, urban railways, timetabling, crew, disruption
management

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1181

Disruption Management in PassengerTransportation -
from Air to Tracks

Jens Clausen

Over the last 10 years there has been a tremendous growth in air transportation
of passengers. Both airports and airspace are close to saturation with respect to
capacity, leading to delays caused by disruptions.

At the same time the amount of vehicular tra�c around and in all larger
cities of the world has show a dramatic increase as well.

Public transportation by e.g. rail has come into focus, and hence also the ser-
vice level provided by suppliers ad public transportation. These transportation
systems are likewise very vulnerable to disruptions.

In the airline industry there is a long tradition for using advanced mathe-
matical models as the basis for planning of resources as aircraft and crew.

These methods are now also coming to use in the process of handling dis-
ruptions, and robustness of plans has received much interest. Commercial IT-
systems supplying decision support for recovery of disrupted operations are be-
coming available. The use of advanced planning and recovery methods in the
railway industry currently gains momentum.

The current paper gives a short overview over the methods used for plan-
ning and disruption management in the airline industry. The situation regarding
railway optimization is then described and discussed. The issue of robustness of
timetables and plans for rolling stock and crew is also addressed.

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1183

Fast Approaches to Robust Railway Timetabling

Matteo Fischetti

The Train Timetabling Problem (TTP) consists in �nding a train schedule on
a railway network that satis�es some operational constraints and maximizes
some pro�t function which counts for the e�ciency of the infrastructure usage.
In practical cases, however, the maximization of the objective function is not
enough and one calls for a robust solution that is capable of absorbing as much
as possible delays/disturbances on the network. In this paper we propose and
analyze computationally four di�erent methods to �nd robust TTP solutions
for the aperiodic (non cyclic) case, that combine Mixed Integer Programming
(MIP) and ad-hoc Stochastic Programming/Robust Optimization techniques.

http://drops.dagstuhl.de/opus/volltexte/2007/1181
http://drops.dagstuhl.de/opus/volltexte/2007/1183

8 R. K. Ahuja, Ch. Liebchen, J. A. Mesa

We compare computationally the e�ectiveness and practical applicability of the
four techniques under investigation on real-world test cases from the Italian rail-
way company (Trenitalia). The outcome is that two of the proposed techniques
are very fast and provide robust solutions of comparable quality with respect to
the standard (but very time consuming) Stochastic Programming approach.

Keywords: Train timetabling, Robust Optimization, Stochastic Programming,
Computational Experiments

Joint work of: Fischetti, Matteo; Zanette, Arrigo; Salvagnin, Domenico

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1176

A new concept of robustness

Ricardo García

In this paper a new concept of robustness is introduced and the corresponding
optimization problem is stated. This new concept is applied to transportation
network designs in which the set of scenarios arising from the uncertainty of
the parameters follows a probability distribution. The p-robustness concept is
aimed to problems where the feasibility of the solutions is not a�ected by the
uncertainty of the parameters.

In order to compare the solution with those of other already known concepts
of robustness, some computational experiments with real data are included.

Joint work of: García, Ricardo; Marín, Ángel; Mesa, Juan A.; Perea, Federico;
Verastegui, Doroteo

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1177

Improved Search for Night Train Connections

Thorsten Gunkel

The search for attractive night train connections is fundamentally di�erent from
ordinary search: the primary objective of a costumer of a night train is to have a
reasonably long sleeping period without interruptions due to train changes. For
most passenger it is also undesired to reach the �nal destination too early in the
morning.

These objectives are in sharp contrast to standard information systems which
focus on minimizing the total travel time.

In this paper we present and compare two new approaches to support queries
for night train connections. These approaches have been integrated into the
Multi-Objective Tra�c Information System (MOTIS) which is currently devel-
oped by our group.

http://drops.dagstuhl.de/opus/volltexte/2007/1176
http://drops.dagstuhl.de/opus/volltexte/2007/1177

ATMOS 2007 - 7th Workshop on Algorithmic Approaches for Transportation
Modeling, Optimization, and Systems 9

Its purpose is to �nd all train connections which are attractive from a cos-
tumer point of view.

With a computational study we demonstrate that our specialized algorithms
for night train connections are able to satisfy costumer queries much better than
standard methods. This can be achieved with reasonable computational costs: a
specialized night train search requires only a few seconds of CPU time.

Keywords: Timetable information system, multi-criteria optimization, night
trains, computational study

Joint work of: Gunkel, Thorsten; Müller-Hannemann, Matthias; Schnee, Math-
ias

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1178

Multistage Methods for Freight Train Classi�cation

Jens Maue

In this paper we establish a consistent encoding of freight train classi�cation
methods. This encoding scheme presents a powerful tool for e�cient presenta-
tion and analysis of classi�cation methods, which we successfully apply to illus-
trate the most relevant historic results from a more theoretical point of view.
We analyze their performance precisely and develop new classi�cation methods
making use of the inherent optimality condition of the encoding. We conclude
with deriving optimal algorithms and complexity results for restricted real-world
settings.

Keywords: Freight trains, sorting algorithms, train classi�cation, shunting,
cargo

Joint work of: Jacob, Riko; Marton, Peter; Maue, Jens; Nunkesser, Marc

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1179

Modeling and solving a multimodal multicapacitated
routing problem with scheduled services, time windows,
and economies of scale

Luigi Moccia

This paper studies a routing problem in a multimodal network where consolida-
tion of shipments yields economies of scale.

http://drops.dagstuhl.de/opus/volltexte/2007/1178
http://drops.dagstuhl.de/opus/volltexte/2007/1179

10 R. K. Ahuja, Ch. Liebchen, J. A. Mesa

A freight forwarder can use a mix of �exible-time and scheduled transporta-
tion services. Time windows are prominent features of the problem. For instance,
they are used to model opening hours of the terminals, as well as pickup and
delivery time slots. The various features of the problem can be described as
elements of a digraph and their integration leads to a holistic graph representa-
tion. This allows an origin-destination integer multi-commodity �ow formulation
with piecewise linear concave costs, time windows, and side constraints. Column
generation algorithms are outlined to compute lower bounds by solving the LP
relaxation of one of the two presented formulations. These column generation
algorithms are also embedded in a heuristic aimed at �nding feasible integer
solutions.

Preliminary computational results will be presented.

Joint work of: Moccia, Luigi; Cordeau, Jean-Francois; Laporte, Gilbert; Ropke,
Stefan; Valentini, Maria Pia

Approximate dynamic programming for rail operations

Warren Powell

Approximate dynamic programming o�ers a new modeling and algorithmic strat-
egy for complex problems such as rail operations. Problems in rail operations
are often modeled using classical math programming models de�ned over space-
time networks. Even simpli�ed models can be hard to solve, requiring the use of
various heuristics. We show how to combine math programming and simulation
in an ADP-framework, producing a strategy that looks like simulation using
iterative learning. Instead of solving a single, large optimization problem, we
solve sequences of smaller ones that can be solved optimally using commercial
solvers. We step forward in time using the same �exible logic used in simulation
models. We show that we can still obtain near optimal solutions, while modeling
operations at a very high level of detail. We describe how to adapt the strategy
to the modeling of freight cars and locomotives.

Keywords: Approximate dynamic programming; locomotive optimization; freight
car optimization

Joint work of: Powell, Warren; Bouzaiene-Ayari, Belgacem

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1180

Branching Strategies to Improve Regularity of Crew
Schedules in Ex-Urban Public Transit

Ingmar Steinzen

We discuss timetables in ex-urban bus tra�c that consist of many trips serviced
every day together with some exceptions that do not repeat daily.

http://drops.dagstuhl.de/opus/volltexte/2007/1180

ATMOS 2007 - 7th Workshop on Algorithmic Approaches for Transportation
Modeling, Optimization, and Systems 11

Traditional optimization methods for vehicle and crew scheduling in such
cases usually produce schedules that contain irregularities which are not desirable
especially from the point of view of the bus drivers. We propose a solution
method which improves regularity while partially integrating the vehicle and
crew scheduling problems. The approach includes two phases: �rst we solve the
LP relaxation of a set partitioning formulation, using column generation together
with Lagrangean relaxation techniques. In a second phase we generate integer
solutions using a new combination of local branching and various versions of
follow-on branching. Numerical tests with arti�cial and real instances show that
regularity can be improved signi�cantly with no or just a minor increase of costs.

Keywords: Public transit, crew scheduling, branching strategies, regularity,
local branching, follow-on branching

Joint work of: Steinzen, Ingmar; Suhl, Leena; Kliewer, Natalia

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2007/1167

http://drops.dagstuhl.de/opus/volltexte/2007/1167

A new concept of robustness

Ricardo Garćıa1, Ángel Maŕın2, Juan Antonio Mesa3,
Federico Perea3 & Doroteo Verastegui1

1 Dpto. de Matemáticas, Universidad de Castilla-La Mancha
Ricardo.Garcia@uclm.es; Doroteo.Verastegui@uclm.es

2 Dpto. Matemática Aplicada y Estad́ıstica. Universidad Politécnica de Madrid
amarin@dmae.es

3 Dpto. Matemática Aplicada II. Universidad de Sevilla
jmesa@us.es; perea@us.es

Abstract. In this paper a new concept of robustness is introduced and
the corresponding optimization problem is stated. This new concept is
applied to transportation network designs in which the set of scenar-
ios arising from the uncertainty of the parameters follows a probability
distribution. The p-robustness concept is aimed to problems where the
feasibility of the solutions is not affected by the uncertainty of the pa-
rameters. In order to compare the solution with those of other concepts
of robustness already known, some computational experiments with real
data are included.

1 Introduction

Transportation network design is based on the estimation of the future utilization
of the system. Furthermore, the characteristics of the network to be designed also
depend on the expected number of trips. Thus a railway for high-speed trains
will be constructed if the forecasted patronage is high; otherwise, a more con-
ventional railway will be built. Usually, the estimation of the future demand is
based on the current mobility patterns for which the new infrastructure does not
exist yet. Therefore, data obtained by samples or some analytical models and
gathered in the origin-destination matrix are uncertain. This leads to mathemat-
ical programs with uncertain coefficients. Traditionally, this kind of models have
been addressed by stochastic programming techniques (Rockafellar and Wets
[9]). A classical and different approach is that of the sensitivity analysis, where
the sensitivity of the solution regarding the nominal value of the parameters is
evaluated.

In the past decade Robust Optimization was introduced. Those models for
which small changes of the input data lead to small changes of the solution are
called robust counterparts. Different models and techniques have been recently
introduced (Ben-Tal and Nemirovski [1], [3]); Bertsimas and Sim [5], [6]). Most of
these works have focused on the non feasibility of the solutions and assume that
all the scenarios have the same probability. However, there are many problems in
which uncertainty does not affect the feasibility of the solutions but their value.

ATMOS 2007 (p.1-14)
7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems
http://drops.dagstuhl.de/opus/volltexte/2007/1177

2 R. Garćıa, A. Maŕın, J.A. Mesa, F. Perea & D. Verastegui

The concept proposed in this paper is aimed to these cases and is insensitive to
outlier scenarios.

The paper is structured as follows. In Section 2 we introduce our new ro-
bustness concept. Section 3 presents algorithms to find networks satisfying such
new conditions. In Section 4 we show the main results obtained after our com-
putational experience. The paper finishes with some conclusions.

2 A new robustness concept

Traffic network design problems, see [4], in which the parameters and/or the
topology of the network are to be determined, are examples of network design
problems tackled in this work. Classical formulations assume fixed values in the
parameters of the model. In this work we allow some of them to be uncertain,
for instance the origin-destination matrix. In this work, we consider that the
network desing problem can be formulated as

maximize Z = U(N, θ),
subject to: N ∈ N

[NDP]

In the rest of the paper we will consider that each feasible network N ∈ N has
a utility which depends on the random parameter θ, which might be the origin-
destination matrix, the budget,... Let U(N, θ) denote such utility function.

Since function U depends on the random variable θ, we can state that U
itself is also a random variable. Therefore we cannot guarantee that a network
is better (meaning that it has greater utility) than another. The concept of p-
robustness chooses a network which is better than any other feasible network
with probability p.

Definition 1. Let p ∈ [0, 1]. Ni
>=p Nj if

Pr {U(Ni, θ) ≥ U(Nj , θ)} ≥ p.

Definition 2. N∗ ∈ N is p-robust with respect to θ iff:

N∗ >=p N ∀ N ∈ N (1)

The concept of p-robustness generalizes the classical optimization problems in
network design, in which parameters are assumed to be known. In such cases
θ only takes value θ̂ with probability 1 and the probability of a network being
better than another is zero or one. Therefore a network is p > 0 robust if

U(N∗, θ̂) ≥ U(N, θ̂) ∀ N ∈ N

which is equivalent to the concept of global optimum in a network design prob-
lem.

Some considerations on this concept of robustness must be underlined:

1. The concept of p-robustness is not affected by outliers in the parameter θ.

A new concept of robustness 3

2. The definition of p-robustness is not given from a linear programming prob-
lem.

3. Classical design criteria are used to define the utility function and, therefore,
the concept of being better.

In order to illustrate the concept of p-robustness we will make use of this ex-
ample. In Figure 1, the problem of locating a highway under three possible sce-
narios is considered: S1, S2 and S3. There are four possible locations, N1, . . . , N4.
Three of those locations fit one possible scenario and location N4 try to satisfy
several possible scenarios. That one can be considered as a robust solution, a
priori. In this problem the unknown parameter θ represents the demand and
is considered a random variable which can take values Ω = {S1, S2, S3} with
probability Pr(S1) = 0.2, Pr(S2) = Pr(S3) = 0.4.

Table 1 reflects the values U(Ni, Sj) for i = 1, 2, 3, 4 and j = 1, 2, 3. Note
that θ = S1 corresponds with an outlier value, that is, a situation in which the
transportation demand is unusually high, and makes the utility of some possible
locations to be very high as well.

Fig. 1. Example

This problem has the structure of a decision problem, and we refer to all
possible values of θ as scenarios.

We consider the following decision criteria:

C1: Maximizing the expectation. This criterion, which appears in stochastic math-
ematical programming, is strongly influenced by outliers, since it chooses the
network N1 with the highest mathematical expectation (because of the out-
lier) despite of the fact that N1 has utility 0 with probability 0.8.

C2: Absolute robustness. A network Na is said to be absolute robust if it satisfies:

min
Sj∈Ω

U(Na, Sj) = max
Ni∈N

min
Sj∈Ω

U(Ni, Sj).

In this criterion one implicitly assume that that all scenarios are equiproba-
ble. In this example we could have divided scenarios S2 and S3 into two other

4 R. Garćıa, A. Maŕın, J.A. Mesa, F. Perea & D. Verastegui

scenarios each, having this way four scenarios with probability 0.2. This is a
conservative criterion and chooses the only network having a positive utility
in any possible scenario: N4.

C3: Robust deviation: A network Nd is said to satisfy the robust deviation crite-
rion if:

maxSj∈Ω

[
U(N∗

j , Sj)− U(Nd, Sj)
]

=
minNi∈N maxSj∈Ω

[
U(N∗

j , Sj)− U(Ni, Sj)
]
,

where N∗
j is the best network for scenario Sj (in Figure 2 the cells of (N∗

j , Sj)
are emphasized by grey circles). The ith component of column C3 shows the
value maxSj∈Ω

[
U(Ni, Sj)− U(N∗

j , Sj)
]
. One can observe that the minimum

component is achieved in Nd = N1. This criterion is affected by outliers, since
scenario S1 is essential in the final decision.

C4: Bertsimas-Sim robustness. This criterion calculates the optimum of the prob-
lem so that constraints are satisfied with certain probability, having this way
the following problem:

max Y
s.t.: Pr {Y ≤ U(N, θ)} ≥ δ

N ∈ N
(2)

If in this example we consider the value δ = 0.5, column C4 shows the
maximum value of the utilities guaranteed with a minimum probability of
δ = 0.5. This criterion is robust to outliers but is conservative with respect
to the value of the mathematical expectation.

C5: p−robustness. Applying to this example the value p = 0.5 one obtains that
the network N2 is p-robust, that is, one has that

N2
>=p N1, N2

>=p N3, N2
>=p N4.

Note that this criterion is robust with respect to outliers and it has a math-
ematical expectation greater than criterion C4.

Fig. 2. Criteria

A new concept of robustness 5

2.1 p∗−robustness

The design problems we have proposed in this work may not have p-robust
solutions for certain values of p, which naturally lies in the range (0, 1]. For
instance, a 1-robust solution would be that one which is optimal in all possible
values of θ which is, in general, not possible. The concept of p∗-robustness is
introduced so as to indicate the maximum value of p for which one can find
p-robust solutions, denoted from now on by p∗. Note that for p ∈ (0, p∗] one can
always find p-robust solutions.

Definition 3. Given p ∈ [0, 1] we define

NDP (p) = {N ∈ N / N is a p− robust solution to NDP}

We will denote

p∗ = sup {p ∈ [0, 1] / NDP (p) 6= {∅}}

Now some considerations on this new concept.

1. NDP (0) = N and therefore the concept of p∗−robustez is well defined.
2. Note that if 0 ≤ p < q ≤ 1 then NDP (q) ⊆ NDP (p). This way one has that

for all p ∈ [0, p∗) there exist p-robust solutions to NDP.
3. An interesting decision criterion is to choose as final solution to NDP the

network maximizing the mathematical expectation of the utility among the
p-robustness networks. Taking the maximum value p∗ could make the set
NDP (p∗) too small.

3 Solution algorithms

In this section we propose algorithms, both heuristic and exact, which find a
solution to our problem, provided such solution exists.

The first (heuristic) algorithm we propose reduces the set of all feasible net-
works to a set of networks which are not worse than any other network in all
possible scenarios to, later on, find the p-robust networks, if any. Find below a
pseudocode of such algorithm:

Notice that the algorithm above does not necessarily return p-robust solu-
tions, for two reasons:

1. Not all possible networks have to be generated, only until a stop criterion is
satisfied.

2. In step 4, we find p-robust solutions in the set N̂ which, as we mentioned
before, does not have to be the whole set of feasible networks.

An interesting question that should be addressed is which values of p are
considered to be good. Notice that having a 0.3-robust solution might not be
desirable. Therefore we now provide an algorithm which finds the maximum p for
which there are p-robust solutions of complexity O(n2) on the number of feasible

6 R. Garćıa, A. Maŕın, J.A. Mesa, F. Perea & D. Verastegui

Table 1. Heuristic algorithm

0. (Initialization) Let {θ1, . . . , θm} a ramdom sample of parameter θ.

Set bN = {∅}
1. (Generating solutions) Find N ′ a feasible solution. N̂ = N̂ ∪ {N ′}
2. (Update the solution set) For each bN ∈ bN do

If N ′ >
=1

bN and N ′ 6= bN set N̂ = N̂ − bN
If bN >

=1 N ′ and N ′ 6= bN set N̂ = N̂ −N ′. Go to 3.
3. (Stop criterion) If a stop criterion is satisfied go to 4, otherwise go to 1.

4. (Find p-robust solutions in bN)

Table 2. Exact algorithm

(Input data)bN = {N1, . . . , Nq}, {θ1, . . . , θm} possible scenarios,
P ∈ Rn×n, pij = 1 ∀ i, j
for k = 1, . . . , m do

for i = 1, . . . , q do
for j = 1, . . . , q do

if U(Ni, θk) < U(Nj , θk) then
pij = pij − Pr(θk)

end if
end do

end do
end do

networks, assuming the number of possible scenarios fixed. Such algorithm is
exact, provided that the set of all feasible networks is known.

Notice that pij is the probability of network Ni being better than network
Nj . Therefore, network Ni is better than all other networks with probability
pi• = minj pij . As a conclusion, p∗ = maxi pi• gives us the maximum p for
which there are p-robust solutions, the set {Ni : pi• = p∗} consisting of all p∗-
robust networks. This algorithm can be inserted as the step 4 of the previously
introduced heuristic algorithm, all networks Ni such that pi• ≥ p being p-robust
solutions, if any.

4 Computational experiments

In this section we show the computational results obtained from three different
situations.

A new concept of robustness 7

4.1 p−robust location of a highway: uncertainty in the
origin-destination matrix

In this section we perform tests in the model of [8]. In such model it is assumed
that one can travel directly from the origin to the destination at a speed v or,
alternatively, using the highway. It is considered that one can access the highway
at a speed of v, and once one is travelling on the highway the speed is w > v.
All users will choose to take the highway if and only if their travelling times are
decreased.

This model has been applied to the Spanish region of Castilla La Mancha,
which has 918 councils. Since this number is too high, we have considered three
situations. Problem 1 consists of all cities with more than 50000 inhabitants,
Problem 2 studies all cities with more than 5000 inhabitants and in Problem 3
we only consider cities with more than 1000 inhabitants. In Table 7 it is shown
the number of demand pairs analyzed, the percentage of the demand analyzed
over all 918 councils and the number of networks considered. In the first step of
the heuristic algorithm previously proposed, we generated highways in a uniform
way over the feasible space, without applying any intelligent strategy.

Table 3. Problem definitions

Problem Cities # pairs o− d % demand

Problem 1 6 15 27.0
Problem 2 67 2211 65.2
Problem 3 290 41905 91.3

Our uncertain parameter is the origin-destination matrix. In this computa-
tional experience we estimated such matrix following those procedures:

S1: Surveys. The INE (Spanish Statistics Agency) made a poll in 2000 where it
was asked in which city citizens lived and to which city they would go to
study or work.

S2: Equiprobability model. Trips are done from one site to the others with a
probability which depends on their size.

S3: Gravitational model. The number of travels from one origin to a destination
is proportional to the product of their populations and inversely proportional
to their distance squared.

S4: Exponential model I. This model is similar to the gravitational model but
using as deterrence function exp(−βd), β being a parameter which can be
estimated from the average distance between cities and d being the distance
between cities. In matrix S4 we have taken β considering that the average
travel distance is around 90 kilometers.

S5: Exponential model II. In this case the chosen parameter β makes the average
travel distance be around 150 kilometers.

8 R. Garćıa, A. Maŕın, J.A. Mesa, F. Perea & D. Verastegui

The total demand in all scenarios has been forced to be the same so that matrices
from S2 to S5 have the same travel pattern. That is, the attracted-generated
demand in each city is the same in the four cases considered, being different in
their spacial distribution.

We have used the following criteria:

Ci: Best location with respect to the scenario (matrix) Si, i = 1, . . . , 5
C6: Best highway for the mathematical expectation.
C7: Regret Optimization.

C8,C9,C10,C11: Robust Optimization of Bertsimas-Sim) p = 0.8, 0.6, 0.4, 0.2, respectively.
C12: Minimum deviation.
C13: 0.5−robustness.

Table 4 shows the highways chosen for Problem 1 for the considered criteria. The
values in the cells are the total travelling time in the network. Since the goal is
to minimize such total time, we must maximize the utility U(Ni, Sj). Figure 3
shows the location of the highways and their access points.

Table 4. Solution to Problem 1

Ni S1 S2 S3 S4 S5 Criterion

N1 12062839702 28883313021 16154267014 24676276092 18692831932 C13
N2 11988012356 29194839746 16069677561 24845510865 18828968001 C1,C3, C10,C11
N3 12298245628 29100143634 16229629691 24672528156 18656209259 C5,C9
N4 12425246717 28211062229 16308102751 24276679346 18807462054 C2,C4,C6,C7,C8, C12

The same criterion is used in tables 5 and 6 and their corresponding figures
4 y 5.

Table 5. Solution to Problema 2

Ni S1 S2 S3 S4 S5 Criterion

N1 16053503414 53019291022 10761024144 45302154763 34988292110 C2,C3-C9,C11-C13
N2 16038156696 53074579244 10762657906 45335914217 35001117559 C1,C10

As a conclusion, in Problem 1 it is observed that our robustness concept
and other concepts introduced in the literature choose different corridors. In
problems 2 and 3, all criteria locate the highway on the same corridor, different
criteria having only small differences between them. Our criteria coincides with
the maximization of the mathematical expectation.

A new concept of robustness 9

3 3.5 4 4.5 5 5.5 6
x 105

4.25

4.3

4.35

4.4

4.45

4.5
x 106

UTM!X Coordinate

U
TM
!Y

 C
oo

rd
in

at
e

N1

N2

N3

N4

CRITERIA:
N1: 13
N2: 1, 3, 10, 11
N3: 5, 9
N4: 2, 4, 6, 7, 8, 12

Fig. 3. Problem 1

Table 6. Solution to Problem 3

Ni S1 S2 S3 S4 S5 Criterio

N1 18438919997 74925928034 15401578244 64022301823 49479085419 C2,C4,C7,C8
N2 18420801443 74939621002 15394489341 64023930579 49468576625 C3,C5,C6,C9,C11,C12,C13
N3 18399175078 74959084514 15394912582 64032727329 49470962232 C1,C10

4.2 Fitting to a segment

A well studied problem in practice is that of fitting a straight line y = bx+a to a
bunch of points. This problem has been modelled as an optimization in which the
set of points is known, {(xi, yi)} desde i = 1 . . . , m. The most common criterion
is the least square method, which is affected by outliers and has motivated the
study of robust estimators of a and b with respect to outliers.

In this section we illustrate the application of our concept of p-robustness
to this optimization problem. Note that each solution (straight line) is feasible,
so it is not appropriate its use. Nevertheless, our goal is to estimate a straight
line which allows us to predict the value of y of a future (unknown) x. In this
procedure each observation (xi, yi) represents a realization (a city) that can be
done in the future. Therefore each point (xi, yi) defines a future scenario Si, Ω
being the set of available points. The utility of a straight line Nj ≡ y = bjx + aj

in scenario Si = (xi, yi) is the negative value of the error:

U(Nj , Si) = − |yi − bjxi + aj | . (3)

10 R. Garćıa, A. Maŕın, J.A. Mesa, F. Perea & D. Verastegui

! !"# $ $"# # #"# % %"# &
'()*#

$"+#

$"!

$"!#

$"$

$"$#

$"#

$"##
'()*%

,-.!/(0112345678

,
-.
!9
(0
11
23
45
67
8

N2

N1

0:;-<:;=>
?)>(+@(!@($@(#@(%@(&@(A@(B@())@()+(@)!
?+>()@()*

Fig. 4. Problem 2

In this problem we have taken p = 0.5, that is, Nl
>=p Nj if the absolute error of

Nl is lower than that of Nj in at least m
2 points (scenarios).

For this situation we have considered that the cities of Problems 2 and 3
define the bunch of points {(xi, yi)}. In such cases we have 67 and 290 cities, re-
spectively. All cities have been considered equally important, that is, they define
equiprobable scenarios. In order to maintain the scheme used in previous tests
we have represented them according to their size, although it has not been con-
sidered in the computational experiments. Figure 6 shows the results of the first
least square fit and the 0.5-robustness. That is, in the last set of undominated
straight lines, there is no N∗ satisfying N∗ >=0,5 N ′ for every other network N ′.
This problem has been overcome in two ways:

1. Calculating p∗-robustness in Problem 2 and Problem 3.
2. Calculating 0.5-(nearly)robust solutions. That is, constraints in the definition

of 0.5-robustness has been relaxed to: a solution N∗ is 0.5-(nearly)robust if
N∗ >=0.5 N ′ for the highest number of solutions N ′. In Problem 2, a 0.5-
(nearly)robust solution has been obtained, which is better than 7051 out of
7387 solutions with probability 0.5. For Problem 3 we did find a 0.5-robust
solution.

Figure 6 shows the computational results obtained. There are no 0.5-robust
solutions for Problem 2. We calculated the p∗-robustness, whose value was p∗ =
0.462, leading to 11 different p∗-robust solutions. In Problem 3, the value of p∗

was 0.5. In this case, the p∗, 0.5 and 0.5-(nearly)robustness coincide. It is worth
noting that in general similar solutions were obtained.

Solutions obtained for different methods are similar. In figure 7, the effect of
the outliers in the least-squares fit is represented. An outlier has been added and

A new concept of robustness 11

3 3.5 4 4.5 5 5.5 6 6.5 7
x 105

4.2

4.25

4.3

4.35

4.4

4.45

4.5

4.55
x 106

UTM!X Coordinate

U
TM
!Y

 C
oo

rd
in

at
e

N2

N1

N3

CRITERIA:
N1: 2, 4, 7, 8
N2: 3, 5, 6, 9, 11, 12, 13
N3: 1, 10

Fig. 5. Problem 3

! !"# $ $"# % %"# & &"#
' $!#

!

!"#

$

$"#

%

%"#
' $!#)*+,-.+ /.+0*12

345!6 7--28*9:+1

34
5
!;

 7
--

28
*9

:+
1

!"# <==2-'*>:+18 ?-@.A+91AA
BC!?-@.A+91AA
DE

0 0.5 1 1.5 2 2.5 3 3.5
x 105

0

0.5

1

1.5

2

2.5

3

x 105 Without Outlier

UTM!X Coordinate

UT
M
!Y

 C
oo

rd
in

at
e

0.5 Approximate Robustness
P*!Robustness
LS

Fig. 6. Solution to the problem of fit to a straight line.

the straight line has been estimated, for five different values of the outlier. All
of them have the same component x = 3.5 ∗ 105, while the y components were
y1 = 2 ∗ 105, y2 = 4 ∗ 105, y3 = 6 ∗ 105, y4 = 8 ∗ 105, y5 = 10 ∗ 105.

The following experiments are meant to investigate the effect of outliers in
the p-robust estimation of the regression lines, which is evaluated in Figure 8.
For Problem 2 (left hand side graphic), when one adds an outlier the value of
p∗ changes to 32

62 and the number of p∗-robust solutions change from 11 to only
2, the two ones closer to the outlier. In Problem 3, the p∗-robust solution is not
affected by the outlier. Adding an outlier makes the 0.5-robust solution become
(145/291)-robust (145/291 = 0.49), therefore the 0.5-(nearly)robust solution is
now a different one.

12 R. Garćıa, A. Maŕın, J.A. Mesa, F. Perea & D. Verastegui

0 0.5 1 1.5 2 2.5 3 3.5
x 105

0

0.5

1

1.5

2

2.5
x 105 LS

UTM!X Coordinate

UT
M
!Y

 C
oo

rd
in

at
e

Without Outlier
With Outliers

0 0.5 1 1.5 2 2.5 3 3.5
x 105

0

0.5

1

1.5

2

2.5

3

x 105 LS

UTM!X Coordinate

UT
M
!Y

 C
oo

rd
in

at
e

Without Outliers
With Outliers

Fig. 7. Effect of the outliers in the solution to the least-square fit problem.

Fig. 8. Effect of the outliers in the solution to the p−robustness fit problem.

4.3 Computational considerations

Our goal in this paper was to propose a new robustness concept for a class of
network design problems. In further research we will focus on efficient algorithms
for its calculation.

In the three different classes of problems presented in sections 4.1 and 4.2,
we generated solutions by sweeping the feasible set, with the idea of not leaving
areas of such feasible set without being explored more than obtaining a good
initial solution, because in the definition of p-robustness one has to check all
N ∈ N .

As a note, it is worth underlying that the model developed in Problem 3 in
Section 4.1 had a computational time of 5 days. The latter fact made us reduce
the number of networks considered for this problem with respect to Section 4.1.
This shows the need to develop efficient algorithms, in which we should use
selective rules to sweep the feasible set.

A second fact in the complexity of our heuristic algorithm is that the eval-
uation of the p-robustness requires an effort depending on the number of final
solutions considered, which is shown in table 8. One observes that for the re-
gression problem that number is very high, which could cause a computational
cost impossible to meet. In this example we only exclude solutions which are
dominated in all possible scenarios by any of the previously selected solutions.
We will pay special attention to the development of elimination strategies.

A new concept of robustness 13

Table 7. Number of solutions evaluated in previous sections.

Problem Model in Section 4.1 Model in Section 4.2

Problem 1 92256 –
Problem 2 93774 10000
Problem 3 95256 10000

Table 8. Number of solutions N̂ kept in the last iteration

Problem Model in Section 4.1 Model in Section 4.2

Problem 1 43 –
Problem 2 41 7387
Problem 3 47 8707

Conclusions

In this work we have introduced a new robustness concept for network design
problems. We show that such new concept gives rise to solutions different from
other robustness concepts studied in the literature. We have also proven that, in
regression problems, p-robust solutions do not always exist and, therefore, new
concepts such as p∗-robustness and p-(nearly)robustness have been introduced.

Algorithms, both heuristic and exact, have been proposed to calculate p-
robust and p∗-robust solutions. From our experimental experience we deduce
that it is worth investigating new strategies in order to obtain more efficient
algorithms.

Acknowledgments

Special thanks to José Luis Espinosa for his help during the computational
phase of this work, ARRIVAL project, a Specific Targeted Research Project
funded by the FET (Future and Emerging Technologies) Unit of the European
Commission (EC) - priority IST (Information Society Technologies) - within the
6th Framework Programme of EC, under contract no. FP6-021235-2 and the
Spanish Ministry of Education and Science for its support under the project
MTM2006-15054.

References

1. Ben-Tal, A. and Nemirovski, A. Robust solutions of uncertain linear programs.
Operations Research Letters 25, 1-13, (1999).

14 R. Garćıa, A. Maŕın, J.A. Mesa, F. Perea & D. Verastegui

2. Ben-Tal, A., Nomirovski, A.: Robust convex optimization. Mathematics of Opera-
tions Research 23 (1998) 769–805

3. Ben-Tal, A. and Nemirovski, A. Robust optimization-methodology and applications.
Mathematical Programming, Ser. B 92, 453-480, (2002).

4. Bell, M.G.H., Iidia, Y.: Transportation Network Analysis. Wiley (2002)
5. Bertsimas, D. and Sim M. Robust discrete optimization and networks flows. Math-

ematical Programming, Ser. B 98, 49-71, (2003).
6. Bertsimas, D. and Sim M. The price of robustness. Operations Research 52, 35-53,

(2004).
7. Kouvelis, P., Yu, G.: Robust Discrete Optimization and its Applications. Academic

Pubisher (1997)
8. Ohyama, T.: Highway location problem considering demand. In Cruz, M., Lozano,

A., Mesa, J., Puerto, J., eds.: tenth International Symposium on Locational Deci-
sions (ISOLDE X). (2005) 125–128

9. Rockafellar, R.T. and Wets, R.J.-B. Scenarios and policy aggregation in optimiza-
tion under uncertainty. Mathematics of Operations Research 16, 119-147, (1991).

Applied Railway Optimization in Production

Planning at DSB S-tog - Tasks, Tools and
Challenges

Jens Clausen

DSB S-tog, Produktionsplanlægningen, Kalvebod Brygge 32, 5, DK - 1560
København V, Denmark, and

Informatics and Mathematical Modelling, Technical University of Denmark, DK 2800
Kgs. Lyngby, Denmark

JenClausen@s-tog.dsb.dk and jc@imm.dtu.dk

Abstract. Efficient public transportation is becoming increasingly vital
for modern capitals. DSB S-tog a/s is the major supplier of rail traffic
on the infrastructure of the city-rail network in Copenhagen. S-tog has
experienced a demand for increasing volume and quality of the trans-
portation offered to the customers, and has concurrently been met with
demands for higher efficiency in the daily operation.
The plans of timetable, rolling stock and crew must hence allow for a high
level of customer service, be efficient, and be robust against disturbances
of operations. It is a highly non-trivial task to meet these conflicting
goals. S-tog has therefore on the strategic level decided to use software
with optimization capabilities in the planning processes.
We describe the current status for each activity using optimization or
simulation as a tool: Timetable evaluation, rolling stock planning, and
crew scheduling. In addition we describe on-going efforts in using math-
ematical models in activities such as timetable design and work-force
planning. We also identify some organizatorial key factors, which have
paved the way for extended use of optimization methods in railway pro-
duction planning.

1 Introduction

1.1 S-tog - the Company, Network, and Resources

DSB S-tog a/s (S-tog) is the major supplier of rail traffic on the infrastructure
of the city-rail network in Copenhagen. More than 300.000 passengers use the
network daily, and the annual turn-over for the company is over 1.4 billion
DKK. S-tog has the responsibility of buying and maintaining trains, ensuring
the availability of qualified crew, and setting up plans for departures and arrivals,
rolling stock, crew etc. The infrastructural responsibility and the responsibility
of safety for the S-tog network lie with Banedanmark, which is a company owning
the major part of the rail infrastructures in Denmark.

The S-tog network consists of 170 km double tracks and 80 stations. The
network consists of two main segments. The circular rail runs from Hellerup in

ATMOS 2007 (p.15-29)
7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems
http://drops.dagstuhl.de/opus/volltexte/2007/1181

16 Jens Clausen

the north to Ny Ellebjerg in the south. The remaining network consists of seven
segments: Six fingers and a central segment combining the fingers. The network,
shown in Figure 1, is serviced by a number of lines. These all pass the central
segment, which includes Copenhagen Central (København H).

Most lines in the network are run according to a cyclic timetable and have
a frequency of 10 minutes. On the outer parts of one finger this frequency is
reduced to 20 minutes, but the assignment of fingers to lines ensures that almost
all stations are serviced by 6 trains per hour. There are at daily level appr. 1200
departures from end stations, and additionally approximately 28.000 departures
from intermediate stations.

S-tog currently has 104 so-called ”1/1-units” each seating 336 passengers,
and 31 ”1/2-units” seating 150. The units can be combined to various train
sizes allowing for more flexible composition of trains. The company employs
approximately 550 drivers. At the most busy time of day the network presently
requires 86 1/1-units and 27 1/2-units to cover all lines and departures, including
standby units (2 1/1-units and 1 1/2-unit).

The passengers of S-tog travel on different types of tickets and cards valid for
all public transportation according to a zone system in the Greater Copenhagen
area. Tickets are currently not inspected when passengers board or leave trains.
Instead, spot inspections are performed by ticket inspectors.

The quality of the service provided by S-tog is measured by two performance
indicators: Punctuality and reliability. Punctuality focuses on the number of
trains arriving ”on time” (interpreted ”not later than 2.5 minutes after planned
arrival time”), whereas reliability measures the percentage of trains actually
run (i.e. not canceled) according to the schedule. The average punctuality must
be at least 95 % and the average reliability 97.5 % according to the contract
between S-tog and the Ministry of Transportation. This contact also sets lower
bounds on the number of trains kilometers run over a time period, and establishes
service levels in terms of seat availability compared with the expected number
of passengers on departures.

1.2 PPA - The Production Planning Department

The Production Planning Department at S-tog, PPA, is responsible for both
the long term planning and the short term planning for both rolling stock and
crew, and responsible for the dispatching of rolling stock. The crew dispatching
is located in a separate division of the company.

Long term planning includes activities as strategic timetable evaluation, plan-
ning of rolling stock circulations and shunting operations at depots, and crew
scheduling (both rostering and crew assignment). Short term planning addresses
timetable changes due to e.g. track-work and changes in the rolling stock circu-
lations. Also, changes in driver duties due to rolling stock and driver shortages,
planning for cleaning personnel, and planning for ticket inspectors is handled by
the department.

The plans of timetable, rolling stock and crew must due to the contractual
obligations allow for a high level of customer service, be efficient regarding use

Applied Railway Optimization at DSB S-tog 17

Fig. 1. The 2007 S-tog network.

18 Jens Clausen

of resources, and be robust against disturbances of operations. It is a highly
non-trivial task to meet these conflicting goals. In the recent years S-tog has
therefore on the strategic level decided to use software with optimization ca-
pabilities in the planning processes. Such software is in general acquired from
software vendors. S-tog has as a consequence established an Analysis Section
responsible for data analysis and system knowledge, but also with capability
of developing in-house tailored solutions to planning and dispatching problems
based on advanced optimization and simulation techniques. Even though the
introduction of new methods and software in the planning process has lead to
an increase in cost for salary and IT-systems, the overall cost reductions in the
company is more than twice the budget of the entire production planning de-
partment. These reductions are obtained both on the operational level and on
the strategic level, and both rolling stock and crew planning contribute to the
result.

Due to the sequential characteristics of the resource planning process in S-
tog, the time span from establishing initial conditions for the production to
calculation of an estimate of the actual costs is large. The planning is initially
done for each day type (Weekday, Saturday or Sunday), and is starting from a
public timetable. From this a rolling stock plan is made, and the plan for the
crew can then be prepared. Thereafter, it is possible to calculate the cost for
operating the public timetable. Each planning step is time consuming, and it is
a strategic aim to be able to evaluate a plan as quickly and precisely as possible.

The staff at PPA currently consists of 10 crew planners, 5 rolling stock plan-
ner, 9 rolling stock dispatchers, 7 academic developers/analysts, and 4 managers.
In addition 3 persons are employed in connection with IT-system development
(vendor contact, testing, etc.). To ensure up-to-date knowledge and development,
S-tog also partly funds 2 Ph.d.-students. The planners typically have more than
20 years of experience with the daily operation of S-tog.

1.3 Contribution

Through a thorough review of problem areas and the mathematically based so-
lution methods used in these by a modern passenger transportation company as
S-tog, the current paper aims at enhancing the understanding and knowledge
of the optimization methods having proved their value in practice.As the op-
erational context and organizatorial environment plays a key role in creating a
positive attitude towards such activities and developments, the paper describes
the operational and problem context rather detailed. The goal is that the pa-
per may serve as inspiration both for researchers working with optimization
problems with potential applications in railway optimization, and for railway
operators, who have not yet taken the step of including planning tools based on
mathematics and IT in their operational context.

Applied Railway Optimization at DSB S-tog 19

1.4 Outline of Paper

First we briefly comment on the strategic activities in PPA regarding timetabling.
We then focus one by one on the different resources of the entire daily operation
of S-tog. For each resource we first describe the operational conditions and the
details of the daily operation. Then we describe the planning and dispatching
tasks handled by PPA, the software used (also briefly mentioning the underlying
methods and techniques), and finally the challenges we expect to meet both in
the immediate future and in a longer time perspective.

Since the success of using advanced software tools is intimately related to
organizatorial issues, we also briefly comment on the key factors necessary for
such a success.

The conclusion sums up our experiences and discusses the pros and cons
for a company as S-tog in connection with the use of advanced tools based on
mathematics and IT.

2 Strategic Timetabling

2.1 Designing timetables

As mentioned S-tog operates the trains according to a periodic time table. The
task of designing this timetable is currently the responsibility of another depart-
ment in the organization, where each proposed timetable is evaluated against
contractual obligations and safety regulations.

Traditionally the trains in the timetable has been of two types: Fast trains
and stop trains. Passengers living close to outer terminal stations of course prefer
the fast trains since these provide a shorter traveling time. Passengers from minor
stations on the network on the other hand prefer that all trains stop at these.

Accommodating both types of trains in a timetable can only be achieved at
the expense of service: Even though all stations are serviced with two trains every
20 minutes, some stations may be served regularly every 10 minutes whereas
other may have up to 18 minutes between the two trains.

Since PPA is responsible for planning the resources necessary for operating
a timetable, it is of prime importance to be able to evaluate existing timetables
and new proposal from an operational perspective. In order to be pro-active
in this context, PPA has therefore developed an in-house tailored model for
time tabling. This model is based on an integer programming formulation of the
periodic time tabling problem, which is able to take into account standard con-
straints as headway between trains, preferred frequencies, and varying stopping
patterns. The model is described in more detail in [1]. The models has been used
to analyze different possibilities regarding timetables such as merging of lines
and decreasing turn-times at terminal stations. However, the model contains a
hard-coded network structure, and in an ongoing project an alternative model
based on the more general PESP [2, 3] modeling concept is investigated.

20 Jens Clausen

2.2 Robustness of Timetables

The daily operation of the trains almost never follows the plan in all details. Mi-
nor and major disturbances occur over the day. It is vital that these disturbances
influence the service level as little as possible. The first step in this direction is
to ensure that timetables are robust. However, there is a trade-off between ro-
bustness and cost. Therefore S-tog in collaboration with software vendors and
consultant companies has developed two simulation models capable of analyzing
both existing and new timetables, [4].

Both models use the general simulation software ARENA, which allows for
varying levels of detail regarding the network infrastructure and the rolling stock
and crew plans used in the simulation. Constructing a model based on the railway
simulation software RailSys is currently under consideration.

2.3 Challenges

Even though it is easy to observe that a timetable is not robust when it is used
either in operation or in a simulated situation, it seems to be difficult to define
properties which when present lead to a robust timetable. Furthermore, robust-
ness always comes at a price. Hence it is very important to develop concepts
and tools, which allow for a quantification of the price of robustness. Such a
quantification will require either that new theoretical concepts are developed
and demonstrated to be valid, or the use of simulation tools to evaluate the
properties of the timetable in operation. The latter in turn requires that crew
and rolling stock plans are developed in sufficient detail, and that O-D matrices
with reliable estimates for passenger numbers are available.

3 Rolling Stock

One of the first applications of mathematical programming techniques in PPA
was the development of a model for evaluating the need of rolling stock in a given
timetable and for given passenger demands, cf. [5]. The objective of the model is
to minimize both the number of rolling stock units and the number of kilometers
driven by these, while maintaining a given standard for passenger comfort. Based
on the results from the model, the number of train units was reduced with 12 %
and the number of kilometers with 13 % without any measurable effect on the
customer satisfaction (measured twice a year).

3.1 Operational Conditions

As mentioned in the introduction, S-tog currently has 104 1/1-units and 31
1/2-units. The units can be combined to various train sizes. All combinations
resulting in sizes from 1/2 unit to 2 1/1 unites except the one consisting of 4
1/2 units are possible.

In the early morning hours, the number of passengers is limited. During
the morning rush hour, the number of passengers peak, however, in general the

Applied Railway Optimization at DSB S-tog 21

passengers travel towards the city center. Consequently, excess seat capacity on
trains from the city center towards the outer terminal stations is present. After
the morning rush hour the number of passengers decreases. During the evening
rush hour the number of passengers increases, although not to the level seen in
the morning. Here, the passenger flow is towards the terminals. At the end of
the day, the number of passengers again decreases.

Hence an optimal plan for rolling stock circulation calls for several changes
in train compositions: Two changes to increase seat capacity, and two to reduce
seat capacity. Such changes are carried out at the rolling stock depots.

When not in use, the train units are either parked in rolling stock depots
or taken out for maintenance. The rolling stock depots are in general located
at the terminal stations of the network, but a large depot is also located at
Copenhagen Central. The depots at the terminal stations are of varying size.
Hence it may from a train parking point of view be impossible to implement an
otherwise feasible rolling stock circulation. The maintenance station is located
in Høje T̊astrup.

The driving activities in relation to shunting are handled by a special category
of personnel adding additional complexity to the process of deciding whether a
given rolling stock plan is implementable from a depot point of view.

3.2 Tools for Rolling Stock Optimization

A plan for the circulation of rolling stock has to take into account a number
of conflicting objectives: Almost all passengers should have a seat while the
number of train units necessary to cover the operations should be kept low and
the number of kilometers driven by these should be minimized. In addition, the
plan must include possibilities for maintenance, and should be robust against
disturbances.

The general approach for this type of planning is the one also used in the
airline industry: Anonymous rotations are constructed based on the departures
defined through the timetable and on the expected passenger numbers on these.
Close to the day of operation, physical train units are then assigned to the
different train numbers of the operation.

S-tog is together with a software vendor currently in a system development
process aiming at producing optimization software capable of performing rolling
stock planning. The basic structure of the system resembles that described in [6]:
First, the so-called composition problem is solved to find the best combination
of train units for serving the timetable with the estimated number of passengers.
After that, the rotation problem is addressed, i.e. it is determined whether it is
possible to assign physical train units to the suggested composition, respecting
constraints regarding maintenance, depot capacities, and shunting possibilities.

The model for the composition problem is a large-scale integer programming
model, the result of which is used as input for the rotation problem. The rotation
problem is solved using Branch-and-Price. One possible result is that no feasible
rotation exist for the current composition - in that case the composition problem

22 Jens Clausen

is resolved with the inclusion of constraints making the current solution to the
composition problem invalid.

The model and software is expected to lead to substantial savings as well as
to enable faster development of plans.

3.3 Disruption Management and Recovery

When a severe disruption occurs, one of the possibilities used by S-tog is to cancel
all trains on one or more lines or “half-lines” in the network, i.e. to change to
a frequency of 20 minutes. In practice, the trains on an affected line are taken
out as they pass the depots and are parked there for later re-insertion. Since
the major part of the lines all pass the central section, the congestion caused
here by the disruption is alleviated, and the potential for “returning to plan” is
dramatically increased.

Having recovered form the disruption, the canceled lines are then to be re-
inserted. S-tog has developed in-house software to ensure the optimal re-insertion
of the trains on the canceled lines. This problem is non-trivial partly because
the train drivers of the canceled trains are transferred to the crew depot at
Copenhagen Central (from where drivers then have to be transferred back to
the rolling stock depots), and partly because of the company rules applying
to the re-insertion procedure. For example, if a canceled line starts servicing a
station by a particular departure, all succeeding departures from that station on
the line must also be serviced. A detailed account of the problem and model is
given in [7].

The activities in relation to disruption management and recovery are carried
out as activities in an industrial Ph.d.-project aiming at producing a prototype
decision support system for rolling stock dispatchers at S-tog.

3.4 Challenges

The optimization of rolling stock plans is well understood. In the S-tog context
the challenge here is that constraints regarding shunting movements are com-
posed of both constraints regarding the physical layout of depots, and constraints
regarding the manning of these. The first issue has been addressed in [8]. The
challenge regarding the second is to avoid the necessity of human interaction in
evaluating whether a given rolling stock plan is feasible from a shunting point of
view. The undergoing rolling stock system development addresses this question.

4 Crew

4.1 Operational Conditions

S-tog employs approximately 550 drivers. The daily schedule of a driver is a
so-called duty. Such a duty is either a pre-planned sequence of driving tasks or a
stand-by duty. Each individual duty is composed by tasks - mainly driving tasks.

Applied Railway Optimization at DSB S-tog 23

Each task is in general either driving from Copenhagen Central to a terminal
station and back (half a round) or a full round on a line. The duties are organized
in rosters. A roster is a set of week-plans for an even set of weeks, and is covered
by a corresponding number of drivers in a rolling fashion. Of the 550 drivers,
350 are assigned to pre-planned rosters and 200 are stand-by drivers.

The general structure of a duty follows one of two templates: Check-in, drive
task, break, drive task, and check out, or check-in, drive task, break, drive task,
break, drive task and check out. If the duty has only one break, this has to be
at least 30 minutes. In case of two breaks, the total time must be at least 45
minutes and each break must be at least 20 minutes. The duties also include
walking time between platform and break facility.

A duty has to comply with many types of rigid rules as e.g. constraints on
maximum working hours and minimum break hours. Furthermore, it is necessary
to take into consideration many essential features for the entire set of duties in
a plan, e.g. the average working hours for all duties, the average working hours
in late duties and the variation of tasks in duties.

The pre-planned rosters are of varying size from 8 weeks up to 32 weeks.
An 8-week roster consists of legal daily duties combined in such a way that the
complete roster respects all safety requirements and union agreements regarding
e.g. number and pattern of days off and average number of working hours. 8
drivers are assigned to the roster and perform the duties iteratively such that
each driver in turn takes each of the 8 weekly working patterns.

In order to make efficient use of the driver resources, driving tasks must
first be combined to efficient duties, and these duties must then be combined to
efficient rosters. Efficient in this context means that the number of hours in each
duty spent in the driver seat of a train must be as large as possible. Very efficient
duties and rosters on the other hand contain little slack and plans based on these
are hence very sensitive to disruptions in the daily operation. Experience shows
that disruption occurs so frequently that an optimal plan for a situation without
disruptions may be considerably more expensive in operation than a less efficient
plan, which includes slack.

In Figure 2 the percent-wise development in efficiency of duties and rosters
after the introduction of advanced software tools is indicated. The results clearly
demonstrate the potential of the methods. However, it is expected that the
current level of efficiency is close to optimal due to that duties must contain
time not spent on driving (e.g. check-in and -out and meal break).

4.2 Planning Tools

The crew planning in DSB S-tog is based on two systems: TURNI [9] which is the
system used to construct the driver duties, and CREWS [10], which is applied for
short term scheduling and for maintaining all relevant information regarding each
individual driver. Both systems are of course tailored to the specific rules and
agreements regarding working conditions as well as other internal requirements.

TURNI is a system based on mathematical programming. The underlying
model is a Set Covering model, and dynamic column generation, Lagrangean

24 Jens Clausen

 02 03 04 05 06

100

101

102

103

104

105

106

107
duties

rosters

Fig. 2. Development in efficiency of duties and rosters achieved after the introduction
of IT-based planning tools in S-tog

relaxation, and heuristic search are applied in the solution process. Each column
corresponds to a duty satisfying the S-tog specific constraints regarding breaks
etc. The system is a stand-alone system in that no other optimization software
is necessary (as e.g. an LP/IP-solver like CPLEX). The system offers insight
into the optimization process in that feasible solutions to the duty generation
problem are available throughout the process. The user interface of the system
is not advanced, and hence the use of the system requires some skill of the
planner working with it. Adjustments of rules and regulations are possible, but
in general this requires consultant assistance from the software vendor. TURNI
allows for the setting of a large set of parameters as e.g. maximum no. of duties
exceeding a specific limit, amount of slack time added in connection with breaks,
and maximum working time after 17.00. Since the parameters are not mutually
independent it is a non-trivial task to choose an appropriate setting. In this
context, classical statistical experimental design has been applied.

TURNI in general produces a very efficient set of duties. These duties are
through a process with interaction between management and trade union repre-
sentatives partitioned into rosters. Drivers are finally assigned to rosters accord-
ing to a bidding scheme based on strict seniority.

The crew assignment including duties and rosters are then fed into S-tog’s
version of CREWS (called PDS), which is used for manual short-term scheduling.
PDS has an advanced user-interface making the system generally accessible for

Applied Railway Optimization at DSB S-tog 25

crew planners, however, the system has no on-line data access and no decision
support for use in case of disruptions. PDS also contains a module for duty
generation. S-tog, however, for various reasons currently maintains the use of
TURNI for this task.

4.3 Estimation of Crew Demand

For the estimation of crew demand, S-tog has developed an integer programming
model based on the workload profile representing the required rolling stock for
the public timetable, and on a number of templates representing standard work-
ing days for drivers - so called duty templates. The output from the model is
an estimate of the number of drivers needed and a distribution over the day of
the check-in times of the drivers. The objective for the model is to minimize the
number of duty templates (equal to number of drivers) necessary to cover the
workload profile. Other possibilities are minimizing the total amount of working
hours. The model implements a number of union rules directly by constraints or
through the input. During the estimation no actual crew rosters are built. The
model is described in [5].

A number of settings can be changed in the model. Besides the level of time
discretization in the input, a number of constraints representing specific S-tog
requirements such as required number of average breaks, required number of
special duty templates, and gap tolerance have been implemented.

TURNI not only gives the number of drivers but the precise working sched-
ule for all drivers needed to cover a specific workload, and thereby the public
timetable. When knowing an exact rolling stock plan, there is hence no need for
estimates since exact results can be obtained. However, the estimation model
can be used if only a rough estimate of the rolling stock is available (i.e. early in
the complete planning process). Also, the model can be used for other groups of
personnel as e.g. ticket inspectors. The duties of these are significantly different
from driver duties. With such a model we will be able to estimate the required
amount of ticket inspectors covering a desired workload profile, and to decide
their check-in time during the day. The model is currently under development,
the aim being to increase the control frequency on lines and times of day, where
experience shows that most passenger travel without valid tickets.

4.4 Robustness of Crew Plan vs. Timetable

The simulation model SiMS currently under development simulates the circuits
of trains, and the process of covering each departure of the S-tog network with
drivers. Drivers are available at crew depots only. SiMS is basically run on the
tasks given by the crew plan. The trains are running in circuits according to the
train sequences. In the model they are implemented as transporters picking up
drivers as specified in the duties of these. In that way, the departures given by
the timetable are covered.

As a train can only run in operation when a driver is present, simulation of the
covering of train-tasks is included. For this purpose, reserve drivers are available

26 Jens Clausen

in a predefined schedule over the day. Tasks are covered by employing a set of
dispatching rules that prioritize the use of vacant scheduled drivers over using
reserve drivers. One dispatching rule is the swapping of tasks among drivers to
cover more tasks in total. If no possible solution is found, an imaginary driver is
used for covering the task. An imaginary driver is equivalent to an extra reserve.
In real-life the train is canceled if no vacant scheduled driver or reserve driver
can be found.

SiMS enables the quantification of robustness of the crew plan with results
such as punctuality, employed reserve and imaginary drivers, and violation of
work rules. This in turn facilitates evaluation of timetable proposals and/or
crew schedules.

4.5 Disruption Management

S-tog daily faces disruption of the operation in terms of both minor and major
incidents. Currently, the handling of disruptions is based on a set of experienced
crew dispatchers. The dispatchers have IT-support in terms of access to drivers
duties and overview information regarding the status of the operation (e.g. cur-
rent delays of trains in the network). However, there is no integration between
the different information systems, and there is no decision support to change
driver duties.

On average, the punctuality of the operation is close to the 95 % aimed for
in the traffic contract. The punctuality in the rush-hours are substantially lower,
whereas the punctuality outside rush-hours are higher. This is of course unfortu-
nate since the major part of the passengers travel during rush-hours. Therefore,
its is a current focus issues of the company to improve punctuality. Currently,
no suitable software product on the market is available, and in addition the lack
of integration between different internal IT-systems is a substantial problem.

A prototype decision support system for train driver dispatchers is currently
under development as a part of a Ph.D.-project supported by S-tog. A solu-
tion method to the Train Driver Recovery Problem, described in [11], is based
on rescheduling a small part of the train driver schedule affected by a disrup-
tion. The problem is formulated as a Set Partitioning problem and possesses
strong integer properties.The proposed solution approach is therefore an LP-
based Branch & Bound algorithm.The LP-relaxation of the problem is solved
with a dynamic column and constraint generation algorithm. Pilot experiments
are very promising, both with regards to the integrality property and to the
efficiency of the method.

The main objective is to minimize the number of changed duties. The main
goal is to avoid the communication problem resulting from a large number of
duty changes, since the communication has to be performed manually by the
crew dispatcher. A second objective is to produce a robust plan, where robustness
is defined as large buffer times before breaks within the recovered duties. The
main focus in the project is cancellations of entire train lines for a period of
time, which is commonly used to alleviate larger disruptions.

Applied Railway Optimization at DSB S-tog 27

4.6 Challenges

The process of crew scheduling is currently automatic except for the construc-
tion of rosters based on the generated duties. Roster generation is a problem
very similar to duty generation, and hence similar methods are expected to be
applicable.

The major challenge in connection with crew is disruption management. This
will first of all require data integration, and secondly the development of on-line
rescheduling methods. Currently it seems feasible to build upon solution methods
in use for generating the crew plans. The introduction of such a decision support
system is crucially dependent on accept from the crew dispatchers, and although
the first steps have been taken, there is a long way to go. Also issues regarding
system integration with the passenger information system are pending.

5 Challenges with respect to Integration

The planning schedule in S-tog is currently sequential according to existing tra-
ditions: First timetable design, the rolling stock planning, and finally crew plan-
ning. The use of IT-based tools in all phases opens the possibility of overlapping
phases and of iteration. The effect will be a substantially shorter planning cycle,
which in turn enables “what-if” analysis.

Another type of integration is the integration of planning of other resource ar-
eas as e.g. maintenance. Efficient maintenance is necessary to make best possible
use of the available equipment. Today, the planning of maintenance is separated
from operational planning. A future challenge is to allow for integrated planning
thereby allowing more efficient use of the rolling stock available.

If the results from the prototype work with recovery systems for drivers and
rolling stock are promising, the next step regarding disruption management is
to investigate the possibility of integrated recovery for these resources.

6 Paving the Way for Optimization - Organizatorial
Issues

As is apparent from the preceding sections, the use of decision support and
planning systems based on IT and mathematics is not restricted to a single
planning area like rolling stock or crew. This is often the case in larger companies:
Such tools are used in some part of the organization but not in others. Experience
from PPA shows a number of good reasons for tools to be part of the planning
process, and for the presence of a special section in the department responsible for
analysis of the daily operation, for knowledge of the tools used in the planning,
and for maintaining technical insight into the mathematics and algorithms on
which the tools are based.

The key reason is purely economical: Using advanced tools eventually lead
to a more efficient operation, and furthermore alleviates the risk of ”tacit knowl-
edge” disappearing from the company in case key employees leave the organi-
zation. Even an efficiency enhancement of a few percent per year is for a larger

28 Jens Clausen

company enough to cover the extra expense in terms of salary for analysts and
software costs.

Other reasons include the problem insight developed by being forced to ex-
plicitly express all rules of a planning process. Here, new ideas emerge, and
procedures based on current practice are questioned by experiments with new
tools. Also, the potential for ”what-if”-analysis plays an important role.

From an organizatorial perspective, the single most important factor in ac-
cepting advanced tools as part of the general planning procedures is personal sup-
port. There has to be an understanding of the potential and impact of changing
planning procedures to include more sophisticated methods and analysis tools
on all levels of the organization. At least one person has to accept the role of
”champion” for introducing mathematics, IT, and employees with a different
background. This has been the case in S-tog, and experiences from other appli-
cations support the observation.

On the other hand, academic employees have to prove their worth. If the tools
and methods introduced in the organization do not match the requirements of
the planners either in terms of functionality or in terms of user interface, the
chance of success is small. Also, the first applications must prove the value of
the approach in terms of cost decrease or profit increase.

To survive in a longer perspective, it is furthermore necessary for an analysis
section to be visible with regards to daily activities. This requires the identifi-
cation of and development of new application domains as well as a willingness
to support the the daily operation. New application domains may also relate
to strategic development of the company both with respect to products offered
to their customers and with respect to extending the scope of the company’s
activities.

The above discussion illustrates the trade-off often experienced in connection
with research and applications in mathematics and IT. Researchers often focus
on concepts, theory, and methodological development, whereas companies are
interested in the direct application potential of the research. There is a substan-
tial risk that the two parties do not understand each other, and even worse,
after a while do not see any reason to pursue collaboration. This dilemma is also
apparent in the railway optimization context. Although changes do not happen
overnight, the experiences from S-tog is that it is not an impossible task to
make an organization acknowledge the value of research and make researchers
appreciate the practical use of their efforts.

7 Conclusions

The planning of timetable, rolling stock and crew in S-tog to meet requirements
of service, efficiency, and robustness is a challenging task integrating three busi-
ness areas, each of which is in itself highly complicated. Traditionally, plans are
made by highly qualified persons with many years of experience in planning and
running the daily operation of the business.

Applied Railway Optimization at DSB S-tog 29

Due to the complexity of the problems at hand it is very likely that the
manually constructed solutions to the planning problems can be improved, and
that improved efficiency may result from new ways of running the operation. For
S-tog, software with optimization capabilities has proven to be an indispensable
tool for the planners to obtain even better plans, to analyze ”what-if” scenarios
in relation to current plans, and to investigate new ideas.

Future perspectives of using OR methods in S-tog include combined mainte-
nance and production planning, and real-time decision support for re-planning
of crew and rolling stock in the event of disruptions. Also, improving the robust-
ness of plans regarding their sensitivity to both larger, planned changes (as track
reconstruction), and the disruptions and delays observed in the daily operation
are key issues.

References

1. M. N. Nielsen, B. Hove and J. Clausen: Constructing Periodic Timetables using
MIP - a case study from DSB S-train. International Journal of Operations Research
1 (2006), 213 – 227.

2. P. Serafini and W. Ukovich: A Mathematical Model for Periodic Scheduling Prob-
lems. Siam J. Discrete Mathematics 2 (1989), 550 – 281.

3. J.C. Villumsen: Construction of Timetables Based on Periodic Event Scheduling.
IMM-Thesis-2006-52 (2006), Informatics and Mathematical Modelling, Technical
University of Denmark.

4. M. A. Hofman, L. Madsen, J. J. Groth, J. Clausen, and J. Larsen: Robustness
and Recovery in Train Scheduling - a simulation study from DSB S-tog a/s. IMM-
Technical Report-2006-12 (2006). Informatics and Mathematical Modelling, Tech-
nical University of Denmark.

5. M.N. Nielsen, J. Jespersen, and M. Folkmann: Estimates on Rolling Stock and
Crew in DSB S-tog Based on Timetables. Lecture Notes in Computer Science
4359 (2007), 91 – 107.

6. P.J. Fioole, L. Kroon, G. Maroti, and A. Schrijver: A rolling stock circulation
model for combining and splitting of passenger trains. European J. of Operational
Research 174 (2006), 1281 – 1297.

7. J. Jespersen Groth, J. Clausen, and J. Larsen: Optimal Reinsertion of Cancelled
Train Line. IMM-Technical Report-2006-13 (2006), Informatics and Mathematical
Modelling, Technical University of Denmark.

8. P. Føns: Decision Support for Depot Planning in the Railway Industry. IMM-
Thesis-2006-42 (2006), Informatics and Mathematical Modelling, Technical Uni-
versity of Denmark.

9. E.J.W. Abbink, M. Fischetti, L.G. Kroon, G. Timmer, and M.J.C. M. Vromans:
Reinventing Crew Scheduling at Netherlands Railways. Interfaces 35 (2005) , 393
– 401

10. Siscog home page: http://www.siscog.pt/
11. N.J. Rezanova and D.M. Ryan: Solving the Train Driver Recovery Problem. IMM-

Technical Report-2006-24 (2006), Informatics and Mathematical Modelling, Tech-
nical University of Denmark

Disruption Management in Passenger

Transportation - from Air to Tracks

Jens Clausen

Informatics and Mathematical Modelling, Technical University of Denmark, DK 2800
Kgs. Lyngby, Denmark and

DSB S-tog, Produktionsplanlægningen, Kalvebod Brygge 32, 5, DK - 1560
København V, Denmark

jc@imm.dtu.dk and JenClausen@s-tog.dsb.dk

Abstract. Over the last 10 years there has been a tremendous growth
in air transportation of passengers. Both airports and airspace are close
to saturation with respect to capacity, leading to delays caused by dis-
ruptions. At the same time the amount of vehicular traffic around and
in all larger cities of the world has show a dramatic increase as well.
Public transportation by e.g. rail has come into focus, and hence also
the service level provided by suppliers ad public transportation. These
transportation systems are likewise very vulnerable to disruptions.
In the airline industry there is a long tradition for using advanced mathe-
matical models as the basis for planning of resources as aircraft and crew.
These methods are now also coming to use in the process of handling
disruptions, and robustness of plans has received much interest. Com-
mercial IT-systems supplying decision support for recovery of disrupted
operations are becoming available. The use of advanced planning and
recovery methods in the railway industry currently gains momentum.
The current paper gives a short overview over the methods used for plan-
ning and disruption management in the airline industry. The situation
regarding railway optimization is then described and discussed. The is-
sue of robustness of timetables and plans for rolling stock and crew is
also addressed.

1 Introduction

1.1 Background

Over the last 10 years there has been a tremendous growth in air transportation
of passengers. This has lead to a situation, where both airports and airspace
are close to saturation with respect to capacity. As a consequence delays con-
stitute an ever-increasing problem for all major airlines. Delays are caused by
irregularities and events. Generally, a disrupted situation - often just denoted a
disruption - is a state during the execution of the current operation, where the
deviation from the plan is sufficiently large to render the plan infeasible, thereby
necessitating re-planning. Note that a disruption is not necessarily the result of
one particular event.

ATMOS 2007 (p.30-47)
7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems
http://drops.dagstuhl.de/opus/volltexte/2007/1183

Disruption Management in Passenger Transportation - from Air to Tracks 31

At the same time the amount of vehicular traffic around and in all larger cities
of the world has also dramatically increased, and the time lost daily by each indi-
vidual in traffic queues is now counted in hours. Therefore public transportation
has come into focus, and hence also the service level provided by suppliers of
public transportation. One key element here is punctuality. However, also these
transportation systems are very vulnerable to disruptions decreasing the system
capacity.

In the airline industry there is a long tradition for using advanced mathe-
matical models as the basis for planning of resources as aircraft and crew, cf.
[1, 2]. In the recent years these methods have also found their way into the
process of handling disruptions. Robustness of plans, which may be interpreted
as pro-active disruption management, has received much interest. Commercial
IT-systems supplying decision support for recovery of disrupted operations are
becoming available.

A number of features in the planning processes are similar in air and railway
transportation. Operating public railway transportation systems are neverthe-
less complicated by the mere size of the operation, by additional constraints
regarding the use of rolling stock and crew, but also by the larger set of possible
actions in a disrupted situation and by the interaction between these.

Therefore, the use of advanced planning methods in the railway industry has
taken momentum a decade later than in the airline industry. A good overview
is given by [3]. The use of such methods to recover after disruptions is, however,
in its infancy.

1.2 Contribution

The current paper aims at enhancing the understanding and knowledge of the
optimization methods applicable in disruption management as well as the diffi-
culties faced when applications are to be introduced in real-world applications.
Since the methods are intimately related both to the planning processes prior
to the operation and to the operational context for the operation itself, both of
these issues are addressed in some detail. The reader is assumed to have gen-
eral knowledge of operations research and mathematical programming, but no
special knowledge about applications in air and railway transportation.

1.3 Outline of Paper

We first describe the operational context, the planning process and the tech-
niques used for each of the individual resources in the airline case. Then we
describe the results of current research effort regarding disruption management
and robustness. The next part of the paper deals with passenger transportation
in the railway industry addressing basically the same issues to reveal similarities
and differences. We focus on mass passenger transportations as seen in densely
populated areas and major cities, using the activities of the company DSB S-tog
as examples. Finally, we comment on the perspectives of ongoing and future

32 Jens Clausen

development in the railway sector for disruption management based on decision
support systems .

2 The Airline Industry

2.1 The Operational Context for Airlines

All airlines share the common resources of airspace and airport capacity. Hence
airlines cannot independently determine their preferred schedule and plans for
aircraft and crew, and in a disrupted situation airlines in general have to col-
laborate with aviation authorities regarding recovery possibilities. Institutions
like the Federal Aviation Authorities (FAA) in the United States and EURO-
CONTROL have the responsibility to balance the use of the scarce resources
through restricting schedules and through air traffic flow management (ATFM).
If a disrupted situation stems from decreased airport capacity due to e.g. weather
conditions it is likely that all operating airlines are affected. Hence, the decision
process has a number of stake-holders, and the information flow in the recovery
process becomes very important. For a more detailed description, see [1].

2.2 The Planning Process

The following section is based on [2]. In general, the planning process for passen-
ger transportation is sequential, and this holds also for airline operations. Based
on forecasts of passenger demand, available slots at the airports, and other rele-
vant information, a timetable in terms of a flight schedule is constructed. Fleet
assignment then determines which specific type of aircraft is assigned to each
flight, and at the same time lines of work - rotations - for physical flights are
determined. In the crewing phase cockpit crew and cabin crew are assigned to
all flights. For both crew groups, individual flights are grouped to form pairings.
Each pairing starts and ends at the same crew base. These pairings are at this
point anonymous. Pairings are then grouped to form personnel rosters, and ros-
ters are assigned to crew - usually based on seniority. Rosters are typically lines
of work for 14 days or one month. Finally, physical aircraft from a given fleet
are assigned to flights in the tail assignment process.

In the planning process a number of issues have to be dealt with as e.g.
aircraft maintenance rules, and regulations for crew on flying time and off-time
based on international and national rules, and on agreements with unions. The
tracking phase - sometimes referred to as short-term planning - handles changes
in plans due to e.g. crew sickness, aircraft breakdowns, and changes in passenger
forecasts.

The responsibility for all plans is transferred to the operations control center
(OCC) a few days days ahead of the day of operation. It is the responsibility
of OCC to ensure availability of all resources so that the flight plan seen as an
integrated entity is feasible. Events like crew sickness and late flight arrivals have
to be handled, and not only the immediately affected flights but also knock-on
effects on other parts of the schedule must be considered.

Disruption Management in Passenger Transportation - from Air to Tracks 33

2.3 Network Models for Airline Optimization Problems

Two networks models are dominant in connection with airline and railway op-
timization: connection networks and time-line networks. We describe these net-
works in the following since such networks are often used in recovery methods.
A more detailed presentation is given in [2].

The connection network or time-space network is used to represent the possi-
bilities for building rosters for aircraft and crew. The network is an Activity-On-
Node network. It consists of a set of nodes, N , one for each flight leg. A flight
leg is given by its origin, destination, departure time and date, and arrival time
and date. The node i representing the flight leg li is connected by a directed
edge (i, j) to the node j representing the flight leg lj if it is feasible with respect
to turn-around-times and airport to fly lj immediately after li using the same
aircraft/crew. In addition, there are nodes indicating the position of each air-
craft/crew both at the beginning and in the end of the planning horizon. These
nodes are connected to those leg nodes which are feasible as first resp. last legs
in the planning period. A path in the network now corresponds to a sequence
of flights feasible as part of a rotation. Schedule information is not represented
explicitly in the network, but used when building this. Maintenance restrictions
are incorporated through the concept of a maintenance feasible path, which is
a path providing sufficient extra time with the required intervals at a node for
a station, where maintenance can take place. Note that the number of feasible
paths is very large - it grows exponentially with the planning time horizon.

In connection networks it is difficult to see the representation of the possible
schedules. Time-line networks represent the possible schedules in a natural way.
A time-line network has a node for each event - arrival and departure. Each
station has a time line with event-nodes located at the relevant points in time.
The edges of the network connect event-nodes corresponding to events that may
follow each other in a sequence of events for the resource in question. An edge
for a particular flight goes between the departure and the arrival station.

Below we briefly describe a model for aircraft rotations based on connection
networks.

2.4 Aircraft Rotation Based on Connection Networks

The model based on connection networks described below can be found in [4]
by Cordeau, Stojkovic̀, Soumis, and Desrosiers. Assume that particular fleet has
been assigned to each flight, and consider the problem of assigning aircraft to
flights over a fixed time horizon while respecting maintenance requirements.

The set of available aircraft is called F , and for each aircraft f ∈ F , an origin
of and a destination df is given. The set of nodes Nf = N ∪{of , df} consists of
the flights, the origins and destinations. There are edges from each origin node
to flights feasible as first flights for an aircraft located at the origin node, and
edges into destination nodes from flights feasible as last flights with respect to
the origin. Furthermore, the set Ωf denotes the set of feasible paths between
of and od in the network. Only maintenance feasible paths are considered. The

34 Jens Clausen

relations between the flights and the paths are given by binary parameters ai
ω

taking the value one iff flight i is on path ω.
Define now binary decision variables xω taking the value one iff the flights

on the path given by ω is flown by the aircraft determined by the origin node
of the path. The constraints of the problem are that each flight must be in one
of the selected paths, and that one path must be chosen for each aircraft. The
routing problem becomes:

minimize
∑

f∈F

∑

ω∈Ωf

cωxω

subject to
∑

f∈F

∑

ω∈Ωf

ai
ωxω = 1 i ∈ N

∑

ω∈Ωf

xω = 1 f ∈ F

xω ∈ {0, 1} f ∈ F ; ω ∈ Ωf

An immediate solution approach is Branch-and-Price, i.e. LP-based Branch-
and-Bound combined with column generation, where each column represents a
feasible path.

2.5 Disruption Management

To produce recovery plans is a complex task since many resources (crew, air-
craft, passengers, slots, catering, cargo etc.) have to be re-planned in close-to
real-time. A disruption is in most cases addressed by solving the problem in a
sequential fashion with respect to the components: aircraft, crew, ground oper-
ations, and passengers. Infeasibilities regarding aircraft are first resolved, then
crewing problems are addressed, ground problems like stands etc. are tackled,
and finally the impact on passengers is evaluated. Sometimes, the process is it-
erated with all stake-holders until a feasible plan for recovery is found and can
be implemented. In most airlines, the controllers performing the recovery have
only limited IT-based decision support to help construct high-quality recovery
options. The controllers are often content with producing a single viable plan of
action, as it is a time consuming and complex task to build a recovery plan. Fur-
thermore the controllers have little help in estimating the quality of the recovery
action they are about to implement.

The most commonly used recovery options are:

– Using standby resources: Airlines usually have staff members on stand-by
duties at bases, and sometimes also stand-by aircraft are available.

– Deadheading of resources: Crew or aircraft located in one station are
moved to another in order to relieve a disrupted situation here. Deadheading
is usually costly.

– Swapping of tasks: Tasks of two resources (crew or aircraft) may be
swapped if the second one is available for taking over the task of the first
one, which then continues the tasks for the second. A chain of swaps may be
necessary to recover.

Disruption Management in Passenger Transportation - from Air to Tracks 35

– Re-timing: A planned departure is delayed. In general there are knock-on
effects using re-timing as recovery tool.

– Cancellation: Canceling one or several departures is usually used as the
last opportunity - it is considered unacceptable from a customer point of
view and is hence avoided if possible.

Companies often work with preferred recovery strategies, and it is important
to be able to evaluate such a strategy. This requires knowledge of possible dis-
ruption patterns in terms of frequency and distribution over time. Furthermore
it is necessary to be able to simulate the complete operation when the strategy
in question is applied to alleviate disruptions. Simulation is the most common
way to approach this problem, and in air transportation several software tools
are available for this, e.g. SimAir [5].

Determining the quality of a single recovery option is also difficult. The objec-
tive function is composed of several conflicting and sometimes non-quantifiable
goals as e.g. minimizing the number of passenger delay minutes, returning to
the plan as quickly as possible, and at the same time minimizing the cost of the
recovery operation.

An important parameter for disruption management is the time window for
the disruption. A recent prototypical recovery approach is to fix all activities out-
side the time window, and then re-plan for the affected resources within the time
window. In the re-planning process, connection networks are constructed from
the modified flight schedule for aircraft and for crew and then used to generate
feasible lines of work and duties. These are then used as input for the planning
software, which due to the much smaller problem size is able to produce new
plans in a sufficiently short amount of time. Other approaches are to use tailored
software for disruption management often based on multi commodity network
flow models. Table 1 indicates the development in aircraft recovery methods
over the last decade, whereas Table 2 indicates the corresponding development
for crew.

2.6 Pro-active Disruption Management - Robustness

Robustness of plans as a means of avoiding disruptions has attracted an increas-
ing interest over the last years. [1] contains an interesting section describing a
number of robustness ideas, which have all been addressed by researchers lately,
among others:

– Allocation of slack: Slack is extra time in connection with e.g. turn-
arounds allocated such that small delays do not propagate. The challenge is
to balance the amount of slack against the cost of the slack, and to distribute
the available slack time in the optimal way over rotations and rosters.

– Minimizing expected crew costs: In deterministic models the planned
crew cost is fixed. Taking into account expected cost from recovery, e.g.
by using techniques from stochastic programming, leads to plans balancing
the cost of an undisrupted operation against the cost of recovering from a
disruption.

36 Jens Clausen

Functionality Data Dimensions Solution
Authors Model Canx Retim Fleets AC Fleets Flights time Obj.

Teodorovic,
Guberinic

CN No Yes No G 3 1 8 NA DM

Teodorovic,
Stojković

CN Yes Yes No G 14 1 80 180 C, DM

Teodorovic,
Stojković

CN Yes Yes No G NA 1 80 140 C, DM

Jarrah, Yu,
Krishna-
murthy,
Rakshit

TLN Yes Yes No RL NA 9 NA 0-30 D, S, F

Mathaisel TLN Yes Yes No NA NA NA NA NA DF
Talluri CN No No Yes G NA NA NA 10 Sw
Argüello, Yu,
Bard

– Yes Yes Yes RL 16 1 42 2 C

Clarke CN Yes Yes Yes RL 177 4 612 NA CR
Yan, Lin TLN Yes Yes No RL 17 1 39 49 CR
Yan, Tu TLN Yes Yes yes RL 273 3 3 1800 CR
Cao,
Kanafani

TLN Yes Yes No G 162 1 504 869 RC

Lou, Yu NA No Yes NA RL NA NA 71 15 DF
Lou, Yu NA No Yes NA RL NA NA 71 15 DF
Løve,
Sørensen

TL Yes Yes No RL 80 1 340 6 RC

Thengvall,
Bard, Yu

TLN Yes Yes No RL 27 1 162 6 RC

Thengvall,
Yu, Bard

TLN Yes Yes Yes RL 332 12 2921 1490 RC

Bard, Yu,
Argüello

TBN Yes Yes No RL 27 1 162 750 DC

Andersson CN Yes Yes Yes RL 30 5 215 10-11001 R
Rosenberger,
Johnson,
Nemhauser

NA Yes Yes No G 96 1 407 16 C, R

Table 1. Summary of published experiments regarding aircraft recovery. The model is
either a connection network (CN), a time line network (TLN), or a time band network
(TBN). Data are either generated (G) or real-life (RL) instances. Solution times are
in seconds. Fleets indicate whether multiple fleets can be dealt with concurrently. The
objectives to minimize are cancellations (C), delay minutes (DM), delay (D), number
of swaps (Sw), number of delayed flights (DF), cost minus revenue (CR). Maximize
revenue minus cost (RC) is also used. The table is from [2].

Disruption Management in Passenger Transportation - from Air to Tracks 37

Functionality Dimensions Sol.
Authors Model Canx Retiming Indv. Rost. Data Crew Flights time Obj.

Stojković,
Soumis,
Desrosiers

TLN No Yes Yes RL NA 210 1200 PC

Wei, Yu, Song STN No Yes No NA 18 51 6 RC
Lettovsky,
Johnson,
Nemhauser

TLN Yes (Yes) No RL 38 1296 115 PC

Medard,
Sawhney

TLN NA Yes Yes NA 885 NA 840 L

Abdelgahny
et al.

NA No Yes Yes RL 121 NA 2 D, St, Sw

Table 2. Summary of papers regarding aircraft recovery. TLN is Time Line Network,
STN is Space Time Network, and RL is Real-life. Solution times are in seconds. Objec-
tives are pairing costs (PC), Return to schedule (RS), Legality (L), Deadhead, Stand-by
(St), and Swap (Sw). The table is from [2].

– Ensuring crew swap possibilities: Since swapping of crew is a well-known
recovery action, one way of ensuring some degree of robustness is to con-
struct the original plan using a cost function, which favors plans with swap
possibilities.

Note that the examples above reveal that robustness of plans comes in two
types: One aiming at producing a plan which is less vulnerable to disruptions,
and one aiming at easy recovery in case of disruption.

No general framework to deal with robustness as a concept, and no general
properties ensuring robustness have been put forward. Simulation is as men-
tioned an important tool in investigating the interplay between plans and recov-
ery actions and is also indispensable when evaluating robustness.

3 The Mass Transportation Railway Industry

Railway systems in densely populated areas are very vulnerable to disruptions
in the operation. The timetables are usually tight and trains run with a high
frequency to satisfy customer requirements. A sequence of small delays caused by
passenger related events rapidly accumulates a delay so substantial that knock-
on effects on other parts of the operations results.

To illustrate the situation we show three tables from [6]. The first reports
the numbers of disruptions related to infrastructure in the Netherlands during
the first half of 2006.

Similar information from DSB S-tog is shown in Tables 4 and 5. Note
the substantial number of disruptions caused by the infrastructure manager and
the passengers. In the next section we describe the operational context of the
operation for a train operator and the role of the infrastructure manager.

38 Jens Clausen

Class Disruptions Avg. duration Total duration

Technical failure 1656 2.2 3680
Third parties 1471 1.0 1491
Weather 172 2.3 393
Others 693 1.7 1208

Total 3992 1.7 6772
Table 3. Disruptions in the Netherlands related to infrastructure during the first half
of 2006

Responsible Infrastructure manager S-tog Externally caused

Affected trains 4746 3981 660
Table 4. Disruptions in the S-tog traffic for an average month in 2006 subdivided
according to responsibility.

3.1 Operational Context for Train Operators

A daily passenger transportation operation involving several train operators in-
volves the same type of actors as for air transportation: Parties responsible for
safety and for coordination of the operations of the different operators, and the
planning and dispatching divisions of each operator. However, here the infras-
tructure used for the physical transportation is tracks and signals, i.e. physical
entities. The infrastructure is often owned by a public entity, and the responsi-
bility lies with an infrastructure manager. The infra structure owner maintains
signals and tracks, and ensures that timetables of the different operators are
feasible from an over-all point of view. Signals and tracks are often the cause of
disruptions.

In connection with disruptions and recovery, the major tasks to be carried
out are timetable adjustment, rolling stock re-scheduling, and crew re-scheduling.
Figure 1 from [6] shows how the responsibilities for the different elements are
shared among the actors.

The infrastructure manager controls and monitors all train movements in
the railway network. The Network Traffic Control (NTC) covers all tasks cor-
responding to the synchronization of the timetables of the different operators.
NTC has to manage overtaking, re-routing, short turning, or canceling trains
in order to prevent them from queuing up. The latter is a permanent threat
at the basically one-dimensional railway infrastructure. Queuing up of trains
immediately leads to extensions of travel times.

Responsible Rol. St. Drivers Dispatch. Maint. Passengers Misc.

Affected trains 1131 665 88 44 1737 316
Table 5. Disruptions contributed to S-tog for an average month in 2006 (in total 3981)
subdivided according to cause.

Disruption Management in Passenger Transportation - from Air to Tracks 39

Fig. 1. Schematic view of actors, timetables and resource schedules

On a local level, the process is managed by the Local Traffic Control (LTC).
For example, LTC is responsible for routing trains through railway stations and
for platform assignments. Safety is normally ensured by headways and automatic
track occupancy detection systems.

3.2 The Planning Process

The planning process for railway operators is very similar to the one described
for airline transportation. First comes line planning determining the network of
lines to be serviced, then follows timetabling, rolling stock planning, and finally
crew scheduling. The complete process is usually sequential and extends over
several months. We refer to [3], which describes the process in some detail.

3.3 S-tog - the Company, Network, Resources, and Operational
Conditions

In the following we often refer to DSB S-tog a/s (S-tog) for illustrative purposes.
The description is a short version of the one given in [7], where additional details
can be found.

DSB S-tog is the major supplier of rail traffic on the infrastructure of the
city-rail network in Copenhagen. S-tog has the responsibility of buying and main-
taining trains, ensuring the availability of qualified crew, and setting up plans for
departures and arrivals, rolling stock, crew etc. The infrastructural responsibil-
ity and the responsibility of safety for the S-tog network lie with Banedanmark,
which is a company owning the major part of the rail infrastructures in Denmark.

The S-tog network consists of 170 km double tracks and 80 stations. The
network consists of two main segments. The circular rail runs from Hellerup in

40 Jens Clausen

the north to Ny Ellebjerg in the south. The remaining network consists of seven
segments: Six fingers and a central segment combining the fingers. The network,
shown in Figure 2, is serviced by a number of lines. These all pass the central
segment, which includes Copenhagen Central (København H).

Most lines in the network are run according to a cyclic timetable and have
a frequency of 10 minutes. On the outer parts of one finger this frequency is
reduced to 20 minutes, but the assignment of fingers to lines ensures that almost
all stations are serviced by 6 trains per hour. There are at daily level appr. 1200
departures from end stations, and additionally approximately 28.000 departures
from intermediate stations.

S-tog currently has 104 so-called ”1/1-units” each seating 336 passengers,
and 31 ”1/2-units” seating 150. The units can be combined to various train
sizes allowing for more flexible composition of trains. The company employs
approximately 550 drivers. At the most busy time of day the network presently
requires 86 1/1-units and 27 1/2-units to cover all lines and departures, including
standby units (2 1/1-units and 1 1/2-unit).

The passengers of S-tog travel on different types of tickets and cards valid for
all public transportation according to a zone system in the Greater Copenhagen
area. Tickets are currently not inspected when passengers board or leave trains.
Instead, spot inspections are performed by ticket inspectors.

The quality of the service provided by S-tog is measured by two performance
indicators: Punctuality and reliability. Punctuality focuses on the number of
trains arriving ”on time” (interpreted ”not later than 2.5 minutes after planned
arrival time”), whereas reliability measures the percentage of trains actually
run (i.e. not canceled) according to the schedule. The average punctuality must
be at least 95 % and the average reliability 97.5 % according to the contract
between S-tog and the Ministry of Transportation. This contact also sets lower
bounds on the number of trains kilometers run over a time period, and establishes
service levels in terms of seat availability compared with the expected number
of passengers on departures.

The planning processes of S-tog regarding timetabling, rolling stock planning,
and crew scheduling are described in detail in [7].

The trains in the timetable of S-tog are of two types: Fast trains and stop
trains. Accommodating both types of trains in a timetable can only be achieved
at the expense of service: Even though all stations are serviced with two trains ev-
ery 20 minutes, some stations may be served regularly every 10 minutes whereas
other may have up to 18 minutes between the two trains. This mixture of fast
and stop trains also present challenges in case of disruptions.

Rolling stock operational conditions are intimately related to the trade-off
between service level and cost. The seat capacity provided must be large enough
to accommodate the maximum number of passenger on each particular depar-
ture, but running with excess capacity is costly. Changes in the composition of
trains normally happens four times a day: two changes to increase seat capacity
before the two rush hours, and two to reduce seat capacity. These changes are
carried out at the rolling stock depots. The depots are in general located at the

Disruption Management in Passenger Transportation - from Air to Tracks 41

Fig. 2. The 2007 S-tog network.

42 Jens Clausen

terminal stations of the network, but a large depot is also located at Copenhagen
Central. The depots at the terminal stations are of varying size, which implies
additional constraints regarding the feasibility of rolling stock circulations when
compositions are changed.

Recently, S-tog has decided to introduce planning software based on opti-
mization methods for building the rotations for train units, and a system devel-
opment process to produce optimization software capable of performing rolling
stock planning is hence in progress.

S-tog employs approximately 550 drivers. The daily schedule of a driver is a
so-called duty, which has to comply with a number of rules originating in safety
regulations and union agreements. Such a duty is either a pre-planned sequence
of driving tasks or a stand-by duty. The duties are organized in rosters. A roster
is a set of week-plans for an even set of weeks, and is covered by a corresponding
number of drivers in a rolling fashion. Also rosters must comply with complicated
rules and regulations. Of the 550 drivers, 350 are assigned to pre-planned rosters
and 200 are stand-by drivers.

To make efficient use of the driver resources, driving tasks are combined to
efficient duties, and duties are then combined to efficient rosters. Efficient in this
context means that the number of hours in each duty spent in the driver seat
of a train must be as large as possible. S-tog uses the system TURNI [8] and
PDS (a tailored version of CREWS [9]. From an operational point of view, very
efficient duties and rosters on the other hand contain little slack and plans based
on these are hence very sensitive to disruptions in the daily operation. Again,
the trade-off between cost and robustness of a plan is apparent.

3.4 Disruption Management

In the following we describe disruption management in general using the current
operation of DSB S-tog as an illustrative case.

As indicated previously and described in detail in [6], the infrastructure man-
ager through the NTC usually has the responsibility and final decision in all
issues dealing with changes in the timetable. In situations with disruptions this
leads to a situation with one party deciding the actions to be taken while an-
other party is responsible for implementing the action. Even though the staff at
NTC communicates intensively with dispatchers, this division of responsibilities
inevitably lead to tensions.

Generally, the handling of disruptions are based on a set of experienced
dispatchers for crew and rolling stock. One central issue here is the available
amount of IT support. For example, the dispatchers at S-tog have IT-support in
terms of access to drivers duties and overview information regarding the status
of the operation (e.g. current delays of trains in the network). However, there is
often no integration between the different information systems, and there is no
decision support to change driver duties.

Note that special care has to be taken regarding the rolling stock under a
severe disruption due to the one-dimensional infrastructure. If one part of the
network is blocked, this may have severe effects on the availability of rolling

Disruption Management in Passenger Transportation - from Air to Tracks 43

stock in other parts. Consider e.g. a closed tracks in the central section of the
S-tog network. If action is not taken immediately, trains start to queue up. The
first consequence is that passengers on the affected lines have no connections out
of Copenhagen. The knock-on effect is that after a short while, no trains return
to the outer parts of the network resulting cancellations on a large scale.

As for airlines, a number of strategies for disruption management is available.
At S-tog the following options are those most commonly considered, cf. [10]:

– Trains skipping stations i.e. making fast-trains out of stop-trains:
This option is obviously inadequate passenger forced to change trains, but
it has little additional cost.

– Reducing headways to a minimum: In the outer ends of the network
there are some slack on the headways. In the case of delays headways are
reduced making the trains drive closer to each other. As the frequency of
trains in the central section is high there is less slack here for decreasing
headways. The option has marginal cost.

– Reducing running times to a minimum: Timetables are constructed
given predefined running times between all sets of adjacent stations. The
running time is always the minimum running time plus some slack. In case
of a disruption, running times between all stations are reduced to a minimum
given the particular context. The cost is marginal.

– Shortening the routes of trains A train can be ”turned around” before
reaching its terminal i.e. the remainder of the stations on its route can be
skipped. Again the cost is marginal.

– Swapping the tasks/routes of fast-trains catching up with stop-
trains: Delays some times occur so that fast lines catch up with slow lines
leading to a delay of the fast trains. Here, it is possible do a ”virtual over-
taking”, i.e. to swap the identity of the two trains so that the slow train
is changed to a fast train and vice versa. This option affects the duty of
the driver and the rotation of the involved train units and hence requires
re-planning.

– Allowing overtaking on stations with available tracks: Handling the
daily operation is in general less complex if there is a predetermined order of
train lines. In the case of a disruption the predetermined order of lines can
be broken on stations with several available platforms in the same direction
i.e. where overtaking between trains is possible. Here, re-planning must take
place.

– Inserting replacement trains from Copenhagen Central for trains
that are delayed: If a train is delayed in the first part of its route, it is often
replaced by another train departing on-time. This requires a stand-by train
unit and a driver to do the necessary shunting. Again, duties and rotations
are affected.

– Canceling of entire train lines: In the case of severe disruption entire lines
are taken out, i.e. all trains currently servicing the departures on the relevant
lines are taken out of operation. In the case of severe weather conditions such
as heavy snow, the decision is taken prior to the start of the operation. This

44 Jens Clausen

option heavily influences the operation since train units are now misplaced
and drivers knocked out of their duties. Recovering from this action is by no
means trivial.

Each disruption management strategy has to be supplemented with methods
for recovery of duties and rolling stock circulations. Some recovery methods are
simple and nearly cost-less, whereas others require substantial re-planning, both
for the operational day and for day succeeding this. In particular, the rolling
stock circulations become affected, and in the end of the day trains units end
up in depots different from the planned ones. If a misplaced unit is planned
for maintenance this represent a problem not only because maintenance cannot
take place, but also because maintenance is planned for particular units with
respect to activities and spare parts. Thus maintenance plans may also have to
be changed.

Recovery strategies in connection with rolling stock re-scheduling are often
rather simple. Initially, stand-by units are exploited. These are scarce resources,
so severe disruptions cannot be alleviated in this way. Other means include re-
allocation of rolling stock units between trains to allow for a complete operation
with respect to departures, since customers usually prefer trains with reduced
seat capacity over trains canceled trains. When a disrupted situation is alleviated
through the cancellation of train lines, all trains on the line have to be reinserted
from the depots where they have been parked during the disruption. Here, a
decision support system is in use at S-tog, which allows dispatchers to choose
the optimal re-insertion time for the trains, cf. [11]

Regarding crew, the crew recovery problem at S-tog is very similar to the
operational planning problem. Hence, the standard version of TURNI also has
been tested for dispatching using the time window approach. All duties in the
time window are re-planned, all others are left unchanged. Preliminary test with
the system shows that approximately 20 minutes is required for a useful solution
to be found. By relaxing some of the rules applying in a non-disrupted situation,
and by efficiency tailoring, it seems likely that such an approach may become
operational in a few years.

A prototype decision support system for train driver dispatchers is currently
under development as a part of a Ph.D.-project supported by S-tog. The solution
method to the Train Driver Recovery Problem, described in [12], is again based
on rescheduling a small part of the train driver schedule affected by a disruption.
The problem is formulated as a Set Partitioning problem and possesses strong
integer properties. Due to that new duties are to be assigned to drivers, the prob-
lem contains generalized upper bound constraints, which implies that often the
solution of the LP-relaxation is integral. The chosen solution approach is there-
fore an LP-based Branch & Bound algorithm.The LP-relaxation of the problem
is solved with a dynamic column and constraint generation algorithm. Pilot ex-
periments are very promising, both with regards to the integrality property and
to the efficiency of the method. Solutions to the LP-relaxation for problem in-
stances formulated over 3-5 hours of the schedule are solved within 1 second.

Disruption Management in Passenger Transportation - from Air to Tracks 45

The largest problem instance, formulated for 8 hours of the schedule, is resolved
within 46 seconds. Nearly all test instances produce integer solutions.

The main objective for the prototype is to minimize the number of changed
duties to avoid the communication problem resulting from a large number of duty
changes, since the communication currently is performed manually by the crew
dispatcher. A second objective is to produce a robust plan, where robustness is
defined as large buffer times before breaks within the recovered duties. The main
focus in the project is the cancellations of entire train lines for a period of time,
which is commonly used to alleviate larger disruptions.

4 Robustness

Robustness can be present in a plan in two ways. A plan is robust if disruptions
can be absorbed or the resulting knock-on effects can be reduced. This type of
robustness is for the complete operation usually aimed at minor disruptions and
achieved through building buffer time into the plans. A plan may also be called
robust if it is well suited for recovery in case of disruptions.

Absorption robustness has been studied in e.g. [13], where stochastic pro-
gramming is used to distribute running time supplements in a timetable to
minimize the expected delay of passenger. Recovery robustness has not been
systematically addressed though its is an implicit goal in several research papers
on disruption management.

A central issue from the planning point of view is the concept of pricing of
robustness. Costs of plans are calculated based on figures and estimates, which
are usually not easy to extract. The key question is now to assess the difference
in cost between an optimal plan and a proposed robust plan. Both costs may be
evaluated in undisrupted operation, but is also necessary to evaluate the cost in
case of a disrupted situation. Here simulation seems to be a necessary tool.

As is the case for the airline industry, simulation tools has been developed and
used for evaluating robustness of both timetables and plans. However, these tools
are in general in-house products of the different operators and infrastructure
managers. No general tool similar to SimAir has been developed. Such a tool
would indeed be a valuable contribution to the study and development of robust
planning methods.

5 Comparing Air and Tracks

In many ways disruption management for passenger transportation is similar in
airlines and in railway companies.

The general structure of the operation, the planning processes, and the pro-
cesses in connection with disruption management are similar. Planning tools
build on the same type of mathematical models: Network representations of
feasible structures as e.g. rolling stock rotations and crew rosters, and integer
programming models for optimizing the plans. The models are almost always Set

46 Jens Clausen

Partitioning or Set Covering models, often supplied with additional constraints.
The networks are used for generative purposes in the solution methods, which in
most cases are of the Branch-and-Bound/Price/Cut type. One indication hereof
is that software vendors for air transportation planning are major players also
on market for railway planning software.

Major differences do nevertheless exist. First of all, the complexity regarding
size of operation increases several orders of magnitude when moving from air
to tracks. The infrastructure is one-dimensional, and there are major differences
from country to country. The operation in case of mass transportation has a
much larger volume with respect to passengers, and the individual traveling
times are usually much shorter. Traveling usually does not require reservations,
and alternative routes are often immediately available in case of cancellations.
From the general planning point of view this does not create unsolvable problems,
but in connection with disruption management and robustness, this results in
additional time pressure and complications when different options are to be
evaluated against each other.

6 Conclusion

Disruption management and robustness is becoming increasingly important in
transportation applications. In the airline industry planning and disruption man-
agement systems based on advanced mathematical models and have been in-
tensively used over the last decade. The methods usually build on a combina-
tion of network models and Set Partitioning/Set Covering IP-models. Solution
methods are often based tailored versions of LP-based Branch-and-Bound like
Branch-and-Price in combination with dynamic column generation. Robustness
of schedules and plans have also attracted an increasing interest.

A similar development in the railway industry is now underway. Mathemat-
ically based methods for timetable design, rolling stock optimization, and crew
scheduling are used by modern railway operators, and punctuality and reliability
is coming into focus. The interest in disruption management and robustness is
increasing. The physical infrastructure of railway operations in combination with
the role played by the infrastructure manager, the necessary very short response
time in case of disruptions, the existing non-integration of IT-system, and the
general conservatism in the industry seems to slow down the introduction of
advanced methods.

The major challenges in the coming years are the development of a general
framework for understanding and classifying strategies and methods in disrup-
tion management, and for understanding, evaluating and pricing the robustness
of plans. Also, the construction and successful real-life implementation of a first
decision support systems for disruption management based on IT and mathe-
matical optimization is a must for accelerating the acceptance of such systems
in the industry.

Disruption Management in Passenger Transportation - from Air to Tracks 47

References

1. M. Ball, C. Barnhart, G. Nemhauser, and A. Odoni: Air Transportation: Irregular
Operations and Control. Chapter 1 in: Handbook of OR & MS, 14 (2007), 1 – 67.

2. J. Clausen, A. Larsen, and J. Larsen: Disruption Management in the Airline In-
dustry - Concepts, Models and Methods, IMM-Technical Report-2005-01 (2005),
Informatics and Mathematical Modelling, Technical University of Denmark.

3. A. Caprara, L. Kroon, M. Monaci, M. Peeters, and P. Toth: Passenger Railway
Optimization. Chapter 3 in: Handbook of OR & MS, 14 Transportation (2007),
129 – 187.

4. J-F Cordeau, G. Stojković, F. Soumis, and J. Desrosiers: Benders Decomposition
for Simultaneous Aircraft routing and Crew Scheduling. Transportation Science
35 (2001), 375 – 388.

5. J.M. Rosenberger, A.J Schaefer, D. Goldsmans, E.L. Johnson, A.J. Kleywegt, and
G.L. Nemhauser: A Stochastic Model of Airline Operations. Transportation Science
36 (2002) 357 – 377.

6. J. Jespersen-Groth, D. Potthoff, J. Clausen, D. Huisman, L. Kroon, G. Maroti,
and M.N. Nielsen: Disruption Management in Passenger Railway Transportation,
IMM-Technical Report-2007-3 (2007), Informatics and Mathematical Modelling,
Technical University of Denmark.

7. J. Clausen: Applied Railway Optimization in Production Planning at DSB S-tog -
Tasks, Tools and Challenges. This volume (2007).

8. E.J.W. Abbink, M. Fischetti, L.G. Kroon, G. Timmer, and M.J.C. M. Vromans:
Reinventing Crew Scheduling at Netherlands Railways. Interfaces 35 (2005) , 393
– 401.

9. Siscog home page: http://www.siscog.pt/
10. M. A. Hofman, L. Madsen, J. J. Groth, J. Clausen, and J. Larsen: Robustness

and Recovery in Train Scheduling - a simulation study from DSB S-tog a/s. IMM-
Technical Report-2006-12 (2006) Informatics and Mathematical Modelling, Tech-
nical University of Denmark.

11. J. Jespersen Groth, J. Clausen, and J. Larsen: Optimal Reinsertion of Cancelled
Train Line. IMM-Technical Report-2006-13 (2006), Informatics and Mathematical
Modelling, Technical University of Denmark.

12. N.J. Rezanova and D.M. Ryan: Solving the Train Driver Recovery Problem. IMM-
Technical Report-2006-24 (2006), Informatics and Mathematical Modelling, Tech-
nical University of Denmark.

13. M.J.C.M Vromans, R. Dekker, and L. Kroon: Cyclic Railway Timetabling: A
Stochastic optimization Approach. Lecture Notes in Computer Science 4359, 41 –
66.

Solution of the Train Platforming Problem

Alberto Caprara, Laura Galli, and Paolo Toth

DEIS, University of Bologna
Viale Risorgimento 2, 40136 Bologna, Italy

{alberto.caprara,l.galli,paolo.toth}@unibo.it

Abstract. In this paper we study a general formulation of the train
platforming problem, which contains as special cases all the versions pre-
viously considered in the literature as well as a case study from the Italian
Infrastructure manager that we addressed. In particular, motivated by
our case study, we consider a general quadratic objective function, and
propose a new way to linearize it by using a small number of new vari-
ables along with a set of constraints that can be separated efficiently by
solving an appropriate linear program. The resulting integer linear pro-
gramming formulation has a continuous relaxation that leads to strong
bounds on the optimal value. For the instances in our case study, we
show that a simple diving heuristic based on this relaxation produces so-
lutions that are much better than those produced by a simple heuristic
currently in use, and that often turn out to be (nearly-)optimal.

1 Introduction

The objective of train platforming, which is the routing problem that generally
follows any timetabling phase, is to find an assignment of trains to platforms in
a railway station. The practical relevance of the problem inspired the definition
of a few different versions, which are relatively easy for small contexts, i.e.,
stations with very few platforms and alternative paths to route the trains, but
become extremely difficult when applied to complex railway station topologies
such as those associated with the main European stations, leading to instances
with hundreds of trains and tens of platforms. Moreover, most versions are not
concerned with the station topology and ignore the routing phase, whereas the
main European stations frequently have complex topologies and the routing issue
can be quite a complicated task.

A main station typically has several external lines (also called corridors,
generally with two tracks) connecting it to other main stations; these lines are
called directions in our context. Moreover, there are several points at which a
train may stop within the station to download/upload passengers and/or goods;
these points are called platforms in our context, and can be of different type and
length, some being dead-end and some being through-platforms. The connection
between directions and platforms is achieved by internal lines, called paths in
our context, which define a route within the station linking a given direction to
a given platform. Arrival paths can be used to go from an arrival direction to

ATMOS 2007 (p.49-61)
7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems
http://drops.dagstuhl.de/opus/volltexte/2007/1174

50 Alberto Caprara, Laura Galli, and Paolo Toth

a platform, departure paths can be used to go from a platform to a departure
direction, and two-way paths can be used for both purposes.

Moreover, depending on the particular context, there may be other con-
straints or preferences due to the particular station layout, safety or signalling
requirements, operating or marketing policy. The problem aims at defining for
each train the platform where it will stop and the corresponding arrival and
departure paths, while ensuring that all the constraints are satisfied and mini-
mizing the deviation from some specified “desired” arrival/departure times and
stopping platforms for each train.

In this paper, we propose a general formulation of the problem, along with
an Integer Linear Programming (ILP) formulation whose Linear Programming

(LP) relaxation is used to drive a heuristic that turns out to widely outperform
a simple heuristic currently in use for the instances in our case study. Our main
contribution is to consider a general quadratic objective function, given that
the objective function is indeed quadratic in our case study, and to propose an
efficient way to linearize it by using a small number of new variables along with
a set of constraints that can be separated efficiently by solving an appropriate
LP.

1.1 Literature Review

In the following, we try to give a very quick but comprehensive view of the
existing work, referring to the survey by Caprara et al. [2] for a more detailed
description. As it is often the case with this type of problems, every reference
generally considers a different version, making it difficult to compare the pro-
posed methods. The easiest version is the one considered by De Luca Cardillo
and Mione [4] and Billionet [1], who address a simplified version in which, for
each train, the scheduled arrival and departure times cannot be changed and the
paths used to route the trains within the station are uniquely determined by the
choice of the platform. A more general version of the problem, in which arrival
and departure times and arrival and departure routes are not fixed a priori is
addressed in Zwaneveld [7], Zwaneveld et al. [9], Zwaneveld et al. [8], Kroon et
al. [6]. Finally, the version addressed in Carey and Carville [3] is an intermediate
one, in that arrival and departure times can be changed, but the assignment of
a train to a platform uniquely determines the routes that the train will follow
on its way to and from the platform.

1.2 The General Problem Considered

In this paper, we deal with a fairly general version of the problem, referred to
in the sequel as the Train Platforming Problem (TPP). The specific versions
previously considered in the literature, as well as the version of our case study,
are special cases of TPP.

The input to the problem is a timetable for a set of trains with complete
service details, i.e. train number, arrival and departure times and directions.

Solution of the Train Platforming Problem 51

In the following we will use the concept of pattern for a train t corresponding
to a stopping platform, an arrival and a departure path connecting respectively
the arrival and departure direction of train t to the given platform and a time
interval of occupation of the platform, implicitly defined by the variation on the
arrival and departure time specified in the timetable.

In this general version, we are given a set B of platforms, a set T of trains
to be routed to a platform, and, for each train t ∈ T , a collection Pt of possible
patterns. For convenience, let T 2 := (T × T) \ {(t, t) : t ∈ T} denote the set of
pairs of distinct trains.

Operational constraints forbid the assignment of patterns to trains if this
implies occupying the same platform at the same time, or also using routes
that intersect at the same time or too close in time. In the general version,
this is represented by defining a pattern-incompatibility graph with one node
for each train-pattern pair (t, P), with P ∈ Pt, and an edge joining each pair
(t1, P1), (t2, P2) of incompatible patterns.

TPP requires the assignment of a pattern P ∈ Pt to each train t ∈ T so that
no two incompatible patterns are assigned and the quadratic objective function
defined by the following coefficients is minimized. There are a cost cb for each
platform b ∈ B that is used in the solution, a cost ct,P associated with the
assignment of pattern P ∈ Pt to train t ∈ T , and a cost ct1,P1,t2,P2

associated
with the assignment of pattern P1 ∈ Pt1 and the assignment of pattern P2 ∈ Pt2

to train t2 for (t1, t2) ∈ T 2.
A key issue of our approach is to avoid, in the model formulation, the canoni-

cal approaches to linearize the objective function, e.g., by introducing additional
binary variables to represent the product of the original binary variables — the
number of these variables would be very large and the resulting LP relaxation
fairly weak. This will be illustrated in detail in the following.

For the applications we are aware of, including our case study, the overall
number of patterns

∑

t∈T |Pt| allows us to handle explicitly all of them. The
model that we will present is valid even if this is not the case. As to the solution
approach, we will illustrate it assuming the explicit list of patterns is given. If
this is not the case, the applicability of the method strongly depends on the
specific way in which patterns are described implicitly, indeed in the column
generation phase we would need to solve a pricing porblem whose nature is
directly connected to the description of the patterns.

1.3 The Italian Case

The instances in our benchmark come from Rete Ferroviaria Italiana, the Italian
Infrastructure Manager. The resulting problem is the special case of TPP with
the following characteristics.

It is important to notice that time is discretized considering the minutes in
a day, thus time instants are always integer values in the range [1,1440].

The set B of platforms includes regular platforms, corresponding to platforms
that one foresees to use, and dummy platforms, corresponding to platforms that
one would like not to use but that may be necessary to find a feasible solution.

52 Alberto Caprara, Laura Galli, and Paolo Toth

Besides sets T and B, we also have a set D of directions for train arrivals
and departures and a collection R of routes, called paths, connecting directions
to platforms. Some of these directions are associated with shunting areas for
the trains that begin/end at the station. For each direction d ∈ D, we have a
travel time gd for all paths connecting d to any platform (independent of the
specific path, platform, and train). Moreover, for each ordered pair (d1, d2) ∈
D×D corresponding to arrival direction d1 and departure direction d2, the input
specifies a preference list Ld1,d2

⊆ B of preferred platforms for all trains that
arrive from direction d1 and depart to direction d2.

For each direction d ∈ D and platform b ∈ B, we have a (possibly empty)
set Rd,b ⊆ R of paths linking direction d to platform b. Specifically, we have
Rd,b = Ra

d,b ∪Rd
d,b, where the paths in Ra

d,b are arrival paths to get from d to b

and Rd
d,b are departure paths to get from b to d. Note that we may have two-way

paths in case Ra
d,b ∩Rd

d,b 6= ∅. For each path R ∈ R, we are given a list IR ⊆ R
of incompatible paths, these are paths crossing each other at one or more points.
(In particular, a path R is always incompatible with itself.)

Each train t ∈ T has an associated ideal arrival time ua
t at a platform, along

with a maximum arrival shift sa
t , and an associated ideal departure time ud

t

from the platform, along with a maximum departure shift sd
t , meaning that the

train must arrive to a platform in the interval [ua
t − sa

t , u
a
t + sa

t] and depart in
the interval [ud

t − sd
t , ud

t + sd
t]. Moreover, each t ∈ T has an associated arrival

direction da
t ∈ D, a departure direction dd

t ∈ D and a set Ct ⊆ B of candidate
platforms where it may stop, corresponding to the platforms for which there
exist at least two paths linking respectively the arrival and departure directions
of t to the given platform. I.e., Ct = {b ∈ B : Ra

da
t
,b 6= ∅,Rd

dd
t
,b
6= ∅}.

A pattern P ∈ Pt is defined by a platform b ∈ Ct, an arrival path Ra ∈ Ra
da

t
,b,

a departure path Rd ∈ Rd
dd

t
,b
, and the corresponding actual arrival time va

t ∈

[ua
t −sa

t , u
a
t +sa

t] and actual departure time vd
t ∈ [ud

t −sd
t , ud

t +sd
t]. Conventionally,

the pattern occupies platform b for the interval [va
t − h, vd

t + h], where h is a
buffer time called headway introduced for safety reasons. Moreover, the pattern
occupies arrival path Ra for the interval [va

t − gda
t
, va

t] and the departure path

Rd for the interval [vd
t , vd

t + gdd
t

], recalling the travel times defined above.

As we have just pointed out the arrival and departure times are always ex-
pressed in (an integer number of) minutes, which strongly limits the total number
of patterns. Moreover, the problem is periodic with period 1440 minutes (one
day), and therefore all times should be considered modulo this period. Neverthe-
less, given that all occupation times are much smaller than 1440, it is easier for
the reader to imagine a linear time window, for which everything is equivalent
(except when it comes to the usual boring implementation details).

Two patterns P1 ∈ Pt1 and P2 ∈ Pt2 are incompatible if either their platform
occupation intervals overlap for a time window of duration > 0 or if they occupy
incompatible paths for a time window of duration > π, where π is a so-called
threshold. Note that there may be two disjoint time windows in which P1 and P2

occupy incompatible paths (e.g., one time window associated with incompatible

Solution of the Train Platforming Problem 53

arrival paths and one associated with incompatible departure paths), and in this
case P1 and P2 are incompatible if and only if the largest duration between the
two time windows is > π.

For each dummy platform b, we have infinite two-way paths for each direction
d ∈ D, all of which are compatible with each other, meaning that the only
incompatibilities between trains stopping at b are related with the occupation of
platform b itself (still associated with headway h), as the trains can always use
compatible arrival and departure paths.

The objective function is computed by using the following coefficients, for
which we also report the numerical values to give an idea of their relative im-
portance: α1 = 1000, α2 = 100000, α3 = 1, α4 = 100, α5 = 10000, α6 = 5.

Each platform cost is given by cb = α1 if b is a regular platform, and cb = α2

if b is a dummy platform (in other words the cost for using a dummy platform
is two orders of magnitude larger than the cost for using a regular platform).

Each coefficient ct,P is given by α3 · pt · sP , where pt is a train priority value
given in input and sP is the total shift of pattern P (counting both the arrival
and departure shifts), plus α4 if pattern P stops at a regular platform not in the
preference list Lda

t
,dd

t

, plus α5 if, instead, the pattern stops at a dummy platform.
Finally, each coefficient ct1,P1,t2,P2

is given by α6 · pt1 · pt2 · wP1,P2
, where pt

is again the train priority and wP1,P2
is the sum of the durations of the (up to

two, see above) time windows in which P1 and P2 occupy incompatible paths.

2 An ILP Formulation

In this section we present an ILP model for the general version of TTP that we
consider. The model is mostly standard, but the quadratic term in the objective
function is modelled in a non-standard (although fairly simple) way that makes
it possible to handle the large-size instances that we encountered in our case
study.

The most straightforward 0-1 quadratic programming formulation of the
problem, using a binary variable yb for each b ∈ B, indicating whether plat-
form b is used, and a binary variable xt,P for each t ∈ T and P ∈ Pt, indicating
whether train t is assigned pattern P , is the following:

min
∑

b∈B

cbyb +
∑

t∈T

∑

P∈Pt

ct,P xt,P +
∑

(t1,t2)∈T 2

∑

P1∈Pt1

∑

P2∈Pt2

ct1,P1,t2,P2
xt1,P1

xt2,P2

(1)
subject to

∑

P∈Pt

xt,P = 1, t ∈ T, (2)

∑

(t,P)∈K

xt,P ≤ yb, K ∈ Kb, (3)

∑

(t,P)∈K

xt,P ≤ 1, K ∈ K, (4)

54 Alberto Caprara, Laura Galli, and Paolo Toth

yb, xt,P ∈ {0, 1}, b ∈ B, t ∈ T, P ∈ Pt, (5)

where Kb is the collection of cliques in the pattern-incompatibility graph asso-
ciated with sets of patterns that use platform b at the same time, and K is the
whole collection of cliques in the pattern-incompatibility graph. Constraints (2)
guarantee that each train is assigned a pattern, constraints (3) impose that at
most one train at a time occupies a given platform b, and if this ever happens
that variable yb takes the value 1, and constraints (4) forbid the assignment of
patterns that are pairwise incompatible.

2.1 A Convenient Version of the Clique Inequalities

We first discuss how to modify constraints (3) and (4), whose number is expo-
nential in the number of patterns, so that they can be handled in practice. First
of all, each clique in Kb corresponds to a set of intervals (associated with the
platform occupation) that intersect pairwise. It is well known from the basic the-
ory of interval graphs that each maximal clique is defined by an interval starting
at point j together with all the intervals [l, k] with l ≤ j and k > j. Therefore,
the number of maximal cliques cannot be larger than the number of intervals. In
our case, letting Jb denote the set of instants associated with the beginning of
the occupation of platform b by a pattern, and K(b, j) ⊆ K the set of patterns
that occupy platform b for an interval [l, k] with l ≤ j and k > j, we have the
following alternative version of constraints (3):

∑

(t,P)∈K(b,j)

xt,P ≤ yb, b ∈ B, j ∈ Jb, (6)

whose number is
∑

b∈B |Jb| and thus can be easily enumerated.
As to constraints (4), they are in general hard to separate. However, if we

restrict attention to cliques in K containing patterns of two trains only, we
get a family of relaxed constraints that are still strong enough to be useful in
practice (besides sufficing to define a model) and can be separated efficiently
(provided the explicit list of all patterns is known), as explained in the next
section. Given two trains t1 and t2, we let K(t1, t2) ⊆ K denote the collection
of cliques containing only incompatible patterns in Pt1 ∪ Pt2 and define the
following alternative version of constraints (4):

∑

(t1,P1)∈K

xt1,P1
+

∑

(t2,P2)∈K

xt2,P2
≤ 1, (t1, t2) ∈ T 2, K ∈ K(t1, t2). (7)

2.2 Linearizing the Objective Function

We finally illustrate how we linearize the quadratic term in the objective function
(1). The textbook approach to linearization amounts to introducing additional
binary variables zt1,P1,t2,P2

that are forced, by linear constraints, to be one if
xt1,P1

= xt2,P2
= 1. The number of z variables is in this case very large and

Solution of the Train Platforming Problem 55

the resulting LP relaxation fairly weak. On the other hand, the following lin-
earization method requires a much smaller number of variables and leads to
provably stronger linear programming relaxations. We introduce the

(

|T |
2

)

addi-
tional continuous variables wt1,t2 for (t1, t2) ∈ T 2, each representing the term
∑

P1∈Pt1

∑

P2∈Pt2

ct1,P1,t2,P2
xt1,P1

xt2,P2
. This leads to the linear objective func-

tion:

min
∑

b∈B

cb yb +
∑

t∈T

∑

P∈Pt

ct,P xt,P +
∑

(t1,t2)∈T 2

wt1,t2 . (8)

We now show how to link the new w variables with the old ones, by first
discussing how to do it in general and then illustrating it through an example,
to which the reader may refer while reading the general description.

An elementary link between the x and the w variables could be expressed by
the linear constraints:

wt1,t2 ≥ ct1,P1,t2,P2
(xt1,P1

+ xt2,P2
− 1), (t1, t2) ∈ T 2, P1 ∈ Pt1 , P2 ∈ Pt2 ,

(9)
which would however lead to a model equivalent to the textbook one with the z

variables mentioned above. Instead, we can define the following stronger inequal-
ities to bound the w variables from below. Taking into account the assignment
constraints (2) and observing that there are up to |Pt1 ||Pt2 | possible values for
wt1,t2 , we can consider the simple polyhedron in R

|Pt1
|+|Pt2

|+1 corresponding to
the convex hull of the |P

1
||Pt2 | possible values taken at the same time by vectors

(xt1,P1
)P1∈Pt1

, (xt2,P2
)P2∈Pt2

and by variable wt1,t2 in a solution:

Qt1,t2 := conv{(eP1
, eP2

, ct1,P1,t2,P2
) : P1 ∈ Pt1 , P2 ∈ Pt2}, (10)

where, with a slight abuse of notation, for i = 1, 2, we let ePi
denote the binary

vector in R
|Pi| with the Pi-th component equal to 1 and all other components

equal to 0.
Among the valid inequalities for Qt1,t2 , we are interested in those of the form

wt1,t2 ≥
∑

P1∈Pt1

αP1
xt1,P1

+
∑

P2∈Pt2

βP2
xt2,P2

− γ. (11)

We let Ft1,t2 ⊆ R
|P

1
|+|Pt2

|+1 be the collection of vectors (α, β, γ) such that
inequality (11) is valid for Qt1,t2 and not dominated by other valid inequalities.

Example 1. Consider the very simple case in which Pt1 = {P1, P3}, Pt2 =
{P2, P4}, ct1,P1,t2,P2

= 5, ct1,P1,t2,P4
= 3, ct1,P3,t2,P2

= 2, ct1,P3,t2,P4
= 6. In

this case, the “weak” inequalities (9) have the form:

wt1,t2 ≥ 5xt1,P1
+ 5xt2,P2

− 5,

wt1,t2 ≥ 3xt1,P1
+ 3xt2,P4

− 3,

wt1,t2 ≥ 2xt1,P3
+ 2xt2,P2

− 2,

wt1,t2 ≥ 6xt1,P3
+ 6xt2,P4

− 6.

56 Alberto Caprara, Laura Galli, and Paolo Toth

We have

Qt1,t2 = conv{(1, 0, 1, 0, 5), (1, 0, 0, 1, 3), (0, 1, 1, 0, 2), (0, 1, 0, 1, 6)}

and the “strong” non-dominated inequalities (11), found by enumerating the
facets of Qt1,t2 , read:

wt1,t2 ≥ 5xt1,P1
+ 2xt1,P3

+ 5xt2,P2
+ 3xt2,P4

− 5,

wt1,t2 ≥ 3xt1,P1
+ 3xt1,P3

+ 2xt2,P2
+ 3xt2,P4

− 3,

wt1,t2 ≥ 3xt1,P1
+ 2xt1,P3

+ 3xt2,P2
+ 3xt2,P4

− 3,

wt1,t2 ≥ 2xt1,P1
+ 2xt1,P3

+ 2xt2,P2
+ 2xt2,P4

− 2,

wt1,t2 ≥ 3xt1,P1
+ 6xt1,P3

+ 2xt2,P2
+ 6xt2,P4

− 6,

meaning Ft1,t2 = {(5, 2, 5, 3, 5), (3, 3, 2, 3, 3), (3, 2, 3, 3, 3), (2, 2, 2, 2, 2), (3, 6, 2, 6, 6)}.

2.3 The Final ILP Model

To summarize, the ILP formulation that we use has objective function (8) and
constraints (2), (5), (6), (7), and:

wt1,t2 ≥
∑

P1∈Pt1

αP1
xt1,P1

+
∑

P2∈Pt2

βP2
xt2,P2

−γ, (t1, t2) ∈ T 2, (α, β, γ) ∈ Ft1,t2 .

(12)

3 Solution of the LP Relaxation

As is often the case for the ILP formulations whose LP relaxations yield strong
bounds on the optimal integer value, the ILP formulation of the previous section
has a large number of variables and constraints. We adopt a canonical approach
in which we work with a reduced current LP with all the y and w variables and
a subset of the x variables, and all constraints (2) and (6) and only a subset
of constraints (7) and (12). Variables and constraints are added dynamically as
follows, taking into account the fact that in our case study (as well as in the
other TPP case studies we are aware of) all patterns can be listed explicitly,

3.1 Variable Pricing

We check if there are negative-reduced-cost x variables to be added to the cur-
rent LP by explicitly computing all the reduced costs. This is conceptually easy
but not entirely trivial since the constraints that are present in the current LP
are defined only with respect to the x variables that are present. Consequently,
computation of the reduced cost of a variable xt,P requires determining the co-
efficients of this variable for the constraints in the current LP. This is immediate
for constraints (2), the coefficient being 1 for the constraint associated with train
t, and (6), the coefficient being 1 for all constraints associated with the platform

Solution of the Train Platforming Problem 57

b at which pattern P stops and with instants j ∈ Jb ∩ [l, k], where [l, k] is the
platform occupation interval of pattern P .

As to constraints (7) and (12), there are several (in general, exponentially
many) ways to extend them to include also the x variables that are not in the
current LP. For the purpose of pricing, it is easy to check that one can consider,
for each variable xt,P and for each of these constraints, the maximum possible
coefficient for the variable in an extension of the constraint.

Specifically, for each constraint (7), the maximum possible coefficient of vari-
able xt,P is 1 if and only if t1 = t and (t, P) is incompatible with all (t2, P2) ∈ K

or t2 = t and (t, P) is incompatible with all (t1, P1) ∈ K. Otherwise, the coeffi-
cient is necessarily 0.

Moreover, for each constraint (12), the coefficient of variable xt,P can clearly
be positive only if t1 = t or t2 = t. Assuming t = t1, and letting P ′

t2
be the

set of patterns associated with variables xt2,P2
in the current LP, the maximum

possible coefficient for xt,P in the constraint is given by

min
P2∈P′

t2

ct,P,t2,P2
+ γ − βP2

.

3.2 Separation of Constraints (7)

Given that all patterns associated with the same train are pairwise incompatible
due to constraints (2), the pattern-incompatibility graph with nodes correspond-
ing to the patterns in Pt1 ∪ Pt2 turns out to be the complement of a bipartite

graph, with the two sides of the bipartition (of the complement) corresponding
to the patterns in Pt1 and those in Pt2 , respectively.

Therefore, separation of constraints (7) calls for the separation of clique in-
equalities on the complement of a bipartite graph, or, equivalently, to the sep-
aration of stable set inequalities on a bipartite graph. This in turn corresponds
to the determination of a maximum-weight stable set in a bipartite graph (with
weight x∗

ti,P
for each node (ti, P), i = 1, 2, where y∗, x∗, w∗ is the current LP

solution), which is well-known to be a minimum s, t-cut problem on a directed
network with source s, terminal t, and the other nodes corresponding to the
nodes in the bipartite graph.

3.3 Separation of Constraints (12)

The separation of constraints (12) is done by a sort of “polyhedral brute force”,
given that, for each pair of trains t1, t2, the number of vertices in Qt1,t2 is
“small”. Specifically, Qt1,t2 has |Pt1 ||Pt2 | vertices and lies in R

|Pt1
|+|Pt2

|+1, we
can separate over it by solving the following LP with |Pt1 ||Pt2 | variables and
|Pt1 | + |Pt2 | + 1 constraints.

Recall the form of the vertices of Qt1,t2 given in its definition (10). Let
y∗, x∗, w∗ be the current LP solution. We have that the vector ((x∗

t1,P1
)P1∈Pt1

,

(x∗
t2,P2

)P2∈Pt2
, wt1,t2) belongs to Qt1,t2 if and only if it can be expressed as a con-

vex combination of its vertices, i.e., letting λP1,P2
be the multiplier associated

58 Alberto Caprara, Laura Galli, and Paolo Toth

with vertex (eP1
, eP2

, ct1,P1,t2,P2
), there exists a solution to the linear system:

x∗
t1,P1

=
∑

P2∈Pt2

λP1,P2
, P1 ∈ Pt1 , (13)

x∗
t2,P2

=
∑

P1∈Pt1

λP1,P2
, P2 ∈ Pt2 , (14)

1 =
∑

P1∈Pt1

∑

P2∈Pt2

λP1,P2
, (15)

w∗
t1,t2

=
∑

P1∈Pt1

∑

P2∈Pt2

ct1,P1,t2,P2
λP1,P2

, (16)

λP1,P2
≥ 0, P1 ∈ Pt1 , P2 ∈ Pt2 . (17)

Applying Farkas’ Lemma, and letting αP1
, βP2

, γ′ and ε be the dual variables
associated with constraints (13), (14), (15) and (16), respectively, we have that
the linear system (13)–(17) has a solution if and only if the optimal value of the
following LP is zero:

max
∑

P1∈Pt1

αP1
x∗

t1,P1
+

∑

P2∈Pt2

βP2
x∗

t2,P + γ′ + ε w∗
t1,t2

(18)

subject to

αP1
+ βP2

+ γ′ + ε ct1,P1,t2,P2
≤ 0, P1 ∈ Pt1 , P2 ∈ Pt2 . (19)

In other words, the vector does not belong to Qt1,t2 if and only if the optimal
value of LP (18)–(19) is positive (in fact, infinity). Given that we are interested
in separating constraints of the form (12), it is easy to check that we can replace
“=” by “≥” in constraints (15) and (16), leading to γ′, ε ≤ 0, and then add the
normalization condition ε = −1 and replace γ′ by γ := −γ′ — in this way the
objective function (18) calls exactly for the determination of the constraint (12)
that is violated by the largest amount. Then, for each (t1, t2) ∈ T 2, we separate
constraints (12) by solving LP (18)–(19) after the small changes above.

4 Overall Method and Experimental Results

In this section we describe our solution approach TPP, whose main component
is the solution of the LP relaxation of the ILP model of Sect. 2 by the method
in Sect. 3. Moreover, we illustrate the results obtained for our case study.

Solution of the Train Platforming Problem 59

4.1 A Branch-and-Bound Method

Our overall method is a branch-and-bound method in which branching is aimed
at quickly finding a “good” heuristic solution. This makes it essentially a canon-
ical diving heuristic that, rather than terminating at the end of the “dive”,
continues as a regular branch-and-bound method until optimality is proved (or
the time limit is reached).

Specifically, given the optimal LP solution y∗, x∗, w∗, if x∗ is integer this is
also the optimal ILP solution of the current branch-and-bound problem (defined
as the original ILP with the addition of the branching constraints, see below).
Otherwise, we select the variable xt,P which is not fixed by branching constraints
and whose value x∗

t,P is closest to 1 (possibly it is 1). We generate two problems
by imposing, respectively, the branching constraints xt,P = 1 and xt,P = 0, and
explore the first problem generated before the second, in a depth-first fashion.
(Note that, if x∗

t,P = 1, there is no need to solve again the LP relaxation of
the first problem.) The first backtracking occurs when the we have an integer
solution for a problem for which the branching constraints have fixed xt,P = 1
for the x components with largest LP value encountered. Until this backtracking,
the method is a basic textbook diving heuristic.

The solution of the LP relaxation in the problems after the original root

one is still carried out by pricing and separation, which makes the method a
branch-and-cut-and-price one.

4.2 Implementation Details

Our method was implemented in ANSI C and tested on a PC Pentium 4, 3.2
GHz, with a 2 GB RAM.

For the root problem, we initialize the current LP with the x variables corre-
sponding to the |T | patterns selected by an elementary greedy heuristic, which
considers the trains by decreasing values of the train priority (defined for our
case study, see Sect. 1.3) and, for each train, chooses the pattern that is com-
patible with the patterns already chosen and leads to the smallest increase in
the objective function.

The solution of the current LPs is done by using ILOG CPLEX 9.0. Given
the solution of each current LP, we perform pricing by finding, for each train,
the pattern with most negative reduced cost. If any patterns are found, we add
them to the current LP and solve it by primal simplex. Otherwise, i.e., if there
is no pattern with negative reduced cost, we separate constraints (7) by solving
the minimum s, t-cut problem by an implementation of the method of [5], for
each pair (t1, t2) ∈ T 2. If any violated constraints (7) are found, we add them to
the current LP and solve it by dual simplex. Otherwise, we separate constraints
(12) by solving the LP defined in Sect. 3.3, again for each pair (t1, t2) ∈ T 2 and
by using ILOG CPLEX 9.0. If any violated constraints (12) are found, we add
them to the current LP and solve it by dual simplex. Otherwise, the LP for the
current branch-and-bound problem is solved.

60 Alberto Caprara, Laura Galli, and Paolo Toth

4.3 Experimental Results for the Case Study

Table 1. Instance characteristics

instance station name |T | |B| |D| |R| # inc. gmax

d

PA C.LE. Palermo Centrale 204 11 4 64 1182 3
GE P.PR. Genova Piazza Principe 127 10 4 174 7154 4
BA C.LE. Bari Centrale 237 14 5 89 1996 4

Table 1 summarizes the characteristics of the instances used in our case
study, reporting the instance name, the full name of the corresponding station,
the numbers of trains (|T |), platforms (|B|), directions (|D|), and paths (|R|),
the number of pairs of incompatible paths (# inc.), and the maximum travel
time (gmax

d := maxd∈D gd).

Table 2. Results

instance π HEUR LP BEST time

PA C.LE. 0 749012 334038 449044 200
PA C.LE. 1 410139 10159 120155 230
PA C.LE. 2 380182 10159 10172 339

GE P.PR. 0 745000 306020 306020* 115
GE P.PR. 1 705005 147069 147079 281
GE P.PR. 2 458065 8116 8116* 4617
GE P.PR. 3 336340 8116 8116* 13647

BA C.LE. 0 1576300 653264 808255 350
BA C.LE. 1 1398330 373486 438685 262
BA C.LE. 2 1197485 128896 148867 359
BA C.LE. 3 838235 8885 8924 270

In Table 2 we compare the solution obtained by a (computationally very
fast) greedy randomized heuristic algorithm currently used by Rete Ferroviaria
Italiana with the the best integer solution produced by our approch with a time
limit of 24 hours. For the instances considered, we tested various values of the
dynamic threshold π, whose meaning is illustrated in Sect. 1.3. In the table, we
report the value of π, the solution value found by the heuristic currently used
(HEUR), the optimal value of the LP relaxation at the root problem (LP), the
best heuristic solution value found by our method (BEST) — a “*” means that
the solution is optimal, and the computing time in seconds at which this solution
was found (time).

The table shows that in all cases our approach was able to improve signifi-
cantly over the heuristic solution, in most cases finding the best solution after

Solution of the Train Platforming Problem 61

a fairly small running time (some minutes). In 3 out of 11 cases the solution is
provably optimal, in other 3 cases the relative gap between the solution value
found and the LP lower bound is less than 1%, whereas in the remaining 5 cases
the gap is not negligible, ranging from about 15% to the huge gap for PA C.LE.
with π = 1, for which we do not know if the dummy platform that is used by
the best solution found is really necessary.

The main practical impact of our approach, if applied in place of the simple
heuristic currently in use, is to extend the current “capacity” of the stations
considered, using a smaller number of platforms for the current trains and then
allowing new trains to stop at the station (if the capacity along the lines associ-
ated with the directions allows this.)

Future experiments will be devoted to testing our method on the largest
stations of the Italian railway network, such as Milano Centrale.

Acknowledgments

This work was partially supported by the EU Project ARRIVAL.

References

[1] Billionnet A.: Using Integer Programming to Solve the Train Platforming Problem.
Transportation Science 37 (2003) 213-222

[2] Caprara A., Kroon L., Monaci M., Peeters M., Toth P.: Passenger Railway Opti-
mization. in Barnhart C., Laporte G. (eds.): Transportation, Handbooks in Oper-
ations Research and Management Science 14 Elsevier (2007) 129-187

[3] Carey M., Carville S. : Sceduling and Platforming Trains at Busy Complex Stations.
Transportation Research 37 (2003) 195-224

[4] De Luca Cardillo D., Mione N. : k L-List T Colouring of Graphs. European Journal
of Operational Research 106 (1999) 160-164

[5] Goldberg A.V., Tarjan R.E.: A New Approach to the Maximum Flow Problem.
Proceedings of the 18th ACM Symposium on the Theory of Computing (1986)

[6] Kroon L.G., Romeijn H.E., Zwaneveld P.J.: Routing Trains Through Railway Sta-
tions: Complexity Issues. European Journal of Operations Research 98 (1997) 485-
498.

[7] Zwaneveld P.J.: Railway Planning and Allocation of Passenge Lines. Ph.D. Thesis,
Rotterdam School of Management (1997).

[8] Zwaneveld P.J., Kroon L.G., van Hoesel C.P.M.: Routing Trains through a Railway
Station based on a Node Packing Model. European Journal of Operations Research
128 (2001) 14-33.

[9] Zwaneveld P.J., Kroon L.G., Romeijn H.E., Salomon M., Dauzere-Peres S., van
Hoesel C.P.M., Ambergen H.W.: Routing Trains Through Railway Stations: Model
Formulation and Algorithm. Transportation Science 30 (1996) 181-194.

Models for Railway Track Allocation∗

Ralf Borndörfer and Thomas Schlechte

Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB),
Takustr. 7, 14195 Berlin-Dahlem, Germany,
Email {borndoerfer, schlechte}@zib.de

Abstract. The optimal track allocation problem (OPTRA) is to find,
in a given railway network, a conflict free set of train routes of maximum
value. We study two types of integer programming formulations for this
problem: a standard formulation that models block conflicts in terms of
packing constraints, and a novel formulation of the ‘extended’ type that
is based on additional ‘configuration’ variables. The packing constraints
in the standard formulation stem from an interval graph and can there-
fore be separated in polynomial time. It follows that the LP-relaxation
of a strong version of this model, including all clique inequalities from
block conflicts, can be solved in polynomial time. We prove that the
LP-relaxation of the extended formulation can also be solved in poly-
nomial time, and that it produces the same LP-bound. Albeit the two
formulations are in this sense equivalent, the extended formulation has
advantages from a computational point of view. It features a constant
number of rows and is amenable to standard column generation tech-
niques. Results of an empirical model comparison on mesoscopic data
for the Hanover-Fulda-Kassel region of the German long distance rail-
way network involving up to 570 trains are reported.

Key words: track allocation, train timetabling, integer programming, column
generation

1 Introduction

Routing trains in a conflict-free way through a network of tracks is one of the
basic and at the same time most difficult questions in railway scheduling. The
need to coordinate the use of shared infrastructure and the complex operation of
this infrastructure using switches and signals impose a great variety of technical
constraints, that give rise to a complex problem in which many factors have to
be considered simultaneously, see Huisman et al. [2005] and Caprara et al. [2007]
for comprehensive surveys.

We consider in this paper the track allocation problem to simultaneously
determine a set of routes for individual trains through a network. These routes
have to be conflict-free in the sense that the headway between two trains on the

∗This work was funded by the BMWi, project Trassenbörse, grant 19M4031A.

ATMOS 2007 (p.62-78)
7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems
http://drops.dagstuhl.de/opus/volltexte/2007/1170

Models for Railway Track Allocation 63

same track must be large enough for safety reasons. Degrees of freedom include
the implementation or omission of a route, the choice of a path through the
network, and adjustments of departure and arrival times. The goal is to maximize
a sum of proceedings associated with each scheduled route. The problem comes
up in an auctiong approach to railway track capacity, see Borndörfer et al. [2006].

The track allocation problem is equivalent to the train timetabling problem,
see Brännlund et al. [1998], Caprara et al. [2001], and Caprara et al. [2002]. The
solution of a track allocation problem defines a timetable, which, however, is in
general not periodic. This is a big difference to timetabling by periodic event

scheduling, see the thesis of Liebchen [2006] for an extensive survey.

The track allocation problem is further related to the train platforming prob-

lem, which also deals with conflict-free routings in stations, but adds parking
in sidings, see Kroon et al. [2007]. This problem is usually studied at a much
finer level of detail with respect to the infrastructure than the track allocation
problem, which is generally considered on macroscopic networks.

Among the earliest theoretical optimization approaches to track allocation
problems are integer programming formulations that model train routes as paths
in appropriate networks. As early as 1956, Charnes & Miller [1956] propose a
set covering formulation, in which ‘crew and engine packages’ are assigned to
circular routes in a railway network; the model is solved with what we would
call today a column generation procedure.

Set packing versions of this formulation, which can rule out block conflicts
between train routes, have been proposed and studied by a number of authors
including Brännlund et al. [1998], Caprara et al. [2001], Caprara et al. [2002],
Borndörfer et al. [2006], Cacchiani et al. [2007] and Cacchiani [2007]. The main
difficulty with this type of formulation is that it contains a very large number of
constraints which makes these models computationally hard, if not intractable,
beyond a certain size.

We propose in this article a novel formulation for train routing in an at-
tempt to resolve this difficulty. Our formulation is of the ‘extended’ type; it
rules out conflicts between trains using additional ‘configuration’ variables. It
can be shown that such a model is equivalent to a strong version of the standard
packing model (including all clique constraints from conflicts) with respect to
both quality and computational complexity of the LP-bound. From a practical
point of view, the extended model has the advantage that it is amenable to stan-
dard column generation techniques and therefore well suited to solve large-scale
problems.

The article is organized as follows. Section 2 gives a formal statement of
the optimal track allocation problem. For the sake of clarity of exposition, we
concentrate here on a basic version that considers a very simple type of conflicts
between trains that we call ‘block conflicts’. Packing IP-formulations for the
track allocation problem are studied in Section 3.1. We show that block conflicts
arise from an interval graph, that cliques from block conflicts can be separated
in polynomial time, and that the LP-relaxation of a packing model including all
such clique constraints can be solved in polynomial time. Section 3.2 introduces

64 Ralf Borndörfer and Thomas Schlechte

our extended formulation. We show that the pricing problem for configuration
variables can be solved by computing a longest path in an appropriately defined
acyclic digraph, and that the LP-relaxation of the extended model can also be
solved in polynomial time. Section 3.3 compares both models analytically; it
turns out that they produce the same LP-bound. The final Section 4 contains a
computational model comparison on data for the Hanover-Kassel-Fulda part of
the long distance network of the German railway company Deutsche Bahn AG
with up to 570 trains.

2 The Optimal Track Allocation Problem

The optimal track allocation problem, also known as the train routing problem or
the train timetabling problem, can be formally described as follows. We are given
a set I of requests to route trains in a train routing digraph D = (V, A); we allow
that D contains multiple arcs between two nodes. D is based on an infrastructure

digraph G = (S, J), whose nodes and arcs model stations and tracks, respectively.
The train routing digraph is a time expansion of the infrastructure digraph, i.e.,
the nodes of D model possible departures and arrivals of trains at stations
at certain points in time, the arcs possible timetabled trips of specific trains.
Formally, we associate with each node v ∈ V a station s(v) ∈ S and a discrete
time t(v) ∈ Z. An arc uv ∈ A models a trip on track s(u)s(v) ∈ J for a
train i(uv) ∈ I, which departs at time t(u) and arrives at time t(v); we assume
t(u) < t(v) for all trips uv ∈ A such that D is acyclic. We associate with train
i ∈ I the trips Ai := {a ∈ A : i(a) = i} ⊆ A that this train can run and the
individual train routing digraph Di := (V, Ai) ⊆ D, which we assume to contain
two special (if need be artificially constructed) nodes si and ti, called source and
sink, that represent the departure and the arrival of train i; we therefore assume
δ−i (si) = δ+

i (ti) = ∅ (where δ−(v) denotes the set of arcs entering v ∈ V , δ+(v)
the set of arcs leaving v ∈ V , and δ±i (U) := δ±(U) ∩ Ai, ∀U ⊆ V), and denote
Ui := V \ {si, ti}. A route for train i is an siti-path in Di. Denote the set of
all routes for train i by Pi, and the set of all possible routes by P (let P be
the disjoint union of the sets Pi, i.e., we distinguish identical routes for different
trains). Figure 1 illustrates this construction.

We say that an arc uv ∈ A occupies or blocks its associated track s(u)s(v) for
the time interval [t(u), t(v)−1], and that there is a block conflict between two arcs
u1v1 and u2v2 on the same track if their track occupation time intervals overlap,

symbol description symbol description

S stations G = (S, J) infrastructure digraph
J tracks D = (V,A) train routing digraph
I trains Di = (V,Ai) individual routing digraph
w arc weights si, ti source, sink of train i

Table 1: Notation for the optimal track allocation problem (OPTRA).

Models for Railway Track Allocation 65

Fig. 1: Infrastructure network (left), and train routing digraph (right); individual train
routing digraphs bear different colors.

i.e., if s(u1)s(v1) = s(u2)s(v2) and [t(u1), t(v1)−1]∩[t(u2), t(v2)−1] 6= ∅. There is
a block conflict between two train routes if any of their arcs have a block conflict.
A timetable or schedule is a set X ⊆ P of conflict-free routes, at most one for
each train request, i.e., |X ∩ Pi| ≤ 1, i ∈ I. Assigning weights wuv ∈ Z to the
arcs uv ∈ A (modeling ‘profits’ for individual trips), the weight of route p ∈ P is
wp :=

∑

a∈p wa, and the weight of a schedule X ⊆ P is w(X) :=
∑

p∈X wp. The
optimal track allocation problem (OPTRA) is to find a schedule of maximum
weight.

Caprara et al. [2002] have shown that the stable set problem can be reduced
to OPTRA, such that the problem is NP-hard. Indeed, OPTRA can be seen as
a problem to find a maximum weight packing (with respect to block conflicts)
of train routes in a time-expanded digraph. This framework is fairly general, see
the articles of Caprara et al. [2001], Caprara et al. [2002], Cacchiani et al. [2007],
Cacchiani [2007] and Borndörfer et al. [2006] for comprehensive discussions how
such a model can be used to deal with various kinds of technical constraints.

There is, however, one point where our exposition resorts to a genuine simpli-
fication, namely, by considering only block conflicts arising from time overlaps.
Such a model obviously ignores important aspects such as different block occu-
pation times for the head and the tail of a train, safety margins to open and
close a block after a train has left a track and before it can enter, different
driving times of trains (a fast train following a slow train needs a larger safety
margin than a slow train following a fast train) etc. Such considerations give
rise to headway constraints that guarantee a minimal safety distance in time
between two trains on the same track. Such constraints produce more compli-
cated arc conflicts. Namely the ordered pair of arcs u1v1 and u2v2 on the same
track are in conflict, if they fall short of some minimal headway τu1v1,u2v2

, i.e.,
t(u2) − t(u1) < τu1v1,u2v2

, see Lukac [2004] for a discussion of such a model

66 Ralf Borndörfer and Thomas Schlechte

involving ‘quadrangle-linear headway matrices’. One can show that most of the
results of the following sections carry over to more general situations of this type.
We do, however, not give the details here, because they would result in a more
technical and complicated discussion.

3 Integer Programming Models

3.1 Packing Models

The standard formulation for the track allocation problem models train routes
as a multi-commodity flow and rules out block conflicts using additional packing
constraints. We need the following additional terminology. Let B = {{a, b} ∈
2A : a 6= b have a block conflict} be the set of all block conflicts between any two
arcs, H = (A, B) the associated (undirected) (block) conflict graph (note that the
nodes of H are the arcs of the train routing digraph D), and C = C(H) be the
set of all (inclusion) maximal cliques in H; Figure 2 illustrates the construction
of a block conflict graph for a single track.

Fig. 2: Block conflicts on a single track: trips for a slow (blue) and a fast (red) train
(left), a conflict-free configuration of four trips on this track (middle), and the block
conflict graph associated with the track (right).

Models for Railway Track Allocation 67

The packing model comes in two versions, one with 0/1 arc variables xa,
a ∈ A, for the use of trip a in a route, and the other with 0/1 path variables
xp, p ∈ P , for the use of route p. The resulting formulations, we call them arc

packing problem (APP) and path packing problem (PPP), read as follows:

(APP)max
∑

a∈A

waxa

(i)
∑

a∈δ
+

i
(v)

xa −
∑

a∈δ
−

i
(v)

xa = 0 ∀i ∈ I, v ∈ Wi

(ii)
∑

a∈δ
+

i
(si)

xa ≤ 1 ∀i ∈ I

(iii)
∑

a∈c

xa ≤ 1 ∀c ∈ C

(iv) xa ≥ 0 ∀a ∈ A

(v) xa ∈ Z ∀a ∈ A

(PPP)max
∑

p∈P

wpxp

(ii)
∑

p∈Pi

xp ≤ 1 ∀i ∈ I

(iii)
∑

p∩c6=∅

xp ≤ 1 ∀c ∈ C

(iv) xp ≥ 0 ∀p ∈ P

(v) xp ∈ Z ∀p ∈ P.

Equalities (APP) (i) are flow conservation constraints ; they route train i on
siti-paths; note that Di is acyclic such that no cycles can come up. Constraints
(APP)/(PPP) (ii) ensure a train is routed at most once. The clique inequalities

(APP)/(PPP) (iii) rule out block conflicts. Finally, (APP)/(PPP) (iv) and (v)
are the nonnegativity and the integrality constraints. Note that all constraints
together imply that all variables are 0/1.

The formulations (APP) and (PPP) are strong in the sense that they include
all clique constraints from block conflicts. The literature usually considers models
that replace (APP)/(PPP) (iii) by weaker constraints

(iii′) xa + xb ≤ 1 ∀ab ∈ B (iii′)
∑

p∩{a,b}6=∅

xp ≤ 1 ∀ab ∈ B

that rule out block conflicts on pairs of arcs; let us denote these variants by
(APP

′) and (PPP
′). Here are some basic properties of the packing models. By

definition:

Observation 1 The block conflict graph H = (A, B) that is associated with an

optimal track allocation problem is an interval graph.

The cliques in the conflict graph are collections of compact real intervals. By
Helly’s Theorem, see Helly [1923], the intervals of each such clique c ∈ C contains
a common point t(c), and it is easy to see that we can assume t(c) ∈ t(V) =
{t(v) : v ∈ V }. It follows that the block conflict graph H has O(V) inclusion
maximal cliques, which can be enumerated in polynomial time, and that the
packing formulations of the optimal track allocation problem have the sizes listed
in Table 2; here, O(I ×V) + O(I)+ O(C) = O(A), and we write O(A) = O(|A|)
etc.

The LP-relaxation of (APP) can then be solved in polynomial time. To
obtain the same result for (PPP), consider a column generation approach. Note

68 Ralf Borndörfer and Thomas Schlechte

formulation variables non-trivial constraints

APP O(A) O(A)
PPP O(P) O(V)

APP
′ O(A) O(A2)

PPP
′ O(P) O(A2)

Table 2: Sizes of packing formulation for the track allocation problem.

that no two arcs in a route are in conflict, i.e., p ∩ c ≤ 1 for all routes p ∈ P

and all cliques c ∈ C. Introducing dual variables γi, i ∈ I, for the constraints
(PPP) (ii), and ηc, c ∈ C, for the constraints (PPP) (iii), the pricing problem
for a route p ∈ Pi, for some train i ∈ I, is

∃ p ∈ Pi : γi +
∑

p∩c6=∅

ηc < wp ⇐⇒
∑

a∈p

(wa −
∑

c∋a

ηc) > γi.

This is a longest siti-path problem in the acyclic digraph Di = (V, Ai) w.r.t. arc
weights wa −

∑

a∈c ηc; this problem can be solved in polynomial time (in fact, in
linear time). By the polynomial equivalence of separation and optimization, see
Grötschel et al. [1988], here applied to the dual of (PPP), i.e., the polynomial
equivalence of pricing and optimization, we obtain the desired result.

Theorem 2. The LP-relaxations associated with the strong arc packing formu-

lation APP and the strong path packing formulation PPP of the optimal track

allocation problem can be solved in polynomial time.

3.2 Extended Models

We propose in this section an alternative formulation for the optimal track allo-
cation problem that guarantees a conflict free routing by allowing only feasible
route combinations, and not by excluding conflicts. The formulation is based on
the concept of feasible arc configurations, i.e., sets of arcs on a track without
block conflicts. Formally, we define a configuration for some track j = xy ∈ J as
a set of arcs q ⊆ Aj := {uv ∈ A : s(u)s(v) = xy} such that

|q ∩ c| ≤ 1 ∀c ∈ C.

Denote by Qj the set of all such configurations for track j, j ∈ J , and by Q the
set of all such configurations. The idea of the extended model is to introduce
0/1 variables yq for choosing a configuration on each track and to force a conflict
free routing of trains through these configurations by means of inequalities

∑

p∋a

xp ≤
∑

q∋a

yq ∀a ∈ A.

Instead of directly writing down a corresponding model, however, we propose
a version that will model configurations as paths in a certain acyclic routing

Models for Railway Track Allocation 69

digraph. The advantages of such a formulation will become clear in a minute.
The construction extends the routing digraph D = (V, A) to a larger digraph
D = (V , A) by adding nodes and arcs as illustrated in Figure 3. The details are as
follows. Consider a track xy ∈ J and the trips Axy = {uv ∈ A : s(u)s(v) = xy}

Fig. 3: Configuration routing digraph for a single track: train routing digraph (left), con-
figuration (half-left), configuration routing digraph (half-right), and the corresponding
path (right).

on this track. Denote by Lxy := {u : uv ∈ Axy} and Rxy := {v : uv ∈ Axy}
the associated set of departure and arrival nodes. Construct two new, additional
nodes sxy and txy by setting s(sxy) = y, t(sxy) := min t(Rxy)−1, and s(txy) = x,
t(txy) := max t(Rxy) + 1, i.e., sxy marks an artificial source node at station y

before the departure of the earliest trip on xy, and txy marks an artificial sink
node at station x after the arrival of the latest trip on xy. Let Lxy := Lxy∪{txy}
and Rxy := Rxy ∪ {sxy}; note that all arcs in Axy go from Lxy to Rxy (actually
from Lxy to Rxy). Now let Axy := {vu : t(v) ≤ t(u), v ∈ Rst, u ∈ Lst} be a set of

70 Ralf Borndörfer and Thomas Schlechte

‘return’ arcs that go in the opposite direction; they connect the arrival of a trip on
xy (or node sxy) with all possible follow-on trips (or node txy) on that track. It is
easy to see that the configuration routing digraph Dxy := (Lxy ∪Rxy, Axy ∪Axy)
is bipartite and acyclic, and that sxytxy-paths a1, a1, . . . , ak−1, ak in Dxy and
configurations a1, . . . , ak in Qst are in 1-1 correspondence. Let us formally denote
this isomorphism by a mapping

·̄ : Qj → Qj , q 7→ q, j ∈ J,

where Qj denotes the set of all sjtj-paths in Dj ; however, we will henceforth

identify paths q ∈ Qj and configurations q ∈ Qj . Let us also denote by Uj :=

Lj ∪ Rj the structural nodes of Dj , and by D := (V , A) := (V ∪ {sj , tj : j ∈
J}, A∪

⋃

j∈J Aj) =
⋃

j∈J Dj the extended train routing digraph, i.e., the routing
digraph D extended by the artificial nodes and return arcs described above, and
δ±j (W) := δ±(W) ∩ Aj ∪ Aj , ∀W ⊆ V .

The extended model also comes in two versions, one using new 0/1 arc vari-
ables ya, a ∈ A, for the use of arc a in a configuration-path, and the other with
0/1 path variables yq, q ∈ Q, for the use of configuration-path q ∈ Q. The re-
sulting formulations, which we call arc configuration problem (ACP) and path

configuration problem (PCP), read as follows:

(ACP) max
∑

a∈A

waxa

(i)
∑

a∈δ
+

i
(v)

xa −
∑

a∈δ
−

i
(v)

xa = 0 ∀i ∈ I, v ∈ Wi

(ii)
∑

a∈δ
+

i
(si)

xa ≤ 1 ∀i ∈ I

(iii)
∑

a∈δ
+

j
(v)

ya −
∑

a∈δ
−

j
(v)

ya = 0 ∀j ∈ J, v ∈ Uj

(iv)
∑

a∈δ
+

j
(sj)

ya ≤ 1 ∀j ∈ J

(v) xa − ya ≤ 0 ∀a ∈ A

(vi) xa ≥ 0 ∀a ∈ A

(vii) ya ≥ 0 ∀a ∈ A

(viii) xa ∈ Z ∀a ∈ A

(ix) ya ∈ Z ∀a ∈ A

(PCP) max
∑

p∈P

wpxp

(ii)
∑

p∈Pi

xp ≤ 1 ∀i ∈ I

(iv)
∑

q∈Qj

yq ≤ 1 ∀j ∈ J

(v)
∑

p∋a

xp −
∑

q∋a

yq ≤ 0 ∀a ∈ A

(vi) xp ≥ 0 ∀p ∈ P

(vii) yq ≥ 0 ∀q ∈ Q

(viii) xp ∈ Z ∀p ∈ P

(ix) yq ∈ Z ∀q ∈ Q.

Equalities (ACP) (i) and (iii) are flow conservation constraints ; they route
trains i on siti-paths and configurations j on sjtj-paths; note that both Di and
Dj are acyclic such that no cycles can come up. Constraints (ACP)/(PCP) (ii)
and (iv) ensure a train is routed at most once and that at most one configura-
tion can be chosen for each track. The coupling constraints (ACP)/(PCP) (v)
synchronize routes and configurations. Finally, (APP)/(PPP) (iv) and (v) are
the nonnegativity and the integrality constraints. Note that, again, all variables
are implicitly 0/1.

Models for Railway Track Allocation 71

formulation variables non-trivial constraints

ACP O(A) O(A)
PCP O(P) + O(Q) O(I) + O(J)

Table 3: Sizes of packing formulation for the track allocation problem.

The extended models have the sizes listed in Table 3. Then the LP-relaxation
of (ACP) can be solved in polynomial time. For (PCP), consider the pricing
problems for routes and configurations. With dual variables γi, i ∈ I, πj , j ∈ J ,
and λa, a ∈ A, for constraints (PCP) (ii), (iv), and (v), respectively, the pricing
problem for a route p ∈ Pi for train i ∈ I is

∃ p ∈ Pi : γi +
∑

a∈p

λa < wp ⇐⇒
∑

a∈p

(wa − λa) > γi.

This is the same as finding a longest siti-path in Di w.r.t. arc weights wa−λa;
as Di is acyclic, this problem can be solved in polynomial time. The pricing
problem for a configuration q ∈ Qj for track j ∈ J is

∃ q ∈ Qj : πj −
∑

a∈q

λa < 0 ⇐⇒
∑

a∈q

λa > πj .

Using arc weights λa, a ∈ Aj , and 0, a ∈ Aj , pricing configurations in
Qj is the same as finding longest sjtj-paths in the acyclic digraph Dj . This is
polynomial. We conclude:

Theorem 3. The LP-relaxations associated with the arc configuration formu-

lation ACP and the path configuration formulation PCP of the optimal track

allocation problem can be solved in polynomial time.

Let us quickly state in this pricing context a simple bound on the LP-value
of the path configuration formulation PCP that is useful in practice to overcome
tailing-off effects in a column generation procedure. Namely, computing the path
lengths maxp∈Pi

∑

a∈p(wa − λa) and maxq∈Qj

∑

a∈q λa yield the following LP-
bound β = β(γ, π, λ).

Lemma 1. Let γ, π, λ ≥ 0 be dual variables1 for PCP and vLP(PCP) the opti-

mum objective value of the LP-relaxation of PCP. Define

ηi := max
p∈Pi

∑

a∈p

(wa − λa) − γi, ∀i ∈ I,

θj := max
q∈Qj

∑

a∈q

λa − πj , ∀j ∈ J,

β(γ, π, λ) :=
∑

i∈I

max{γi + ηi, 0} +
∑

j∈J

max{πj + θj , 0}.

1Note that these will be infeasible during a column generation.

72 Ralf Borndörfer and Thomas Schlechte

Then

vLP(PCP) ≤ β(γ, π, λ).

Proof.

• γi + ηi ≥
∑

a∈p

(wa − λa)⇒ γi + ηi +
∑

a∈p

λa ≥ wp ∀i ∈ I, p ∈ Pi.

• πj + θj ≥
∑

a∈q

λa ⇒πj + θj −
∑

a∈q

λa ≥ 0 ∀j ∈ J, q ∈ Qj .

• (max{γ + η, 0}, max{π + θ, 0}, λ) (the maximum taken component-wise) is
dual feasible for the LP-relaxation of PCP.

3.3 Model Comparison

We finally compare the two types of models that we have stated. Starting points
are the LP-relaxations of the configuration formulations and those of the packing
formulations. As the LP-relaxations of APP and PPP, and of ACP and PCP

are obviously equivalent via flow decomposition into paths, it suffices to compare,
say, APP and ACP.

Lemma 2. Let

PLP(APP) := {x ∈ RA : (APP) (i)–(iv)}

PLP(ACP) := {(x, y) ∈ RA×A : (ACP) (i)–(vii)}

πx : RA×A → RA, (x, y) 7→ x

be the polyhedra associated with the LP-relaxations of APP and ACP, respec-

tively, and a mapping that produces a projection onto the coordinates of the train

routing variables. Then

π(PLP(ACP)) = PLP(APP).

Proof. Let Cj := {c ∈ C : c ⊆ Aj}, j ∈ J , be the set of block conflict cliques
associated with track j. Consider the polyhedra

P := {x ∈ RA : (APP) (i), (ii), (vi)},

P j := {x ∈ RAj

+ :
∑

a∈c

xa ≤ 1 ∀c ∈ Cj}, j ∈ J,

Qj := {y ∈ RAj×Aj

+ :
∑

a∈δ
+

j
(v)

ya =
∑

a∈δ
−

j
(v)

ya, ∀v ∈ Uj ,
∑

a∈δ
+

j
(sj)

ya ≤ 1}, j ∈ J,

Rj := {x ∈ RAj

+ : ∃y ∈ Qj : x ≤ y}, j ∈ J.

P j is integer, because Cj is the family of all maximal cliques of an interval
graph, which is perfect; Qj is integer, because it is the path polytope associated
with an acyclic digraph; finally, Rj is integer, because it is the anti-dominant of

Models for Railway Track Allocation 73

an integer polytope. Consider integer points, it is easy to see that P j and Rj

coincide, i.e., P j = Rj , j ∈ J . It follows

PLP(APP) = P ∩
⋂

j∈J

P j = P ∩
⋂

j∈J

Rj = π(PLP(ACP)).

This immediately implies our main Theorem.

Theorem 4. Denote by v(P) and vLP(P) the optimal value of problem P and

its LP-relaxation, respectively, P ∈ {APP,PPP,ACP,PCP}. Then:

• vLP(APP) = vLP(PPP) = vLP(ACP) = vLP(PCP).
• v(APP) = v(PPP) = v(ACP) = v(PCP).

4 Computational Results

We have implemented model generators for the static formulations APP
′ and

ACP, and a column generation algorithm for model PCP. This choice is mo-
tivated as follows. APP

′ is the dominant model in the literature, which we
want to benchmark. APP and ACP are equivalent models that improve APP

′,
both arc-based. ACP is easy to implement. We didn’t implement the strong
packing model APP, and also not PPP, because these models are not robust
w.r.t. changes in the problem structure, namely, their simplicity depends on
the particular clique structure of interval graphs. If more complex constraints
are considered, these models can become hard to adapt. In fact, the instances
that we are going to consider involve headway matrices that give rise to more
numerous and more complex clique structures, such that an implementation of
suitably extended models APP and PPP would have been much more difficult
than an implementation of the basic versions that we have considered in the
theoretical part of this paper. On the other hand, headway constraints are easy
to implement in a configuration model, because they specify possible follow-on
trips on a track, which is precisely what a configuration does. Formulation PCP

is in this sense robust. It is also well suited for column generation to deal with
large instances. In our experiments, we consider the Hanover-Kassel-Fulda area
of the German long-distance railway network. All our instances are based on
the mesoscopic infrastructure network that is illustrated in Figure 1. It includes
data for 37 stations, 120 tracks and 6 different train types (ICE, IC, RE, RB,
S, ICG). Because of various possible turnover and driving times for each train
type, this produces an infrastructure digraph with 146 nodes, 1480 arcs, and
4320 headway constraints.

Based on the 2002 timetable of Deutsche Bahn AG, we constructed three
scenarios that we denote by 146, 285, and 570. The name of the instance gives
the number of train requests, which consist of long distance trains (IC, ICE),
synchronized regional and suburban passenger trains (S, RE, RB), and freight
trains (ICG). The main objective is to maximize the total number of trains in
the schedule; on a secondary level, we slightly penalize deviations from certain

74 Ralf Borndörfer and Thomas Schlechte

desired departure and arrival times. Flexibility to reroute trains is controlled by
departure and arrival time windows of length at most τ , where τ is a parameter.
Increasing τ from 0 to 30 minutes in steps of 2 minutes increases flexibility, but
also produces larger train routing digraphs and IPs. After some preprocessing
(eliminating arcs and nodes which cannot be part of a feasible train route), the
resulting 48 instances have the sizes listed in Table 4. In this table, column τ

gives the length of the departure and arrival time, columns #nodes and #arcs

give the sizes |V | and |A| of the preprocessed train routing digraph D associated
with the respective instance.

These 48 instances were solved as follows. The root LP-relaxations of the
static models APP

′ and ACP were solved with the dual simplex method of
CPLEX 10.0, see CPLEX [2006]. Then, CPLEXMIP was called for a maximum
of at most 1h of running time or 10.000 nodes2. Model PCP is solved by col-
umn generation, with a limit of at most 100 iterations. The reduced master-LPs
were solved with the barrier or the dual simplex method of CPLEX 10.0, de-
pending on the column generation progress. Then, a heuristic integer solution
is constructed, namely, by simply computing an optimal integer solution to the
last reduced master-LP, again using CPLEXMIP. All computations were made
single threaded on a Dell Precision 650 PC with 2GB of main memory and a
dual Intel Xeon 3.8 GHz CPU running SUSE Linux 10.1.

Figures 4, 5, and 6 summarize our results on the three scenarios 146, 285,
and 570, increasing the flexibility from 0 to 30 minutes per train in steps of 2
minutes. It turns out that, in fact, model APP

′ produces a noticeably weaker
LP-bound (upper bound) than the bounds from the other two models, which are
more or less identical. This shows that it is possible to solve the LP-relaxation of
model PCP by column generation almost to proven optimality. Figure 7 provides
a closer look at the master-LP associated with model PCP. Indeed, the upper
bound β(γ, π, λ) and the value v(RPLP) of the reduced master-LP converge in
the column generation process.

With increasing flexibility the models become larger, and at some point the
LPs could not be solved any more, because we ran out of memory; the vertical
bars in Figures 4, 5, and 6 indicate the largest scenarios that could be solved.
O(A2) constraints kill model APP

′ early. Model ACP reaches somewhat farther.
However, the dynamic model PCP is the one that is able to solve the largest
scenarios. It is, in our opinion, also the model that offers the biggest potential
for further algorithmic improvements to deal with even larger instances; we are
currently working in this direction.

The best integral solutions for our instances were always provided by model
ACP. This is no surprise, because this model outperforms APP

′ in terms of
the LP-bound, while the simple IP heuristic that we have applied to PCP is
obviously improvable. Tables 5 and 6 list the details for the largest scenario 570
for models APP

′ and ACP. In addition to the size of the respective LPs we

2That means that we do not always report optimal integer solutions; however, we
remark that all instances of scenario 146, of scenario 285 up to τ = 24, and of scenario
570 up to τ = 4 can be solved to proven optimality by running CPLEX long enough.

Models for Railway Track Allocation 75

2 6 10 14 18 22 26 30
8.2

8.4

8.6

8.8

9

9.2

9.4

9.6
x 10

4

flexibility τ

o
b

je
ct

iv
e

va
lu

e

scenarios 146

v
LP

(APP’)

v
IP

(APP’)

v
LP

(ACP)

v
IP

(ACP)

v
LP

(PCP)

v
IP

(PCP)

Fig. 4: Solving scenario 146 with models
APP

′, ACP, and PCP.

2 6 10 14 18 22 26 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

flexibility τ

o
b

je
ct

iv
e

va
lu

e

scenarios 285

v
LP

(APP’)

v
IP

(APP’)

v
LP

(ACP)

v
IP

(ACP)

v
LP

(PCP)

v
IP

(PCP)

Fig. 5: Solving scenario 285 with models
APP

′, ACP, and PCP.

0 2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5 scenarios 570

flexibility τ

o
b

je
ct

iv
e

va
lu

e

v
LP

(APP’)

v
IP

(APP’)

v
LP

(ACP)

v
IP

(ACP)

v
LP

(PCP)

v
IP

(PCP)

β(RPLP)

Fig. 6: Solving scenario 570 with models
APP

′, ACP, and PCP.

5 10 15 20 25 30 35 40 45 50
0.85

0.9

0.95

1

1.05

1.1

1.15
x 10

5

column generation iterations

o
b

je
ct

iv
e

va
lu

e

scenario 146, τ =6

β(γ, π, λ)
v(RPLP)

Fig. 7: Generating columns in model PCP

for scenario 146.

report the LP and IP values, the overall time t∑, and the time tIP spent on

finding integral solutions, both in seconds. The dashes in the tables indicate the
inability to compute a solution due to an out of memory error. Table 7 gives
similar results for model PCP. Here, the LP sizes refer to the final restricted
master-LP, and instead of LP and IP values, we list the lower and upper LP-
bounds v(RPLP); instead of IP time, we give the number #CGiter of column
generation iterations. Again, the dashes in the tables report out of memory er-
rors. Altogether, Tables 5, 6, and 7 give an impression of the current performance
and the limits of our implementations.

Acknowledgement. We thank three anonymous referees for their valuable com-
ments that helped to improve the quality and the exposition of the material in
this article.

76 Ralf Borndörfer and Thomas Schlechte

Table 4: Test scenarios.

146 285 570
τ #nodes #arcs #nodes #arcs #nodes #arcs

0 2877 3297 362 422 1284 1412
2 4953 6414 1501 1846 5858 6894
4 7428 10131 3262 4284 10912 13334
6 9766 13673 5243 7140 19484 25220
8 12143 17300 8070 11289 28038 37128

10 15617 22476 11126 15840 38380 51944
12 19574 28632 15226 22014 50768 70160
14 24142 35886 19970 29325 65056 91648
16 28877 43673 26201 38985 80376 115212
18 33694 51799 32599 49137 97954 142780
20 38953 60707 39854 60920 116886 173516
22 44072 69636 47486 73473 138512 209040
24 50287 80556 56502 88475 161590 247072
26 56156 91019 65579 103979 186458 289266
28 62035 101581 75820 121840 212722 334878
30 69813 115838 87883 143374 241224 383914

Table 5: Solving model APP
′ for scenario 570.

τ #rows #cols vLP vIP tP tIP

0 1441 1412 56264.17 53676.00 290.27 0.10
2 8760 6894 152778.29 134190.00 400.88 19.97
4 19369 13334 210479.74 184636.00 658.59 42.14
6 44272 25220 254676.53 221725.00 401.15 103.54
8 81313 37128 284689.94 255870.00 538.52 213.84

10 143917 51944 306437.88 267569.00 1210.23 415.15
12 252530 70160 324781.31 - 1761.22 1360.30
14 413828 91648 - - - -
16 637237 115212 - - - -
18 965427 142780 - - - -
20 1436049 173516 - - - -
22 2094272 209040 - - - -
24 2895176 247072 - - - -
26 3999163 289266 - - - -
28 5422512 334878 - - - -
30 7048470 383914 - - - -

Models for Railway Track Allocation 77

Table 6: Solving model ACP for scenario 570.

τ #rows #cols vLP vIP tP tIP

0 2332 3875 53968.00 53676.00 216.51 0.21
2 11106 19926 136944.50 134311.00 540.97 6.44
4 21772 39967 189997.08 186467.00 622.68 22.60
6 41498 79234 240622.38 234535.00 1495.82 931.92
8 60390 120957 270900.38 260063.00 2170.88 1401.25

10 83398 170277 295798.29 277073.00 4203.54 3488.38
12 111270 231613 313179.33 296917.00 4760.91 3819.11
14 143270 303302 333515.08 314348.00 4361.18 3943.13
16 177622 377312 - - - -
18 215888 461844 - - - -
20 257378 549535 - - - -
22 304326 649176 - - - -
24 354762 754888 - - - -
26 409556 869796 - - - -
28 467950 985555 - - - -
30 529518 1107237 - - - -

Table 7: Solving model PCP for scenario 570.

τ #rows #cols β v(RPLP) gap tP #CGiter

in %

0 1248 11715 54727.00 53767.00 1.78 468.11 51
2 3314 66012 137376.07 135729.48 1.21 5883.12 100
4 6160 166133 197333.08 188757.73 4.54 13687.55 100
6 11300 238837 248480.85 239768.92 3.63 28258.23 82
8 16414 272565 276867.11 270234.28 2.45 43199.62 82

10 22846 168492 299070.52 295415.44 1.24 73891.21 100
12 30770 214259 314654.48 312960.40 0.54 183123.49 100
14 40696 355918 335061.01 332970.27 0.63 336374.07 57
16 51562 346564 345445.44 343802.93 0.48 198590.48 100
18 63998 266214 366323.70 351502.63 4.22 463379.15 46
20 78478 - - - - -
22 94994 - - - - -
24 112816 - - - - -
26 132826 - - - - -
28 154706 - - - - -
30 177914 - - - - -

Bibliography

Borndörfer, Grötschel, Lukac, Mitusch, Schlechte, Schultz & Tanner (2006). An
Auctioning Approach to Railway Slot Allocation. Competition and Regu-

lation in Network Industries 1(2), 163–196.

Brännlund, Lindberg, Nou & Nilsson (1998). Railway Timetabling using Lan-
gangian Relaxation. Transportation Science 32(4), 358–369.

Cacchiani (2007). Models and Algorithms for Combinatorial Optimization Prob-

lems arising in Railway Applications. PhD thesis, DEIS, Bologna.

Cacchiani, Caprara & Toth (2007). A Column Generation Approach to Train-

Timetabling on a Corridor4OR . To appear.

Caprara, Fischetti, Guida, Monaci, Sacco & Toth (2001). Solution of Real-World
Train Timetabling Problems. In HICSS 34. IEEE Computer Society Press.

Caprara, Fischetti & Toth (2002). Modeling and Solving the Train Timetabling
Problem. Operations Research 50(5), 851–861.

Caprara, Kroon, Monaci, Peeters & Toth (2007). Passenger Railway Optimiza-
tion. In C. Barnhart & G. Laporte (Eds.), Handbooks in Operations Re-

search and Management Science, volume 14 chapter 3, pp. 129–187. Else-
vier.

Charnes & Miller (1956). A Model for the Optimal Programming of Railway
Freight Train Movements. Management Science 3(1), 74–92.

CPLEX (2006). User-Manual CPLEX 10.0. ILOG CPLEX Division.

Grötschel, Lovász & Schrijver (1988). Geometric Algorithms and Combinatorial

Optimization, volume 2 of Algorithms and Combinatorics. Springer.

Helly (1923). Über Mengen konvexer Körper mit gemeinschaftlichen Punkten.
Jahresber. Deutsch. Math. Verein. 32, 175–176.

Huisman, Kroon, Lentink & Vromans (2005). Operations research in passenger
railway transportation. Technical Report EI2005-16, Econometric Institute,
Erasmus University Rotterdam.

Kroon, Lentink & Schrijver (2007). Shunting of Passenger Train Units: An
Integrated Approach. Technical Report ERIM ERS-2006-068-LIS, Erasmus
University Rotterdam.

Liebchen (2006). Periodic Timetable Optimization in Public Transport. PhD
thesis, Technical University Berlin.

Lukac (2004). Holes, Antiholes and Maximal Cliques in a Railway Model for
a Single Track. Technical Report ZIB Report 04-18, Zuse-Institut Berlin,
Takustr. 7, 14195 Berlin.

Solving a Real-World Train Unit Assignment

Problem

Valentina Cacchiani, Alberto Caprara, and Paolo Toth

DEIS, University of Bologna, Viale Risorgimento 2, I-40136 Bologna, Italy,
valentina.cacchiani@unibo.it,acaprara@deis.unibo.it,paolo.toth@unibo.it

Abstract. We face a real-world train unit assignment problem for an
operator running trains in a regional area. Given a set of timetabled
train trips, each with a required number of passenger seats, and a set
of train units, each with a given number of available seats, the problem
calls for an assignment of the train units to trips, possibly combining
more than one train unit for a given trip, that fulfills the seat requests.
With respect to analogous case studies previously faced in the literature,
ours is characterized by the fairly large number of distinct train unit
types available (in addition to the fairly large number of trips to be
covered). As a result, although there is a wide margin of improvement
over the solution used by the practitioners (as our results show), even
only finding a solution of the same value is challenging in practice. We
present a successful approach, based on an ILP formulation in which
the seat requirement constraints are stated in a “)-1(strong” form, derived
from the description of the convex hull of the variant of the knapsack
polytope arising when the sum of the variables is restricted not to exceed
two, illustrating computational results on our case study.

1 Introduction

The assignment of locomotives and cars, generally referred to as rolling stock,
to trains with published timetables is a key problem to be faced by operators of
passenger trains, given that the acquisition of rolling stock is an expensive long-
term investment, and that fulfilling the passenger requests, namely guaranteeing
(within reasonable margins) that each passenger has a seat, is fundamental to
ensure customer satisfaction. In this paper, we illustrate how we solved a real-
world case of the problem for the trains operated by a passenger train operator
operating in a regional area. In this problem, so-called Train Units (TUs), rather
than locomotives and cars, have to be assigned to trains. A TU is a self-contained
train with an engine and passenger seats, and TUs can be combined together to
increase the number of available seats.

The large number of TU types, along with the fairly large number of train
trips to be covered, namely a few hundred, make our case study very challenging
from an optimization viewpoint. In particular, although unavoidably the math-
ematical programming models that one may consider are analogous to those

ATMOS 2007 (p.79-95)
7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems
http://drops.dagstuhl.de/opus/volltexte/2007/1172

80 Valentina Cacchiani, Alberto Caprara, and Paolo Toth

presented in the references mentioned below, the optimal solution of these mod-
els appears to be out of reach at the moment. Moreover, even only finding a
feasible solution following the classical heuristic approaches, based or not on
these models, is far from trivial. On the other hand, we eventually managed to
design an effective heuristic procedure based on an appropriate Integer Linear

Programming (ILP) formulation that allowed us to find solutions significantly
better than the “manual” solutions found by practitioners. Based on our pre-
vious experience on similar case studies, we found this very strange: there is a
wide margin of improvement over the manual solution, but even only finding a
feasible solution of the same value as the manual one (which is feasible according
to our formal definition of the problem) appears to be challenging.

1.1 Literature review

Given its importance, the problem has been widely studied in the literature on
railway optimization; for surveys on the specific problem as well as on the use
of combinatorial optimization in railway planning see, e.g., [6, 7, 10, 14, 19].

Most of the approaches in the literature consider the case in which loco-
motives and cars have to be assigned to trains [5, 11–14, 20, 24]. In particular,
Brucker et al. [5] consider the problem of routing railway cars through a railway
network, so that seat requirements are satisfied while minimizing a non-linear
cost function. The problem is solved through a simulated annealing procedure.
In [11], Cordeau et al. present a simultaneous locomotive and car assignment
problem, which is formulated as a large ILP and solved by Benders decomposi-
tion. Cordeau et al. [13] extend the model by considering real-life aspects, such
as maintenance operations, and propose a heuristic branch-and-bound approach
based on column generation. Lingaya et al. [20] present a model for operational
management of cars, where the order in which cars are combined to cover a train
is taken into account. The problem is solved using a Dantzig-Wolfe reformula-
tion.

There are a few references that consider the assignment of TUs: [1, 2, 15, 23,
25]. Most of them consider the case in which there is a very small number of
distinct TU types (two in most cases). On the other hand, in most of these cases,
the rules for composing TUs for a trip are quite difficult. In [3], Ben-Khedher
et al. consider the case in which there is a unique type of TUs. The objective is
to maximize the expected profit for the company and the problem is solved by
means of stochastic optimization, branch-and-bound and column generation. In
[1], Abbink et al. present an ILP formulation with the objective of minimizing
the seat shortages during the rush hours. Alfieri et al. [2] propose an ILP model
for the case of multiple TU types, aimed at satisfying the seat requests while
minimizing the travel distance. The problem is solved by decomposition into
subproblems. Schrijver [25] presents a problem where a single-day workload is
considered, with the objective of minimizing the number of TUs used. The prob-
lem is formulated as an ILP and solved by a general-purpose solver. Peeters and
Kroon [23] present a problem in which the train series concept is introduced:
given two endpoints between which several trains run up and down according to

Solving a Real-World Train Unit Assignment Problem 81

the timetable, for a train series the available rolling stock consists of the same
material type with different subtypes, which differ in number of cars and ca-
pacity. The order of the units in a composition is considered. They take into
account three evaluation criteria, namely the kilometer-shortages, the number
of shunting operations and the carriage-kilometers, and model the problem by
using a transition graph, which represents the set of feasible transitions between
compositions. They solve the problem by using a Dantzig-Wolfe reformulation
and applying a branch-and-price algorithm, being able to find the optimal so-
lution of real-world instances of NSR (the main Dutch Train Operator) in very
short computing times. Fioole et al. [15] present a mixed ILP model that can
be seen as an extended version of the model described by [25]. They apply sev-
eral methods to improve the continuous relaxation and manage to solve to near
optimality real-world instances by a general-purpose ILP solver.

The problem has some similarities with the multiple-depot vehicle scheduling
problem (see, e.g., [18, 8]), which however has two remarkable differences with
respect to our problem. First, each vehicle must depart from a depot and go
back to the same depot at the end of the day, which makes the problem hard,
whereas in our case each TU (or locomotive/car) goes back to its original depot
only after a certain number of days, generally not specified in advance. Second,
each trip has to be covered by one vehicle only, of any type, so the complicating
seat requirement constraint, which may lead to TU combinations to cover a trip,
is not imposed.

1.2 Outline of the paper

As will be discussed next, the key constraints of our problem concern the min-
imum number of passenger seats that have to be assigned to every trip. In ILP
models, this is naturally formulated as a “knapsack-type” constraint in “≥”
form. The numerical nature of this constraint makes it very “weak” when the
Linear Programming (LP) relaxation of the problem is considered, as already
observed in [25]. In particular, none of the approaches we tried, among those
based on ILP models and LP relaxation, managed to find a feasible solution as
long as we stuck to these constraints. On the other hand, taking into account
the fact that in our case at most two TUs can be combined to cover a trip, we
replaced the “weak” constraints above by the inequalities obtained from a com-
plete description of the knapsack polytope for the special case in which the sum
of the variables cannot exceed two. This is similar to what was done in [25], with
the difference that in that case the description was found numerically, case by
case, for polytopes with two variables, whereas in our case the upper bound of
two on the variable sum allows a formal description that is valid for any number
of variables. Our final heuristic method, based on the ILP model with these new
inequalities, yields the results mentioned above.

The paper is organized as follows. In Sect. 2 we formally define the problem
considered, whose computational complexity is analyzed in Sect. 2.1. ILP models
are illustrated in Sect. 3, strengthened as outlined above in Sect. 4, and used to
drive our heuristic method, presented in Sect. 5. In Sect. 6 we define additional

82 Valentina Cacchiani, Alberto Caprara, and Paolo Toth

maintenance constraints for the problem and discuss how to deal with them.
Finally, Sect. 7 presents the computational results on our case study.

2 Problem Description

Given a set of timetabled trips to be performed every day, and a set of TUs of
different types, the TU Assignment Problem (TUAP) calls for the specification
of the TUs to be used, and, for each of these TUs, of the associated trips. The
sequence of trips associated with a TU corresponds to a possible daily workload
for the TU, and must satisfy a set of sequencing constraints. For instance, in our
case study, for each pair of consecutive trips in the sequence, the time elapsing
between the arrival of the first one and the departure of the second one must be
large enough to allow the TU to travel from the arrival station of the first one
to the departure station of the second one (this is a deadhead in case the two
stations do not coincide).

Given that there is an overnight break of a few hours, it is not necessarily the
case that every TU used performs the same set of trips every day. Indeed, after
having performed a sequence of trips on one day, a TU can perform on the fol-
lowing day a sequence of trips assigned to another TU of the same type (possibly
performing a deadhead transfer within the night break). In other words, the, say,
q trip sequences assigned to TUs of a given type can be numbered as 1, . . . , q in
an arbitrary way, and can be performed by q TUs of that type, all performing a
different sequence on each day, and each one performing the q sequences in the
cyclic order 1, . . . , q over a period of q days. This is important when maintenance
constraints, illustrated in Sect. 6, are introduced in the problem.

TUs can be assigned to the same trip in order to guarantee that the number
of passenger seats required by the trip is reached. As our problem concerns a
suburban area, there is no distinction between first and second class seats, as in
most references above. At the end of the trip, the TUs assigned to the trip can
be uncoupled and assigned to different trips following the rules outlined above.
In particular, the feasibility of a sequence of trips for a TU does not depend
on the other TUs assigned to the trips, which is a notable simplification with
respect to other cases of the problem addressed in the literature, see, e.g., [23].
This is related with the fact that in our case at most two TUs can be combined
assigned to a trip, in order to keep coupling and uncoupling operations simple,
so these operations take relatively short.

Although there are many factors contributing to the cost of a solution, such
as deadheading or coupling/uncoupling operations, the dominant cost in the
case we consider is related with the use of a TU, and in this paper we will
restrict ourselves to this cost. In fact, although we will formulate our model with
a generic cost associated with the use of a TU of a given type, as is the case in
[25], in our experiments our objective will be to minimize the overall number of
TUs used.

Formally, the problem input specifies a set of n train trips and a set of p TU
types. Each trip j ∈ {1, . . . , n} is defined by a required number rj of passenger

Solving a Real-World Train Unit Assignment Problem 83

seats, and a maximum number uj of TUs that can be assigned to the trip.
(Additionally, each trip is characterized by an arrival time and station and a
departure time and station, and by a subset of TU types that can perform it,
but this information is implicitly encoded in the graph illustrated below.) Each
TU type k ∈ {1, . . . , p} is defined by a number dk of available TUs, a cost ck for
each such TU used, and an associated capacity sk (number of available seats).
We say that a trip j is covered if the overall capacity of the TUs assigned to
the trip is at least rj . Finally, as is customary, the sequencing constraints are
represented by a directed multigraph G = (V, A), where each node corresponds
to a trip, and in addition there are a dummy start node 0 and a dummy end
node n + 1, i.e., V = {0, . . . , n + 1}, and arc set A is partitioned into p subsets
A1, . . . , Ap, where Ak is associated with TUs of type k for k = 1, . . . , p. Given
two distinct trips i, j ∈ V \{0, n+1}, arc (i, j)k ∈ Ak exists if and only if a TU of
type k can be assigned to i and then to j within the same day. (Specifically, arc
(i, j)k exists whenever both trips i and j can be assigned to a TU of type k, and
the time between the arrival of trip i and the departure of trip j allows a TU of
such type to travel from the arrival station of trip i to the departure station of
trip j.) Moreover, the dummy nodes are connected with all other nodes, namely
(0, i)k, (i, n+1)k ∈ Ak for i = 1, . . . , n and k = 1, . . . , p. Note that each subgraph
(V, Ak) is simple and transitive. Given a node i ∈ V , we will let δk

−(i) and δk
+(i)

denote, respectively, the set of arcs entering and leaving node i.
There is a one-to-one correspondence between trips assigned to a TU of type k

and a path in G formed by arcs in Ak. The problem calls for the determination,
for each TU type k ∈ {1, . . . , p}, of up to dk paths from 0 to n + 1 formed
by arcs in Ak, each path having cost ck and capacity sk, such that each trip
j ∈ {1, . . . , n} is visited by at most uj paths whose overall capacity is at least rj ,
with the objective of minimizing the overall cost of the paths. In the following
we will use the acronym TUAP to denote the problem just described.

In the specific application that we will consider, we have uj = 2 for j =
1, . . . , n, i.e., each trip can be assigned to at most two TUs. For this specific
case, we will discuss how to write the constraints on the required number of
seats in a way that is much stronger than the trivial one.

2.1 Complexity

In this section we discuss the complexity of TUAP, proving in particular that
the specific version considered in our case study is strongly NP-hard. The first
result shows that the real difficulty of the problem is due to the presence of
distinct TU types.

Observation 1 TUAP is solvable efficiently in case p = 1, i.e., if there is a

unique TU type.

Proof. In this case, one can replace each trip j by ⌈rj/s1⌉ trips with the same
timetable and request s1: the associated problem calls for the determination of
the minimum number of paths to cover all the vertices in a transitive directed
acyclic graph, which is polynomially solvable by flow techniques (see, e.g., [17]).

84 Valentina Cacchiani, Alberto Caprara, and Paolo Toth

If distinct TU types are present, the problem is already difficult if each trip
must be covered by one TU only, and the minimum connection time between
two trips does not depend on the trips nor on the TU type (e.g., it is 0, as in the
statement of the proposition below). This problem has already been considered
in the literature as it arises in other applications, e.g., in the assignment of
classrooms to timetabled classes, with the constraint that each class receives a
classroom having a number of seats at least equal to the number of students
attending the class. The following proposition is due to [4].

Proposition 1. TUAP is strongly NP-hard in the special case in which uj = 1
for j = 1, . . . , n, and (i, j) ∈ Ak if and only if the departure time of trip j is not

smaller than the arrival time of trip i for i, j = 1, . . . , n and k = 1, . . . , p.

Moreover, the following simpler result shows that, when uj = 2 for j =
1, . . . , n, the problem is strongly NP-hard even if all trips are simultaneous, due
to its numerical nature. The proof is omitted for space reasons and will be given
in the full paper.

Proposition 2. TUAP is strongly NP -hard in the special case in which uj = 2
for j = 1, . . . , n and Ak = ∅ for k = 1, . . . , p.

3 ILP Formulations

The two ILP formulations that we use for our problem, one with variables asso-
ciated with arcs of G and the other with variables associated with paths in G,
are standard, being analogous to others that have been widely used both in the
context of TU assignment and for other optimization problems in transportation,
see, e.g., the survey in [14].

3.1 Arc formulation

Let us introduce an integer variable xa, for each k = 1, . . . , p and a = (i, j)k ∈
Ak, that indicates the number of arcs a ∈ Ak selected in the solution, i.e., the
number of TUs of type k that execute trip i before trip j in the associated
sequence. The ILP model is the following:

min

p
∑

k=1

∑

a∈δk

+
(0)

ckxa, (1)

∑

a∈δk

−
(j)

xa =
∑

a∈δk

+
(j)

xa, k = 1, . . . , p, j = 1, . . . , n, (2)

∑

a∈δk

+
(0)

xa ≤ dk, k = 1, . . . , p, (3)

p
∑

k=1

∑

a∈δk

−
(j)

skxa ≥ rj , j = 1, . . . , n, (4)

Solving a Real-World Train Unit Assignment Problem 85

p
∑

k=1

∑

a∈δk

−
(j)

xa ≤ uj , j = 1, . . . , n, (5)

xa ≥ 0, integer , k = 1, . . . , p, a ∈ Ak. (6)

Flow conservation constraints (2) guarantee that the solution contains a number
of paths in (V, Ak) from 0 to n + 1 equal to the number of arcs in Ak leaving
node 0. Accordingly, constraints (3) ensure that the solution contains at most dk

such paths, i.e., no more than dk TUs of type k are used. Moreover, as each of
these paths has cost ck, the objective function (1) calls for the minimization of
the total cost of the paths. Finally, constraints (4) and (5) guarantee that each
trip j is visited by at most uj paths, having overall capacity at least rj .

In the general context of multicommodity flow, it is well known that the ILP
formulation based on path variables, illustrated later, is to be preferred to the
one above when approaches based on the solution of the LP relaxation are used,
see, e.g., [9]. This will also be shown by the experiments performed for our case
study.

On the other hand, given the relatively large size of the ILP in our case study,
it is natural to consider the Lagrangian relaxation of the above formulation,
obtained by relaxing constraints (4) and (5) in a Lagrangian way. The resulting
Lagrangian relaxed problem is easy to solve, recalling also Observation 1, as it
amounts to finding optimal paths in graphs (V, Ak) for k = 1, . . . , p. However,
despite completely analogous approaches are the best ones in practice in many
similar cases, our implementation of a customary heuristic method based on
this Lagrangian relaxation performed extremely poorly in practice for our case
study, in terms of both lower bound produced and solution found (in fact, it was
never able to find a solution respecting all constraints (5), always requiring more
TUs than those available). Given that the results were so poor, we will not even
present these results in the experimental section.

3.2 Path formulation

Let Pk denote the collection of paths from 0 to n + 1 in (V, Ak), and introduce
an integer variable xP , for each k = 1, . . . , p and P ∈ Pk, that indicates the
number of times that path P is selected in the solution, i.e., the number of TUs
of type k that execute the trips sequence corresponding to P . Moreover, for each
k = 1, . . . , p and j = 1, . . . , n, let Pk

j ⊆ Pk denote the subcollection of paths in

Pk that visit trip j. The ILP model is the following:

min

p
∑

k=1

∑

P∈Pk

ckxP , (7)

∑

P∈Pk

xP ≤ dk, k = 1, . . . , p, (8)

p
∑

k=1

∑

P∈Pk

j

skxP ≥ rj , j = 1, . . . , n, (9)

86 Valentina Cacchiani, Alberto Caprara, and Paolo Toth

p
∑

k=1

∑

P∈Pk

j

xP ≤ uj , j = 1, . . . , n, (10)

xP ≥ 0, integer , k = 1, . . . , p, P ∈ Pk. (11)

The interpretation and verification of correctness of the model is analogous (and
in fact simpler) than the one of model (1)–(6). The fact that the LP relaxations
of the two models presented are equivalent is a well known fact; see, e.g., [9].

Observation 2 To each solution of the LP relaxation of (1)–(6) there corre-

sponds a solution of the LP relaxation of (7)–(11) of the same value, and vicev-

ersa.

Although model (7)–(11) has, in general, an exponential number of variables, as
opposed to model (1)–(6), the LP relaxation of the former is faster to solve in
practice by column generation techniques. Letting JP ⊆ {1, . . . , n} be the set of
trips visited by a path P ∈ Pk, the dual of the LP relaxation of model (7)–(11)
reads:

max−

p
∑

k=1

dkαk +

n
∑

j=1

rjβj −
n

∑

j=1

ujγj ,

−αk +
∑

j∈JP

skβj −
∑

j∈JP

γj ≤ ck, k = 1, . . . , p, P ∈ Pk, (12)

αk, βj , γj ≥ 0, k = 1, . . . , p, j = 1, . . . , n,

and hence the column generation problem, which is the separation problem for
constraints (12), given a dual solution α, β, γ calls for k ∈ {1, . . . , p} and P ∈ Pk

such that
∑

j∈JP

(skβj − γj) > ck + αk,

and can be solved as a maximum-profit path from 0 to n + 1 in (V, Ak) with
node profits skβj − γj for each j ∈ V \ {0, n + 1}.

Not only the LP relaxation of (7)–(11) is much faster to solve in practice
by column generation techniques than the LP relaxation of (1)–(6), but also
heuristic methods based on this LP relaxation, that proceed by fixing variables
xP , i.e., entire sequences for TUs in the solution, tend to perform better in
practice. However, as already mentioned, in order to get useful results for our
case study we had to replace constraints (9) by stronger constraints, as illustrated
in the next section.

4 Strengthening the Capacity Constraints for the Case

Study

In all natural ILP models for the problem, including those of the previous section,
letting wk

j be an integer variable indicating the number of TUs of type k assigned

Solving a Real-World Train Unit Assignment Problem 87

to a trip j (k = 1, . . . , p, j = 1, . . . , n), the following constraints are imposed:

p
∑

k=1

skwk
j ≥ rj , j = 1, ..., n, (13)

p
∑

k=1

wk
j ≤ uj , j = 1, ..., n. (14)

(In particular, variables wk
j would be defined by equations wk

j =
∑

a∈δk

−
(j) xa in

model (1)–(6), and by equations wk
j =

∑

P∈Pk

j

xP in model (7)–(11).)

It is well known that the constraints (13) can be very weak for the LP re-
laxation. Moreover, since in our case study we have uj = 2 for j = 1, . . . , n, the
dominant of the convex hull of the nonnegative integer vectors satisfying (13)
and (14) is defined by O(p) simple constraints, that we will use to replace (13)
in our models. In order to simplify the notation, we will remove the index j and
study the following polytope:

P := conv

{

w ∈ Z
p
+ :

p
∑

k=1

skwk ≥ r,

p
∑

k=1

wk ≤ 2

}

, (15)

assuming s1 ≥ s2 ≥ . . . ≥ sp. Its dominant P is defined as follows:

P := {w ∈ R
p : there exists w ∈ P such that w ≥ w} . (16)

All the inequalities in “≥” form with nonnegative coefficients that are valid for P

are also valid for P and viceversa, so the description of P yields a set of stronger
inequalities to replace the “weak” inequality

∑p

k=1 skwk ≥ r.

The following theorem provides a simple description of P by O(p) linear
inequalities. The proof is omitted for space reasons and will be given in the full
paper.

Theorem 1. If 2s1 < r, then P = ∅. Otherwise, letting g be such that sg ≥ r

and sg+1 < r (with g := 0 if s1 < r and g := p if sp ≥ r), t be such that 2st ≥ r

and 2st+1 < r (with t := p if 2sp ≥ r), and, for each k = g + 1, . . . , t, f(k) be

such that sk + sf(k) ≥ r and sk + sf(k)+1 < r (with f(k) := p if sk + sp ≥ r and

f(t + 1) := t):

P =

w ∈ R
p
+ :

k−1
∑

ℓ=1

2wℓ +

f(k)
∑

ℓ=k

wℓ ≥ 2, k = g + 1, . . . , t + 1

. (17)

Example 1. In order to illustrate the above result, let us consider the numer-
ical example, taken from our case study, in which p = 8, r = 1302 and s =
(1150, 1044, 786, 702, 543, 516, 495, 360). In this case we have g = 0, t = 4,

88 Valentina Cacchiani, Alberto Caprara, and Paolo Toth

f(1) = f(2) = 8, f(3) = 6, f(4) = 4, leading to the following constraints:

w1
j + w2

j + w3
j + w4

j + w5
j + w6

j + w7
j + w8

j ≥ 2

2w1
j + w2

j + w3
j + w4

j + w5
j + w6

j + w7
j + w8

j ≥ 2

2w1
j + 2w2

j + w3
j + w4

j + w5
j + w6

j ≥ 2

2w1
j + 2w2

j + 2w3
j + w4

j ≥ 2

2w1
j + 2w2

j + 2w3
j + 2w4

j ≥ 2

out of which the second is dominated by the first and the last is dominated by
the last but one.

According to the above discussion, the two ILP models of the previous section
can be strengthened by letting gj , tj , fj(·) be defined from rj as g, t, f(·) were
defined from r in the statement of Theorem 1, and replace (13) by the following
constraints:

k−1
∑

ℓ=1

2wℓ
j +

fj(k)
∑

ℓ=k

wℓ
j ≥ 2, j = 1, ..., n, k = gj + 1, . . . , tj + 1, (18)

noting that some of the constraints in the list may be dominated by others and
therefore not imposed in practice.

Without explicitly introducing the variables wk
j , in model (1)–(6) constraints

(4) can be replaced by:

k−1
∑

ℓ=1

∑

a∈δk

−
(j)

2xa +

fj(k)
∑

ℓ=k

∑

a∈δk

−
(j)

xa ≥ 2, j = 1, ..., n, k = gj + 1, . . . , tj + 1, (19)

and in model (7)–(11) constraints (9) can be replaced by:

k−1
∑

ℓ=1

∑

P∈Pℓ

j

2xP +

fj(k)
∑

ℓ=k

∑

P∈Pℓ

j

xP ≥ 2, j = 1, ..., n, k = gj + 1, . . . , tj + 1, (20)

observing that this latter replacement does not affect the structure of the column
generation problem discussed in the previous section.

5 An LP-Based Heuristic Method

We next illustrate the heuristic method, based on the LP relaxation of model (7)–
(11) with (9) replaced by (20), that eventually allowed us to improve the practi-
tioners’ solution for our case study. Besides the (customary) column-generation
based procedure to solve the LP relaxation, the heuristic method has three main
components: (1) a diving rule to fix the value of some of the variables following
the current LP optimal solution, reoptimizing the LP after the addition of these

Solving a Real-World Train Unit Assignment Problem 89

TUAP heur

begin

initialize the current LP as a reduced version of LP (7)–(11), with (9)
replaced by (20), with only a subset of the variables;
repeat

solve the current LP by a general-purpose LP solver, letting x be
the optimal primal solution, (α, β, γ) the optimal dual solution, and
z the corresponding value;
apply the constructive heuristic procedure based on (α, β, γ);
refine the solution found by the constructive heuristic procedure,
possibly updating the incumbent solution;
if there are dual constraints violated by (α, β, γ) then

add some of the corresponding primal variables to the current
LP;

else

fix the value of some of the primal variables by changing the
associated bounds;

until the current LP is infeasible or z ≥ value of the incumbent solution;

end.

Fig. 1. General structure of the LP-based heuristic method.

fixing constraints, (2) a simple constructive heuristic procedure based on the cur-
rent dual LP solution that is applied at each iteration of the column-generation
based procedure, and (3) a refinement procedure that is applied to improve each
solution produced by the constructive heuristic procedure in (2). The general
structure of the method is outlined in Fig. 1.

5.1 Fixing phase

Each time we have obtained the optimal solution x of the current LP with the
fixing constraints, i.e., there are no dual constraints violated, we change the
bounds of the variables as follows. We consider all variables xP such that xP

is integer, setting the associated lower bound to xP , i.e., imposing at least xP

paths P in the solution. Moreover, we consider the variable xP whose value xP

is the largest among the fractional ones, and set the associated lower bound to
⌈xP ⌉. Note that, in this way, we may, e.g., fix the lower bound of a variable
to 1, and then find values of these variables that are strictly larger than 1 in
subsequent LP solutions.

We observed that, after the fixing phase, it may happen that the current
LP becomes infeasible, and then become feasible again after some iterations of
the column generation procedure. In order to avoid dealing with LPs that are
infeasible due to the fact that we are only considering a subset of the variables,
we introduce explicit slack variables for constraints (20), adding them to the
objective function with a high penalty. This simplifies also the initialization of
the current LP at the beginning of the procedure. Note that the “the current

90 Valentina Cacchiani, Alberto Caprara, and Paolo Toth

LP is infeasible” condition to be checked at the end is then equivalent to having
some of the slack variables strictly positive in the solution.

5.2 Constructive heuristic procedure

The constructive heuristic procedure that we apply at each iteration considers
the TU types one at the time, according to increasing values of ck/sk. For each
TU type k, we define up to dk paths to be added to the solution. In addition to
the paths that possibly were already fixed in the solution by the fixing phase,
the remaining paths are found by computing maximum-profit paths in (V, Ak),
analogously to the column generation procedure, with node profits defined in a
more complex way. For the trips that are not covered by the previously-defined
paths, the profit takes into account (a) the associated dual variables, and (b)
how well the capacity of the current TU type matches the residual request of the
trip, i.e., by assigning a TU of this type to the trip, will it be possible to satisfy
at equality the trip request? Moreover, we assign in any case a small positive
profit to the trips already covered.

One of the main ideas is to try to follow the dual profits for the trips that still
have to be covered, but also to try to satisfy at equality the request of these trips
and to over-cover trips that have already been covered, in the hope of being able
to achieve larger improvements with the subsequent refinement procedure. To
this aim, we do not consider explicitly constraints (10) on the maximum number
of TUs that can be assigned to a trip in the construction.

The constructive procedure terminates either when we have used all the
available TUs, or when the paths constructed so far cover all the trips. Note
that in the latter case we have saved some TUs of the last type (largest ck/sk

ratio), and, in case all of them were saved, some TUs of the last but one type,
and so on. On the other hand, in the former case, some of the trips are not
covered. Moreover, in both cases we have that constraints (10) may be violated.
The following refinement procedure tries to take care of these infeasibilities.

Concerning the fact that we are trying to satisfy at equality the trip requests,
note that the input instance can always be preprocessed so that this is possible,
by redefining the request rj of each trip j ∈ {1, . . . , n} as:

rj := min

(

p
X

k=1

s
k
w

k

j :

p
X

k=1

s
k
w

k

j ≥ rj ,

p
X

k=1

w
k

j ≤ uj , w
k

j ∈ {0, . . . , d
k}, (k = 1, . . . , p)

)

The associated optimization problem, which is a cardinality constrained bounded
subset sum problem [21], can easily be solved by enumeration given the small
values of p in practical cases.

5.3 Refinement

This is a key step in our framework. We consider the solution produced by the
constructive heuristic procedure by taking into account only the information
about the number of times wk

j that each trip j ∈ {1, . . . , n} is assigned to a

Solving a Real-World Train Unit Assignment Problem 91

TU of type k ∈ {1, . . . , p}, without considering the specific sequences (paths)
defined. In other words, we take care only of the information that would be
given by variables wk

j as defined in Sect. 4.
In order to find the “best” solution that takes into account this trip assign-

ment information, we use a variant of ILP model (1)–(6) with (4) replaced by
(19), in which, for each trip j that is (over-)covered, we impose that the number
of times that the trip is assigned to a TU of type k does not exceed wk

j . More
precisely, for all trips j that are covered but not over-covered by the solution,

i.e., for which
∑p

k=1 skwk
j ≥ rj ,

∑p

k=1 wk
j ≤ uj , and

∑p

k=1 skw
k

j < rj for each

vector (w
1
j , . . . , w

p

j) � (w1
j , . . . , w

p
j), we impose the additional constraints:

∑

a∈δk

−
(j)

xa = wk
j , k = 1, . . . , p,

removing constraints (5) and (19) associated with j. For all trips j that are
over-covered by the solution, we impose the additional constraints:

∑

a∈δk

−
(j)

xa ≤ wk
j , k = 1, . . . , p.

In this case, the constraints (19) associated with j are modified (strengthened)
taking into account that not all TU types can be used to cover the trip, changing
gj , tj , fj(·) accordingly. Finally, for all trips that are not covered by the solution,
we do not impose any additional constraint. The resulting “reduced” ILP is
solved by a general-purpose ILP solver to optimality.

6 Maintenance Constraints

A key constraint that is imposed in our case study, and that we did not discuss
in detail so far to keep the presentation simple, is the one imposing that each
TU of type k (k = 1, . . . , p) has to undergo a maintenance operation every mk

days. Generally speaking, this operation requires a transfer to a maintenance
point (by deadheading), a certain amount of time at the maintenance point, and
then a transfer from the maintenance point.

Given the very flexible representation of the sequencing constraints via graph
G, we can model the maintenance constraints by specifying, for each k ∈ {1, . . . ,

p}, a subset of arcs Mk ⊆ Ak corresponding to sequences of two trips that allow
a maintenance in between for a TU of type k. Possibly, we have that Mk contains
arcs of the form (0, j)k, (j, n + 1)k (e.g., if the maintenance can be performed
overnight). Recalling the cyclic nature of the daily assignments to TUs of type
k illustrated at the beginning of Sect. 2, letting ek ≤ dk be the number of paths
in (V, Ak) selected in the solution, the maintenance constraints impose that at
least ⌈ek/mk⌉ of these paths contain at least one arc in Mk.

Within ILP model (7)–(11), letting Qk ⊆ Pk denote the subcollection of
paths in Pk that contain at least one arc in Mk, the maintenance constraints

92 Valentina Cacchiani, Alberto Caprara, and Paolo Toth

can be represented by adding the integer variables yk, indicating the number of
paths in Qk selected for TUs of type k, along with the constraints:

∑

P∈Qk

xP ≥ yk, k = 1, . . . , p, (21)

∑

P∈Pk

xP ≤ mkyk, k = 1, . . . , p, (22)

yk ≥ 0, integer , k = 1, . . . , p. (23)

The presence of maintenance constraints complicates slightly the column gen-
eration procedure, that now calls both for the path of maximum profit in Pk

as well as the path of maximum profit in Qk. On the other hand, given that
the paths have to be found in an acyclic directed graph, their determination
simply requires, in the canonical dynamic programming procedure, to store for
each node not only the maximum-profit path from 0 to that node, but also the
maximum-profit path from 0 to that node containing at least one arc in Mk (if
any).

The presence of maintenance constraints must also be carefully taken into
account in the heuristic method described in Sect. 5, since these constraints
are systematically violated, at least in our case study, if they are not imposed
explicitly. In particular, in the fixing phase, when searching for the fractional
variable of maximum value to fix, we exclude variables xP for which the addition
of ⌈xP ⌉ paths to the other paths in Pk already imposed by previous fixing

phases leads to a collection P
k

of paths such that |P
k
∩ Qk| < ⌈|P

k
|/mk⌉ (in

other words, these paths would violate the maintenance constraint for the TUs
of type k). The same is done in the constructive heuristic procedure: we do
not add a path to those already created for a TU of type k if this violates
the maintenance constraint – this simply means that in some cases we add
the maximum-profit path in Qk. Finally, in the refinement ILP, we impose the
counterpart of constraints (21)–(23) referred to arc variables.

7 Experimental Results

Our method was implemented in C, the computational tests were executed on a
PC Pentium 4, 3.2 GHz, 2 GB Ram, and the LP-solver used was ILOG-CPLEX
9.0. All times reported below are in CPU seconds on this PC.

We considered three different real-world instances provided by an operator
running trains in a regional area. In every instance, each trip can be assigned
to at most 2 TUs and all TUs have the same cost (normalized to ck = 1 for
k = 1, . . . , p), i.e., we wish to minimize the overall number of TUs used. The
maintenance constraints require a maintenance every at most mk = 5 days
(k = 1, . . . , p), and a maintenance requires a period of at least 6 hours between
5AM and 12AM at a specific maintenance point – the time to travel to and from
this maintenance point must be taken into account to establish if a given arc is
in Mk.

Solving a Real-World Train Unit Assignment Problem 93

Table 1. Characteristics of the instances.

inst. n rj p (sk) (dk)

A 528 ∈ [360, 1404] 8 (1150,1044,786,702,543,516,495,360) (2,4,5,18,11,5,24,3)
B 662 ∈ [588, 1534] 10 (1534,1473,1128,980,887,840,834,824,805,588) (4,3,5,1,18,3,25,5,9,3)
C 660 ∈ [588, 1610] 10 (1644,1625,1473,1128,887,840,834,824,805,588) (3,1,3,4,18,4,25,5,9,3)

In Table 1 we report the characteristics of these instances, giving their name
(inst.), the number of n of trips, the range for the trip requests rj , the number
p of TU types along with the capacity sk and availability dk for each type.

Table 2. Comparison of various LP relaxations.

inst. (1)–(6) (1)–(6) + (19) (7)–(11) (7)–(11) + (20)

value time value time value time value time

A 57 624 62 1201 57 136 62 50
B 41 47242 53 26907 41 174 53 150
C 40 23841 53 27350 40 179 53 177

In Table 2 we compare the results obtained by solving the LP relaxations
of the two ILP formulations in Sect. 3 with and without the stronger version
of the capacity constraints discussed in Sect. 4 (and without maintenance con-
straints). The table clearly shows both the bound improvements achieved with
the strengthened constraints and the much shorter time required to solve the
second LP relaxation (recall that the two LPs are equivalent in the sense of
Observation 1).

Table 3. Results for the instances in our case study.

inst. curr. sol. LP bound heur.

value value time value time

A 72 62 130 63 3544
B 76 56 196 59 5471
C 74 55 295 58 8875

Finally, in Table 3 we compare the value of the solutions obtained by the
practitioners (curr. sol.) with the lower bound found by solving the LP relaxation
of (7)–(11),(20) with the addition of the maintenance constraints (21)–(23) (LP
bound) and the value of the heuristic solution found by our method (heur.). The
table shows that we can prove that the solutions we found are almost optimal,
and that we improve on the practitioners’ solution by 10-20%. Although the

94 Valentina Cacchiani, Alberto Caprara, and Paolo Toth

latter contains other additional constraints that we did not mention, which makes
direct comparison unfair, it seems that these additional constraints have a limited
impact on the quality of the solutions found of our method. Evaluating the actual
improvements that can be achieved by imposing all real-world constraints in our
method is the subject of current research.

We conclude by noting that a few other alternative approaches that we im-
plemented and tested (without mentioning them here) were not even able to find
a feasible solution. Moreover, none of the following variants of our method finds
a feasible solution, even if maintenance constraints are neglected:

– the one in which constraints (20) are not used;
– the one in which the fixing phase is not used, terminating the procedure

when there are no violated dual constraints;
– the one in which the refinement procedure is not used;
– the one in which the constructive heuristic procedure is not used, and re-

finement is applied only to the final solution found by the fixing phase.

As already mentioned, the fact that there is a wide margin of improvement over
the practitioners’ solution and that such an improvement is indeed achieved by
the best approach we could design is apparently in contrast with the fact that,
as soon as any of the parts of this approach are deactivated, no improvement is
obtained any more. This is certainly an intriguing aspect of our case study that
we plan to investigate further in the future.

Acknowledgments

This work was partially supported by the EU Project ARRIVAL.

References

1. Abbink E.W.J., van den Berg B.W.V., Kroon L.G., and Salomon M.: Allocation
of Railway Rolling Stock for Passenger Trains. Transportation Science 38 (2004)
33–41

2. Alfieri A., Groot R., Kroon L.G., and Schrijver A.: Efficient Circulation of Railway
Rolling Stock. ERIM Research Report, ERS-2002-110-LIS, Erasmus Universiteit
Rotterdam, The Netherlands, (2002)

3. Ben-Khedher N., Kintanar J., Queille C., and Stripling W.: Schedule Optimization
at SNCF: From Conception to Day of Departure. Interfaces 28 (1998) 6–23

4. Bonomo F., Durán G., and Marenco J.: Exploring the Complexity Boundary be-
tween Coloring and List-Coloring. Electronic Notes in Discrete Mathematics 25

(2006) 41–47
5. Brucker J., Hurink J.L., and Rolfes T.: Routing of Railway Carriages: A Case

Study. Osnabrücker Schriften zur Mathematik, Reihe P, Heft 205 (1998)
6. Bussieck M.R., Winter T., and Zimmermann U.T.: Discrete Optimization in Public

Rail Transport. Mathematical Programming 79 (1997) 415–444
7. Caprara A., Kroon L., Monaci M., Peeters M., and Toth P.: Passenger Railway

Optimization, in C. Barnhart and G. Laporte (eds.). Handbooks in OR & MS 12,
Elsevier Science, (2006)

Solving a Real-World Train Unit Assignment Problem 95

8. Carpaneto D., Dell’Amico M., Fischetti M. and Toth P.: A branch and bound
algorithm for the multiple vehicle scheduling problem. Networks 19 (1989) 531–
548

9. Cook W.J., Cunningham W.H., Pulleyblank W.R., and Schrijver A.: Combinatorial
Optimization, John Wiley and Sons, (1998)

10. Cordeau J.-F., Toth P., and Vigo D.: A Survey of Optimization Models for Train
Routing and Scheduling. Transportation Science 32 (1998) 380–404

11. Cordeau J.-F., Soumis F., and Desrosiers J.: A Benders Decomposition Approach
for the Locomotive and Car Assignment Problem. Transportation Science 34

(2000) 133–149
12. Cordeau J.-F., Soumis F., and Desrosiers J.: Simultaneous Assignment of Locomo-

tives and Cars to Passenger Trains. Operations Research 49 (2001) 531–548
13. Cordeau J.-F., Desaulniers G., Lingaya N., Soumis F., and Desrosiers J.: Simul-

taneous Locomotive and Car Assignment at VIA Rail Canada. Transportation
Research 35 (2002) 767–787

14. Desrosiers J., Dumas Y., Solomon M.M., and Soumis F.: Time Constrained Routing
and Scheduling, in M.O. Ball et al. (eds.), Handbooks in OR & MS 8, Elsevier
Science, (1995) 35–139

15. Fioole P.-J., Kroon L.G., Maróti G., and Schrijver A.: A Rolling Stock Circula-
tion Model for Combining and Splitting of Passenger Trains. European Journal of
Operational Research 174 (2006) 1281–1297

16. Garey M.R. and Johnson D.S.: Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, (1979)

17. Grötschel M., Lovász L., and Schrijver A.: Geometric Algorithms and Combinato-
rial Optimization. Springer-Verlag (1988)

18. Hadjar A., Marcotte O. and Soumis F.: A Branch-and-Cut Algorithm for the Mul-
tiple Depot Vehicle Scheduling Problem. Operations Research 54 (2006) 130–149

19. Huisman D., Kroon L.G., Lentink R.M., and Vromans M.J.C.M.: Operations Re-
search in Passenger Railway Transportation. Statistica Neerlandica 59 (2005) 467–
497

20. Lingaya N., Cordeau J.-F., Desaulniers G., Desrosiers J., and Soumis F.: Opera-
tional Car Assignment at VIA Rail Canada. Transportation Research 36 (2002)
755–778

21. Martello S. and Toth P.: Knapsack Problems: Algorithms and Computer Imple-
mentations. John Wiley and Sons (1990)

22. Nemhauser G.L. and Wolsey L.A.: Integer and Combinatorial Optimization. John
Wiley and Sons (1988)

23. Peeters M. and Kroon L.G.: Circulation of Railway Rolling Stock: a Branch-and-
Price Approach. ERIM Research Report, ERS-2003-055-LIS, Erasmus Universiteit
Rotterdam, The Netherlands, (2003)

24. Rouillon S., Desaulniers G., and Soumis F.: An Extended Branch-and-Bound
Method for Locomotive Assignment. Transportation Research 40 (2006) 404-423

25. Schrijver A.: Minimum Circulation of Railway Stock. CWI Quarterly 6 (1993)
205–217

Solving Large Scale Crew Scheduling Problems

by using Iterative Partitioning

Erwin Abbink1, Joël van ’t Wout1 and Dennis Huisman1,2

1 Department of Logistics, Netherlands Railways (NS), P.O. Box 2025, NL-3500 HA
Utrecht, The Netherlands

2 Erasmus Center for Optimization in Public Transport (ECOPT) & Econometric
Institute, Erasmus University Rotterdam, P.O. Box 1738 NL-3000 DR Rotterdam,

The Netherlands
Erwin.Abbink@ns.nl, Joel.vantWout@ns.nl, huisman@few.eur.nl

Abstract. This paper deals with large-scale crew scheduling problems
arising at the Dutch railway operator, Netherlands Railways (NS). We
discuss several methods to partition large instances into several smaller
ones. These smaller instances are then solved with the commercially
available crew scheduling algorithm TURNI. In this paper, we compare
several partitioning methods with each other. Moreover, we report some
results where we applied different partitioning methods after each other.
With this approach, we were able to cut crew costs with 2% (about 6
million euro per year).

1 Introduction

In [13] it was shown that very large Crew Scheduling Problems can be solved
using state of the art Operations Research (OR) techniques. At NS we use similar
techniques to solve our Crew Scheduling Problem (CSP). We present several
methods to handle even larger cases than presented in the referred paper.

NS is the main Dutch railway operator of passenger trains, employing in
total 3,000+ drivers and 3,500+ conductors in 29 crew depots. A typical crew
scheduling instance of NS related to a single duty type (driver or conductor) on
each workday requires assigning about 14,000 timetabled trips to 1,000+ duties
in 29 crew depots. Additionally, we would like to solve the problem for a complete
week, which even gives a new dimension to the problem. This produces set-
covering instances that are much larger than those addressed in the literature so
far, and they have many additional nasty crew-depot constraints. Furthermore,
these figures also imply that each duty covers about 14 trips on average, which
is a higher number than airlines usually encounter. As described in [1], due
to the complex set of labor rules, automated support in the crew scheduling
process is absolutely necessary. Therefore, NS has been using the automated
crew scheduling system TURNI since 2000. TURNI was developed by Double-
Click, which has customized it several times to cope with the complex rules
that govern NS crew schedules. For NS, the software is considered to be a black
box where data are inserted and duties are returned. During the years of using

ATMOS 2007 (p.96-106)
7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems
http://drops.dagstuhl.de/opus/volltexte/2007/1168

Solving Large Scale Crew Scheduling Problems 97

the software, we got the impression that although the system was capable of
handling large instances, the results could be improved using the characteristics
of our problem. E.g. experiments showed that re-optimizing a part of a solution
resulted in better solutions. Next to that the developed working method handled
the global (weekly) constraints in a rigid way. To explain this we present Figure 1.
In this figure, a few possible duties are plotted. They are assigned to a certain
base (A or B) and have a certain length. The vertical line indicates the moment
in the night where no trains are operated.

Fig. 1. Duties example

The problem is too large to solve it as a single instance. In the initial working
method we created a CSP for each weekday and solved it. We could easily
assign the trips to a single weekday because there are almost no trains running
through the night, so there is a natural moment in time to split the problem. For
each sub-problem we made a guess of the contribution to the global problem.
This was fixed and there was no interaction between the sub-problems. E.g. the
average duration of the duties for a crew depot is 8:00 hours. The sub-problem
for the weekday was limited to an average of 7:40 hours and the problem for
the weekend was limited to an average of 8:30. In this way the global average
would be approximately 8:00 hours. We developed a method were we constructed
and solved sub-problems iteratively. We iterated between large and small sub-
problems and between day based and week based problems. The results of the
solutions were passed to the consecutive problems. This method resulted in an
improvement of about 2% on the solution costs. This paper will describe this
method and the results in detail. The remainder of this paper is organized as
follows. The concept of crew scheduling at NS is explained in more detail in
Section 2. We will describe the characteristics of the problem which are used
in the iterative approach. In Section 3, we briefly discuss some theory which is
the basis for our method. Afterwards, in Section 4, we will present our method
and we will analyze some examples of sub-problems that are constructed. The
computational results of our method are presented in Section 5. Finally, we finish
this paper with some concluding remarks.

98 Erwin Abbink, Joël van ’t Wout and Dennis Huisman

2 Crew planning at NS

In Figure 2, we give a schematic overview of the crew planning process for drivers
and conductors at NS. Other crew members (at ticketing offices, the call center,
mechanics, etc.) fall outside the scope of this paper. The crew scheduling problem
(CSP) is the problem of assigning tasks to anonymous duties. These tasks are
given by the timetable and by the rolling stock schedule (see [11] for a discussion
on all planning problems at NS). More formally, a task is the smallest amount
of work that has to be assigned to one driver. A duty is the work for one crew
member from a specific crew base on a certain day.

Fig. 2. Crew planning process

At NS, the crew scheduling process has been split in two stages. First, the
crew schedules for the annual plan are constructed. Secondly, the crew rosters are
created, where the crew members are assigned to operate the duties. This paper
will focus on the first phase, the generation of the duties for the annual plan.
This plan deals with a generic Monday, Tuesday and so on. This generic annual
plan is modified about 6 times a year as a result of changes in timetable and
rolling stock schedules. The other parts of the process fall outside the scope of
this paper (for crew rostering, we refer to [8] and for crew re-scheduling to [10]).
In the CSP that is solved for generating the generic annual plan, some rostering

Solving Large Scale Crew Scheduling Problems 99

aspects are also taken into account. For instance, the average duty length over
all duties on a certain crew base should not exceed 8 hours. The reason is that,
if this time is exceeded, then it is impossible to construct rosters where the
average working time per week is less than 36 hours (in principle each full-time
crew member works 9 days in two weeks). The number of night duties (duties
with a working period between 1:00h and 5:00h) in a roster is also limited. This
constraint should also be validated at a weekly basis. Moreover, it is important
that to obtain a fair division of the work over the week for the different crew
members, the work should be fairly spread over the different bases. The latter
constraints are typical for the Dutch situation and are known as “Sharing Sweet
& Sour” rules. They aim at allocating the popular and the unpopular work as
fairly as possible among the different crew bases. For instance, some routes are
more popular than others and intercity trains are preferred over regional trains.
For a detailed description of these rules, we refer to [1]. One example is the
percentage of work on intercity trains. Of the work assigned to a depot for a
week, at least 25% should be on the intercity trains. Again, we could require
every weekday to contain at least 25% of this work but it is better to check this
constraint for a complete week.

3 Models and Algorithms for CSP

In this section, we give a short overview on models and algorithms that are used
to solve the CSP. Moreover, we provide a mathematical formulation for a CSP
containing 2 days without tasks overnight.

The airline industry has used OR models and techniques to solve crew schedul-
ing problems for many years, see e.g. [2], [6] and [9]. However, in the railway
industry the sizes of the crew scheduling instances are, in general, a magnitude
larger than in the airline industry. The latter has made the application of these
models in the railway industry prohibitive until recently. Developments in hard-
ware and software enable the railway industry to use these models nowadays as
well, see [4, 13, 14, 7], among others.

The CSP can be modeled as a set covering problem with additional con-
straints. If we consider the problem for a whole week where this is only a minor
interaction between the different days, we get a special structure of the math-
ematical program. To show this, we give a mathematical formulation for the
problem with two days. Let T 1 and T 2 be the set of tasks for day 1 and 2,
respectively. Furthermore, D1 and D2 denote the set of duties for these days.
The subset D1

i (D2
i) of D1 (D2) consists of the set of duties containing task i.

The binary decision variables xj (and yj) indicate whether duty j ∈ D1(D2) is
included in the solution or not. Every duty j has positive costs cj . Furthermore,
let S be the set of additional constraints and let ls and us be the lower and
upper bound for constraint s ∈ S. Finally, let vs

j (and ws
j) be the weight of duty

j ∈ D1(D2)for constraint s. Then we can formulate this CSP as follows:

100 Erwin Abbink, Joël van ’t Wout and Dennis Huisman

min
∑

j∈D1

cjxj +
∑

j∈D2

cjyj (1)

∑

j∈D1

i

xj ≥ 1 ∀i ∈ T 1, (2)

∑

j∈D2

i

yj ≥ 1 ∀i ∈ T 2, (3)

ls ≤
∑

j∈D1

vs
jxj +

∑

j∈D2

ws
jyj ≤ us ∀s ∈ S, (4)

xj ∈ {0, 1} ∀j ∈ D1, (5)

yj ∈ {0, 1} ∀j ∈ D2. (6)

Equation (1) is the objective function, which states that the sum of the duty
cost is minimized. Constraints (2) and (3) guarantee that for each task i, at least
one duty that contains this task is selected. Note that only duties of day 1 (2)
can contain tasks of day 1 (2). It may sometimes be better to perform a task
more than once. If, for example, the number of tasks going out of a crew base
differs from the number of tasks going into the crew base on a day, overcovering
is necessary. Moreover, even if overcovering is unnecessary, it may be cheaper to
allow overcovering. By allowing overcovered tasks it can be that other tasks can
be covered easier, resulting in a larger decrease in costs than the extra money
for the overcovered task. Constraints (4) are additional constraints. Consider as
an example of an additional constraint, a crew depot for which the total number
of duties on both days is limited to 50. Then ls = 0, us = 50 and vs

j (w
s
j) = 1

for all duties belonging to this depot and vs
j (w

s
j) = 0 for all other duties. For

some additional constraints it is allowed to violate the constraint at the cost
of a penalty. These constraints are moved to the objective function, along with
the penalty. The last two sets of constraints (5,6) indicates that the decision
variables are binary.

Often CSPs are solved day by day. Even then the resulting set covering
problems are extremely large. Therefore, column generation techniques are often
applied to tackle the large number of duties. We assume that the reader is
familiar with the basic ideas of column generation (recent surveys on this topic
are [2, 15, 5]).

TURNI uses column generation combined with Lagragian relaxation. In the
remainder of this section, we give a short description on how TURNI works.
TURNI is based on a heuristic presented in [3], which is designed for solving
very large scale set covering instances. This Lagrangian-based heuristic, called
CFT-heuristic, in which CFT stands for Caprara, Fischetti and Toth, forms
the bases of TURNI. The main characteristics of the algorithm are a dynamic
pricing scheme for the variables, coupled with subgradient optimization and
greedy algorithms, and the systematic use of column fixing to obtain improved
solutions. We will not discuss these characteristics in detail but we would like to

Solving Large Scale Crew Scheduling Problems 101

stress that, as a result of the algorithm, not only the final set of created duties is
presented, but also a large number of “good” duties are available. We will use this
additional information for constructing our sub-cases as described in Section 4.4.
The process of creating duties from the tasks is called duty generation. The duties
to be generated have to satisfy all constraints concerning a single duty, like rules
about maximum length and rules for the breaks. When the graph is created,
duties can be generated by finding a feasible path through the graph which
starts and finishes in the same depot. A path is a feasible path when it satisfies
all rules concerning the duty length and meal breaks. The costs of the arcs are
defined in such a way that the total cost of a path is equal to the reduced cost
of a duty. By finding the shortest, feasible path and checking whether its cost
is negative or not, it is possible to check if there are still duties with negative
reduced costs.

4 The partitioning method

Our method is based on two observations. First of all, the global constraints are
to be validated on a weekly basis. The original method used a static partitioning
of the complete problem into separate days of the week (Friday, Saturday and
Sunday). Before a solution was computed an estimate was made on the effect
the sub-problem would have on the complete problem. For example, the average
duration of the duties must be below 8 hours per week per crew depot. For the
sub-problem for the Friday this was set to a maximum average of 7:40 hours
and for Saturday and Sunday this was set to a maximum of 8:30. Overall this
will result in an average that is below 8:00 hours. These constraints were based
on rules of thumb that were used by the planners for years during the manual
planning. We observed that planning for a complete week and taking into account
the real week constraint could lead to a better overall solution. The second
observation was that in some cases the solution was improved if, for instance,
the solution for one crew depot was re-scheduled. For this the duties and tasks
for that depot were given to the TURNI software and the solution for this
smaller problem was better than the original solution. This also indicated that
solving the larger instance was becoming difficult for the current implementation.
Combining the two observations, we reasoned that we could possibly improve
the overall solution if we would take the solution for one or more depots for
the separate days and combine them into a case for the complete week. Next to
that, we reasoned that it would be good to have several iterative combinations
of depots in order to minimize the effect of optimizing over a sub-problem. Next
to that we are interested in the effect variation in size of the cases. The most
important dimensions in scheduling are time and location of the activities. It
seems natural to use this dimensions to partition the overall problem. We will
now describe the different partitioning methods one by one.

102 Erwin Abbink, Joël van ’t Wout and Dennis Huisman

4.1 Weekday partitioning

In this method we create a sub-problem per weekday. All trips belonging to the
same weekday are combined in a sub-problem. Not all weekdays are included.
Monday, Tuesday until Friday are very similar. Therefore we choose one (the
Friday) of the weekdays as a pattern weekday. At the end, the solution for this
weekday will be used as a solution for the other weekdays too. The differences
between the weekdays will be handled manually. For the Saturday and the Sun-
day a separate solution is created. The advantage of this method is that it can
be used without an initial solution. Because tasks of different weekdays cannot
be scheduled together in a single duty at NS, this method is a good option to
create an initial solution. In fact, this method was used as the only partitioning
method during the first years of using the system

4.2 Geographical partitioning

The primary geographical partitioning is the depot to which a duty is created and
assigned. After an initial solution is created we can combine all duties assigned
to a depot for all weekdays. This results in 29 sub-problems. These sub-problems
are very small and do not provide much room for improvement. Therefore we
create some larger cases by clustering some depots based on the geographical
location. We create small partitions where on average 3 depots are clustered and
we create large partitions where on average 7 depots are clustered.

4.3 Line based partitioning

The railway product is defined by railway lines. Trains are operated along several
railway lines at a certain frequency. The idea is to combine the depots into groups
when there are many trains that connect these stations. We call this line base
partitioning. A snapshot of the train services of the NS is given in Figure 3.

One can see that there are several series running between e.g. Amsterdam
Centraal and Utrecht Centraal, which makes them good candidates to group
into one depot cluster.

4.4 Partitioning based on column information

The last partitioning method we present is based on the information that is
generated by the scheduling algorithm. As indicated in Section 3, TURNI uses a
mechanism to rank duties according to their likelihood to be selected in an opti-
mal solution. In this way good duties are created which have a high probability
to be part of the optimal solution. Duties that have no contribution to a good
solution are removed from the set, while new duties that have a positive con-
tribution are added. Therefore the total set of duties is continually improving.
TURNI not only returns the duties which are in the final solution, but it also re-
turns these good duties which were generated during the solution process. These

Solving Large Scale Crew Scheduling Problems 103

Fig. 3. Part of the Dutch railway network

104 Erwin Abbink, Joël van ’t Wout and Dennis Huisman

duties can be used to give the information we are looking for. If two tasks ap-
pear together in many duties, it is likely that these two tasks will be assigned to
the same duty in the optimal solution. If, on the other hand, two tasks (almost)
never appear together in a duty, these tasks will probably be assigned to different
duties in the optimal solution. Now, it is possible to give each pair of duties in
the current solution a score which can be used as a measure for inserting a pair
into a partition. This score is based on how often tasks from these two duties
appear together in the set of all duties. We calculate the score for each pair as
follows. First, we count for each combination of tasks in these duties, say t1 and
t2, the number of duties in the whole set that covers task t1 and t2. Then, we
add all these numbers. In this way, we can construct a graph G = (V, E), where
the duties are represented by the vertices, and the edges represent the fact that
the score is positive. We define a weight q(u, v) for each edge (u, v) ∈ E. This
weight corresponds to the score calculated above. We want to find a partition
of the vertices of G into k equal subsets V1, ..., Vk, such that the total weight of
the edges between different subsets is minimized, or more formally

min
∑

(u,v)∈E,u∈Vi,v∈Vj ,i 6=j

q(u, v). (7)

We use a generic algorithm for graph partitioning based on [12] to solve this
problem. For the details, we refer to [16].

5 Results

5.1 Experimental Design

All experiments were carried out on the same hardware (Pentium IV, 3 GHz,
1Mb RAM). First we evaluated the different partitioning methods by running
them after a base run in which we used the weekday partitioning. After that
we made a final run in which all methods were applied sequentially. We used
a maximum computation time of 6x24 hours in total. This means if a prob-
lem is partitioned into two sub-problems, both sub-problems have a maximum
computation time of 3 days. In the final run, where all methods are used se-
quentially, parallel machines were used and the maximum computation time per
sub-problem was set to 1 day.

5.2 Computational results

In Table 1 we present the results of the experiments. The numbers in the method
columns indicate the orders of applying the method. An empty cell indicates that
the method was not used in the experiment. In the last two columns, we report
the number of duties and the relative improvement compared to the base case.
We choose to report the number of duties instead of the objective function,
because the value of the objective function is mainly determined by the number
of duties.

Solving Large Scale Crew Scheduling Problems 105

Table 1. Results

Weekday Geo. Large Geo. Small Line Column Info. #Duties ∆Duties

1 1 7432 -
2 1 2 7339 -1,3%
3 1 2 7318 -1,5%
4 1 2 7335 -1,3%
5 1 2 7331 -1,4%
6 1 2 3 4 5 7287 -2,0%

The results show that all partitioning methods (except the base one with
only weekdays) perform more or less the same. For all of them, the number of
duties is reduced by approximately 1.5%. An even larger improvement could
be obtained by applying all methods sequentially after each other. In this case,
several machines were used and the different sub-problems were run in parallel.
In this way, an improvement of 2.0% could be obtained resulting in a saving of
about 6 million euros. This final solution was implemented in practice for the
crew schedules corresponding to the timetable of the year 2007.

6 Conclusions

In this paper we described a method that improved the usage of an advanced crew
scheduling algorithm using iterative partitioning of the problem. The method is
being used for creating the schedules of a large number of drivers. We have shown
that applying some basic partitioning techniques can have a significant added
value when combined with some advanced mathematical methods. Overall the
efficiency was improved with about 2%. The method is automated which not only
enables us to create an efficient production plan, but also gives us the possibility
to use it for what-if scenario analyses. In the past the scenarios were only studied
for a single weekday. With this method, the analyses are more reliable because
the complete week is taken into account.

References

1. Abbink, E., Fischetti, M., Kroon, L., Timmer, G., Vromans, M.: Reinventing crew
scheduling at Netherlands Railways. Interfaces 35 (2005) 393–401

2. Barnhart, C., Johnson, E., Nemhauser, G., Savelsbergh, M., Vance, P.: Branch-and-
price: Column generation for solving huge integer programs. Operations Research 46

(1998) 316–329
3. Caprara, A., Fischetti, M., Toth, P.: A heuristic algorithm for the set covering

problem. Operations Research 47 (1999) 730–743
4. Caprara, A., Fischetti, M., Guida, P., Toth, P., Vigo, D.: Solution of large-scale

railway crew planning problems: the italian experience. In Wilson, N., ed.: Computer-
Aided Transit Scheduling, Springer Verlag, Berlin (1999) 1–18

5. Desaulniers, G., Desrosiers, J., Solomon, M., eds.: Column Generation. Springer,
New York (2005)

106 Erwin Abbink, Joël van ’t Wout and Dennis Huisman

6. Desrosiers, J., Dumas, Y., Solomon, M., Soumis, F.: Time constrained routing and
scheduling. In Ball, M., Magnanti, T., Monma, C., Nemhauser, G., eds.: Network
Routing. Volume 8 of Handbooks in Operations Research and Management Science.
North-Holland (1995) 35–139

7. Fores, S., Proll, L., Wren, A.: Experiences with a flexible driver scheduler. In Voß, S.,
Daduna, J., eds.: Computer-Aided Scheduling of Public Transport, Springer, Berlin
(2001) 137–152

8. Hartog, A., Huisman, D., Abbink, E., Kroon, L.: Decision support for crew rostering
at NS. Technical Report EI2006-04, Econometric Institute (2006)

9. Hoffman, K., Padberg, M.: Solving airline crew scheduling problems by branch-and-
cut. Management Science 39 (1993) 657–682

10. Huisman, D.: A column generation approach to solve the crew re-scheduling prob-
lem. European Journal of Operational Research 180 (2007) 163–173

11. Huisman, D., Kroon, L., Lentink, R., Vromans, M.: Operations Research in pas-
senger railway transportation. Statistica Neerlandica 59 (2005) 467–497

12. Kernighan, B., Lin, S.: An efficient heuristic procedure for partitioning graphs.
Bell Systems Technical Journal 29 (1970) 291–307

13. Kohl, N.: Solving the world’s largest crew scheduling problem. ORbit (2003) 8–12
14. Kroon, L., Fischetti, M.: Crew scheduling for netherlands railways ”destination:

Customer”. In Voß, S., Daduna, J., eds.: Computer-Aided Scheduling of Public
Transport, Springer, Berlin (2001) 181–201

15. Lübbecke, M., Desrosiers, J.: Selected topics in column generation. Operations
Research 53 (2005) 1007–1023

16. Van ’t Wout, J.: Crew scheduling at Netherlands Railways: using TURNI effec-
tively. Master’s thesis, Faculty of Economics, Erasmus University Rotterdam (2007)

Branching Strategies to Improve Regularity of
Crew Schedules in Ex-Urban Public Transit

Ingmar Steinzen1, Leena Suhl2, and Natalia Kliewer2

1 International Graduate School of Dynamic Intelligent Systems, University of
Paderborn, Warburger Str. 100, D-33100 Paderborn, Germany

2 Decision Support & OR Lab, University of Paderborn, Warburger Str. 100,
D-33100 Paderborn, Germany,

suhl@uni-paderborn.de,
WWW home page: http://dsor.de

Abstract. We discuss timetables in ex-urban bus traffic that consist
of many trips serviced every day together with some exceptions that
do not repeat daily. Traditional optimization methods for vehicle and
crew scheduling in such cases usually produce schedules that contain
irregularities which are not desirable especially from the point of view of
the bus drivers. We propose a solution method which improves regularity
while partially integrating the vehicle and crew scheduling problems.
The approach includes two phases: first we solve the LP relaxation of
a set partitioning formulation, using column generation together with
Lagrangean relaxation techniques. In a second phase we generate integer
solutions using a new combination of local branching and various versions
of follow-on branching. Numerical tests with artificial and real instances
show that regularity can be improved significantly with no or just a minor
increase of costs.

1 Introduction

We discuss timetables in ex-urban bus traffic that consist of many trips serviced
every day together with some exceptions that do not repeat daily. In particular,
service trips to schools, production facilities, or public swimming baths are often
subject to change, e.g., trips may be operated every day except on Sunday, or on
Monday only. Unless specifically imposed, traditional vehicle and crew scheduling
usually produces irregular crew schedules which are undesired in practice. A crew
schedule is called irregular if it cannot be repeated many times. Similar to airline
crew scheduling (see [10]), regularity is an important aspect for crew schedules in
public transport since regular solutions can improve operational reliability and
can reduce training costs. Furthermore, regular solutions are less error-prone,
and crews often prefer to repeat itineraries. In current practice, companies often
try to increase regularity of crew scheduling solutions by one of the following
heuristic two-phase procedures:

– All first - irregular second : First, the planner solves a crew scheduling prob-
lem for a particular period with both regular and irregular trips. In a second

ATMOS 2007 (p.107-123)
7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems
http://drops.dagstuhl.de/opus/volltexte/2007/1167

108 Ingmar Steinzen, Leena Suhl, and Natalia Kliewer

step, he or she fixes the subset of crew duties that can be operated over
the whole period and reoptimizes all unfixed trips. Notice that the second
problem may also contain some regular trips.

– Regular first - irregular second : The set of service trips is divided into regular
and irregular trips. First, a crew scheduling problem for the set of regular
trips is solved while the irregular trips are left for subsequent optimization.

In both cases, the second problem has a sparse schedule and, thus, likely requires
extensive deadheading, and even its optimal solution yields high costs. On the
other hand, if the second problem contains many trips, the corresponding solu-
tion has low cost but low regularity as well.

As stated earlier, we are concerned with the regularity of crew schedules
and not with the regularity of vehicle schedules. In fact, vehicles are rather
insensitive to the quality of their schedules as opposed to drivers. In order to
test our approaches, we will concentrate on scenarios where crew scheduling
plays the major role. This holds particularly for ex-urban scenarios as we will
see in the following section.

As some authors point out, the crew scheduling problem in public transit is
basically a multi-criteria optimization problem with operational cost as a very
important optimization criterium but involving several others such as number
of line changes, total number of duties, number of duties with only one piece of
work, and so on. However, to the best of our knowledge, solution approaches to
improve the regularity of crew schedules in public bus transport, simultaneously
minimizing costs, have not been described in literature before.

We have developed two basic approaches to cope with irregularities in crew
schedules. In this paper we propose a novel combination of local branching and
follow-on branching that improves the regularity of crew schedules while cost
optimality is maintained. As the second approach, [16] compares four bi-objective
metaheuristics that include both cost and regularity as objective functions. The
latter approach can be used to get a quick estimate of the solution quality
obtained with the first approach.

This paper is organized as follows. In Section 2, we give a problem definition
for the ex-urban vehicle and crew scheduling problem with irregular timetables.
We discuss other approaches related to public (bus) transport from literature in
Section 3 and give a formal model definition in Section 4. In the next section,
we describe how local branching and user-defined branching rules can be used
to steer the solution method to regular crew scheduling solutions. Finally, we
provide computational results on real-world and randomly generated instances
in Section 6. The paper is concluded with a short summary (Section 7).

2 Problem Definition

2.1 Basic Process of Vehicle and Crew Scheduling

Starting point of the vehicle and crew scheduling process is a timetable that has
been determined based on customer demand. A timetable defines a set of trips

Branching Strategies to Improve Regularity 109

that are used to carry passengers. Generally, it is assumed that start and end
locations for all trips are fixed as well as their start and end times. Given a set of
timetabled trips, the vehicle scheduling problem (VSP) can be stated as follows:
find an assignment of trips to vehicles such that

– each trip is assigned exactly once,
– each vehicle performs a feasible sequence of trips,
– each sequence starts and ends at the same depot, and
– asset and operational costs are minimized.

Two trips are said to be compatible if they can be covered by the same ve-
hicle. Trips operated in sequence by the same vehicle are linked by deadheads.
Deadheads are vehicle movements or idle times (or both) without carrying pas-
sengers. A vehicle is idle if it stands (idle) at a location other than the depot.
A vehicle block is a sequence of compatible trips that starts with a pull-out trip
and ends with a pull-in trip. A pull-out trip connects the depot with the start
location of the first trip while a pull-in trip moves a vehicle from the end location
of the last trip to the depot. A daily schedule (duty) for one vehicle can thus
include several vehicle blocks. Figure 1 depicts an example of a daily schedule
for one vehicle with two blocks.

Crew scheduling plays an important role in the operational planning pro-
cess since crew costs generally dominate vehicle costs. Instead of assigning trips
to vehicles as in the preceding phase, we now assign tasks to crews. A basic
assumption is that all crews are equal since individual crew members are not
considered.

The crew scheduling problem (CSP) is defined as follows: find a set of duties
for a given set of tasks such that

– each task is covered by a duty that can be performed by a single driver,
– each duty satisfies a wide variety of federal laws, safety regulations, and

(collective) in-house agreements, and
– labor costs are minimized.

A task is a sequence of activities (such as performing trips or deadheading)
between two consecutive relief points and represents an elementary portion of
work that can be assigned to a driver. A relief point defines a location and time
where a driver may change his vehicle. In traditional crew scheduling, i.e., a
vehicle first - crew second approach, relief points subdivide vehicle blocks that
were obtained in the preceding phase.

A piece of work is a sequence of tasks without a (long) break for which a driver
stays with the same vehicle. Consequently, duties are composed of pieces of work
separated by breaks. Duties start with a sign-on and end with a sign-off activity.
Typically, there are several duty types in practical applications, each with a
different rule set. Examples of working rules are minimum/maximum driving
time, minimum break length, allowed start and end time, or maximum spread
(length) of a duty. Moreover, companies often limit the (minimum/maximum)
number or percentage of duties of a particular type. For instance, the percentage

110 Ingmar Steinzen, Leena Suhl, and Natalia Kliewer

of split duties that have two pieces of work - one in the early morning and another
in the late afternoon with a long break in the middle - is often restricted. Figure
1 shows the schedule of one crew that consists of two pieces of work. Note that
the first two tasks remain unassigned.

vehicle block I vehicle block II

A B B B C B A A C B A A B

vehicle duty

dep
ot

dep
ot

dep
ot

time

A C trip from A to C

C A

relief pointB C deadhead from B to C

piece of work I piece of work II
task VItask I task II task III task IV task V

crew duty
piece of work III

Fig. 1. Schedule of one vehicle and one crew

The objective is often to first minimize the number of duties and second
the total working time. Therefore, high fixed crew costs and an hourly rate for
working time are taken into account. Crew scheduling problems, however, are
often subject to non-linear costs, e.g., overtime bonuses.

[4] shows that the CSP with either working time or spread time constraints
is NP-hard. Although duty constraints differ from application to application,
we assume that the CSP has at least one of these constraints and is, therefore,
NP-hard.

Vehicle and crew scheduling is traditionally approached in a sequential man-
ner which means that vehicle schedules are determined before crew schedules.
However, integrating vehicle and crew scheduling and solving both simultane-
ously can basically reveal further potential to save costs, because of increasing
the degrees of freedom and, consequently, size of the solution space.

The integrated vehicle and crew scheduling problem (VCSP) for a given set of
timetabled trips, depots, and relief points can be stated as follows: find minimum
cost sets of vehicle blocks and crew duties such that both vehicle and crew
schedule are feasible and mutually compatible. Vehicle and crew schedule are
compatible if each trip is covered and each deadhead used in the vehicle schedule
is also covered by exactly one duty while all deadheads not contained in the
vehicle schedule are not part of any duty. The VCSP is NP-hard since (at least)
the crew scheduling part is NP-hard.

Branching Strategies to Improve Regularity 111

2.2 Crew Scheduling for Ex-Urban Services

Public transport scenarios can be categorized according to the structure of the
underlying transportation network. Urban service provides connections within
the city while ex-urban (regional) service connects the city with the suburbs
and minor towns in the region of the city. Of course, many companies offer
a mixture of both categories. Many regional scenarios have in common that
the line network is star-shaped around the depots with only few relief points.
Furthermore, distances between relief points are such that drivers are virtually
tied to their vehicle in order to reach the relief points. In other words, pieces
of work often correspond to vehicle blocks. When traditional vehicle and crew
scheduling (vehicles first - crew second) is applied in an ex-urban setting, vehicle
blocks are likely to be too long to meet break requirements, or drivers cannot
return to their home depot. Conclusively, crews must be scheduled at the same
time as vehicles or before vehicles in order to guarantee the feasibility of the
crew schedule. In the remainder of this section, we will assume that drivers may
only change their vehicles in depots (ex-urban scenario).

Crews can easily be scheduled before vehicles if there is a single depot and
vehicle changes outside the depot are not allowed (or drivers can walk from all
relief opportunities to the depot). In such a case, we first solve an independent
crew scheduling problem (ICSP) that we define as follows. Given the traveling
times between all pairs of locations and a set of tasks which corresponds to the
set of service trips, find a minimum cost set of duties such that all tasks are
covered by feasible duties (see also [8]). Since each duty starts and ends at the
depot, the vehicle rotations that result from the crew scheduling solution can
be put together to form a feasible vehicle schedule (using a vehicle scheduling
method). The approach to schedule crews before vehicles is also referred to as
partial integration (see [1]). However, the number of vehicles is not necessarily
minimal in contrast to a fully integrated approach. Notice that a feasible vehicle
schedule can also be constructed when there are multiple depots and duties that
start and end at the same depot. If continuous attendance is required, and a
driver must not stay on his or her (idle) vehicle during a break, each piece of
work must start and end at the same depot. As a result, drivers spend their
breaks in a depot and take the same or a different vehicle for the consecutive
piece of work.

2.3 Vehicle and Crew Scheduling with Irregular Timetables

We will now formally define the vehicle and crew scheduling problem with irreg-
ular timetables. Let F be a timetable with tasks f1, . . . , fn where task fi starts
earlier than fi+1. Furthermore, a reference crew schedule R = {R1, . . . , Ru}
with duties Ri = {fi1, . . . , fip} that is compatible to timetable F is given. The
integrated vehicle and crew scheduling problem with irregular timetables (VCSP-
IT) for timetable F ′ 6= F and given depots, relief points, and a reference crew
schedule R can be stated as follows: find minimum cost sets of vehicle blocks

112 Ingmar Steinzen, Leena Suhl, and Natalia Kliewer

and crew duties such that both vehicle and crew schedule are feasible and mu-
tually compatible. Furthermore, crew schedule D = {D1, . . . , Dv} should have
a small distance to reference schedule R. A crew schedule with a small distance
to reference R is called similar or regular. However, minimizing costs remains
the primary objective.

The perception of distance between two crew schedules can differ from com-
pany to company. A very simple distance measure is to count the number of
duties in the new crew schedule that could not be preserved from the refer-
ence crew schedule. In the following, we will describe a more elaborate dis-
tance measure that basically counts the number of task sequences not preserved
from the reference. Let Q = F ∩ F ′ be the set of regular tasks that are part
of both timetables. A regular pair S ⊆ Q is an ordered pair of regular tasks
(fi, fi+k) that are operated consecutively in both reference R and new crew
schedule D. We denote by S1 the first task of regular pair S while S2 cor-
responds to the second task. Notice that an irregular trip may be operated
between fi and fi+k, but no regular trip. Clearly, a regular trip to cannot be
at the first (second) position of more than one regular pair. However, it may
be at the first position in one pair and at the second in another pair. Further-
more, a regular chain T = (S1, . . . , Sj) = ((S1

1 , S
2
1), . . . , (S1

j , S
2
j)) with j ≥ 1

and S2
i = S1

i+1, 1 ≤ i < j − 1 is an ordered sequence of interconnected regular
pairs. T̃ denotes the number of regular tasks of regular chain T . Furthermore,
let S̄ and T̄ denote the set of all regular pairs and chains, respectively. We define
distance measure σp(σc) that corresponds to the number of regular tasks that
are not part of a regular pair (chain).

σp = |Q| − 2|S̄| (1)

σc = |Q| −
∑
T∈T̄

T̃ (2)

Of course, there are numerous other distance measures possible. However, we be-
lieve that our measures give an intuitive approach to regularity of crew schedules.
Therefore, we will focus on σp and σc in the remainder of this paper. However,
our approaches also work with other distance measures.

3 Literature Review

In this section, we review state-of-the-art models and solution methods for crew
scheduling with irregular timetables from both public transport (bus and rail-
way) and airline perspectives. Since we are concerned about the regularity of
crew schedules, we do not consider vehicle scheduling in our literature review.
As we will see, the literature on irregular timetables in public bus transport is
virtually non-existent. Therefore, we include railway and airline settings in our
review.

Solution approaches can mainly be categorized into regularity and reschedul-
ing approaches. Regularity approaches build a solution from scratch for a given

Branching Strategies to Improve Regularity 113

(long) period where the solution should inherently contain as many regular pat-
terns as possible. In rescheduling methods, a reference schedule is given and a
new solution for a (short) period is constructed where the new solution should
be as similar as possible to the reference. In the following, we will review models
and solution methods based on both approaches.

3.1 Regularity Approaches

[18] describe an airline crew scheduling problem with many irregular flights. The
authors seek to find a set of pairings (duties) that cover all flights in the planning
period (one month) where essentially the total number of man-days is minimized.
The number of man-days of a pairing is equal to the number of days it lasts. The
secondary objective is to minimize costs. Furthermore, a large portion (between
9% and 54%) of all flights is not flown on every day of the planning period.
The authors propose a heuristic that systematically merges irregular flights into
pairings that only consist of regular flights. Their computational tests involve
two real-world data instances with 8,876 and 9,504 flights where the ratio of
irregular flights was 54% and 9%, respectively. Their experiments revealed that
the instances could be solved in 41 and 92 minutes on an IBM RS/6000 model
900. Moreover, their method could find better solutions than manual planning
by experienced engineers. Although the primary objective was to minimize the
number of man-days, the approach manages to produce regular crew schedules.
For the first instance, 81% of the pairings were regular while 92% of the pairings
were flown every day for the second one. However, the authors do not report the
impact on operational costs since regular pairings may contain a lot of (paid)
waiting time.

[10] introduce the weekly airline crew scheduling model with regularity. The
model captures the trade-off between regularity and costs in a weekly sched-
ule. The set of flights is partitioned into groups in such a way that regularity
is easily obtainable in each group. A g-regular group for g = 4, . . . , 7 contains
flights that can be repeated on g consecutive days of the week. By definition,
regular flights i from a g-regular group have gi ≥ g. Each g-regular group is
subsequently partitioned by g-regular pairings. All flights not assigned to a g-
regular group, g = 4, . . . , 7, are called irregular flights and must be assigned to
irregular pairings. In their model, the authors assign penalty costs to irregular
flights. Penalty costs decrease with increasing regularity. However, the complete
regularity model is intractable and, thus, the authors resort to an approximate
model and solution methodology. In particular, pairings are produced in decreas-
ing order of regularity. 7-regular pairings are produced first and an appropriate
subset is computed to form 7-regular pairings in the final weekly solution. The
flight schedule is reduced by all flights already covered by 7-regular pairings.
In the next stage, the remaining flights can only be covered by 6-regular pair-
ings. The process iterates until irregular pairings are generated and the complete
flight schedule is partitioned. Computational results with three real-world data
instances show that problems with at most 492 flights can be solved in 47 hours
computational time. The tests were performed on two clusters: one consisting of

114 Ingmar Steinzen, Leena Suhl, and Natalia Kliewer

16 machines each with Quad Pentium Pro 200MHz/256 MB main memory and
the other comprised of 48 machines each with Dual Pentium II 300MHz/512
MB main memory. The solutions reported improve existing solutions used by
the airline both in terms of regularity and costs.

3.2 Rescheduling Approaches

We distinguish between unplanned and planned rescheduling. Unplanned resche-
duling of crews is necessary when the planned crew schedule cannot be executed
due to irregular operations or disruptions. Planners usually aim to determine new
crew assignments that make as few changes to the original schedule as possible.
In other words, planners like to find a new solution with a small distance to the
original (reference) solution. Unplanned crew rescheduling is also referred to as
crew recovery. Typically, the underlying flight schedule may be changed in crew
recovery problems, i.e., flights may be delayed or even canceled, if no feasible re-
covery scheme is found in a given timeframe. Note that the underlying timetable
must not be altered in the problem stated in the preceding section. Furthermore,
typical scenarios for crew recovery include local disruptions while irregular trips
are often spread over the complete timetable. In conclusion, solution approaches
for crew recovery do not seem to be well suited for our problem stated in Section
2. However, recent approaches to airline crew rescheduling (recovery) include,
among others, [12], [6], [14], and [13].

In planned crew rescheduling the changes in the underlying timetable are
typically known in advance. [9] describes the planned crew rescheduling problem
in a railway setting at NS which is the largest passenger railway operator in the
Netherlands. At NS crew scheduling is performed in two stages. First, solutions
for an annual plan are constructed, i.e., for a general Monday, Tuesday, and so
on. In a second phase, the general days are adapted to individual days where
specific changes in the timetable for those days are considered. The author states
that the changes in the timetable are mainly due to track maintenance or extra
service trips that are both usually known in advance. He suggests a set covering
formulation where original duties are replaced by new (similar) duties such that
all tasks of the modified timetable are covered and total costs of the new duties
are minimized. He uses a heuristic based on column generation in combination
with Lagrangian relaxation and an elaborate set covering heuristic to compute
integer solutions. The computational experiments involve two real-world sce-
narios and were performed on personal computer with a Pentium IV 3.0 GHz
processor/512 MB main memory. The instances with 5,683 and 7,740 tasks had
355 (6.2%) and 827 (10.6%) expired tasks, respectively. For the first instance,
only 12.6% of the original duties needed modifications while the ratio increased
to 29.5% for the second instance. The author could solve the first instance in
approximately 9 hours and the second one in less than 16 hours.

The only approach for public bus transport we are aware of is described in [2].
However, the authors do not provide any details on their approach which is part
of the commercial software package HASTUS/CrewOpt (see [5]). They rather

Branching Strategies to Improve Regularity 115

emphasize the practical importance of generating efficient solutions that are
similar to a reference crew schedule (when the underlying timetable is changed).

4 Mathematical Formulation

In this section, we will give the formulation that will be used in the remainder of
this chapter. Recall that we assumed that drivers may only change their vehicles
in depots (ex-urban scenario). Therefore, we propose to solve the independent
crew scheduling problem (ICSP - see Section 2) first and, then, put the vehi-
cle rotations from the crew scheduling solution together such that the vehicle
schedule is feasible. In Section 5 we will seek to improve the regularity of crew
schedules for the independent crew scheduling problem.

Let T be the set of tasks. Furthermore, we define K as the set of all feasible
duties and K(t), t ∈ T as the set of duties that cover task t. The cost of duty
k ∈ K is denoted by ck. Finally, decision variables xk indicate whether duty k is
selected in the solution or not. The ICSP can be formulated as set partitioning
problem: ∑

k∈K

ckxk → min (3)

s.t.
∑

k∈K(t)

xk = 1 ∀t ∈ T , (4)

xk ∈ {0, 1}. (5)

The objective (3) is to minimize the total costs of the selected duties, and con-
straints (4) assure that each task will be covered by exactly one duty. When the
equality sign in constraints (4) is replaced by a greater or equal sign ”≥”, we
obtain a set covering formulation. Then, tasks may be assigned to more than one
driver where the additional drivers are passengers. The set covering formulation
is computationally more attractive than the set partitioning formulation (see
[20]). In the remainder of this paper, we will consider a set covering formulation.

5 Solution Approaches

5.1 Basic Approach and Test Instances

The purpose of this section is to present two solution approaches that improve the
regularity of crew schedules compared to traditional crew scheduling. For both
approaches we use model (3)-(5) and apply a column generation algorithm in
combination with Lagrangian relaxation. We solve the corresponding Lagrangian
dual with a subgradient algorithm to obtain approximate dual values. The col-
umn generation pricing problem corresponds to a resource constrained shortest
path problem and is solved with a dynamic programming algorithm. For details,
see [16] and [11].

116 Ingmar Steinzen, Leena Suhl, and Natalia Kliewer

The columns generated in the column generation phase serve as input to the
second phase where an appropriate integer solution is sought. In the following,
we suggest two methods for the second phase that take the trade-off between
costs and regularity into account. In particular, we propose a novel combination
of local branching and follow-on branching in Section 5.

Our solution approach is based on the observation that (independent) crew
scheduling problems have thousands of optimal solutions. This is mainly due to
degeneracy.

In Table 1 we give the average number of optimal solutions for indepen-
dent crew scheduling problems with 80, 100, and 160 trips (tasks). We used the
randomly generated test instances from [7]. In accordance with [8] we consider
five different types of duties: one tripper type with one piece of work between
30 minutes and 5 hours, and four types consisting of two pieces of work. Each
group of a given number of trips involved 10 instances.

We enumerated at most 2,500 different optimal solutions per instance with
the branch-and-bound implementation of ILOG CPLEX 9.1.3. The root node
of the branch-and-bound tree was solved with a column generation algorithm,
i.e. we did not regenerate columns during tree search. As we can see in Table 1,
the average number of different optimal solutions can be very high in indepen-
dent crew scheduling problems. Furthermore, the number of optimal solutions
increases if a mere 0.01% deviation to the optimal solution value is allowed.

#trips #instances opt. tolerance

solved 0.00% 0.01%

80 10 1,052 1,115
100 9 723 945
160 9 1,807 2,046

Table 1. Average number of optimal solutions on Huisman data instances

The basic idea of our solution method is to systematically search an optimal
solution among all optimal solutions that is as similar as possible to a given
reference solution. In particular, we use local branching cuts to select suitable
solution subspaces and explore these subspaces with an adapted version of follow-
on branching. Some preliminary results were presented in [17].

5.2 Local Branching to Find Regular Crew Schedules

Local branching (see [3]) is an exact solution method for general mixed integer
programs. The basic idea of local branching is to define suitable solution sub-
spaces that are efficiently explored with a generic MIP solver. In other words,
local branching cuts are added to strategically define subspaces that are tactically

Branching Strategies to Improve Regularity 117

explored with a black-box solver. The procedure can be viewed as a two-level
branching scheme that aims at finding good incumbent solutions at early stages
of the computation. The underlying assumption is that small instances of a prob-
lem can be efficiently solved with a generic solver while large instances cannot.

Given a feasible start solution x̄ ∈ {0, 1}|K| of ICSP we define the Hamming
distance

∆(x, x̄) =
∑
k∈L0

(1− xk) +
∑

k∈K\L0

xk (6)

where L0 = {k ∈ K : x̄k = 1} denotes the support of x̄. The distance ∆(x, x̄)
counts the number of variables in x that flip their values with respect to x̄ (either
from 1 to 0 or from 0 to 1). For a given neighborhood parameter κ ∈ N+, the
solution space can be partitioned with local branching cuts:

∆(x, x̄) ≤ κ (left branch), (7)
∆(x, x̄) ≥ κ+ 1 (right branch). (8)

For an appropriate value κ, subspace ∆(x, x̄) ≤ κ can be efficiently explored
with a generic MIP solver. If the subspace contains a new incumbent x̄2, the
scheme is reapplied to the right branch where two new subspaces are constructed:
∆(x, x̄2) ≤ κ and ∆(x, x̄2) ≥ κ+ 1. On the other hand, if subspace ∆(x, x̄) ≤ κ
does not contain a new incumbent, the remaining (large) subspace ∆(x, x̄) ≥
κ+ 1 has to be explored with a MIP solver.

For independent crew scheduling, we use a local branching scheme to first
explore regions of the solution space that contain solutions similar to a given
reference crew schedule R. Similar to equation (1) let σpk be the number of tasks
of duty k that are not part of a regular pair. Then, we solve the ICSP (possibly
to optimality) with a modified objective function to obtain a start solution x̄ as
a basis for local branching. The start solution should be similar to the reference
crew schedule and should have sufficiently low costs. Therefore, we replace the
original cost ck of column k by ĉk = ck + ασpk and define α in such a way that
σpk dominates the modified cost. Finally, we restore the objective function and
use x̄ to define the initial neighborhood for local branching.

According to our experience the choice of parameter α is crucial for the
performance of the solution procedure. If α is too small, we get a start solution
with low costs and low similarity. As a consequence, it is difficult to improve
the similarity with local branching. On the other hand, if α is too large, the
computational burden to find a minimum cost solution can be very high. In our
computational experiments we found that α ∈ [150, 400] is a robust parameter
setting.

5.3 Follow-On Branching to Find Regular Crew Schedules

In order to simplify the exposition, we will briefly recall the basic idea of follow-
on branching. Branching on follow-ons relies on a general branching strategy for

118 Ingmar Steinzen, Leena Suhl, and Natalia Kliewer

set partitioning problems that was introduced by [15]. The branching scheme is
based on the following property. Given a fractional solution to a set partitioning
problem, we can identify two rows (tasks) fi ∈ T and fj ∈ T such that the
subset K(fi, fj) of columns that contain fi and fj has the property

0 <
∑

k∈K(fi,fj)

xk < 1. (9)

The remaining fraction of cover for each constraint must be provided by columns
that do cover both rows at the same time. Thus, an effective constraint branching
scheme is to require to cover two rows fi and fj by the same column on one
branch and by different columns on the other. [19] slightly modify the scheme to
maintain tractability. They only consider trips (rows) fi and fj that correspond
to trips operated consecutively in a duty (column). Furthermore, the authors
show that this modification still constitutes a correct branching scheme. We
refer to this strategy as branching on follow-ons since we impose which task
can follow task fi in the solution. Moreover, we refer to the task pair (fi, fj)
as follow-on. Notice that each regular pair Si ∈ S̄ is also a follow-on. In the
following, we will describe how follow-on branching is used to construct regular
crew schedules.

A regular crew schedule contains as many regular pairs and chains as possible.
We modify the follow-on branching scheme in such a way that an (cost) optimal
solution has a high regularity as well. In the following, we will propose three
novel adaptations of follow-on branching: branching on regular pairs (fo-r1),
regular chains (fo-r2), and pieces of work (fo-r3).

The support of a regular pair (fi, fj) ∈ S̄ is defined as:

g(fi, fj) =
∑

k∈K(fi,fj)

xk. (10)

Since we aim at generating regular crew schedules we branch on a candidate
regular pair (fi, fj) ∈ S̄ where 0 < g(fi, fj) < 1 is satisfied. Branching scheme
fo-r1 selects the regular pair with the best support among all regular pairs.

fo-r1 : (fi, fj) = arg max
(fi,fj)∈S̄

g(fi, fj) (11)

However, if S̄ = ∅ we choose the follow-on with fi, fj ∈ T and max g(fi, fj).
Branching scheme fo-r2 does not rely on the support of single regular pairs,

but tries to fix regular chains of maximum length. Recall that T̄ is associated with
the set of regular chains. Furthermore, we associate K(Ti) with the set of duties
that cover regular chain Ti. The set of candidate regular chains T̄c contains all
regular chains Ti ∈ T̄ where 0 < g(Ti) < 1 with g(Ti) =

∑
k∈K(Ti)

xk is satisfied.
Algorithm 1 depicts branching scheme fo-r2 where we try to branch on a regular
chain of maximum length if there are candidate chains.

Notice that scheme fo-r2 corresponds to the latter scheme fo-r1 if the set of
candidate regular chains T̄c only consists of chains of length two.

Branching Strategies to Improve Regularity 119

Algorithm 1: Branching on regular chains (fo-r2)
Find candidates
Compute set of candidate regular chains T̄c = {Ti : 0 < g(Ti) < 1}.
Branching
if T̄c 6= ∅ then

Branch on follow-on fi, fj ∈ T with max g(fi, fj)
end
else

Initialize T̄max
c = {Ti ∈ T̄c : |Ti| = maxTj∈T̄c |Tj |}

Branch on regular chain Ti ∈ T̄max
c with max g(Ti)

end

Finally, we propose branching scheme fo-r3 where we branch on a piece
of work whenever that piece of work forms a regular chain. If several pieces
correspond to candidate regular chains, we select the piece with the maximum
number of tasks. Algorithm 2 presents how branching on regular pieces of work
is performed.

Algorithm 2: Branching on regular pieces of work (fo-r3)
Find candidates
Compute set of candidate regular chains T̄c = {Ti : 0 < g(Ti) < 1}.
Branching
if T̄c 6= ∅ then

Branch on follow-on fi, fj ∈ T with max g(fi, fj)
end
else

if ∃Ti ∈ T̄c : Ti is piece of work then
Initialize T̄cp = {Ti ∈ T̄c : Ti is piece of work}
Branch on regular chain Ti ∈ T̄cp with |Ti| = maxTj∈T̄cp |Tj | and
max g(Ti)

end
else

Initialize T̄max
c = {Ti ∈ T̄c : |Ti| = maxTj∈T̄c |Tj |}

Branch on regular chain Ti ∈ T̄max
c with max g(Ti)

end

end

120 Ingmar Steinzen, Leena Suhl, and Natalia Kliewer

5.4 Local and Follow-On Branching to Find Regular Crew
Schedules

Local branching and follow-on branching can be combined. In particular, we
embed follow-on schemes fo-r1 to fo-r3 into local branching to explore neigh-
borhoods ∆(x, x̄) ≤ κ. We hope to explore neighborhoods ∆(x, x̄) ≤ κ in such
a way that (1) an new incumbent is found fast and (2) the new incumbent has
a smaller distance than other solutions in the neighborhood. If the reference so-
lution is of high quality, a valuable follow-on might be selected first and might
reduce the computational time to explore the neighborhood. To sum up, we
strategically define subspaces with local branching and tactically explore them
with follow-on branching.

6 Computational Results

We test our approaches on real-world and randomly generated data instances.
We consider two real-world and eight randomly generated data instances. The
artificial instances were generated as described in [8]. However, all instances have
a single depot and drivers may only change their vehicle in that depot. We make
these assumptions in order to reflect a typical ex-urban scenario (see Section 2).
Furthermore, we assume that a reference crew schedule is known for each data
instance.

In Table 2 we give details on the data instances that result from solving
the linear relaxation of the ICSP with a column generation algorithm. The last
two instances correspond to real world problems while the others were randomly
generated. We report the ratio of irregular trips in percent (%irr), the number of
rows (#rows), columns (#cols), and non-zeros (#nnz). For each data instance
the ratio of irregular trips refers to the number of new trips, i.e., trips that are not
in the reference schedule, compared to the total number of trips. In the second
part of the table we give details on the column generation phase: the number of
iterations (#iter), and the computational time spend on master (cpu ma) and
pricing problem (cpu pr). To maintain comparability between both approaches,
we used operating costs as single objective in the column generation phase.
In addition to the assumptions stated above we apply the following parameter
settings for our branching approach:

The computational time to find an integer solution is limited to 2 hours (7,200
seconds). In our local branching implementation, at most 20% of the variables
of the incumbent may flip their values. Furthermore, the computational time
to explore subspaces ∆(x, x̄i) ≤ κ (left branches) is limited to 15 minutes (900
seconds). If the time limit is reached and no new incumbent is found, we reduce
the size of the subspace by 50% to speed-up its exploration. For further details
we refer to [3].

All computational experiments with the branching schemes were performed
on a personal computer running Windows XP with an Intel Pentium IV 2.2 GHz
processor and 2 GB of main memory.

Branching Strategies to Improve Regularity 121

instance %irr #rows #cols #nnz #iter cpu ma cpu pr

art320 1 5.0 320 100,944 857,215 31 245 140
art320 2 5.0 320 60,128 384,478 21 143 85
art400 1 5.0 400 72,673 459,906 22 125 122
art400 2 5.0 400 57,769 352,592 21 130 77
art640 1 5.0 640 156,044 1,227,320 41 1,006 1,673
art640 2 5.0 640 104,595 643,113 28 572 695
art800 1 5.0 800 135,572 852,337 37 1,060 2,054
art800 2 5.0 800 162,209 1,158,539 39 1,773 2,887
real430 4.4 430 98,710 1,204,084 31 391 297
real433 4.8 433 103,516 1,236,954 31 411 257

Table 2. Description of data instances

In Table 3 we show results on the regularity of crew schedules when we apply
local branching (locbr) and follow-on branching (fo-r1, fo-r2, fo-r3) as described
in Section 5. Furthermore, we compare our method with the default branch-and-
bound implementation of ILOG CPLEX 9.1.3 (cpx-def) and local branching in
combination with default branching of CPLEX (locbr cpx-def). For each method
we give the average over the ten instances described in Table 2. In Table 3 we
report the computational time in seconds spent in the second (integer) phase
(cpu ip), the optimality gap in percent (%gap) and three regularity measures.
The regularity measures are defined as follows. The percentage of preserved
duties (%prd) refers to the percentage of duties in the new crew schedule that
could be (exactly) kept from the reference crew schedule. Similarly we define the
percentage of preserved regular pairs (%prp). The average regular chain length
of a crew schedule corresponds to the average number of regular tasks in a duty.
In this context, the percentage of the average chain length (%avgcl) refers to the
average regular chain length of the new crew schedule compared with average
regular chain length of the reference crew schedule. For example, if the reference
schedule has on the average 8 regular tasks per duty, and the average regular
chain length in the new crew schedule is 4 tasks, then avgcl = 4

8 = 50%.
As can be seen from Table 3 branching scheme fo-r1 provides the best results

in terms of solution time and solution quality. Recall that objective function
and, thus, solution quality refer to operational costs. On the other hand, local
branching considerably improves the regularity of the new crew schedules, e.g.,
the number duties that can be kept from the reference. Basically, we generally
observe an increase of solution time and decrease of solution quality if local
branching is used. However, local branching in combination with scheme fo-r1
gives a better solution quality than the default version of CPLEX. To sum up, we
conclude that local branching effectively improves the regularity while follow-on
branching scheme fo-r1 is well suited to improve solution quality and time. The
combination of both methods leads to improved solutions in terms of both cost
and regularity compared to a traditional approach with CPLEX. A reason for

122 Ingmar Steinzen, Leena Suhl, and Natalia Kliewer

regularity measures

method cpu ip %gap %prd %prp %avgcl

cpx-def 2,437 1.93 6.3 53.5 31.0
fo-r1 2,095 0.42 7.7 54.4 31.2
fo-r2 3,649 2.20 8.2 56.8 33.7
fo-r3 4,247 2.81 6.6 55.0 32.5

locbr cpx-def 6,420 2.60 27.4 79.0 50.1
locbr fo-r1 5,492 1.55 28.0 80.2 51.2
locbr fo-r2 5,806 3.81 32.3 81.1 54.5
locbr fo-r3 6,270 3.70 25.6 80.0 51.2

Table 3. Results on regularity for branching approaches

the good performance of fo-r1 might be that branching on sequences from the
reference leads to high quality solutions if the reference schedule is also of high
quality.

7 Summary

In this paper, we discussed the ex-urban vehicle and crew scheduling problem
with a single depot and irregular timetables. Unless specifically imposed, tra-
ditional vehicle and crew scheduling usually produces irregular crew schedules
which are undesired in practice. We presented solution approaches that improve
the regularity of crew schedules compared to traditional crew scheduling. In
particular, we proposed a novel combination of local branching and follow-on
branching. A computational study that involved randomly generated and real-life
data showed the applicability of the proposed techniques. In fact, our branching
scheme lead to improved solutions in terms of both cost and regularity compared
to a traditional approach with CPLEX. A current limitation of our approach is
that we do not consider a full integration of vehicle and crew scheduling. In-
stead, we focussed on an ex-urban scenario where drivers are virtually tied to
their vehicle.

References

1. R. Borndoerfer, A. Loebel, and S. Weider. A bundle method for integrated multi-
depot vehicle and duty scheduling in public transit. Technical Report ZR-04-14,
ZIB - Zuse Institute Berlin, Berlin, Germany, 2004.

2. A. Dallaire, C. Fleurent, and J.-M. Rousseau. Dynamic constraint generation in
crewopt, a column generation approach for transit crew scheduling. Technical
report, GIRO Inc., Montreal, Canada, 2004.

3. M. Fischetti and A. Lodi. Local branching. Mathematical Programming, 84:23–47,
2003.

Branching Strategies to Improve Regularity 123

4. M. Fischetti, A. Lodi, S. Martello, and P. Toth. The fixed job schedule problem
with working-time constraints. Operations Research, 37(3):395–403, 1989.

5. GIRO. Hastus transit scheduling and operations. Available at
http://www.giro.ca/en/products/hastus/index.htm, July 2007.

6. Y. Guo, L. Suhl, and M. P. Thiel. Solving the airline crew recovery problem by a
genetic algorithm with local improvement. Operational Research An International
Journal, 5, 2005.

7. D. Huisman. Random data instances for multiple-depot vehicle and crew schedul-
ing. Available at http://www.few.eur.nl/few/people/huisman/instances.htm,
April 2005.

8. D. Huisman. Integrated and Dynamic Vehicle and Crew Scheduling. PhD thesis,
Tinbergen Institute, Erasmus University Rotterdam, 2004.

9. D. Huisman. A column generation approach to solve the crew re-scheduling prob-
lem. European Journal of Operational Research, 180:163–173, 2007.

10. D. Klabjan, E. Johnson, G. Nemhauser, E. Gelman, and S. Ramaswamy. Airline
crew scheduling with regularity. Transportation Science, 35:359–374, 2001.

11. N. Kliewer, T. Mellouli, and L. Suhl. A time-space network based exact opti-
mization model for multi-depot bus scheduling. European Journal of Operational
Research, 175(3):1616–1627, 2006.

12. L. Lettovsky, E. Johnson, and G. Nemhauser. Airline crew recovery. Transportation
Science, 34:337–348, 2000.

13. C. Medard and N. Sawhney. Airline crew scheduling: From planning to operations.
European Journal of Operational Research, 183:1013–1027, 2007.

14. R. Nissen and K. Haase. Duty-period-based network model for crew rescheduling
in european airlines. Journal of Scheduling, 9:255–278, 2006.

15. D. M. Ryan and B. Foster. An integer programming approach to scheduling.
In A. Wren, editor, Computer Scheduling of Public Transport: Urban Passenger
Vehicle and Crew Scheduling, pages 269–280. Amsterdam, North-Holland, 1981.

16. I. Steinzen. Topics in Integrated Vehicle and Crew Scheduling in Public Transit.
PhD thesis, DSOR Lab, University of Paderborn, 2007.

17. I. Steinzen, V. Gintner, and L. Suhl. Local branching und branching-strategien fuer
umlauf- und dienstplanung im regionalverkehr mit unregelmaessigen fahrplaenen.
In H.-O. Guenther, D. Mattfeld, and L. Suhl, editors, Management logistischer Net-
zwerke: Entscheidungsunterstuetzung, Informationssysteme und OR-Tools, pages
407–424. Physica-Verlag, Heidelberg, 2007.

18. A. Tajima and S. Misono. Airline crew-scheduling with many irregular flights.
In H. Leong, H. Imai, and S. Jain, editors, Lecture Notes in Computer Science:
Proceedings of the 8th International Symposium on Algorithms and Computation
- ISAAC97, pages 2–11. Springer, Heidelberg, 1997.

19. P. H. Vance, A. Atamtuerk, C. Barnhart, F. Gelman, E. Johnson, A. Krishna,
D. Mahidhara, and R. Rebello. A heuristic branch-and-price approach for the
airline crew pairing problem. Technical Report LEC-97-06, Georgia Institute of
Technology, Atlanta, USA, 1997.

20. F. Vanderbeck. Decomposition and Column Generation for Integer Programs. PhD
thesis, Universite Catholique de Louvain, 1994.

Periodic Railway Timetabling with Event
Flexibility?

Gabrio Caimi, Martin Fuchsberger, Marco Laumanns, and Kaspar Schüpbach

Institute for Operations Research, ETH Zurich, 8092 Zürich, Switzerland
{caimig,fumartin,laumanns}@ifor.math.ethz.ch, kaspasch@student.ethz.ch

Abstract. This paper addresses the problem of generating conflict-free
periodic train timetables for large railway networks. We follow a two
level approach, where a simplified track topology is used to obtain a
macro-level schedule, and the detailed topology is considered locally on
the micro level. To increase the solution space in the interface of the
two levels, we propose an extension of the well-known Periodic Event
Scheduling Problem (PESP) such that it allows to generate flexible time
slots for the departure and arrival times instead of exact times. This
Flexible Periodic Event Scheduling Problem (FPESP) formulation con-
siderably increases the chance to obtain feasible solutions (exact train
routings) subsequently on the micro level, in particular for stations with
dense peak traffic. Total trip time and the time slot sizes are used as
multiple objectives and weighted and/or constrained to allocate the flex-
ibility where it is most useful. Tests on a medium size instance of the
Swiss Federal Railways 2007 service intention demonstrate the advantage
of the FPESP model, while it only moderately increases its solution time
in most cases.

1 Introduction

Railway traffic in Europe has increased considerably for both passenger and
freight transportation, and this trend is expected to continue. As construction
of new tracks is very expensive and hardly possible in many city centers, it
is crucial to utilize the existing infrastructure as good as possible to meet the
customer demand for an enlarged offer. With increasing density of the timetable,
however, scheduling trains becomes more and more difficult not only with respect
to safety restrictions, but also for mitigating propagation of delays. The prospect
of automatic generation of conflict-free timetables in reasonable time is therefore
considered very promising by railway companies in the production as well as
in the planning phase, here in order to evaluate several alternative timetables.
? We thank the Swiss Federal Railways for funding and providing data and in particu-

lar Dr. Felix Laube, Samuel Roos, Oskar Stalder, and Dr. Raimond Wüst for insight-
ful discussions. Furthermore, we are grateful to Dr. Fabian Chudak and Dr. Leon
Peeters for fruitful discussions we had at the very beginning of this work. Finally,
we thank the referees for their constructive comments that helped improving the
quality of this paper.

ATMOS 2007 (p.124-141)
7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems
http://drops.dagstuhl.de/opus/volltexte/2007/1173

Periodic Railway Timetabling with Event Flexibility 125

The Swiss Federal Railways Infrastructure Division (SBB-I), for instance, major
operator of the railway infrastructure in Switzerland, is currently investing efforts
into the development of efficient methods for generating and operating railway
schedules [9, 16, 26].

Our research focuses on the construction of periodic timetables for a given
train service intention, which describes the train services that passenger and
freight companies would like to offer. This train service intention consists of
train lines with frequencies and specifies customer-relevant information such as
stop stations, interconnection possibilities, and train type. The goal is to create
detailed train schedules, which specify an exact itinerary through the railway
topology with passing times for each train. This way the provided timetable is
guaranteed to be conflict-free, i.e., assuming no delays, all trains can run exactly
as planned without creating safety conflicts. This feature is in contrast to today’s
timetables, which are typically not planned to be conflict-free and rather rely on
on-line resolution of resource conflicts as they occur in real time.

As it appears intractable to consider the detailed topology all at once, we
propose a two-level approach for generating conflict-free train schedules [2]. In
the macroscopic (or macro) level, given a train service intention for the whole
railway network, we abstract from the detailed track topology for creating a draft
timetable. In the microscopic (or micro) level, starting with the draft timetable
from the macro level, we construct detailed train schedules by considering locally
precise topologies, the corresponding safety system as well as accurate train
dynamics. For micro scheduling, several models and algorithms are available for
solving large problems with many trains and routing possibilities [27, 5, 6, 1].

This paper focuses on the periodic timetabling on the macroscopic level. This
can be modeled as a Periodic Event Scheduling Problem (PESP, see [11]) whose
output (departure and arrival times) serves as the input for the micro level to
check feasibility by finding a feasible routing. Our goal is to increase the chance
for finding a feasible routing on the microscopic level. We reach this goal by
generalizing the PESP model to search for arrival and departure time intervals
in lieu of exact event times, which are quite restrictive for the micro level and
often lead to infeasibility. This additional flexibility for those events leads to the
extended model developed in this paper, the Flexible Periodic Event Scheduling
Problem (FPESP).

Other methods for generating non-periodic train schedules consider a sim-
plified topology for a line [3] or a larger network, applying a heuristic that
sequentially fixes the train sequence [4] or use a multicommodity flow approach
[23]. However, the importance of the periodicity for timetables in Switzerland
as well as results in the Netherlands [24] and in Germany [10] suggest that the
PESP is a powerful model for coping with macroscopic train timetabling.

This paper is organized as follows: In Section 2 we discuss the PESP and
give a literature review on the relevant work on this model. Section 3 contains
the main contribution of the paper, the introduction of flexibility for the events
in the PESP model. Section 4 presents computational results on a test case in
central Switzerland, and in Section 5 we give an outlook for future research.

126 Gabrio Caimi et al.

2 The classical PESP model and literature review

This section introduces the Periodic Event Scheduling Problem, a powerful model
for periodic schedules introduced by Serafini and Ukovich [25] which was first
applied to train scheduling by Schrijver and Steenbeck [24].

2.1 Classical PESP model

A periodic railway schedule on the macro level consists of a list of departure
and arrival times at the nodes (stations) in the aggregated network for all trains
running within an hour. Each departure or arrival of a train at a node is called
an event i which takes place at a certain time πi. As the schedule is periodic
with a time period T (often T = 60 min), the event i also takes place at times
{. . . , πi−T, πi, πi+T, πi+2T, . . .}. Therefore, πi can be restricted to 0 ≤ πi < T .

The choices of the event times πi depend on each other. For instance, two
trains running on the same track cannot have the same departure times. These
dependencies are modeled as constraints in the PESP. The constraints always
concern two events i and j and define the minimum and maximum periodic time
difference lij and uij between the two. The constraint bounds lij and uij are
given as data of the model, and scheduling is then about finding event times πi
for each event i that fulfill all constraints of the form

lij ≤ πj − πi + Tpij ≤ uij . (1)

The integer variables pij allow the constraints to be fulfilled in the periodic
sense. As an example, Eq. (1) with lij = 10, uij = 15, and T = 60 can be fulfilled
by πi = 46, πj = 58, and pij = 0 but also by πj = 1 where pij = 1 enables the
jump to the next time period.

The events and constraints constitute the elements of the Periodic Event
Scheduling Problem (PESP). This problem can be solved by the correspond-
ing integer linear program (ILP) formulation [11, 22, 18]. Algorithms especially
designed for the PESP problem have also been developed, e. g., constraints prop-
agation [24], genetic algorithms [19], branch-and-cut [15], constraint generation
[20] or adapted backtracking algorithm [25]. These are specialized algorithms for
finding feasible solutions quickly. However, for optimized solutions mostly ILP
solvers are used.

2.2 Constraints

Various rules and restrictions that exist in the railway business can be modeled
via PESP constraints of the form (1).

Trip time The trip time is the time needed for the train to run between two
stations. Trip times do not necessarily need to be fixed, but can also be vari-
able, as reported in [7]. The lower bound for the trip time is the minimum
time needed for the train to run the distance plus a reserve of a few percent

Periodic Railway Timetabling with Event Flexibility 127

that helps making the schedule more robust. The upper bound is the maxi-
mum acceptable time with respect to passenger patience and track capacity
usage. The trip time (l, u) is a constraint between the departure and arrival
events of the same train.

Dwell time The dwell time is the duration that a train stops in a station.
This constraint connects arrival and departure event of a train. Dwell times
should be long enough for boarding of new passengers and possibly for some
loading/unloading or maintenance work on the train. It should not be much
longer than necessary, however, as travelers would like to move on and plat-
form capacity within a station might be small.

Connections These constraints relate the arrival event of some train to the
departure event of another one in order to enable passengers to change trains.
The minimum connection time depends on the infrastructure of the railway
station, on the distances passengers have to walk. Upper bounds are again
the acceptable waiting times for the travelers.

Headway The headway constraints are used to avoid collisions. They separate
two trains running on the same track by at least the headway time h. This
is done by introducing constraints (h, T − h) between the arrival and the
departure events of the two trains. It guarantees that the departures and
arrivals of the two trains on the same track have a safe temporal distance.
The headway time is only a simplification of the real safety system used
in the railway world. More precise safety restrictions should be taken into
account during the micro scheduling.

The headway constraints do not prevent overtaking of trains during the run
on the same track, which is, of course, impossible without a collision. The prob-
lem can be solved by using more restrictive constraints, see [7] for details. The
idea is to increase the headway times such that an overtaking is impossible even
for the largest possible trip time difference. For example, a fast train with trip
time (30, 35) and a slow train (35, 42) have a maximum trip time difference µ
of 12 minutes. With a headway of h, the fast train would need to make up h
minutes to catch up with the slow train and again h to restore the necessary
headway before arrival at the destination. In the case of µ < 2h collisions can be
excluded. In the example, this would require a headway time h > 6. If this con-
dition is not fulfilled automatically, it can be achieved by lowering the trip time
difference µ or by increasing the headway time h. Increasing headway should be
avoided as it reduces the track capacity and flexibility. A different approach to
cope with this problem is presented in Section 2.5.

All the above constraint types are of the form (1) and fit into the PESP
model. Another constraint type will be introduced in Section 2.5, leading to an
extended model. There are many others constraints that should be considered
in the timetable generation and can be modeled as PESP constraints [22, 10].

2.3 Objective function

There are two classes of algorithms for solving the PESP: one looking for any
feasible solution and the other looking for a solution that is optimal with re-

128 Gabrio Caimi et al.

spect to a certain quality criterion. Feasibility algorithms are often much faster,
as they stop as soon as the first feasible solution is found. Optimized solutions
give a measure of the quality of a schedule and guarantee that the output is a
solution of maximum quality. This guaranteed optimality is an advantage of the
computer-generated railway timetables compared to the human-made ones. A
description of possible optimization goals can be found in [22, page 57-64]. Typi-
cal goals are minimization of the total passenger travel time, minimization of the
required number of train units or maximization of some measure of robustness.
The objective functions used in this work are related to the flexible event slot
concept introduced in Section 3.

2.4 Cycle periodicity formulation

The Cycle Periodicity Formulation (CPF) is an adapted formulation of the PESP
that provides an alternative ILP formulation which turned out to be much more
efficient in practice [10, 19, 21, 22]. Instead of solving for the event time variables
πi, it solves for periodic tensions xij . The tensions are the time differences be-
tween the two related events xij = πj − πi + Tpij and must obey the bounds
la ≤ xa ≤ ua for each constraint a ∈ A. Additionally, for a periodic tension to
have a periodic potential πi at each node, the sum of all tensions along a cycle
must be equal to an integer multiple of T , hence

∑
a∈C+

xa −
∑
a∈C−

xa = TqC , (2)

where qC is the integer number of period jumps along the cycle C. This becomes
intuitive by looking at the back transformation from the CPF variables xij to the
PESP variables πi. Starting by fixing any π0, one can compute the neighboring
values π using the relation πj = πi + xij mod T , in short πj = [πi + xij]T . As
the same values for a πi must result for any path one can take from a π0, the
sum of the xij along a cycle has to be an integer multiple of T . We obtain the
following Cycle Periodicity Formulation (CPF):

minimize fobj(x) (3)
s. t. la ≤ xa ≤ ua, ∀a ∈ A (4)∑

a∈C+
xa −

∑
a∈C−

xa = TqC , ∀C ∈ G (5)

aC ≤ qC ≤ bC , ∀C ∈ G (6)
xa ∈ R, ∀a ∈ A (7)
qC ∈ Z, ∀C ∈ G (8)

Eq. (5) imposes constraints on each cycle in the graph. The number of cycles
in a graph can be exponential in the number of nodes, but it can be shown
that there exist integral cycle bases B [12, 13] with the property that each cycle

Periodic Railway Timetabling with Event Flexibility 129

C in G is a linear combination with coefficients from {−1, 0,+1} of the cycles
in B. Peeters [22] showed that it is sufficient to fulfill (5) for all C ∈ B. An
integral cycle basis B of a graph G can be constructed by building a spanning
tree Γ of G. When taking one chord a ∈ A/Γ together with Γ , a graph with
exactly one cycle occurs. Adding one cycle per chord to the basis B gives an
integral cycle basis of G. For a PESP graph with n nodes and m arcs, the basis
contains |B| = m − (n − 1) cycles, as the spanning tree of G has n − 1 arcs.
The advantage of the CPF over the original PESP formulation is that the search
space can be reduced considerably by using the cutting planes (6) for the cycles
in B [20]. The cycle basis is chosen such that it contains cycles with maximally
restrictive cutting planes. The number of integer options for a qC is denoted by
wC = bC − aC + 1. That gives a number of integer value combination to check
of
∏
C∈B

wC and can be reduced significantly by using a good cycle basis.

A theoretical discussion of minimal cycle bases can be found in [10] and
many cycle basis construction heuristics are in [22]. Here, we always use the CPF
formulation with an integer cycle basis generated using the minimum spanning
tree approach, which is simple and gives good results in many cases. When using
ILP solvers, it is important to find a good formulation to reach good performance.
For the present case it is reported that the CPF formulation with a good cycle
basis is more powerful than the original PESP [22, 10].

2.5 Non-collision constraints

The relation between periodic ordering and the qC of the cycle can be used as
non-collision constraint. Non-colliding trains have qC = 0 on the cycle consisting
of the two trip time arcs and the two headway arcs (which must have the same
direction, e.g., from train 1 to 2). This fact has been reported earlier [24, 22, 10]
and can also be adapted for non-collision constraints between trains of reversed
direction on single tracks (qC = 0 for the cycle consisting of the two trip time arcs
having opposite direction and the two headway arcs with the same direction).
The condition qC = 0 is a type of collision constraint that does not fit into the
original PESP framework, as it is not a proper PESP constraint. However, it can
easily be added to the ILP formulation of both original PESP and CPF form.

The non-collision constraints qC = 0 fit directly into the CPF formulation
by choosing aC = bC = 0 in (6). Ideally, these non-collision cycles are used for
the cycle basis, as they have the smallest possible wC = 1.

3 Flexibility in the PESP

We can couple the macroscopic timetabling problem with the microscopic local
scheduling by solving the PESP and passing the train departure and arrival
times to the station routing algorithms to check feasibility. In order to avoid
tedious iterations between micro and macro level in case of infeasibility of the
micro-level problem, we want to improve the chance of finding a feasible solution

130 Gabrio Caimi et al.

by increasing the solution space in the micro level. We can reach this goal if the
PESP timetable does not impose exact event times πi but enables some freedom
for choosing the event times πi. We can add this flexibility for the events πi by
introducing lower and upper bounds πi and πi for πi as new decision variables
instead of the event times πi. The choice of the πi ∈ (πi, πi) shall be independent
for each event, i. e., each value πj ∈ (πj , πj) should be reachable from each value
in πi ∈ (πi, πi) by remaining feasible in the sense of Eq. (1). Note that we are
not forced to add this flexibility to all the events, but we can select the nodes
where we want to add it, for instance only nodes corresponding to events in a
main station area with high traffic density, where it is more difficult to schedule
trains on the microscopic level. The micro scheduling algorithm proposed in [6,
1] is designed to cope with such flexible event time inputs. Here we present a new
approach how the PESP can be generalized to generate event slot timetables on
a macroscopic level.

Flexible schedules with event time slots πi ∈ (πi, πi) can also be used to
overcome delay propagation in the network. A train has to leave a station at
time πi at the latest without starting a delay cascade on following event times.
If the departure time πi is scheduled earlier than πi, the difference πi − πi can
be used to compensate delays and make the schedule robust. The local train
routing algorithm should therefore preferably choose event times πi ∈ (πi, πi)
that are close to πi such that the remaining flexibility πi−πi can be maximized.
Related interesting approaches to impose robustness against delays in the PESP
environment can be found in [8, 14]. In particular, [14] introduces the notion of
absorbing path, which is a path that absorbes a limited disturbance occured
at the first arc at least by the end of the path. This is achieved by adding
time reserves to the lower bounds of the PESP formulation. Our approach also
restricts the feasible intervals on the arcs, but instead of associating these new
variables directly with the arcs, we decide to associate them with the events
of the network. Doing so, these variables serve as a measure for their events’
flexibility for microscopic scheduling and might lead to additional robustness on
the operational level.

3.1 Basic properties

We set the ranges for the event time bounds as 0 ≤ πi < T for the lower bound
and πi ≤ πi < πi + T for the upper bound. Thus, we define the flexibility δi of
an event i as the size of its time slot

δi := πi − πi. (9)

Each constraint arc (i, j) ∈ A has a correspondent span γij = uij − lij . From
an event πi ∈ (πi, πi) with flexibility δi, another event πj ∈ (πj , πj) must be
reachable by fulfilling the constraint lij ≤ πj − πi + pijT ≤ uij , as illustrated
in Figure 1. When no other constraints apply to πj then πj = [πi + lij]T is the
first possible time for event j that fulfills constraint (i, j) for any πi ∈ (πi, πi).

Periodic Railway Timetabling with Event Flexibility 131

ti m
e

i j

Fig. 1. Flexibility for the events i and j. By increasing the flexibility δi, the flexibility
for the connected node will be reduced by the same amount such that the sum of both
values is at most the arc span γij .

Similarly, πj = [πi + uij]T . The flexibility δj is then given by δj = πj − πj =
[(πi + uij)− (πi + lij)]T = γij − δi. It follows that

δi + δj ≤ γij (10)

This inequality takes into account that other constraints besides (i, j) could
restrict the flexibility of the nodes further. Thus, each node flexibility of a feasible
timetable is a non-negative value δi ≥ 0. Note that finding a set of non-negative
δi fulfilling (10) does not guarantee a feasible timetable. For instance, if we choose
all δ = 0 in an infeasible PESP instance we satisfy Eq. (10) but the problem
is infeasible. Eq. (10) shows that the event flexibilities are dependent. Adding
more flexibility at one node restricts it at the neighbors. A weighted objective
function or a feedback strategy from the microscopic algorithm could then help
allocate flexibility where it is most useful.

3.2 Flexible PESP model

We now present the model for introducing event flexibility into the PESP by
changing the constraints of the PESP graph. Event time slots require that the
PESP constraints are fulfilled for any πi ∈ (πi, πi), independently for each event.
The range of the time span xij = πj − πi + Tpij between two events i and j is
given by

πj − πi + Tpij ≤ πj − πi + Tpij ≤ πj − πi + Tpij (11)

Replacing the upper bounds πi for the event times with πi + δi we get the
following inequalities:

πj − (πi + δi) + Tpij ≤ πj − πi + Tpij ≤ (πj + δj)− πi + Tpij . (12)

The PESP constraints (1) are satisfied for any combination of πi and πj if they
are satisfied for the entire range of (πj − πi + Tpij) in Eq. (12):

lij ≤ πj − (πi + δi) + Tpij ≤ πj − πi + Tpij ≤ (πj + δj)− πi + Tpij ≤ uij .
(13)

132 Gabrio Caimi et al.

(l,u)

(l+ ,u)

(l,u)

(l,u)

(l+ ,u)(l,u−)

δ

δδ
(τ,τ+δ)τ

Fig. 2. Introducing an event slot of size δi at event i leads to adapted constraint bounds
in the PESP graph. The upper bound of incoming constraints is reduced by δi and the
lower bound of outgoing arcs is increased by δi.

Considering separately the first and the last inequalities we obtain constraints
in PESP form for the variables πi.

lij + δi ≤ πj − πi + Tpij and πj − πi + Tpij ≤ uij − δj . (14)

Putting these results together leads to

lij + δi ≤ πj − πi + Tpij ≤ uij − δj (15)

which are constraints in PESP form for the variables πi. The adaptation of the
constraints is illustrated in Figure 2. The constraints are more restrictive than
in the original PESP, γ̃ij = (uij − δj) − (lij + δi) = γij − δi − δj . As γ̃ij must
be non-negative for feasibility, it follows again δi − δj ≤ γij as stated before in
Eq. (10). The original PESP without event slots is the special case where δi = 0
for all i.

The Flexible PESP can now be solved for the variables π and δ. Both the
original PESP and the CPF formulation are applicable. In the original PESP,
Eq. (1) changes to

lij + δi ≤ πj − πi + Tpij ≤ uij − δj ∀ (i, j). (16)

In the CPF version, the change affects the bounds of Eq. (4) as follows:

lij + δi ≤ xij ≤ uij − δj ∀ (i, j). (17)

3.3 Objective functions

A good timetable with time slots should (i) be a good timetable with respect to
the objectives in Section 2.3, (ii) have large event time slots, and (iii) contain
homogeneously distributed event flexibility. These goals are often conflicting,
and the choice of the objective function is not obvious. The following list dis-
cusses some possible choices. Computational results for different objectives are
presented later in Section 4.3.

– Mintravel: This objective function minimizes a weighted sum of the pas-
senger-relevant times

min ftt =
∑
t∈AT

wtxt +
∑
d∈AD

wdxd +
∑
c∈AC

wcxc. (18)

Periodic Railway Timetabling with Event Flexibility 133

where AT ⊆ A is the set of trip arcs, AD ⊆ A the set of dwell arcs and
AC ⊆ A the set of connection arcs. The weights can be chosen such that
they correspond to the number of passengers using this activity or other
priority criteria.

– Maxflex: This objective function maximizes a weighted sum of flexibilities

max fflex =
∑
i∈V

wiδi (19)

where V is the set of all events where flexibility is introduced. The weights
can be chosen such that more flexibility is assigned to some parts of the
graph, e.g., main station areas or network bottlenecks. This objective (19)
may lead to a few events having a lot of flexibility while all others have none.
It is more desirable to have a bit of flexibility everywhere. By additionally
constraining the maximum flexibility per node,

δi ≤ δmax (20)

a better distribution of flexibility can be obtained. Different choices for the
value δmax are discussed in Section 4.

– Mixflex: An aggregated objective function allows to optimize both the
quality of the timetable and the time slots. The timetable quality here is
measured by a weighted sum, whose optimum constitutes a Pareto-optimal
solution to the bi-objective problem of minimizing travel time and maxi-
mizing flexibility simultaneously. The weight λ, 0 < λ < 1, balances the
priorities of the two goals.

max fmixflex = λ · fflex − (1− λ) · ftt (21)

– Contravel: Instead of optimizing a weighted sum of the objectives, we can
address the bi-objective problem by constraining one objective and optimiz-
ing the other. By appropriate constraint values, any Pareto-optimal solution
is reachable, and the quality of the final solution can be controlled more
accurately than via a weighted sum. Here, we optimize flexibility under a
travel time constraint, where we use the minimum of ftt as a reference and
allow a parameterized relative deviation of ε:

max fflex (22)
subject to ftt ≤ (1 + ε) f∗tt (23)

where f∗tt is the optimal value found for ftt in (18).
– Postopt: Another two step approach keeps the integer variables qC from

step one (18) fixed for step two (22). It results an LP, all integer variables now
being fixed as qC = q∗C . This is a type of post optimization, which is very fast,
but has a very limited solution space. The second step only shifts the event
times while keeping the event order constant. A similar post-optimization
approach has been applied in [8] for finding an optimal distribution of time
reserves among a train trip using stochastic optimization.

134 Gabrio Caimi et al.

– Maxminflex: The idea here is to guarantee a minimum flexibility for a set
of selected events i ∈ Ψ

maxϕ (24)

s.t. ϕ ≤ δi ∀i ∈ Ψ. (25)

In many cases, however, there are events that cannot have any flexibility. In
such a case, ϕ will be zero and the approach will not give the desired results.

3.4 Interaction with micro-level scheduling

When the optimal macro schedule is found, the event times and event slot sizes
are passed to the micro scheduling algorithm, where routes and platforms are
assigned to the trains. The event slots increase the solution space of the micro
scheduling, which can now choose from various routing possibilities for each
train, as well as from the event times π ∈ (π, π + δ) within the slots. The
interface consists of a list of trains and their π and δ values for the arrival and
departure at each station. If no solution of the micro scheduling problem can be
found, a feedback loop leads to a shift of the weights, wi in (19) and λ in (21), in
the objective function of the macro scheduling. More flexibility is then assigned
to the respective station area.

4 Computational results

4.1 Test case

A test case was set up in order to validate the algorithms and concepts of this
work. The scenario includes the cities Lucerne, Zug and Arth-Goldau as the
major nodes in the network. The macroscopic track topology shown in Figure
3 is used for the test case. It is a simplification of the reality, but it is still
interesting, as it includes changes from double to single track and junctions
where trains from different directions come together, as well as a mixture of
freight trains, long distance and local passenger trains.

The service intention of the 2007 SBB timetable is used. It contains Inter-
city trains running from Baar (Zurich) and Sursee (Basel) to Erstfeld and the
Gotthard tunnel through the Alps. Additionally, there are Interregional trains
running from Lucerne to Baar and to Biberbrugg (Pfäffikon). Regional trains
run in the triangle Lucerne – Zug – Arth-Goldau with several stops in between,
as well as on all other lines described in Figure 3 (b). Several slots for cargo
trains are reserved in every hour on the double-track line Lenzburg – Rotkreuz –
Immensee – Arth-Goldau – Gotthard in both directions, which is the main line
between Germany and Italy and where nearly the entire freight traffic passes
through. The reference scenario for the test case consists of 48 trains running
on the described topology with a periodicity of 1 hour (T = 60 min) and the
headway time h = 2 min. Table 1 compares sizes of the PESP graph and the
MIP formulation for the reference scenario with and without flexibility.

Periodic Railway Timetabling with Event Flexibility 135

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+Èdolo

La Roche-sur-Foron

Immenstadt

Sonthofen

Kempten
Insel Mainau

Oberstdorf

Ravensburg

Meersburg

Morez

Annecy

Pré-St-Didier

Verbania

Lecco

Dornbirn

Langen a.A. St. Anton

Schruns

Bormio

Livigno

Bludenz

Stresa

Evian-
les-BainsThonon-

les-Bains

Feldkirch

Varese

Montbéliard+

Frasne

+
Lindau

Friedrichshafen

Mulhouse

Belfort

Bregenz

Besançon
+

Othmarsingen

Affoltern-Weier

Wynigen

Erlenbach i.S.

Täsch

Thayngen

Erzingen
(Baden)

Màlles/
Mals

Chamonix-
Mt. Blanc

Gais

Fusio

Pratteln

Radolfzell

Stockach

Bignasco

Fafleralp

Laax

Lenzerheide/Lai

Olivone

Rossa

S-charl

Ftan

Sonogno

Spruga

Sörenberg

Vals

Vrin

Gletsch

Moudon Bergün/Bravuogn

Fiesch

Giubiasco

Ins

Intragna

Les Verrières

Schüpfheim

Payerne

La Chaux-de-Fonds

Aosta

Zweisimmen

Bad Zurzach

Zernez

Worb

Wolhusen

Wohlen

Wilderswil

Wildegg

Wetzikon

Wettingen

-West

Wengen

Wattwil
Wasserauen

Walzen-
hausen

Waldshut

Waldenburg

Wald

Vitznau

Villars

Verbier

Vallorbe

Uznach

Uster

Urnäsch

Ulrichen

Uetliberg

Turgi

Trogen

Treib

Travers

Tirano

Tiefencastel

Thusis

Tavannes

Sulgen

Suhr

Stein a. R.

Ste-Croix

Stalden

St-Louis

St-Gingolph

St-Cergue

St. Urban

St. Niklaus

Sonceboz-
Sombeval

Singen

Engen

Sihlbrugg
Sihlwald

Sembrancher

Martina

Samnaun

Schynige PlatteSchwarzsee

Schwarzenburg

Schwanden

Schöftland

Schilthorn

Schiers
Bad Ragaz

Samedan

Saignelégier

Sagliains

Schönried

Rüti ZH

Rodersdorf

Rochers-
de-Naye

Rigi

Rheineck

Rhäzüns

Renens VD

Realp

Raron

Rapperswil

Ramsei

Jegenstorf

Poschiavo

Porrentruy

Pontresina

Ponte
Tresa

Pontarlier

Pilatus

Orsières

Orbe

Oberwald

Oberglatt

Nieder-
weningen

Nesslau

Murten

Mörel

Monthey

Montbovon

Möhlin

Menziken

Meiringen

Meilen

Luino

Linthal

Ligerz

Lichtensteig

Leysin

Leuk

Les Ponts-de-Martel

Les
Pléiades

Les Diablerets

Les Brenets

Lenk i.S.

Le Sépey

Le Noirmont

Le Locle

Le Day

Le Châtelard Le Châble

Le Brassus

Lauterbrunnen
Grütschalp

Laupen

Laufenburg

Langnau

Lancy-Pont-
RougeLa Plaine

La Cure

L'Isle

Konolfingen

Koblenz

Klosters

Kl. Scheidegg

Kerzers

Jungfraujoch

Iselle di
Trasquera

-Ost Innertkirchen

Ilanz

Huttwil

Hinwil

Herisau

Hergiswil

Heiden

Hasle-Rüegsau

Rosshäusern
Gümligen

Gstaad

Grindelwald

Grächen

Gornergrat

Glovelier

Glarus

Genève-Eaux-Vives

Generoso
 Vetta

Furka

Fleurier
Flamatt

Filisur

Etzwilen

Esslingen

Engelberg

Emmenbrücke

Elm

Einsiedeln

Eglisau

Effretikon

Dornach

Disentis/Mustér

Dietikon

Cossonay

Col-de-Bretaye

Chavornay

Châtel-St-D.

Château-
d'Oex

Champéry

Capolago

Camedo
Cadenazzo

Buttes

Büren a/A

-Süd
-Nord

Bulle

Brünig

Rothorn

Brienz

Boudry

BonfolBoncourt

Delle

Blonay

Bière

Biberbrugg

Bever

Betten

Bercher

Belp

Beinwil

Bauma

Basel Bad Bf

Balsthal

Apples

Appenzell

Andermatt

Altstätten SG

Alpnachstad

Affoltern
a. Albis

Aesch

Arosa

-Dorf

-Platz

Broc

Reichenau

Bellegarde

Puidoux

Stoos

Menaggio

Adelboden

Amden

Arolla

Basel
EuroAirport

Beaten-
berg

Beromünster

Bettmeralp

Braunwald

Castasegna
ChiavennaCrans

Feldis

Ferpècle

Flims

Hasliberg

Landeck-Zams

Le Grand-
St-Bernard

Les
Haudères

Leukerbad

Malbun

Mt.-
Pèlerin

Montana

Mürren

Müstair

Prêles

Riederalp

Saas Fee

Schaan

Schellenberg
Schwägalp

Seelisberg

Silvaplana

Splügen

Andeer

Juf

Sta. Maria

Stechel-
berg

Stilfserjoch/
Stelvio

Unterbäch

Zinal

Reichenbach

Niederbipp

Ouchy

Annemasse

Buchs SG
Vaduz

Rorschach

St. Margrethen

Kandersteg

Goppenstein

Frutigen

Como

Lörrach

Zell (Wiesental)

Weil a. R.

Erstfeld

Faido

Biasca

Airolo

Göschenen

Flüelen

Laufen

Stein-Säckingen

R'felden

Frick

Bülach

Brugg
Baden

Biel/Bienne

Liestal

SurseeHerzogenbuchsee
Zug

Locarno

Sierre/
Siders

Sion

Martigny

Aigle

St-Maurice
Bex

Vevey
Montreux

Genève-
Aéroport

Nyon

Morges

Fribourg

Romont

Palézieux

Yverdon-
les-Bains

Neuchâtel

Zofingen

Langenthal

Burgdorf

Interlaken

Thun

Spiez

Visp

Brig

Domodossola

Chiasso

Lugano

Bellinzona

Brunnen
Schwyz

Arth-Goldau

Rotkreuz

Chur

Landquart

Sargans

Ziegelbrücke

Pfäffikon SZ
Wädenswil

Thalwil

Wil

Flawil
Uzwil

Frauenfeld

Weinfelden

Konstanz

Schaffhausen

Zürich
Flughafen

Lenzburg
Aarau

Gelterkinden
Sissach

Olten

SolothurnGrenchen

Moutier

Delémont

Gossau

Romanshorn

Kreuzlingen

Lyss

Oensingen

Winterthur

Davos

St. Moritz

Zermatt

Scuol-
Tarasp

Basel

Bern

Genève

Lausanne

Luzern

St. Gallen

Zürich

D
ij

o
n

 |
P

a
ri

s
L

yo
n

 |
A

vi
g

n
o

n
G

re
n

o
b

le
P

a
ri

s

In
n

sb
ru

c
k

 |
S

a
lz

b
u

rg
 |

W
ie

n
M

e
ra

n
o

Milano | Malpensa | Venezia | Firenze | Roma | Torino

Ulm | München MünchenStuttgartKarlsruhe | Frankfurt | Dortmund | Hamburg | BerlinParis | Strasbourg | Luxembourg | Bruxelles

F R A N C E

F R A N C E

I T A L I A

I T A L I A

D E U T S C H L A N D

Ö S T E R R E I C H

L I E C H T E N S T E I N

S
B

B
 W

E
B

 2
0

0
7

R

e
lie

f:
 ©

D
H

M
2

5
/M

O
N

A
 s

w
is

st
o

p
o

/G
E

O
S

Y
S

-F
ra

n
c

e
 (J

A
0

6
2

2
5

0
)

 w
w

w
.t

ra
fi

m
a

g
e

.c
h

Bahnen, Autobusse und Seilbahnen
Chemins de fer, Autobus et Transports à câbles
Ferrovie, Autobus e Trasporti a fune
Viafiers, Autobus e Funicularas
Railways, Buses and Cableways

1 : 1,2 Mio

0 10 20 30 km

Bahnen	
Chemins de fer
Ferrovie
Viafiers
Railways

+

Autobusse	
Autobus
Autobus
Autobus
Buses

+

Seilbahnen	
Transports à câbles
Trasporti a fune
Funicularas
Cableways

+

<600>

<2050> 3216

Lucerne

Rotkreuz

Immensee
Arth-Goldau

Walchwil

Erstfeld

Lenzburg

Sursee

Baar

Zug

Wolhusen

Biberbrugg

(a) (b)

Fig. 3. (a) The test case region connecting the towns Zug – Lucerne – Arth Goldau
in central Switzerland. (b) The track topology is partly double track and partly single
track and is used by regional and intercity trains as well as freight trains. All the events
in the PESP model correspond to departure or arrival times at stations in this picture.

integer # # MIP # average (stdev) average
variables variables δ variables constraints non-collision arc span (min) ωC (stdev)

1083 436 212 1730 223 5.4 (4.8) 2.6 (1.1)

Table 1. Data of the PESP graph and the MIP for the reference scenario, with the
variables δ for adding flexibility. The PESP graph of the reference scenario with 48
trains has 212 events and 647 arcs after resolving arcs with zero span. The average arc
span and his standard deviation are computed without the headway constraints, wich
are 446 arcs with span 56 minutes (h = 2).

4.2 Implementation

The model was implemented using Matlabr and the MOSEKr [17] solver for
mixed integer linear programs. The tests are run on a 2GHz 64bit processor with
4GB RAM. All computations throughout this chapter are done with all weights
wi equal to one and are terminated when an optimality gap of 0.1% is reached.
The output of the timetable generator is a list of all departure and arrival times
of the trains. The data can then be visualized in the form of time-space diagrams
(see Figure 4).

The timetable can be computed with both the original PESP formulation
(Section 2.1) or the CPF formulation (Section 2.4). First we compare the two
formulations as well as the model with and without flexibility on the events.
We consider the objective function Mintravel. The reference scenario takes
more than 4000 seconds when we apply the original PESP formulation but only
18 s when we apply the CPF formulation. As often observed in the literature, it

136 Gabrio Caimi et al.

(a) (b)

Fig. 4. (a) The generated timetable without event slots from the 2007 SBB service
intention visualized in a time-space diagram. The horizontal axis represents the route
from Arth-Goldau (GD) towards the alps (Erstfeld, ER), whereas the vertical axis
represents the time. (b) When using event slots, each event gets an event time πi and
a flexibility δi. In this diagram, the earliest possible line and the latest possible line are
filled in grey. Any choice for train trajectories in the grey zones are feasible from the
macro scheduling point of view.

seems that the CPF formulation is more efficient and better suited for timetable
generation. It is therefore used for the further tests throughout this section.

If we introduce the values δ for the event flexibility, consider the CPF formu-
lation and solve the reference scenario with the objective Mintravel, we get
a CPU time of 275 seconds, as reported in Table 2. Other tested scenarios give
similar increasing factors of the CPU time by introducing event flexibility. Notice
that an optimal solution of Mintravel with all δi = 0 corresponds to optimal
solution of the original PESP without flexibility. It is interesting to notice that
the MIP solver of MOSEK does not find this solution, but takes more time and
provides a solution with

∑
δi = 60. If we solve Contravel with ε = 0 we get

an optimal solution with
∑
δi = 152.

If we want to maximize the flexibility in the objective (Maxflex), we get a
CPU time of 420 seconds. One can observe that the introduction of the additional
values δ, which more or less doubles the number of continuous variables in the
ILP, increases the CPU time, but not too much as we did not add any additional

Periodic Railway Timetabling with Event Flexibility 137

name objective CPU time
∑
δi
∑
xt,d,c

Noflex min
∑
xt,d,c 18 sec - 2017

Mintravel min
∑
xt,d,c 210 sec 67 2017

Maxflex max
∑
δi 420 sec 380 2396

Mixflex 1/2 max
∑
δi −

∑
xt,d,c 217 sec 249 2114

Mixflex 2/3 max 2 ·
∑
δi −

∑
xt,d,c 338 sec 372 2251

Mixflex 9/10 max 9 ·
∑
δi −

∑
xt,d,c 317 sec 380 2272

Postopt max
∑
δi for fixed qC 0.2 sec 251 2121

Contravel max
∑
δi s. t.

∑
xt,d,c ≤ 1.02 · f∗tt 93 sec 194 2058

Table 2. Results for the reference scenario with bounds for the flexibilities δi ≤ 4.∑
xt,d,c stands for the sum of all trip, dwell and connection times. Noflex means

the original PESP solved with CPF formulation, without introducing the variables δ.
Notice that for Postopt and Contravel a solution to Noflex is needed; the reported
CPU time is without the time needed for Noflex.

integer variables. Furthermore, an appropriate choice of the objective could help
to improve the CPU time (see Table 2). Results on the test case with event slots
are displayed in Figure 4. Here, the reference scenario with 48 trains is used,
with a limitation of the event slot sizes to δi ≤ 4.

4.3 Event slot objectives

The limitation of the event flexibilities δi ≤ δmax has several reasons. Large
flexibilities are not very useful, neither for the micro scheduling nor for the delay
management. On the contrary, events with large δi restrict the δj for other events
because δj ≤ γij − δi. It is better to have many small time slots instead of a few
large ones. Table 3 shows the effect of the flexibility bounds.

A second drawback of large flexibilities is that the travel times are necessarily
increased, as the minimal bound for the trip times is increased in Eq. (15). This
is only acceptable if the increase is small and if it is compensated by additional
timetable robustness.

Generating a timetable with maximized flexibility needs more computation
time. The increase can be explained by comparing the effects of the objective
functions on the solver. An objective function that minimizes the trip and con-
nection times (Mintravel, see Table 2) automatically saves the capacity of
the tracks by trying to assign to each train the shortest track occupancy time
possible. The objective function basically helps the solver to find a solution, as
it is more probable to find one when the trains use only little track capacity.
Mintravel has the additional advantage of offering passenger-friendly train
schedules with low travel times.

An objective function maximizing the event slots (Maxflex) has the inverse
effect. An event with high flexibility also uses a lot of track capacity. This can be
seen in Figure 4, where the flexible events occupy a band (filled in grey) instead
of just a single line. With such an objective function the solver starts looking for

138 Gabrio Caimi et al.

δmax
∑
δi number of events with
δi = 0 δi = 1 δi = 2 δi = 3 δi ≥ 4

0 0 212 – – – –

1 161 51 161 – – –

2 258 61 44 107 – –

3 323 67 48 16 81 –

4 366 76 42 16 20 58

5 386 79 44 17 14 58

6 396 80 49 15 14 54

7 401 84 44 21 13 50

8 405 82 52 16 13 49

9 409 94 43 12 10 53

10 411 95 42 12 10 53

11 413 94 40 16 10 52

12 415 92 44 14 14 48

59 419 97 42 13 10 50

Table 3. This table shows the effect of the limitation δi ≤ δmax when Maxflex is
optimized in the reference scenario. The choice of the δmax has the conflicting goal of
maximizing

∑
δi while minimizing the number of events with zero flexibility. For the

following tests, the flexibility bound δmax = 4 is used.

solutions with high flexibility, which are not likely to be feasible as they block
a lot of track capacity. Hence the approaches which combine the advantages of
both are desirable. Mixflex

2
3 (see Table 2) is an aggregated objective function

giving good values for trip times and flexibility within a reasonable time.
The post optimization approach (Postopt) takes the quickly generated

Mintravel solution and adds flexibility in a second step while keeping the
integer variables qC constant. The ILP is reduced to an LP for the second step
and is therefore solved almost instantaneously. It is interesting to see that the
resulting flexibility is quite high, even compared to the maximally possible objec-
tive in Maxflex. It can be expected that the computation times of Maxflex

grow faster than Mintravel with the problem size due to the capacity problem.
This makes the Postopt concept attractive for larger instances.

The Contravel works on a reduced search space that contains only the
solutions with the given maximum deviation to the optimum of Mintravel. It
is interesting to see that the computation time of this approach depends much
on the instances. For the reference scenario it provided good results but for some
other instances it did not come to an optimality proof after more than ten hours.
The reason might be that the travel time restriction does not give a reduction
of the search space of the integer variables.

5 Conclusions and outlook

The classical PESP model with fixed event times is quite restrictive and could
lead to a draft timetable which is infeasible at the microscopic level. It is therefore

Periodic Railway Timetabling with Event Flexibility 139

desirable to increase the solution space for the microscopic level by enabling
the event times to be in a time slot instead of being fixed to an exact value.
This paper shows how this idea can be modeled by generalizing the PESP for
generating flexible train schedules on a macroscopic level. The resulting FPESP
is closely related to the original PESP such that future improvements in the area
can probably be included.

Computations show that we can generate draft timetables on the macroscopic
level with event slots flexibility for a scenario of medium size (48 trains in one
hour) in a reasonable amount of time (2-7 minutes). The introduction of the
event slots does not seem to affect the computation time too much and should
be compensated by the reduction of the number of iterations between the macro
and micro level.

An important result of the event slot tests was that the computation time
strongly depends on the objective function. The event slot maximization is com-
putationally not very efficient and conflicts with the goal of travel time mini-
mization. We have tested some alternative objective functions and observed that
the problem can partly be overcome with aggregated objective functions.

The integration of the macro and micro level is currently under investigation.
Draft timetables generated with the approach presented in this paper have to be
checked for feasibility at the micro level with algorithms designed to cope with
this type of event slot timetables. Of particular interest is the measure of the
increased chance of avoiding an infeasible instance and therefore the restart of
the timetable generation on the macro level.

Moreover, larger scenarios should be tested with the model, such for instance
a larger area or the complete Swiss Intercity network. Larger scenarios will help
understand the limits of this model from a computational time point of view,
in particular to see whether it allows to generate schedules for the whole Swiss
railway network.

References

1. G. Caimi, F. Chudak, M. Fuchsberger, and M. Laumanns. Solving the train
scheduling problem in a main station area via a resource constrained space-time
integer multi-commodity flow. Technical report, Institute for Operations Research,
ETH Zurich, 2007.

2. G. Caimi, T. Herrmann, D. Burkolter, F. Chudak, and M. Laumanns. Design of a
new railway scheduling model for dense services. In Proceedings of the 2nd Inter-
national Seminar on Railway Operations Modelling and Analysis (RailHannover
2007), Hannover, Germany. IAROR, 2007.

3. A. Caprara, M. Fischetti, and P. Toth. Modeling and solving the train timetabling
problem. Operations Research, 50(5):851–861, 2002.

4. M. Carey. A Model and Strategy for Train Pathing with choice of lines, platforms,
and routes. Transportation Research Part B, 28(5):333–353, 1994.

5. M. Ehrgott, R. Velasquez, and A. Schöbel. A Set-packing Approach to Routing
Trains Through Railway Station. Preprint nr. 2005-36, Georg August Universität
Göttingen, 2005.

140 Gabrio Caimi et al.

6. M. Fuchsberger. Solving the train scheduling problem in a main station area via
a resource constrained space-time integer multi-commodity flow. Master’s thesis,
ETH Zurich, 2007.

7. L. Kroon and L. Peeters. A Variable Trip Time Model for Cyclic Railway
Timetabling. Transportation Science, 37(2):198–212, 2003.

8. L. G. Kroon, R. Dekker, and M.J.C.M. Vromans. Cyclic railway timetabling:
a stochastic optimization approach. Technical report, RSM Erasmus University,
2005. available at http://hdl.handle.net/1765/6957.

9. F. Laube, S. Roos, R. Wüst, M. Lüthi, and U. Weidmann. PULS 90 - ein syste-
mumfassender Ansatz zur Leistungssteigerung von Eisenbahnnetzen. Eisenbahn-
technische Rundschau, 3/2007, 2007. In German.

10. C. Liebchen. Periodic Timetable Optimization in Public Transport. PhD thesis,
Technische Universität Berlin, 2006.

11. C. Liebchen and R. Möhring. The Modeling Power of the Periodic Event Scheduling
Problem: Railway Timetables - and Beyond. In F. Geraets et al., editors, ATMOS
2004, LNCS 4359. Springer, 2004.

12. C. Liebchen and L. Peeters. On cyclic timetabling and cycles in graphs. Technical
Report 761-2002, TU Berlin, Department of Mathematics, Combinatorial Opti-
mization and Graph Algorithms Group, 2002.

13. C. Liebchen and R. Rizzi. Classes of cycle bases. Discrete Applied Mathematics,
155(3):337–355, 2007.

14. C. Liebchen and S. Stiller. Delay resistant timetabling. Technical Report 24-2006,
TU Berlin, Department of Mathematics, Combinatorial Optimization and Graph
Algorithms Group, 2006.

15. T. Lindner. Train Schedule Optimization in Public Rail Transport. PhD thesis,
Technische Universität Braunschweig, June 2000.

16. M. Lüthi, A. Nash, U. Weidmann, F. Laube, and R. Wüst. Increasing railway
capacity and reliability through integrated real-time rescheduling. In Proceedings
of the 11th World Conference on Transport Research, Berkeley, 2007.

17. MOSEK ApS, Copenhagen, Denmark. The MOSEK optimization manual, 2007.
Version 5.0.0.57, Available at www.mosek.com.

18. K. Nachtigall. Periodic Network Optimization and Fixed Interval Timetables.
Habilitation Thesis, University Hildesheim, 1998.

19. K. Nachtigall and S. Voget. A genetic algorithm approach to periodic railway
synchronization. Computers & OR, 23(5):453–463, 1996.

20. M.A. Odijk. A constraint generation algorithm for the construction of periodic
railway timetables. Transportation Research Part B, 30(6):455–464, 1996.

21. L. Peeters and L. Kroon. A cycle based optimization model for the cyclic railway
timetabling problem. In S. Voß and J.R. Daduna, editors, Proceedings Computer-
Aided Scheduling of Public Transport (CASPT 2000), volume 505, pages 275–296.
Springer, Berlin, 2001.

22. L.W.P. Peeters. Cyclic Railway Timetable Optimization. PhD thesis, Erasmus
University Rotterdam, 2003.

23. G. Sahin, R. K. Ahuja, and C. B. Cunha. New approaches for the train dispatching
problem. submitted to Transportation Research Part B, 2004.

24. A. Schrijver and A. Steenbeck. Dienstregelingontwikkeling voor railned (timetable
construction for Railned). Technical report, C.W.I. Center for Mathematics and
Computer Science, Amsterdam, 1994. In Dutch.

25. P. Serafini and W. Ukovich. A mathematical model for periodic scheduling prob-
lems. SIAM J. Disc. Math., 2(4):550–581, 1989.

Periodic Railway Timetabling with Event Flexibility 141

26. R. Wüst. Dynamic rescheduling based on predefined track slots. In Proceedings of
7th World Congress on Railway Research, Montreal, 2006.

27. P. J. Zwaneveld, L. G. Kroon, H. E. Romeijn, M. Salomon, S. Dauzère-Pérès,
S. P. M. Van Hoesel, and H. W. Ambergen. Routing Trains through Railway
Stations: Model Formulation and Algorithms. Transportation Science, 30(3):181–
194, August 1996.

Fast Approaches to Robust Railway Timetabling

Matteo Fischetti, Domenico Salvagnin, and Arrigo Zanette

DEI, University of Padova, Italy

Abstract. The Train Timetabling Problem (TTP) consists in finding a
train schedule on a railway network that satisfies some operational con-
straints and maximizes a profit function which counts for the efficiency
of the infrastructure usage. In practical cases, however, the maximization
of the objective function is not enough and one calls for a robust solution
that is capable of absorbing as much as possible delays/disturbances on
the network. In this paper we propose and analyze computationally four
different methods to find robust TTP solutions for the aperiodic (non
cyclic) case, that combine Mixed Integer Programming (MIP) and ad-hoc
Stochastic Programming/Robust Optimization techniques. We compare
computationally the effectiveness and practical applicability of the four
techniques under investigation on real-world test cases from the Italian
railway company (Trenitalia). The outcome is that two of the proposed
techniques are very fast and provide robust solutions of comparable qual-
ity with respect to the standard (but very time consuming) Stochastic
Programming approach.

Keywords: timetabling, integer programming, robustness, stochastic
programming, robust optimization.

1 Introduction

The Train Timetabling Problem (TTP) consists in finding an effective train
schedule on a given railway network. The schedule needs to satisfy some op-
erational constraints given by capacities of the network and security measures.
Moreover, it is required to exploit efficiently the resources of the railway in-
frastructure. In many situations, the efficiency is measured as the distance of
the solution from an input “ideal schedule” that optimally satisfies the network
demands.

In practice, however, the maximization of some objective function is not
enough: the solution is also required to be robust against delays/disturbances
along the network. Very often, the robustness of optimal solutions of the origi-
nal problem turns out to be not enough for their practical applicability, whereas
easy-to-compute robust solutions tend to be too conservative and thus unneces-
sarily inefficient. As a result, practitioners call for a fast yet accurate method to
find the most robust timetable whose efficiency is only slightly smaller than the
theoretical optimal one.

The purpose of the present paper is to propose and evaluate new methods
to find robust and efficient solutions to the TTP, in its aperiodic (non cyclic)

ATMOS 2007 (p.142-157)
7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems
http://drops.dagstuhl.de/opus/volltexte/2007/1176

Fast Approaches to Robust Railway Timetabling 143

version described in [2]. Our approach combines Mixed Integer Programming
(MIP) with Stochastic Programming (SP) and Robust Optimization techniques.
We developed a solution framework whose main building blocks are: (1) a solver,
used to obtain a tentative timetable by solving an event-based MIP model; (2)
a (local) trainer that uses Stochastic Programming or Robust Optimization
techniques to improve the robustness of the tentative solution by changing the
train departure/arrival times without altering the combinatorial structure of
the tentative timetable (train precedences being preserved); and (3) a black-box
validation tool, used to quantify the robustness of the solutions found by different
approaches.

The paper is organized as follows. In Section 2 we present the TTP in de-
tail and give a natural event-based MIP formulation. In Section 3 we present
our overall solution framework, whose two main building blocks are described in
Sections 4 and 5. Extensive computational results are given in Section 7, show-
ing that two of the new methods we propose are very fast and provide robust
solutions of comparable quality with respect to the standard (but very time con-
suming) Stochastic Programming approach. Finally, some conclusions are drawn
in Section 8.

2 The Nominal Model

In this section we describe the specific aperiodic TTP problem we consider, and
give a basic event-based formulation for the “nominal” version where robustness
is not taken into account.

Following [2], the aperiodic TTP can be formulated as follows: Given a rail-
way network, described as a set of stations connected by tracks, and an ideal
train timetable, find an actual train schedule satisfying all the operational con-
straints and having a minimum distance from the ideal timetable.

The entities involved in the description of the problem are the following:

railway network: a graph N = (S,L), where S is the set of stations and L is
the set tracks connecting them.

trains: a train is a simple path on the railway network N . The set of trains is
denoted by T . For each train h ∈ T we have an ideal profit πh (the profit of
the train if scheduled exactly as in the ideal timetable), a stretch penalty θh
(the train stretch being defined as the difference between the running times
in the actual and ideal timetables) and a shift penalty σh (the train shift
being defined as the absolute difference between the departure times from
the first station in the actual and ideal timetables).

events: arrivals and departures of the trains at the stations. The set of all the
events is denoted by E. With a small abuse of notation, we will denote by
thi both the i-th event of train h and its associated time. We also define
– A: set of all arrival events
– D: set of all departure events

whereas AS , DS and ES denote the restriction of the above sets to a partic-
ular station S. Each train h is associated with an ordered sequence of length

144 Matteo Fischetti et al.

len(h) of departure/arrival events thi such that thi+1 ≥ thi , the first and last
event of train h being denoted by th1 and thlen(h), respectively.

(partial) schedule: a time assignment to all the events associated with a sub-
set of trains.

objective: maximize the overall profit of the scheduled trains, the profit of train
h being computed as

πh − σh shifth − θh stretchh

i.e., the train profit decreases if the actual timetable diverges from the ideal
one; trains with negative profit are intended to remain unscheduled and do
not contribute to the overall profit.

Operational constraints include:

time window: it is possible to shift an event from its ideal time only within a
given time window;

headway time: for safety reasons, a minimum time distance between two con-
secutive arrival/departure events from the same station is imposed;

track capacity: overtaking between trains is allowed only within stations (as-
sumed of infinite capacity).

Although one is allowed to leave some trains unscheduled, to simplify our
presentation we consider first a non-congested network where one is required to
schedule all the trains. A natural event-based model in the spirit of the Periodic
Event Scheduling Problem (PESP) formulation used in the periodic (cyclic)
case [11] can be sketched as follows:

z∗ = max
∑
h∈T

ρh

thi+1 − thi ≥ dhi,i+1 ∀h ∈ T, i = 1, . . . , len(h)− 1 (1)

|thi − tkj | ≥ ∆a ∀thi , tkj ∈ AS ,∀S ∈ S (2)

|thi − tkj | ≥ ∆d ∀thi , tkj ∈ DS ,∀S ∈ S (3)

thi+1 < tkj+1 ⇔ thi < tkj ∀thi , tkj ∈ DS ,∀S (4)

ρh = πh − σh|th1 − t
h
1 | − θh((thlen(h) − t

h
1)− (thlen(h) − t

h
1)) ∀h ∈ T (5)

l ≤ t ≤ u ∀t ∈ E (6)

Fast Approaches to Robust Railway Timetabling 145

where t denotes the ideal time of event t.
Constraints (1) impose a minimum time difference di,i+1 between two con-

secutive events of the same train, thus imposing minimum trip durations (trains
are supposed to travel always at the maximum allowed speed for the track) and
minimum rests at the stations.

Constraints (2)-(3) model the headway times between two consecutive arrival
or departure events in the same station (∆d and ∆a being the minimum depar-
ture and arrival headway, respectively). Since these constraints are nonlinear and
we do not know in advance the order in which events occur at the stations, we
need to introduce a set of binary variables xh,ki,j to be set to 1 iff thi ≤ tkj along
with big-M coefficients M , so that conditions

|thi − tkj | ≥ ∆

can be translated to

thi − tkj ≥ ∆−Mxh,ki,j

tkj − thi ≥ ∆−Mxk,hj,i

xh,ki,j + xk,hj,i = 1

Constraints (4) model the track capacity. Given the linearization of con-
straints (2)-(3), it is easy to translate

thi < tkj ⇔ thi+1 < tkj+1

as

xh,ki,j = xh,ki+1,j+1

Constraints (5) define the profits of the trains.
Finally, constraints (6) correspond to the user-defined time windows of each

event.
It is important to notice that, although we are interested in integer values

(minutes) for the events to be published in the final timetable, we do not force
the integrality of variables tj . This has the important consequence that, after
fixing the event precedence variables x, the model becomes a plain linear model.
On the other hand, the possible fractional value of the final time variables t
need to be handled somehow in a post-processing phase to be applied before
publishing the timetable. An easy procedure is to simply round down all the
t-values even if this results into a slightly infeasible published timetable, so as to
guarantee that all events arise not earlier than their published time value. In a
sense, this policy amounts to using an “infinite” time discretization during the
optimization phase, the difference between the actual and the published event
times being perceived by the travellers as a small (less than one minute) delay.

146 Matteo Fischetti et al.

As far as the objective function is concerned, the nonlinear term

|th1 − t
h
1 |

gives the shift sh of train h and can be easily linearized as

sh ≥ th1 − t
h
1

sh ≥ t
h
1 − th1

sh ≥ 0

If we are given a congested network we have to choose which trains to schedule
in order to maximize the overall profit. This requires the introduction of new
binary variables zh such that

zh = 1⇔ train h is scheduled

and the modification of constraints (2)-(3) linking different trains in order to
make them active only if both involved trains are scheduled. In particular

|thi − tkj | ≥ ∆

becomes

|thi − tkj | ≥ ∆(zh + zk − 1)

Notice that these modifications do not introduce further big-M coefficients.
Moreover, we need to modify the definition of the profit variables in order to
only count scheduled trains. Constraints (5) become

ρh ≤ πh − σh|th1 − t
h
1 | − θh((thlen(h) − t

h
1)− (thlen(h) − t

h
1)) +M(1− zh)

and we add constraints

ρh ≤ πhzh

3 The Overall Framework

In the nominal model, train travel times are always assumed to be minimal
with respect to the safety operational constraints. However this is unlikely to
happen in practice as travel times are often affected by delays. Therefore, safety
operational constraints are too optimistic and one needs to address robustness
issues, i.e., to modify the model in some way that allows one to gain a certain
amount of robustness against delays while retaining an acceptable timetable
efficiency.

In order to solve the robust problem we designed the following general frame-
work:

Fast Approaches to Robust Railway Timetabling 147

nominal problem solution: we start by formulating the model in a mathe-
matically tractable way and solve it (not necessarily to optimality) with an
appropriate solver.

robustness training: borrowing an expression typical of AI field, starting from
the nominal problem solution we “train” the model to robustness, typically
by exploiting a restricted set of samples (scenarios). This crucial step can be
implemented in different ways, and will be described in the sequel.

robustness validation: once we have obtained a robust solution, we evaluate
its actual robustness by using a validation tool, thus allowing a fair compar-
ison of different training methods.

4 Validation Model

Validation is often carried out inside the model itself, as is the case when a SP
approach is used. However, we decided to implement an external simulation-
based validation module that is independent from the optimization model itself,
so that it can be of general applicability and allows one to compare solutions
coming from different methods. The module is required to simulate the reac-
tion of the railways system to the occurrence of delays, by introducing small
adjustments to the planned timetable (received as an input parameter).

The guidelines used in designing the validation tool can be summarized as
follows:

– limited adjustability in response to delays with respect to the given timetable.
It is our belief that timetabling robustness is not concerned with major
disruptions (which are to be handled by the real time control system and
require human intervention) but is a way to control delay propagation, i.e.,
a robust timetable has to favor delay compensation without heavy human
action. As a consequence, at validation time no train cancellation is allowed,
and event precedences are fixed with respect to the planned timetable.

– speed of validation. The validation tool should be able to analyze quickly the
behavior of the timetable under many different scenarios.

Given these guidelines, we designed a validation model which analyzes a
single delay scenario ω at a time. As all precedences are fixed according to the
input solution to be evaluated, constraints (1-3) all simplify to linear inequalities
of the form:

ti − tj ≥ di,j

where di,j can be a minimum trip time, a minimum rest, or an headway time.
We will denote with P the set of ordered pairs (i, j) for which a constraint of
type (4) can be written. The problem of adjusting the given timetable t under
a certain delay scenario ω can thus be rephrased as the following simple linear
programming model with decision variables tω:

min
∑
j∈E

(
tωj − tj

)

148 Matteo Fischetti et al.

tωi − tωj ≥ di,j + δωi,j ∀(i, j) ∈ P (7)
tωi ≥ ti ∀i ∈ E (8)

Constraints (7) correspond to linear inequalities just explained, in which the
nominal right-hand-side value δi,j is updated by adding the (possibly zero) extra-
time δωi,j from the current scenario ω.

Constraints (8) are non-anticipatory constraints stating the obvious condition
that one is not allowed to anticipate any event with respect to its published value
in the timetable. Since these values are known, these constraints act as simple
lower bounds on the decision variables. As far as the upper bounds are concerned,
we impose none, since we allow an unlimited stretch of the timetable to recover
from delays, i.e., a feasible timetable is always achievable.

The objective function is to minimize the “cumulative delay” on the whole
network.

Given a feasible solution, the validation tool keeps testing it against a large
set of scenarios, one at a time, gathering statistical information on the value
of the objective function and yielding a concise figure (the average cumulative
delay) of the robustness of the timetable.

5 Finding Robust Solutions

In this section we present three different approaches to cope with robustness. In
order to have tractable models, we introduced two simplifying hypotheses: (1)
all input trains have to be scheduled; (2) all event precedences are fixed “in a
clever way”. This can be achieved by freezing the x and z variables in the MIP
model of Section 2 according to an efficient heuristic solution.

5.1 A Fat Stochastic Model

Our first attempt to solve the robust version of the TTP was to use a standard
scenario-based SP formulation akin to the one proposed by Kroon, Dekker, and
Vromans [6] for the periodic TTP. The model can be outlined as:

min
1
|Ω|

∑
j∈E,ω∈Ω

(
tωj − tj

)
∑
h∈T

ρh ≥ (1− α)z∗ (9)

tωi − tωj ≥ di,j + δωi,j ∀(i, j) ∈ P,∀ω ∈ Ω (10)
tωi ≥ ti ∀i ∈ E,∀ω ∈ Ω (11)

ti − tj ≥ di,j ∀(i, j) ∈ P (12)
l ≤ t ≤ u (13)

Fast Approaches to Robust Railway Timetabling 149

The structure of the model is similar to that used in the validation tool, but
takes into account several scenarios at the same time. Moreover, the nominal
timetable values tj are now viewed as decision variables to be optimized–their
optimal value will define the final timetable to be published. The model keeps
a copy of the original (linear) model with a modified right hand side for each
scenario, along with the original model; the original variables and the correspon-
dent second-stage copies in each scenario are linked through non-anticipatory
constraints.

The objective is to minimize the cumulative delay over all events and sce-
narios. The original objective function

∑
ρh is taken into account through con-

straint (9), where α ≥ 0 is a tradeoff parameter and z∗ is the objective value of
the reference solution.

For realistic instances and number of scenarios this model becomes very time
consuming (if not impossible) to solve–hence we called it “fat”. On the other
hand, also in view of its similarity with the validation model, it plays the role of
a kind of “perfect model” in terms of achieved robustness, hence it will be used
for benchmark purposes.

5.2 A Slim Stochastic Model

Given the computing time required by the full stochastic model, we looked for
an alternative model to solve, which is simpler yet meaningful for our problem.
In particular, we propose the following recourse-based formulation:

min
∑

(i,j)∈P,ω∈Ω

wωi,js
ω
i,j

∑
h∈T

ρh ≥ (1− α)z∗ (14)

ti − tj + sωi,j ≥ di,j + δωi,j ∀(i, j) ∈ P,∀ω ∈ Ω (15)
sωi,j ≥ 0 ∀(i, j) ∈ P,∀ω ∈ Ω (16)

ti − tj ≥ di,j ∀(i, j) ∈ P (17)
l ≤ t ≤ u (18)

In this model we have just one copy of the original variables, plus the recourse
variables sωi,j which account for the unabsorbed extra times δωi,j . It is worth noting
that the above “slim” model is inherently smaller than the fat one. Moreover,
one can drop all the constraints of type (15) with δωi,j = 0, a situation that occurs
very frequently in practice since most extra-times in a given scenario are zero.

As to the objective function, it involves a weighted sum of the the recourse
variables. Finding meaningful values for the weights wωi,j turns out to be very
important. Indeed, we will show in Section 7 how to define the weights so as
to produce solutions whose robustness is comparable with that obtainable by
solving the (much more time consuming) fat model.

150 Matteo Fischetti et al.

5.3 Light Robustness

A different way to produce robust solutions is to use the Light Robustness ap-
proach proposed recently by Fischetti and Monaci [3]. This method is based on
the consideration that, in essence, robustness is about putting enough slack on
the constraints of the problem. In its simpler version, the LR counterpart of the
LP model

min{cTx : Ax ≤ b, x ≥ 0}

reads

min f(γ) (19)
Ax+ β − γ ≤ b (20)

cTx ≤ (1 + α)z? (21)
x ≥ 0 (22)

0 ≤ γ ≤ β (23)

where βi is a positive parameter giving the desired protection level (or slack) on
constraint i, and γi ≥ 0 is a decision variable giving the corresponding unsatisfied
slack. The objective is to minimize a given function f of the γ variables (typically,
a linear or quadratic expression). Moreover there is a bound (controlled by α)
on the efficiency loss due to the increased robustness of the solution.

In our TTP model, a typical constraint reads

ti − tj ≥ di,j

and its LR counterpart is simply

ti − tj + γi,j ≥ di,j +∆i,j γi,j ≥ 0

where ∆i,j is the required protection level parameter.

6 Solution of stochastic models

The stochastic models were solved using the SAA method (see [1],[10],[12] and
[7]).

Sampling of delays has been carried out by using the following per-line model.
A line L is defined as a sequence of stations operated by trains during the 24
hours. Each line section (the path between two consecutive stations i and j) can
have a certain probability P(i,j) to be affected by delay. Also, each time interval
[l, k] in the 24-hour time horizon can have a certain probability of delay, say
P[l,k]. Then each single train h has its own probability Ph of arriving in the last
line station with some amount of delay. The actual delay incurred by train h
operating on section (i, j) in time interval [l, k] is computed using the following
formula:

δh(i,j)([l, k]) = PhP[l,k]

P(i,j)∑
(i,j)∈L P(i,j)

Fast Approaches to Robust Railway Timetabling 151

where we normalize section delay probabilities in order to distribute the cumu-
lative delay incurred by train T operating on line L through each line section.

We also implemented latin hypercube variance reduction technique when sam-
pling from each distribution P(i,j), P[l,k] and Ph; see [8].

7 Computational Results

We carried our tests on four single-line medium-size TTP instances provided by
the Italian railway company, Trenitalia. The main characteristics of the instances
are outlined in Table 1.

An almost-optimal heuristic solutions for each of these instances was com-
puted by P. Toth and his group using the algorithm described in [2], and used
as a reference solution to freeze the event precedences and to select the trains
to schedule.

We implemented our framework in C++ and carried out our tests on a AMD
Athlon64 X2 4200+ computer with 4GB of RAM running Linux 2.6. The MIP
solver used was ILOG CPLEX 10.1 (see [4]).

Instance #Stations #Trains

BZVR 27 127

BrBO 48 68

MUVR 48 48

PDBO 17 33

Table 1. Instance characteristics

As far as scenarios are concerned, for each train on the line and for each sce-
nario we generated a corresponding 5% (on average) extra-time, drawn from an
exponential distribution, and distributed it proportionally to its train segments.

Given this setting, the first test we performed was aimed at comparing the
different training methods for each reference solution with different values of the
tradeoff parameter α, namely 1%, 5%, 10%, 20% and 40%. In particular, we
compared the following alternative methods:

– fat : fat stochastic model (50 scenarios)
– slim1 : slim stochastic model with uniform objective function–all weights

equal (400 scenarios)
– slim2 : slim stochastic model with enhanced objective function (400 scenar-

ios), where events arising earlier in each train sequence receive a larger weight
in the objective function. More specifically, if the i-th event of train h is fol-
lowed by k events, its weight in the objective is set to k+1. The idea beyond
this weighing policy is that early extra-times in a train sequence are likely
to propagate to the next ones, so they are more important.

152 Matteo Fischetti et al.

– LR: light robustness model, with objective function as in slim2 and pro-
tection level parameters set to ∆ = −µ ln 1

2 , where µ is the mean of the
exponential distribution. This is the protection level required to absorb a
delay of such distribution with probability 1

2 .

The results are shown in Table 2 and graphical representations (for two
instances) are given in Figure 1.

1% 5% 10% 20% 40%
1

1.2

1.4

1.6

1.8

2
x 10

4 Line MUVR

Efficiency loss

C
um

ul
at

iv
e

de
la

y
(m

in
)

fat
slim 1
slim 2
LR

1% 5% 10% 20% 40%
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

4 Line BZVR

Efficiency loss

C
um

ul
at

iv
e

de
la

y
(m

in
)

fat
slim 1
slim 2
LR

Fig. 1. Comparison of different training models applied to the best reference solution
for each instance. The x-axis gives the efficiency loss (α) while the y-axis reproduces
the confidence intervals of the validation figure (run with 500 scenarios).

Fast Approaches to Robust Railway Timetabling 153

F
a
t

S
li
m

1
S
li
m

2
L

R

L
in

e
D

el
ay

W
A

D
T

im
e

(s
)

D
el

ay
W

A
D

T
im

e
(s

)
D

el
ay

W
A

D
T

im
e

(s
)

D
el

ay
W

A
D

T
im

e
(s

)

B
Z

V
R
α

=
0
%

1
6
1
4
9

–
9
6
6
7

1
6
3
1
6

–
5
3
2

1
6
2
9
4

–
9
9
4

1
6
2
8
6

–
2
.2

7

B
Z

V
R
α

=
1
%

1
4
3
9
9

1
6
.4

1
0
2
6
5

1
5
3
2
5

4
5

5
4
9

1
4
7
8
7

1
7

1
0
8
7

1
4
6
6
2

1
8

2
.1

3

B
Z

V
R
α

=
5
%

1
1
3
4
5

1
5
.9

9
0
0
3

1
2
6
6
3

4
8

6
0
1

1
1
5
8
8

1
9

9
8
2

1
2
2
2
0

2
2

1
.9

9

B
Z

V
R
α

=
1
0
%

9
1
4
2

2
1
.4

9
6
5
0

1
0
8
6
2

5
0

5
9
6

9
4
6
9

2
4

9
7
9

1
0
5
3
2

3
3

2
.0

1

B
Z

V
R
α

=
2
0
%

6
2
1
0

2
8
.5

9
0
7
2

7
9
8
6

5
0

5
3
8

6
6
4
3

3
1

1
0
1
9

8
7
0
7

5
2

2
.0

4

B
Z

V
R
α

=
4
0
%

3
3
8
9

3
5
.4

1
0
4
8
6

4
7
0
7

5
0

5
7
8

3
9
3
1

3
7

9
9
8

5
2
4
1

5
1

2
.3

1

B
rB

O
α

=
0
%

1
2
1
5
6

–
3
8
4

1
2
2
3
8

–
1
2
8

1
2
2
1
4

–
1
7
3

1
2
2
1
6

–
0
.4

9

B
rB

O
α

=
1
%

1
1
4
2
3

2
1
.6

3
5
1

1
1
6
4
6

4
2

1
3
4

1
1
4
7
2

2
1

1
5
6

1
1
4
9
9

2
3

0
.4

8

B
rB

O
α

=
5
%

9
7
8
2

1
8
.9

3
5
7

1
1
0
0
0

5
0

1
4
6

9
8
4
2

2
2

1
6
4

1
0
0
2
1

2
3

0
.5

1

B
rB

O
α

=
1
0
%

8
4
9
6

1
9
.1

3
8
7

1
0
1
7
9

5
1

1
3
2

8
5
5
2

2
0

1
5
7

8
8
4
2

2
3

0
.5

1

B
rB

O
α

=
2
0
%

6
6
6
4

2
2
.1

3
7
5

8
6
7
2

5
3

1
2
7

6
7
6
3

2
3

1
5
3

7
4
1
0

3
0

0
.5

2

B
rB

O
α

=
4
0
%

4
4
9
1

2
7
.7

4
1
0

6
2
1
2

5
2

1
3
0

4
5
4
4

2
9

1
6
6

6
2
2
1

5
2

0
.5

3

M
U

V
R
α

=
0
%

1
8
1
8
2

–
3
7
7

1
8
8
7
9

–
8
8

1
8
2
4
0

–
1
1
7

1
8
7
0
7

–
0
.4

3

M
U

V
R
α

=
1
%

1
7
8
0
8

1
2
.9

3
9
1

1
8
7
2
1

3
7

9
6

1
7
9
0
3

1
2

1
2
0

1
8
3
8
6

8
0
.4

8

M
U

V
R
α

=
5
%

1
6
5
0
2

1
4
.5

3
8
5

1
8
1
0
6

4
1

8
6

1
6
5
7
4

1
3

1
0
7

1
7
0
0
3

1
1

0
.4

5

M
U

V
R
α

=
1
0
%

1
5
1
5
3

1
4
.7

3
4
3

1
7
1
6
3

4
9

8
4

1
5
3
1
5

1
5

1
1
4

1
5
7
1
0

1
3

0
.4

3

M
U

V
R
α

=
2
0
%

1
3
0
0
4

1
7
.1

3
8
4

1
5
7
0
8

5
2

9
1

1
3
1
8
0

1
8

1
1
6

1
3
5
7
6

1
9

0
.4

2

M
U

V
R
α

=
4
0
%

1
0
2
8
9

2
1
.8

3
7
6

1
3
6
1
3

5
2

9
5

1
0
5
9
2

2
5

1
0
8

1
1
4
7
9

3
4

0
.4

5

P
D

B
O
α

=
0
%

3
1
4
1

–
2
5
7

3
1
4
4

–
5
2

3
1
3
9

–
6
3

3
1
3
7

–
0
.2

5

P
D

B
O
α

=
1
%

2
9
0
7

1
5
.6

2
5
0

3
0
2
6

5
1

5
7

2
9
5
4

1
1

6
0

2
9
5
4

1
3

0
.2

7

P
D

B
O
α

=
5
%

2
4
1
2

1
4
.7

2
2
3

2
6
1
0

4
4

4
9

2
5
0
8

2
0

5
7

2
5
2
1

1
9

0
.2

8

P
D

B
O
α

=
1
0
%

1
9
7
1

1
9
.9

2
2
9

2
2
4
4

4
9

5
0

2
0
6
2

2
7

5
5

2
3
1
4

3
7

0
.2

5

P
D

B
O
α

=
2
0
%

1
3
5
7

2
8
.4

2
3
0

1
6
5
3

4
9

5
5

1
4
8
6

3
4

6
0

1
7
3
6

5
3

0
.2

8

P
D

B
O
α

=
4
0
%

6
7
6

3
7
.1

2
6
2

8
7
9

4
9

5
5

7
7
6

4
1

5
7

1
0
1
0

5
2

0
.2

8

T
o
t:

1
9
8
8
7
9

–
5
3
2
4
6

2
1
9
0
2
0

–
4
2
9
3

2
0
1
7
6
1

–
6
9
6
0

2
0
9
3
0
7

–
1
7

T
a
b
le

2
.

C
o
m

p
a
ri

so
n

o
f

d
iff

er
en

t
tr

a
in

in
g

m
et

h
o
d
s

w
.r

.t
.

co
m

p
u
ti

n
g

ti
m

e,
W

A
D

a
n
d

va
li
d
a
ti

o
n

fu
n
ct

io
n

(c
u
m

u
la

ti
v
e

d
el

ay
in

m
in

u
te

s)
,

fo
r

d
iff

er
en

t
li
n
es

a
n
d

tr
a
d
eo

ff
α

.

154 Matteo Fischetti et al.

According to the figure, slim2 always yields a very tight approximation of fat,
while slim1 is often poorer. As to LR, it usually produces good results (although
not as good as slim2) when the tradeoff parameter α is small–which is the most
relevant situation in practice.

As to computing times, the fat model is one order of magnitude slower than
slim1 and slim2, although it uses only 50 scenarios instead of 400. LR is ex-
tremely faster than any other method, more than two orders of magnitude w.r.t
the fast stochastic models.

While the validation output gives a reliable measure of how robust a solu-
tion is against delays, other figures exist that summarize somehow the “static”
structure of a solution. These figures are useful to get insights into the structure
of the solutions obtained with different training methods. In particular, we used:
the weighted average distance (WAD) (see [6]) of the allocated buffer from the
starting point. The WAD of the single train h is calculated as

WADh =
1

thlen(h) − t
h
1

len(h)−1∑
i=1

si,i+1(thi+1 + thi)/2
thlen(h) − t

h
1

where si,i+1 is the amount of buffer allocated from ti to ti+1. The WAD is a
number between 0 and 1 which measures how the buffers are distributed along
the train trip. For example, a value of 0.5 means that the same amount of buffer
is allocated in the first half and in the second half of the trip; values smaller
or bigger than 0.5 relate to a shift in buffer distribution towards the begin or
the end of the trip, respectively. The WAD of an entire line is calculated as the
mean of all the WADs of the trains of the line.

A comparison of the various WADs for two instances is reported in Figure 2.
It can be seen that there is a significative correlation between the degree of ap-
proximation of the various WADs with respect to “perfect WAD” (WADfat) and
the robustness of the solution–as computed by the validation tool and reported
in Figure 1.

Figure 3 illustrates how the buffers are distributed along the line for a sample
instance. It is clear that slim2 produces a very tight approximation of fat, while
slim1 does not. It is worth noting that LR uses a smoother allocation of buffers,
while slim1 yields a better approximation of their oscillations, but misses the
global allocation policy. In this respect, slim2 performs quite well instead. This
is due to the fact that LR does not exploit directly the scenario information,
thus it has to cope with very little information.

8 Conclusions

In this paper we have introduced and compared different methods to obtain
robust train timetabling solutions. While the standard fat stochastic model is,
as expected, too slow (if not intractable) for practical instances, two approx-
imated models, namely the slim stochastic and light robustness, provide very
good results in a short amount of time.

Fast Approaches to Robust Railway Timetabling 155

1% 5% 10% 20% 40%
0

10

20

30

40

50

60
Line BZVR

Efficiency loss

W
A

D
 (

%
)

1% 5% 10% 20% 40%
0

10

20

30

40

50

60
Line MUVR

Efficiency loss

W
A

D
 (

%
)

fat
slim 1
slim 2
LR

fat
slim 1
slim 2
LR

Fig. 2. Comparison of different training models from the WAD point of view (WAD is
given within its confidence intervals).

156 Matteo Fischetti et al.

0% 10% 20% 30% 40% 50% 60% 70% 80% 100%
−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

 trip length (%)

 a
llo

ca
te

d
bu

ffe
r

(%
)

Buffer allocation curves in MUVR (eff.loss. 10%)

fat
slim 1
slim 2
LR

Fig. 3. Comparison of different training models from the allocated-buffer point of view.

Fast Approaches to Robust Railway Timetabling 157

Acknowledgments

This work was supported by the Future and Emerging Technologies unit of the
EC (IST priority), under contract no. FP6-021235-2 (project ARRIVAL) and by
MIUR (PRIN project).

References

1. J. R. Birge and F. Louveaux. Introduction to Stochastic Programming (Springer
Series in Operations Research and Financial Engineering). Springer, 1st ed. 1997.
corr. 2nd printing edition, 2000.

2. A. Caprara, M. Fischetti, and P. Toth. Modeling and solving the train timetabling
problem. Operations Research, 50(5):851–861, 2002.

3. M. Fischetti and M. Monaci. Robust optimization through branch-and-price. In
AIRO Proceedings, Cesena, September 12-15 2006.

4. ILOG Inc. ILOG CPLEX 10.1 User’s Manual, 2007.
5. A. J. Kleywegt, A. Shapiro, and T. Homem-de Mello. The sample average approx-

imation method for stochastic discrete optimization. SIAM J. on Optimization,
12(2):479–502, 2002.

6. L. Kroon, R. Dekker, and M. Vromans. Cyclic railway timetabling: a stochastic op-
timization approach. Research Paper ERS; ERS-2005-051-LIS, Erasmus Research
Institute of Management (ERIM), RSM Erasmus University, Oct. 2005. available
at http://ideas.repec.org/p/dgr/eureri/30007581.html.

7. J. Linderoth, A. Shapiro, and S. Wright. The empirical behavior of sampling
methods for stochastic programming. Annals of Operations Research, 142(1):215–
241, February 2006.

8. W. L. Loh. On latin hypercube sampling. The Annals of Statistics, 24(5), 1996.
9. W. K. Mak, D. P. Morton, and R. K. Wood. Monte carlo bounding techniques for

determining solution quality in stochastic programs. Operations Research Letters,
24(24):10, February 1999.

10. A. Ruszczynski and A. Shapiro, editors. Stochastic Programming (Hanbooks in
Operations Research and Management Series). Elsevier Publishing Company, 2003.

11. P. Serafini and W. Ukovich. A mathematical model for periodic scheduling prob-
lems. SIJDM: SIAM Journal on Discrete Mathematics, 2, 1989.

12. A. Shapiro. Monte carlo sampling approach to stochastic programming. In ESAIM:
Proceedings, volume 13, pages 65–73, December 2003.

13. B. Verweij, S. Ahmed, A. J. Kleywegt, G. Nemhauser, and A. Shapiro. The sample
average approximation method applied to stochastic routing problems: A compu-
tational study. Comput. Optim. Appl., 24, 2003.

Multistage Methods for Freight Train
Classification?

Riko Jacob1, Peter Márton2, Jens Maue3, and Marc Nunkesser3

1 Computer Science Department, TU München, Germany
jacob@in.tum.de

2 Faculty of Management and Computer Science, University of Žilina, Slovakia
Peter.Marton@fri.uniza.sk

3 Institute of Theoretical Computer Science, ETH Zürich, Switzerland
{jens.maue|mnunkess}@inf.ethz.ch

Abstract. In this paper we establish a consistent encoding of freight
train classification methods. This encoding scheme presents a power-
ful tool for efficient presentation and analysis of classification methods,
which we successfully apply to illustrate the most relevant historic results
from a more theoretical point of view. We analyze their performance pre-
cisely and develop new classification methods making use of the inherent
optimality condition of the encoding. We conclude with deriving optimal
algorithms and complexity results for restricted real-world settings.

1 Introduction

In real-world railway classification yards, incoming trains are split up into single
cars and then reassembled to form outbound trains. It turns out that this pro-
cess often constitutes the bottleneck in freight transportation, but it would be
expensive to extend or redesign classification yards that were designed decades
ago to accommodate traffic requirements substantially different from today. An
obvious way to improve the performance of existing classification yards is to
optimize the classification process itself. To this end we revisit the history of
classification methods and develop an efficient representation of these schemes,
which allows their consistent presentation and analysis. In the light of this novel
encoding, we characterize optimal classification schemes and analyze the under-
lying algorithmic questions.

A complete classification yard is shown in Fig. 1. It consists of a receiving
yard, where incoming trains arrive, a classification bowl, where they are sorted,
and a departure yard, where outgoing trains are formed. Many yards feature a
hump, a rise in the ground, from which cars roll in on the tracks of the classifi-
cation bowl. These yards are called hump yards in contrast to flat yards, which

? This work was partially supported by the Future and Emerging Technologies Unit of
EC (IST priority - 6th FP), under contract no. FP6-021235-2 (project ARRIVAL).
This work was partially supported by the University of Zilina, Faculty of Manage-
ment and Computer Science, under institutional grant no. 1/2007.

ATMOS 2007 (p.158-174)
7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems
http://drops.dagstuhl.de/opus/volltexte/2007/1179

Multistage Methods for Freight Train Classification 159

receiving
yard

classification
bowl

departure
yard

H

Fig. 1. A typical classification yard with receiving yard, hump (H), classification bowl,
and departure yard.

require cars to be hauled by shunting engines. A typical classification bowl is
shown in Fig. 2(a). Not all yards have receiving and departure tracks, some have
single ended classification bowls as in Fig. 2(b), others have a secondary hump
at their opposite end as in Fig. 2(c).

exit

track

(a) double-ended yard

classification tracks

hump

track

hump

ladder

(b) single-ended yard

secondary

hump

additional

exit

(c) advanced layout

Fig. 2. Some common classification bowl layouts.

General Process of Train Classification The overall classification process
looks as follows: inbound trains are collected in the receiving yard on a set of
tracks called receiving tracks, from where they are moved to the hump track.
There, the cars of the train are disconnected and the complete train is pushed
over the hump by a yard engine, sending the cars through a series of switches
called ladder, separately guiding each car on a preassigned classification track of
the classification bowl. This process is called a roll-in operation. Then, the actual
sorting process is performed to produce outbound trains, which are picked up
by freight locomotives to leave the classification yard.

Regarding the actual classification procedure, there are essentially two modes
of operation for shunting yards, which are typically performed in parallel or
alternatingly: single-stage and multistage sorting. In single-stage sorting, each
classification track usually corresponds to a common destination, such as a re-
mote classification yard. Departing trains are built by collecting the cars from

160 Riko Jacob, Peter Márton, Jens Maue, and Marc Nunkesser

one or several tracks and coupling them into trains that leave the bowl to the
departure yard—if there is any. Single-stage sorting is normally performed for
large volume traffic, e.g. traffic between classification yards, and the cars of the
created trains are in arbitrary order.

For traffic directly going to its final destination, multistage sorting is used.
Since the order requirements for this type of outgoing trains are more complex,
single-stage sorting is not applicable here. In multistage sorting, after the in-
coming trains have been pushed over the hump (primary humping), a shunting
engine repeatedly pulls back the cars from a given track (pull-out operation) over
the hump on the hump track. These cars are then pushed over the hump again,
so that again each car can be independently routed through the ladder to any
classification track. This process, called rehumping, is iterated until all outgoing
trains have been formed. If a classification track is used only for receiving cars
of an outgoing train, but the cars on it are never pulled back to the hump track,
it is called train formation track.

Related Work Multistage methods are presented from an engineering point
of view in a number of publications from the 1950s and 1960s [1–4]. Krell [3,
4] compares two basic multistage methods and three improvements of one of
them, including an example for dealing with a restricted number of available
classification tracks. Some of these methods had been described earlier in a
different fashion by Flandorffer [1].

Some of these methods were again considered by Siddiqee [5] in 1972 and
in a series of publications in the 1980s by Daganzo, Dowling, and Hall [6–9].
These publications generally deal with multiple outbound trains, but the actual
structure of inbound trains is completely ignored.

A classification problem similar to single-stage sorting was studied by Dahl-
haus, Horak, Manne, Miller, and Ryan [10, 11] in 2000. For their train classifica-
tion model, they give a notion of presortedness of the input train which is used
to improve the classification process. Several degrees of freedom in the order
requirement of the outbound train are regarded in [11], while finding an optimal
schedule for one specific such type is shown to be NP-complete in [10].

A systematic framework for classifying single- and multistage classification
methods is given by Hansmann and Zimmermann [12]. For the case of a limited
number of classification tracks and an extended output requirement which han-
dles several cars being of the same type, they independently obtain the result we
give in Sect. 6. Furthermore, the authors show for a specific multistage method
that finding an optimal schedule is NP-hard for the output specification of [10]
mentioned above.

Baumann [2] explains the design aspects concerning multistage train forma-
tion for the design of the classification yard ‘Zürich-Limmattal’ in Switzerland.
The resulting layout features a secondary hump similar to Fig. 2(c), which is
currently not used due to cost and organizational reasons [13].

The historic results mentioned in this section are reconsidered in Sect. 4 from
a more theoretical point of view.

Multistage Methods for Freight Train Classification 161

Outline In the following section we introduce the above described problem
and concepts formally, including the objective of our problem. Then, we present
an efficient encoding for representing the classification process in Sect. 3. This
allows us to concisely describe and analyze the above methods as done in Sect. 4,
followed by analyzes of new problem variants in Sect. 5 and Sect. 6 and some
concluding remarks in Sect. 7.

2 Model and Notation

In this section we introduce the terminology and notation used in our model. We
assume the common yard layout of a single- or double-ended classification bowl
with a single hump as shown in Fig. 2(b) and Fig. 2(a), where the classification
tracks are denoted by θ1, . . . , θW . We denote their number by W , the width of
the yard, and denote by Cmax the capacity of the yard, i.e. the maximum number
of cars that fit on any of these tracks.

Cars will be represented by positive integer numbers and trains by (ordered)
n-tuples of cars; the number of cars n of a train T will be referred to by the
length of T . In our model, there is a set of ` input trains and an ordered set
of m output trains, together called a classification task, for which we make the
following assumptions: for the ` input trains T i = (τ i

1, . . . , τ
i
n′

i
), i = 1, . . . , `,

with a total number of cars n :=
∑`

i=1 n′i, we assume τ i
j ∈ {1, . . . , n} and all

cars are distinct. We further assume that concatenating the output trains in
their given order yields the sequence (1, . . . , n), i.e., if ni denotes the length of
the i-th output train, i = 1, . . . ,m, the first output train is given by (1, . . . , n1),
the second by (n1 + 1, . . . , n1 + n2), and the last by (n − nm + 1, . . . , n).

For any train T = (τ1, . . . , τn), car τ1 is called the head of T , and, for any
pair of cars τi, τj of T with i < j, we say τi is in front of τj . For a train T
located on the hump track, the head of T represents the car that is closest to
the hump. For a train T located on some classification track, its head represents
the car closest to the dead-end. Thus, the train in Fig. 3(b) is represented by
(6, 1, 4, 2, 3, 5) and the train in Fig. 3(f) by (1, 2, 3, 4, 5, 6).

Any multistage sorting method consists of a sequence of alternating roll-in
and pull-out steps. In order to specify a single pull-out step, it suffices to specify
which is the classification track to pull out cars from. However, to fully specify a
roll-in operation, a target track must be given for every car on the hump track.
We call such a pair of operations a hump step, and an initial roll-in followed
by a sequence of h hump steps is called a classification schedule of length h.
A classification schedule is called valid for a classification task if applying it
transforms the given set of input trains into the set of output trains. Unless
otherwise stated, our objective is to find classification schedules of minimum
length.

Definition 1 (Optimal Classification Schedule). Given a classification task
by ` input trains (τ i

1, . . . , τ
i
n′

i
), i = 1, . . . , `, and the lengths (n1, . . . , nm) of the

m outgoing trains, find a valid classification schedule of minimum length.

162 Riko Jacob, Peter Márton, Jens Maue, and Marc Nunkesser

Note that, according to the definitions above, the term length may refer
either to the number of hump steps of a schedule or to the number of cars of a
train. In the remainder of this paper, the respective meaning will always be clear
from the context. Moreover, we will sometimes abbreviate statements referring
to pull-out steps, such as abbreviating ‘the cars of a track are pulled out’ to ‘a
track is pulled (out)’.

3 Classification Schedules

In this section we describe an encoding of classification schedules by sets of binary
numbers. Conversely, we show how to interpret such sets as schedules, which
yields a bijective relation between both. Furthermore, a notion of presortedness
is introduced, which allows deducing optimal schedules. As it turns out, the core
of a classification scheme can already be given by specifying how a single input
train is sorted into a single output train. For this reason we first consider this
case and develop the encoding scheme. At the end of this section we show how
to extend the results to the general case.

Single train We start by introducing a simplified view on the tracks. After
a track has been emptied, cars may be sent to it in subsequent steps, so one
physical track might be filled and emptied more than once during a classification
procedure. We model this by introducing logical tracks that we define such that
pull-out i is performed on logical track i. This means that the logical tracks are
pulled out in the order (1, 2, . . . , h). For a classification schedule of length h,
the mapping from the h logical to the W physical tracks is given by a sequence
(θi1 , . . . , θih

) of physical track names, called the track sequence.
The course of a single car τ can now be represented by an h-bit binary string

b = bh . . . b1, bi ∈ {0, 1}, where bi = 1 if and only if τ visits the i-th (logical)
track. (In the following these strings are interpreted as little-endian numbers,
i.e. bh is the most significant bit of b.) This representation uniquely defines the
course of car τ : τ is pulled out in the i-th step if bi = 1 simply because it
has been sent there in some earlier step. Then, it is rolled in on the k-th track
given by k := minj>i,bj=1 j, i.e. the lowest bit bk = 1 left of i. If bj = 0 for
all j > i, then τ is guided to the train formation track of its target train. The
track for the initial roll-in is given by the least significant bit bi with bi = 1. The
complete schedule for a train of n cars can be simply represented by a binary
encoding B = (b1, . . . , bn) consisting of a sequence of binary numbers, such that
bi = bh . . . bi

1 encodes the course of the i-th car, i = 1, . . . , n.
An example is given in Fig. 3, which shows a classification procedure and

the binary representation of its schedule for a single input train of six cars.
There are more classification tracks than schedule steps, so the above mentioned
mapping from logical to physical tracks is one-to-one. Note that in our model the
classification process is not yet finished in situations (d) or (e); a valid output
train is obtained only when the situation depicted in (f) has been reached.

Multistage Methods for Freight Train Classification 163

1 0 0
0 1 0
0 0 1
0 1 1
0 0 0
1 0 1

4

2

5

3

1

3

0

5

2

4

1

6

(a)

5

3

2

4

1

6

θ1θ2θ3θ6

(b)

2

4

635
θ1θ2θ3θ6

1

(c)

6

5

4

3
θ1θ2θ3θ6

2

1

(d)

5

6

θ1θ2θ3θ6

1

2

3

4

(e)

θ1θ2θ3θ6

6

5

4

3

2

1

(f)

Fig. 3. An exemplary classification procedure of h = 4 steps for a train of six cars,
using θ6 for output train formation. The encoding is shown in (a), the input train
in (b). Figures (c)–(f) show the consecutive situations after each hump step, always
pulling out the cars of the rightmost occupied track.

The following lemma shows how to read the binary representation of sched-
ules: if two cars have different codes, the car with the smaller code will be located
in the target train at a position closer to the head of the train. If two cars have
the same code, they will not swap their relative order.

Lemma 1. For a classification schedule for an incoming train (τ1, . . . , τn) given
by a binary encoding B = {b1, . . . , bn} two cars τi and τj for i < j swap their
relative position if and only if bi > bj.

Proof. There are three possible cases for the order of bi and bj . First, if bi = bj

the two cars will go exactly the same course and end up in the same order as
in the input train. Second, if bi < bj , let k be the most significant index k with
bi
k = 0 and bj

k = 1. Car τj is sent to some track θnext in hump step k. As bi and
bj are identical on all bits left of k, car τi was sent directly to θnext in a previous
step, so τi appears at a position in front of τj . For the same reason, the two
cars will not swap their relative order at any step later than k, so τi ends up
on the output track at a position in front of τj in the output train. Finally, by
symmetry if bi > bj car τj ends up in front of τi. The three cases together give
the statement of the lemma.

In the following theorem, we show that there is a bijection between valid
classification schedules and binary encodings with a special property.

Theorem 1. A classification schedule for an incoming train (τ1, . . . , τn) of h
steps is valid if and only if its binary encoding B = (b1, . . . , bn), where the bi are
h-bit binary numbers, has the following property:

For all i, j ∈ {1, . . . , n} with i < j, if τi > τj then bi > bj (P).

164 Riko Jacob, Peter Márton, Jens Maue, and Marc Nunkesser

Proof. If a classification schedule translates into a binary encoding with property
(P), then, by Lemma 1, exactly the cars that need to be swapped are swapped
and the classification schedule is thus valid. Conversely, if a binary encoding does
not have property (P), then again by Lemma 1 the corresponding classification
schedule cannot be valid.

From the above theorem it is clear that an optimal schedule corresponds to
a binary encoding B of minimum length that satisfies property (P). For con-
structing B we need to specify, which cars can get the same code, which leads
to a notion of presortedness. We show that to this end it is enough to look at
consecutive cars in the output train that are in the wrong order in the input
train:

Definition 2. Given a train T = (τ1, . . . , τn), we say that a pair (i, i + 1), i ∈
{1, . . . , n − 1} defines a break τj = i + 1, τk = i for indices j, k with j < k. The
set of breaks canonically decomposes each train into chains that can be ordered
by their first elements.

For example, train T = (9, 4, 5, 7, 1, 2, 8, 6, 3) decomposes into the disjoint chains
c1 = (1, 2, 3), c2 = (4, 5, 6), c3 = (7, 8), and c4 = (9).

Lemma 2. Only cars of the same chain can get the same code. For two cars of
two different chains the smaller one must get a smaller code.

Proof. By Definition 2 all cars of a chain are in the correct order in the input
train. By Lemma 1 these cars can get the same code. For the other direction
note that for each break (τj = i + 1, τk = i) in a valid schedule bj > bk holds by
Lemma 1. Now take any two cars τ`, τm from two neighboring chains separated
by break (i, i + 1). If ` < m and τ` > τm they cannot get the same code directly
by Lemma 1. So assume ` < m, τ` < τm. Car τk is the last element of the chain
of τ`, and τj is the first element of the chain of τm, therefore b` ≤ bk < bj ≤ bm,
which implies b` < bm. The claim of the lemma follows by transitivity.

The main result of this section now follows as a corollary of this.

Theorem 2 (optimal schedules). Let T = (τ1 . . . τn) be a train of length n
and c its number of chains. T can be reclassified within dlog2 ce hump steps in a
hump yard of unrestricted width and capacity. This bound is optimal.

This result can easily be extended to more complicated objective functions.
One of the most general such objectives is to charge a cost of α for a pull-out of
a train and β for a roll-in of a single car. It still holds that for an encoding B the
number of bits equals the number of pull-outs of the corresponding classification
schedule. The number of 1’s in the encoding equals the number of roll-ins. For
an incoming train of c chains and a fixed number h of steps we can construct
the optimal classification schedule of length h by choosing greedily the c h-bit
binary numbers having the least 1’s. By evaluating the objective functions for
the admissible range dlog2 ce ≤ h ≤ c the optimal classification schedule can be
found.

Multistage Methods for Freight Train Classification 165

Multiple Trains Any reasonable classification task involves multiple incoming
and multiple outgoing trains. However, as we will see in this section, once the
order of the incoming trains has been determined, such a shunting task is not
more difficult than sorting a single incoming into a single outgoing train.

Observation 1 Given ` incoming trains I = (τ1
1 , . . . , τ1

n′
1
), . . . , (τ `

1 , . . . , τ `
n′

`
) in

the order in which they are to be rolled into the yard, and m outgoing trains
by their lengths (n1, . . . , nm) then the optimal classification schedule for these
trains for the case of unrestricted capacity is determined by the union of the
optimal classification schedules {B1, . . . , Bm} for the following m classification
tasks: Let I ′ = (τ1, . . . , τn) denote the concatenation of the ` input trains. Then
the i-th classification task, 1 ≤ i ≤ m, is to sort the subsequence of I ′ that
corresponds to the i-th output train. The length of the resulting schedule for the
whole classification task is given by max

1≤i≤m
length(Bi).

An analogous observation holds for classification with width restriction as
discussed in Sect. 6, but not for restricted length as discussed in Sect. 5. It is
also important to note that the observation assumes a fixed order of the incoming
trains. This assumption is realistic in cases where the input trains arrive scattered
over time or have some other natural order. If this is not the case, the problem of
choosing an optimal order arises. This problem is closely connected to a special
minimum feedback arc problem [14].

Lemma 3. There is a one-to-one correspondence of finding the permutation
of input trains I = {T1, . . . , T`} that leads to the optimal classification sched-
ule (OPT-PERM) and computing minimum feedback arc sets in directed multi-
graphs, the edges of which form a Eulerian path.

Proof. We first show how to transform OPT-PERM into an minimum feedback
arc set instance G = (V,E). Each incoming train Ti is mapped to a node n(Ti).
For each pair of cars τk = i ∈ Tα, τj = i + 1 ∈ Tβ we add a directed edge
(n(Tα), n(Tβ)). It follows that in total n (potential self-)edges are added to the
graph. These edges correspond to a Eulerian path in G. For any given permu-
tation π of I the number of breaks of π(I) equals the number of arcs pointing
backwards in the linear arrangement π(V). By deleting exactly these arcs the
graph becomes acyclic. Thus by Theorem 2 the objective function of OPT-PERM
equals the logarithm of the objective function of minimum feedback arc set plus
one. For the other direction it is easy to see that the following construction
will transform any multigraph with an Eulerian path into an OPT-PERM in-
stance with the same relation of the objective functions. For each node n ∈ V
we introduce an incoming train T (n). Then we walk along the Eulerian path
P = (ni1 , . . . , nim+1) and add for each nij ∈ P car j to train T (nij).

To the best of our knowledge, the complexity status of minimum feedback arc
set in such graphs is open. However, by a lemma of Newman, Chen, and Lovász
[15, Theorem 4], a polynomial algorithm for OPT-PERM would lead to a 16

9 -
approximation algorithm for the general minimum feedback arc set problem,
improving over the currently best known O(log n log log n) algorithm [16].

166 Riko Jacob, Peter Márton, Jens Maue, and Marc Nunkesser

4 Multistage Classification Methods

With the efficient encoding of schedules at hand, we illustrate the most promi-
nent classification methods in this section and analyze their performance in
detail.

4.1 Basic Multistage Methods

Multistage methods can be categorized into two general classes: sorting by train
and simultaneous marshalling. In the following we assume that we are given m
output trains by their lengths n1, . . . , nm and define nmax = max1≤i≤m ni and
nmin = min1≤i≤m ni.

Sorting by Train Sorting by train comprises two stages. First, inbound cars
are separated according to their outbound trains by sending all cars of a com-
mon output train to the same track. Second, the resulting unordered trains are
processed successively: a train is pulled back over the hump and rolled in again,
sorting the cars according to their position by sending each car to a different
track. Finally, the single cars are moved from the tracks in the required order
and coupled to form an outgoing train. In double-ended yards this can be per-
formed by a shunting engine from the opposite end of the yard. As in the rest
of the paper the train formation tracks will not appear in the encoding as they
are implicitly given. The process continues with the next train.

The length h of the schedule is given by h = m +
∑m

i=1 ni. For the encoding
bh . . . b1 of a car τk

` , bit bi = 1 if i = k +
∑k−1

j=1 ni (corresponding to the initial

roll-in) or i = k +
∑k−1

j=1 ni + ` (corresponding to the second stage).
This method occupies exactly m classification tracks after the first stage, so

the total number of tracks is at least m + nmin − 1, and at most m + nmax − 1,
while the latter number is tight if a train with nmax cars is processed in the
second stage first.

Sorting by train is also called initial grouping according to outbound trains [5].1

Simultaneous Marshalling Unlike sorting by train, the first stage of the two-
stage method simultaneous marshalling sorts according to the cars’ position in
the output train. In terms of codes this step forces bi = 1 for every i−th car τk

i of
any train 1 ≤ k ≤ m. In the second stage, the cars are sorted according to their
target trains: the tracks are successively pulled out in the order of the positions,
and each set of cars pulled out is directly rolled back in, always sending cars of

1 The according names used in the German literature are Ordnungsgruppenverfahren
for sorting by train, Simultanverfahren for simultaneous marshalling, and further-
more Elementarverfahren to explicitly refer to the basic version of the latter. Tri-
angular sorting is called Vorwärtssortierung bei höchstens zweimaligem Ablauf, geo-
metric sorting maximale Vorwärtssortierung in [3].

Multistage Methods for Freight Train Classification 167

a common output train to the same classification track. This is already implied
by the above codes.

This multistage method minimizes the number of cars rolled-in, which must
be paid for by a number nmax of hump steps that is maximal for an unrestricted
classification yard.

Regarding the track requirement, exactly nmax tracks are used in the first
stage. Thus, at most nmax + m − 1 tracks are needed since up to m − 1 further
tracks are needed for train formation, and at least nmin +m−1: pulling the first
track of the last nmin tracks to be pulled forces starting the formation of all m
output trains (if not yet started), so nmin + m − 1 tracks are occupied then.

In contrast to sorting by train the formation of all output trains is performed
simultaneously. Simultaneous marshalling is also called sorting by block1, the
simultaneous method, or initial grouping according to subscript [5].

The notion of a block corresponds to a set of cars that take a common
itinerary over potentially many shunting yards. A block is not broken up at the
intermediate classification yards. The associated blocking and makeup problems
are out of the scope of this paper, see [17] for references. Blocking is partic-
ularly advantageous in large countries like the U.S. and often not applied in
most smaller freight systems [18]. If in some freight system blocks are built in
multistage sorting, a classification task with cars of unspecified order in some
of the target trains arises. Blocks that are broken up have no influence on the
classification schedule, blocks that are not broken up at the current classification
yard can be treated as a weighted car.

This method never guides cars to a track of the final train formation at the
first stage, which is a necessary assumption for a layout as shown on the right of
Fig. 2. However, if the tracks for target train formation are accessible from the
primary hump, the schedule becomes one step shorter, which also holds for the
following variants.

4.2 Variants of Simultaneous Marshalling

In the basic variant of simultaneous marshalling, every car is pulled out once and
rolled in twice, once in either stage. In other variants this restriction is dropped.
Instead of stages, these variants are specified by sequences of hump steps, and
each method is characterized by a class of encodings of common attributes.

Triangular Sorting A variant of simultaneous marshalling called triangular
sorting is given by allowing at most three roll-in operations (including the final
roll-in of a car to its output train) for each car. For the schedule encoding, this
yields a restriction of not more than two bits equal to one per car.

For this method Krell gives an upper bound of 1
2h(h + 1) on the maximum

length nmax of an output train that can be sorted in h steps [3]. This result
can be reformulated in terms of chains yielding a better bound in general. If
c1, . . . , cm denote the respective numbers of chains of the trains, for a sufficiently
large classification yard, classifying by triangular sorting can be done within h

168 Riko Jacob, Peter Márton, Jens Maue, and Marc Nunkesser

hump steps if cmax ≤ 1
2h(h + 1). This follows immediately by our encoding: the

number of distinct codes bh . . . b1 of length h and bi = 1 for at most two different
i ∈ {1, . . . , h} is given by

(
h
1

)
+

(
h
2

)
=

(
h+1

2

)
, and the required number of distinct

codes is not greater than the maximum number of chains by Lemma 2.
The triangular-like occupation of the classification tracks after the initial

roll-in explains the name of this variant.1 The method can be generalized to any
restriction on the number of roll-ins for a car.

Geometric Sorting The method of geometric sorting1 is derived from simul-
taneous marshalling by dropping the number restriction of roll-ins completely,
which corresponds to binary codes with no restriction at all. The performance
of this method is given in the literature by nmax ≤ 2h − 1 for h hump steps [3].
In combination with the notion of chains this yields exactly the classification
scheme of Theorem 2 with a bound of cmax ≤ 2h − 1, where cmax denotes the
maximum number of chains in any output train.

Considering the special case of a single output train of length 2k − 1 for
some positive integer k, the initial roll-in sends 2k − i cars to the i-th track, i =
1, . . . , k; the sum of these numbers gives the geometric sum, which explains this
method’s name. As mentioned before, geometric sorting minimizes the number
of hump steps, assuming the number and capacities of tracks are unrestricted.
If this cannot be assumed, simultaneous marshalling variants of the following
sections should be considered.

5 Restricted Track Capacities

Real world classification yards have classification tracks of bounded capacity for
(intermediate) sorting and final train formation. In this section we show that
the problem of finding an optimal classification schedule becomes NP-complete
with this additional constraint and point out a special case where the problem
remains easy.

5.1 General Case

Assuming bounded track capacities for the classification tracks yields an NP-
hard problem as shown in Thm. 3 below. The bound on the track capacities is
formalized as follows: All tracks have a bounded capacity of Cmax, i.e., they can
accommodate at most Cmax cars, with the exception of specific train formation
tracks where the outbound trains are formed. We do not allow to pull-out from
these tracks.

Theorem 3. It is NP-hard to find the optimal classification schedule for capacity-
bounded tracks.

Proof. By reduction from “Not ALL Equal 3-SAT” (NAE3SAT) which is known
to be NP-complete [19, LO3]. Given an instance of NAE3SAT having n variables

Multistage Methods for Freight Train Classification 169

and m clauses, we construct an instance of 2n input trains that are to be sorted
into 2n outgoing trains without any interaction between the trains, i.e., the ith
input train has cars only for the ith outgoing train. Note that even though there
are multiple input trains their order is irrelevant, because there is a one-to-
one correspondence of input to output trains (this is in contrast to the general
situation discussed in Lemma 3). For ease of exposition we start the proof by
making two assumptions, and show later that these can be easily enforced. First,
each car can be part of at most one additional roll-in. Second, we can have
individual capacity bounds for all logical tracks.

The main idea of the proof is to allow to use a given number M = 4n + 2m
of steps and thus logical tracks and to let all input trains have exactly M − 1
chains. It follows that at most one of the chains of each train can be split or a
single logical track can be left unused (if two chains of the same train end up on
the same track they must be in wrong order, which necessitates an additional
roll-out in contradiction to the first assumption). The transformation enforces
the latter possibility for all trains. Thus, the “local decisions” that we can encode
are for each train, which track should be left unused.

We proceed to show how to use this idea in the transformation and give an
example in Fig. 4. First, for the input trains it is enough to specify the length of
each of their chains, instead of giving the full sequence that leads to these chains.
For example we will define a train as (1, 4, 2) by its sequence of chains (chain
sequence) and ignore whether this comes from an input train (2, 6, 1, 3, 4, 7, 5)
or (6, 2, 3, 1, 4, 5, 7). chains and logical tracks are tightly connected. As all chain
sequences will have one chain less than there are logical tracks, the chain-to-
track assignment can be specified by giving the position of the gap, i.e., the
logical track left out, e.g., (1, ∗, 4, 2). In this example the chain of length 1 goes
to logical track 1, length 4 goes to 3, and length 2 goes to 4.

x1 ∨ x̄2 ∨ x3 ∧ x̄1 ∨ x2 ∨ x̄3

x1

0

x2

1

x2

0

x3

1

x3

0

x1

1
C+

1 C−1 C+
2 C−2

x1

0

x2

1

x2

0

x3

1

x3

0

x1

1
x1 k 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

x̄1
x2
x̄2
x3
x̄3

k
k k

k
k

k
k

kk

k

k
k

k

k
k

k

k

Fig. 4. Sketch of the transformation for an example with two clauses on three variables.

Each chain sequence has 4n + 2m − 1 chains, which correspond to a start
variable part of length 2n, followed by a clause part of length 2m and an end
variable part of length 2n−1. There are 2n chain sequences, one for each literal.
All chains have either length k (“ON”) or length 1 (“OFF”). The purpose of the

170 Riko Jacob, Peter Márton, Jens Maue, and Marc Nunkesser

start and end part of the chain sequences is to force the gap into these sequences.
This is achieved by defining the start and end sequences of both xi and x̄i as
follows:

(

start part︷ ︸︸ ︷
1, 1︸︷︷︸

1 pair/variable

, . . . , k, 1︸︷︷︸
pair i

, 1, 1, . . .,
clause part︷︸︸︷. . . ,

end part︷ ︸︸ ︷
1, 1, . . . , k, 1︸︷︷︸

pair i

, 1, 1, . . . , 1, 1)

Both sequences have length M−1 together with the clause part that remains
to be specified.

The first 2n logical tracks and the last 2n logical tracks have all capacity
2n + k − 1, except for the first and the last track which have both capacity
n + k − 1. The total capacity of the first 2n positions of all chain sequences
exceeds the total available capacity for the start part by n, the same holds for
the end part. This situation forces at least n gaps in the start part and at least
n gaps in the end part, thus exactly n gaps in both parts. Having identical
sequences for a variable and its negation enforces together with the capacity
bound that for each variable either there is a gap at the beginning of the chain
sequence for xi and the end of the one for x̄i or vice versa. Thus, we can think
of the chain sequences for variable xi as either being to the left (xi = TRUE) or
to the right (xi = FALSE).

The clause sequence has 2m logical tracks, 2 for each clause. The first track of
clause j stands for a literal making this clause true (contributing to set C+

j), the
second for one making it false (contributing to set C−

j). From above it follows
that there can be no gaps in the clause parts. We indicate the occurrences of
literals in clauses by turning on the corresponding position in the chain, as
exemplified in Fig. 4. The chains for each literal can be either left or right and
therefore contribute either to C+

j or C−
j for each clause j. By setting the capacity

constraint to 2n+2k−2 for each logical track in the clause part we enforce the not
all equal constraint. This follows because this capacity limit is exceeded if and
only if three literals contribute to the same of the sets C+

j and C−
j . Therefore,

under the assumptions above there is a yes-instance for NAE3SAT if and only if
there is a classification schedule for the transformed instance that respects the
given capacity bound.

It remains to specify how to enforce the two properties above. First, we want
to replace the individual capacity constraints by a uniform one. To this end, we
add one chain sequence of full length M . As every car is only allowed to be pulled
once, the classification schedule for this chain sequence is unique. By adjusting
the lengths of the chains of this chain sequence, the differences in the capacity
constraints can be adjusted.

To enforce that every car is pulled at most once, we add one chain sequence
with one big non-trivial chain. The length of this chain is exactly the excess
capacity of the logical tracks w.r.t. all chain sequences constructed before. Now,
if any car were pulled twice another car could not be pulled at all, which is
impossible in a correct classification schedule.

Multistage Methods for Freight Train Classification 171

5.2 Other Results

Optimal classification schedules for tracks of bounded capacity Cmax translate to
binary encodings B with the property that for each bit position the total sum of
1’s weighted by the lengths of the corresponding chains is bounded by Cmax. We
have recently shown [20] that if all chains have the same length optimal codes
can be constructed efficiently (in the size of the resulting codes). On the other
hand, for arbitrary chain length the above proof shows NP-completeness.

6 Restricted Number of Classification Tracks

In this section we consider the width constraint of a shunting yard. In particu-
lar we are interested in classification tasks for which the optimal classification
schedule without width restriction needs a number n of pull-outs and thus logi-
cal tracks that is greater than the available number of physical tracks W . This
schedule is in general not directly implementable. In this section we show how
to construct optimal schedules under restricted width. From Observation 1 we
know that it is enough to consider the case of a single input and a single outgoing
train. As mentioned in Sect. 1, an example for this setting is given in [3] includ-
ing the corresponding schedule and maximum number of cars that can be sorted
for a number of given tracks. As mentioned before, Hansmann and Zimmermann
independently obtain the same result in [12]. Their description also covers the
case of an input with several cars being of the same type, i.e., the same integer
may occur more than once in the input.

To simplify the exposition, we slightly deviate from the notation in the other
sections and assume that at the start the input train is already in track θ1. For
this initial roll-in we count one step (all codes have b1 = 1). We also count the
track of the outgoing train as part of the code (all codes have bh = 1).4

A complete specification of the classification schedule now requires in addition
to the binary codes of length h the track sequence (θi1 , . . . , θih

) for this schedule.
By the assumption above the first pulled track is the input track θ1, and the
last pulled track is the output track. The binary codes are restricted by the
destination track being available which leads to the following restriction for the
codes. More precisely, assume that a code has a 1 at a certain position. Then
there are precisely W next choices for tracks, namely the first occurrence of
a θi in the remaining sequence of pull-outs, 1 ≤ i ≤ W , and these are the only
possibilities for the next 1.

Observation 2 The binary encoding {b1, . . . , bn} for valid classification sched-
ules on yards of width W and unrestricted width have the property that if any of
the codes bi, 1 ≤ i ≤ n has bi

j = 1 then the set of indices of follow-up tracks over
all codes {k|∃i′, k = minj′>j,bi′

j′=1 j′} has cardinality at most W .

4 These assumptions are not crucial for the correctness of the statements below. How-
ever they make the recurrence equations easier to read.

172 Riko Jacob, Peter Márton, Jens Maue, and Marc Nunkesser

If the tracks are pulled in a round robin fashion these are exactly the next
W logical tracks and thus bit positions in the code, i.e., for round robin there
must not be W consecutive zeros in any of the codes. We will show that such a
round-robin strategy dominates all other strategies.

Let us analyze the number Rh of runs that can be sorted by h pull-outs on W
tracks that are used round-robin. We have R1 = R2 = 1, and Rh = 2h−2 for
3 ≤ h ≤ W as there are h − 2 positions with an unrestricted binary code.

Then, we get the recurrence equation Rh =
∑h−1

i=h−W Ri for h > W : All valid
codes of length h have a 1 at position h, then have the next most significant 1
at a position in the range h−W to h− 1. Now the number of such codes is the
sum of the number of codes starting with a 1 at this particular position, having
a trailing 1, and no W consecutive zeros.

For W = 2 these numbers are the Fibonacci numbers Fi, for larger values
of W a generalization of them. In any case we have Fh ≤ Rh ≤ 2h−2.

Once we know the correct h for a given W and a number of chains n the cor-
responding codes can also be efficiently constructed, for example by a recursive
algorithm that branches in each node into the W choices for the next 1.

Now it remains to be shown that it is optimal to pull the tracks in a round
robin fashion. We will do this inductively. Of course for h ≤ W this is the case.
Assume we already know that the maximal number of codes on h′ positions (for
the best possible track sequence) is Rh′ for all h′ < h. Now take one optimal
track sequence and set of codes for h pull-outs. The codes divide into at most W
classes by their second 1 (the positions depend on the track sequence). Order the
classes according to this position of the second 1. Then, the first class has codes
of length at most h−1, the second of length at most h−2, and so on. Hence, the
number of codes in the classes is bounded by Rh−1, Rh−2 and so on (even if the
different classes were allowed to have different track sequences), yielding that at
most Rh codes are possible. The following theorem sums up these results.

Theorem 4. A classification schedule for a yard of width W and unrestricted
length and an input train of n chains needs h steps in the above model, where
h ∈ IN+ is the smallest integer h such that r is greater or equal to the solution
of the recurrence equation

Rh =

1 for h = 1
2h−2 for 2 ≤ h ≤ W∑h−1

i=h−W Ri for h > W

The corresponding track sequence is round-robin, i.e, (θ1, θ2, . . . , θW , θ1, θ2, . . .).
This classification schedule is optimal and can be constructed in linear time (in
the size of the schedule). For h = 2 we have that Rh = Fh where Fh = ϕn−(1−ϕ)n

√
5

is the h-th Fibonacci number, and ϕ the golden ratio.

Proof. We have already shown that a round-robin track sequence dominates
all other sequences, and that Rh equals the maximum number of chains that
can be sorted by “round-robin” codes. The optimality now follows directly from
Lemma 2. The construction is via the mentioned recursive algorithm.

Multistage Methods for Freight Train Classification 173

7 Concluding Remarks

We have developed an efficient encoding of freight train classification schedules
to present, analyze, and develop train classification methods for real-world hump
yards. This surprisingly simple though powerful encoding can be used to analyze
the efficiency of commonly used multistage methods, of which we proved the
optimality of the simultaneous variant geometric sorting in terms of hump steps,
considering presorted input.

Future Work It might be interesting to find further optimization criteria for
train classification in the literature which are relevant in practice, in order to
incorporate these objectives in the encoding scheme. There are further possibil-
ities to specify output requirements, similar to the mentioned concept of blocks,
and a straightforward question is how to derive optimal schedules in such set-
tings. Finally, if the presented methods can be simulated to successfully work in
practice, their implementation may accelerate the classification process in many
real-world hump yards.

Acknowledgments

We would like to thank N. S. Narayanaswamy for discussions on the relation of
OPT-PERM to minimum feedback arc set problems.

References

1. Flandorffer, H.: Vereinfachte Güterzugbildung. ETR RT 13 (1953) 114–118
2. Baumann, O.: Die Planung der Simultanformation von Nahgüterzügen für den

Rangierbahnhof Zürich-Limmattal. ETR RT 19 (1959) 25–35
3. Krell, K.: Grundgedanken des Simultanverfahrens. ETR RT 22 (1962) 15–23
4. Krell, K.: Ein Beitrag zur gemeinsamen Nutzung von Nahgüterzügen. ETR RT

23 (1963) 16–25
5. Siddiqee, M.W.: Investigation of sorting and train formation schemes for a railroad

hump yard. In: Proc. of the 5th Int. Symposium on the Theory of Traffic Flow
and Transportation. (1972) 377–387

6. Daganzo, C.F., Dowling, R.G., Hall, R.W.: Railroad classification yard throughput:
The case of multistage triangular sorting. Transportation Research, Part A 17(2)
(1983) 95–106

7. Daganzo, C.F.: Static blocking at railyards: Sorting implications and track require-
ments. Transportation Science 20(3) (1986) 189–199

8. Daganzo, C.F.: Dynamic blocking for railyards: Part I. homogeneous traffic. Trans-
portation Research 21B(1) (1987) 1–27

9. Daganzo, C.F.: Dynamic blocking for railyards: Part II. heterogeneous traffic.
Transportation Research 21B(1) (1987) 29–40

10. Dahlhaus, E., Horák, P., Miller, M., Ryan, J.F.: The train marshalling problem.
Discrete Applied Mathematics 103(1-3) (2000) 41–54

174 Riko Jacob, Peter Márton, Jens Maue, and Marc Nunkesser

11. Dahlhaus, E., Manne, F., Miller, M., Ryan, J.: Algorithms for combinatorial prob-
lems related to train marshalling. In: Proc. of the 11th Australasian Workshop on
Combinatorial Algorithms (AWOCA-00). (2000) 7–16

12. Hansmann, R.S., Zimmermann, U.T.: Optimal sorting of rolling stock at hump
yards. In: Mathematics - Key Technology for the Future: Joint Projects Between
Universities and Industry. Springer (2007)

13. Holliger, H.P.: Rangierbahnhof Limmattal. Personal communication (2007)
14. Festa, P., Pardalos, P.M., Resende, M.G.C.: Feedback set problems. In: Handbook

of Combinatorial Optimization. Volume 4. Kluwer Academic Publishers (1999)
15. Newman, A.: The maximum acyclic subgraph problem and degree-3 graphs. In:

Proceedings of the 4th International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems, APPROX. LNCS (2001) 147–158

16. Even, G., Naor, J., Schieber, B., Sudan, M.: Approximating minimum feedback sets
and multi-cuts in directed graphs. In: Proceedings of the 4th International Con-
ference on Integer Programming and Combinatorial Optimization. LNCS (1995)
14–28

17. Cordeau, J.F., Toth, P., Vigo, D.: A survey of optimization models for train routing
and scheduling. Transportation Science 32(4) (1998) 380–404

18. Campetella, M., Lulli, G., Pietropaoli, U., Ricciardi, N.: Freight service de-
sign for the italian railways company. In Jacob, R., Müller-Hannemann,
M., eds.: ATMOS 2006 - 6th Workshop on Algorithmic Methods and Mod-
els for Optimization of Railways, IBFI, Schloss Dagstuhl, Germany (2006)
<http://drops.dagstuhl.de/opus/volltexte/2006/685>.

19. Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman (1979)
20. Jacob, R.: On shunting over a hump. Technical Report 576, Institute of Theoretical

Computer Science, ETH Zürich (2007)

Robust Algorithms and Price of Robustness in

Shunting Problems⋆

Serafino Cicerone1, Gianlorenzo D’Angelo1, Gabriele Di Stefano1,
Daniele Frigioni1, and Alfredo Navarra1,2

1 Dipartimento di Ingegneria Elettrica e dell’Informazione,
Università dell’Aquila, Poggio di Roio, 67040 L’Aquila Italy.

Emails: {cicerone,gdangelo,gabriele,frigioni}@ing.univaq.it
2 Dipartimento di Matematica e Informatica, Università di Perugia,

Via Vanvitelli 1, 06123 Perugia, Italy. Email: navarra@dipmat.unipg.it

Abstract. In this paper we provide efficient robust algorithms for shunt-
ing problems concerning the reordering of train cars over a hump. In par-
ticular, we study algorithms able to cope with small disruptions, as tem-
porary and local unavailability and/or malfunctioning of key resources
that can occur and affect planned operations. To this aim, a definition of
robust algorithm is provided. Performances of the proposed algorithms
are measured by the notion of price of robustness. Various scenarios are
considered, and interesting results are presented.

Keywords: Shunting; Hump Yard; Disruption; Robustness; Recoverability; Ro-
bust Algorithm

1 Introduction

Optimization of railways involves many planning and scheduling activities span-
ning several time horizons. In this paper, among short term planning phases, we
consider the shunting problem, that is the scheduling of activities at a shunting
yard in depots or stations.

In railroad shunting yards, incoming freight trains are split up and re-
arranged according to their destinations. In stations and train depots, passenger
trains are parked overnight or during low traffic hours. In either case we are
given an ordering of arriving units, i.e., either cars, or trains or train units, and
we have to decide how to use the tracks of the shunting yard to reorder the
units according to a required departure sequence. Possible scheduling activities
are limited by the fixed number of available tracks, by their length and by the
way tracks may be approached. Many results have been reached in literature
on shunting problems by assuming a perfect knowledge of the incoming and
outcoming sequences of units (e.g., [4–6, 8, 10, 11]).

⋆ This work was partially supported by the Future and Emerging Technologies Unit of
EC (IST priority - 6th FP), under contract no. FP6-021235-2 (project ARRIVAL).

ATMOS 2007 (p.175-190)
7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems
http://drops.dagstuhl.de/opus/volltexte/2007/1175

176 Serafino Cicerone et al.

On the other hand, a recent approach looks at the shunting problem as an
online problem: since the trains could accumulate lateness before arriving at the
depot, the time of arrival of each train could be unpredictable. The tracks must
thus be assigned online, as the trains arrive, on the basis of departure times and
previous assignments [13, 7].

These two approaches lack in reality, since small disruptions, concerning tem-
porary and local unavailability and/or malfunctioning of key resources, can occur
and then affect, e.g., the planned incoming unit sequence, but it is also unlikely
that we have no idea about the order of the sequence, as in the online approach.
What we need is a robust solution to the shunting problem that maintains feasi-
bility by applying available recovery capabilities in the case of disruptions. This
avoids both a recalculation from scratch of a new schedule and a complete online
approach to the problem.

What is robustness for an optimization problem? Several attempts have been
tried in order to provide a formal definition which is able to capture many dif-
ferent peculiarities (see for instance [1, 3, 9]). Recently, a special issue on robust
optimization has been published in the central publication forum of the mathe-
matical programming society [2].

However, the notion of robustness in every day life is much broader than that
pursued in so-called robust optimization so far. In the most restricted sense, a
robust plan stays unchanged in every likely scenario. The basic idea of robust-
ness is given by a problem and some knowledge imperfection with which one
has to cope. That is, the solution provided for a given instance of the problem
must hold even though some changes in such an instance occur. This kind of
robustness is not always suitable if some recovery strategies are not introduced.
Moreover, in many practical applications, there might be the possibility to in-
tervene before some scheduled operations are being performed. This suggests to
study robustness with respect to available recovery capabilities. Usually, mod-
ifications that may occur are restricted to some specified subset of all possible
ones. It is reasonable to require that if a disruption occurs, one would like to
maintain as much as possible a pre-computed solution taking into account some
“soft” recovery strategies. Recoverability should be simple and fast. Moreover
there are cases where recoverability is necessary in order to still have some useful
solution for a problem. A solution that undergoes slight changes is called robust
even though it could require the use of some recovery capabilities.

In this paper we provide a definition for robust algorithms and a definition
for the corresponding price of robustness. We follow directions given in [12], and
emphasize algorithmic aspects. The purpose/hope is to capture useful properties
that help to overcome the standard notion of robustness. Intuitively, given an
optimization problem P , a set of possible disruptions, and a set of available
recovery strategies Arec, we define the corresponding robustness problem RP .
An instance i of P becomes a set M(i) of instances obtained by applying any
possible disruption to i. A robust algorithm Arob takes i as input and outputs
a feasible solution for any instance in M(i) with the chance to apply available
recovery strategies. In other words, given an instance i of P and a disruption

Robust Algorithms and Price of Robustness in Shunting Problems 177

j ∈ M(i), a solution s for i provided by Arob can be turned into a feasible
solution for j by applying some recovery strategies allowed by Arec. Solution s

is then called a robust solution. Clearly, robust solutions provided by Arob can
be far from the optimum. Such a distance is measured by the price of robustness.
In [12] the aim is to provide the best robust solution, i.e., the one that minimize
the price of robustness. We are interested in finding efficient robust algorithms,
and evaluating them by comparing the corresponding prices of robustness.

We apply these definitions in a practical context given by shunting problems
introduced in [11]. In a shunting plan, disruptions are given by different orders
of the incoming trains/cars, new trains/cars, missing trains/cars, or faulty in-
frastructures like tracks. We provide robust shunting plans able to cope with
bounded number of disruptions. We also study various levels of robustness ac-
cording to different recovery capabilities.

The paper is organized as follows: Section 2 introduces the shunting prob-
lem in a hump yard as given in [11]. Section 3 introduces a model concerning
robustness for optimization problems. Section 4 gives a robust interpretation to
shunting problems arising in practical context, and for each problem we provide
robust algorithms and evaluate their price of robustness. Finally, Section 5 gives
some conclusive remarks and discusses some open problems.

2 Shunting Over a Hump

In this section we introduce the shunting problem in a hump yard as given in [11].
The problem is specified by an input train Tin composed of n cars and an output
train Tout given by a permutation of Tin cars. Each car is assigned with a unique
label. The considered hump yard appears as in Figure 1.

switches

classification tracks

w

c

IN/OUT track

Fig. 1. Hump yard infrastructure composed of w classification tracks, each of size c.

There is an input track where trains arrive and a set of switches by which
cars composing the incoming train can be shunted over the available classification
tracks. A classification track is approached from a single side and works like a
stack. The number of available classification tracks is denoted by w, and their
size, i.e., the number of cars that can fit into a classification track, by c. This
layout supports a sorting operation by repeatedly doing the so called track pull
(operation) which is made up of:

178 Serafino Cicerone et al.

– Connect the cars of one classification track into a pseudotrain;
– Pull the pseudotrain over the hump;
– Disconnect the cars in the pseudotrain;
– Push the pseudotrain slowly over the hump, yielding single cars that run

down the hill from the hump towards the classification tracks;
– Control the switches such that every single car goes to a specified track.

The goal is to reorder Tin according to Tout by repeatedly performing the
track pull operation (an example of reordering by means of track pulls can be
seen in Figure 2). The cost of the reordering is measured by the number of track
pulls. Clearly, at least one pull must be performed.

We consider three different variants of the shunting over a hump problem by
specifying constraints for c and w. Namely,

Case 1- c bounded, w unbounded;
Case 2- c unbounded, w bounded;
Case 3- c and w unbounded.

In [11] a polynomial algorithm for each case is given. In particular, a 2-
approximation algorithm for Case 1-, and optimal algorithms for Case 2- and
Case 3-, are provided.

It is worth mentioning a further algorithm presented in [11] that solves the
shunting problem when c is bounded and the input train is unknown in advance.
Equivalently this can be seen as the order of the cars in Tin is the reverse of the
order in Tout. The proposed solution provides a set of different operations for
each car. In the remainder of the paper we refer to such an algorithm as Aout.

Before concluding this section we need to describe how the set of track pulls
operations is specified and represented in [11] since we make use of the same
notation. In general, a shunting plan has to specify a sequence of track pull
operations, given by the track whose cars are pulled, and for every car which
track it is sent to. Tracks are named according to the time they are pulled,
i.e., T = {1, . . . , h}. This means that one physical track might get several such
names (numbers) if it is pulled several times during the shunting plan. In such
situations, the logical track is annotated by the name of a physical one. Of
course, if there is no limit on the number of tracks (w ≥ h), there is no need to
reuse a track, and this annotation by names of physical tracks is not necessary.
With this numbering of the tracks, the itinerary of a car can be described by
the sequence of logical tracks it visits. For the task at hand, it is convenient to
specify this sequence as a bitstring or code b1 · · · bh where the different bits stand
for the logical tracks, and there is a 1 if and only if the car visits that track.
Now, if track i is pulled, the new destination of a car is given by the position of
its next 1 in its code, i.e., the lowest index j > i with bj = 1.

A shunting plan must specify a track pulls sequence T and it has to associate
a code to each car. Codes length is determined by the length of T and cars may
share the same code.

According to the previous notation, Aout provides n different bitstrings, one
per car. Each string specifies the route that the corresponding car has to perform

Robust Algorithms and Price of Robustness in Shunting Problems 179

Fig. 2. Example of a shunting plan given by Aout when c = 3 and the number of track
pulls is set to 5. Cars from 11 down to 1 are associated with codes 00000, 00001, 00010,
00011, 00100, 00110, 01000, 01100, 10000, 10001, 11000 respectively. The track where
Tout is composed is not shown.

among the shunting yard in order to be placed in the desired position according
to Tout. Moreover such an algorithm is optimal with respect to the minimum
number of track pulls. For the sake of simplicity, it is assumed that Tout is
composed on a track not used for shunting operations but that can contain the
full train. A running example of Aout is shown in Figure 2. The sequence of
track pulls is given by T = {1, 2, 3, 4, 5} from right to left among classification
tracks. In the example c = 3 and the number of track pulls is set to 5. The set
of codes of length 5 provided by a feasible solution is such that at each position
at most three codes have the corresponding bit set to 1. This implements the
constraint on c and implies that at most eleven different codes can be generated.
Cars from 11 down to 1 are associated with codes 00000, 00001, 00010, 00011,
00100, 00110, 01000, 01100, 10000, 10001, 11000 respectively. Figure 2 shows
the subsequent configurations obtained after each track pull and reorder of the
pulled cars according to their codes.

Note that, when Tin is known, two cars might be assigned with the same
code. This would imply that they will have the same order in Tout as in Tin.
Two cars that are consecutive in Tout can get the same code if they are in the
correct order in Tin. A maximal set of cars in Tout that has this property is called
a run.

180 Serafino Cicerone et al.

Definition 1. In a shunting plan, for each code x, a pure run is the maximal

set of cars associated with x.

Let opt(k, c, w) ≥ 1 be the number of track pulls needed by an optimal
shunting plan in order to manage k cars/runs with tracks size c and w tracks
(in cases 1- and 3-, w = ∞; in cases 2- and 3-, c = ∞). Let apx(k, c, w) be the
best known approximation algorithm for the corresponding shunting problem,
and let apxr be its approximation ratio. Whenever clear by the context we skip
parameters equal to ∞ from previous notation.

3 Robustness

In this section, in the spirit of [12], we introduce a model concerning robustness
for optimization problems. In particular, given an arbitrary optimization prob-
lem P , we first show how to turn P into a robustness problem RP . Then, we
define which feasible solutions for P solve RP , that is, we formally define the
notion of robust solutions. Finally, we define the concept of robust algorithm for
RP .

Moreover, we quantify the price of robustness of a robust algorithm. As usual,
by using the theoretical best robust algorithm for RP , we define the price of
robustness of the problem RP .

Without loss of generality, we always consider minimization problems. In the
remainder, a minimization problem P is always characterized by the following
parameters.

– I, the set of instances of P ;
– F , the function that associate to any instance i ∈ I the set of all feasible

solutions for i;
– f : S → R the objective function of P , where S =

⋃

i∈I F (i).

Based on a minimization problem P , we can define a robustness problem RP

as it follows.

Definition 2. A robustness problem RP is given by the triple (P, M,Arec),
where:

– P is an optimization problem;

– M : I → 2I is a modification function for instances of P ;

– Arec is a class of recovery algorithms for P . Each element of Arec takes as

input a triple (i, s, j) ∈ I × S × I and outputs a solution s′ ∈ S.

Given an instance i ∈ I for P , an element s ∈ F (i) is a robust solution for i

with respect to RP if and only if the following relationship holds:

∃A ∈ Arec : ∀j ∈ M(i), A(i, s, j) ∈ F (j).

Robust Algorithms and Price of Robustness in Shunting Problems 181

s′

s

I

Arob(i)

F (j)

A ∈ Arec

S

F (i)

i

s̄

Si

j

M(i)

Fig. 3. Robustness problem: I, set of instances; S, set of solutions; M(i), set of instances
obtainable after a disruption; F (i), set of feasible solutions for i; Si, set of recoverable
solutions; s̄, optimal solution for i; s, robust solution obtained by Arob; s′, recovered
solution obtained by an algorithm A ∈ Arec.

Let us explain the rationale underlying this definition. Given i ∈ I, M(i)
represents all the instances for P that can be obtained by applying all possible
modifications to i. Such modifications model disruptions that can arise with
respect to the current input for P . Algorithms in Arec represent the capability
of recovering against possible disruptions. An input triple (i, s, j) ∈ I × S × I

for every A ∈ Arec is made of the input instance i for the original optimization
problem P , a feasible solution s for i, and a possible disruption j for i, i.e.,
a modification of i. If j ∈ M(i), and s is a robust solution, then there must
exists an algorithm A ∈ Arec such that starting from s it obtains a new solution
s′ ∈ F (j). A possible scenario for this situation is depicted in Fig. 3, where
Si represents the subset of feasible solutions for i that can be recovered by an
algorithm A ∈ Arec when a disruption j ∈ M(i) occurs.

A robust algorithm is any algorithm that computes robust solutions for RP .

Definition 3. Given RP = (P, M,Arec), a robust algorithm for RP is any

algorithm Arob such that ∀i ∈ I, Arob(i) is robust with respect to RP .

It is worth to mention that, if a robustness problem RP = (P, M,Arec) is
based on a single recovery algorithm A, Arec ≡ {A}, that fulfills the following
condition:

∀(i, s) ∈ I × S, ∀j ∈ M(i), A(i, s, j) = s

then RP represents the so called strict robustness problem. Note that, in this
case, a robust algorithm Arob for RP must provide a solution s for i such that s

is feasible for each possible modification j ∈ M(i). This means that, since A has
no capability of recovering against possible disruptions, then Arob has to find
solutions that “absorb” any possible disruption.

Now, let us consider again Fig. 3. Note that, if s̄ denotes the optimal solution
for P when the input instance is i, it is possible that s̄ is not in Si; this implies
that every robust solution for i may be “very far” from s̄. A “good” robust

182 Serafino Cicerone et al.

algorithm should find the best solution in Si for P , for each possible input
i ∈ I. The goodness of a robust algorithm is measured by the concept of price

of robustness as in the following definition.

Definition 4. The Price of Robustness of a robust algorithm Arob for a robust-

ness problem RP is given by

PoR(RP , Arob) = max
i∈I

{

f(Arob(i))

min{f(x) : x ∈ F (i)}

}

.

For every instance i, the price of robustness of Arob is given by the maximum
ratio between the cost of the solution provided by Arob and the optimal solution.
The price of robustness of RP is given by the minimum price of robustness among
all possible robust algorithms. Formally,

Definition 5. The Price of Robustness of a robustness problem RP is given by

PoR(RP) = min{PoR(RP , Arob) : Arob is a robust algorithm for RP }.

Definition 6. A robust algorithm Arob is exact for a robustness problem RP if

PoR(RP , Arob) = 1.

Definition 7. A robust algorithm Arob is optimal for a robustness problem RP

if PoR(RP , Arob) = PoR(RP).

In the remainder, by “optimal” we may refer either to an optimization prob-
lem in the standard meaning or to a robustness problem in the meaning of
Definition 7. Which definition must be applied will be clear by the problem we
are referring to, if it is either an optimization problem or a robustness problem
respectively.

4 Disruptions and Recoverability

In this section we evaluate the price of robustness defined in Section 3 in practical
contexts arising from the shunting problems described in Section 2. In the fol-
lowing P is one of the three shunting optimization problems defined in Section 2.
For Case 1-, for instance, P is defined by

– f : number of track pulls;
– I : pair (Tin, Tout) where train Tin is defined as a sequence of cars and train

Tout is a permutation of Tin cars;
– F (i) : set of all feasible solutions for a given pair i ≡ (Tin, Tout) ∈ I, i.e.

any sequence of track pulls combined with a set of codes (one per car) that
transform Tin in Tout when c is bounded.

Sections 4.1 and 4.2 are devoted to two different modification function M

respectively. Concerning classes of recovery algorithms we consider the following
three possibilities.

Robust Algorithms and Price of Robustness in Shunting Problems 183

A1
rec: ∀A ∈ A1

rec, ∀(i, s) ∈ I × S, ∀j ∈ M(i), A(i, s, j) = s, i.e., there are no
recovery strategies to apply (strict robustness);

A2
rec: ∀A ∈ A2

rec, ∀(i, s) ∈ I × S, ∀j ∈ M(i), A(i, s, j) = s′, where s′ may differ
from s by at most one code, i.e., at most one pure run may be assigned with
a new code of the same length;

A3
rec: ∀A ∈ A3

rec, ∀(i, s) ∈ I × S, ∀j ∈ M(i), A(i, s, j) = s′, where s′ may differ
from s by all the set of codes, i.e., every pure run may be assigned with a
new code of the same length.

The three different classes of recovery algorithms imply three different ro-
bustness problems RP for each shunting problem P . On the other hand, by
definition, every upper bound to the price of robustness of each shunting prob-
lem with A1

rec holds for A2
rec as well as every upper bound obtained with A2

rec

holds for A3
rec. Moreover, every lower bound obtained with A3

rec holds for A2
rec

as well as every lower bound obtained with A2
rec holds for A1

rec.
Note that each of the three defined classes of recovery algorithms can not

change/extend the scheduled track pulls sequence defined by a shunting algo-
rithm Arob. This is motivated by the fact that the cost of a shunting plan is
assumed to be proportional to the number of track pulls (see Section 2). Re-
covery capabilities, instead, should be cheap operations since they can not be
planned a priori but are used at run time.

In what follows, for every instance i = (Tin, Tout) we denote by ri and ni the
number of runs and cars respectively in Tin.

4.1 One Car With Unexpected Incoming Position

Given an instance i = (Tin, Tout) of the shunting optimization problem P , let
M(i) represent all possible instances (T ′

in, Tout) obtainable from i by changing
the order of just one car in Tin. For each of the three cases of Section 2 we study
feasibility of robust shunting plans for the three different classes of recovery
algorithms defined above.

Before approaching every possible case, the following lemma describes which
practical situation a robust plan must be able to absorb/recover with respect to
a car incoming with an unexpected position. In detail, the lemma shows that if
a car arrives at a position different than expected, then at most one additional
pure run with respect to the original situation is needed.

Lemma 1. Let v be a car arriving at the hump in a different position than

expected. At most one additional pure run must be managed with respect to the

expected case.

Proof. If v composed a pure run itself, every shunting plan is robust since the
same code assigned to v is valid also in the actual case. The same holds in all
cases where the change in the incoming position of v does not affect its relative
position with respect to the pure run it belongs to.

If v was the first (last, resp.) car of its original run, and it arrives after (before,
resp.) some cars of that run then it becomes itself a pure run unless it can be

184 Serafino Cicerone et al.

joint with some other pure runs. All the other cars of its original pure run still
compose a pure run since their relative order did not change.

If v was part (in the middle) of a pure run then v may arrive either before its
original pure run (case a), or in the middle but before its expected placement
(case b), or in the middle but after its expected placement (case c), or after its
original pure run (case d). If case a occurs, then v with all cars of the original
pure run after the expected position of v still compose a run but the remaining
part of the original pure run can not be assigned with the same code. If case b

occurs, then same arguments of case a still hold. If case c occurs then the first
part of the original pure run until the expected position of v plus v compose a
pure run, while the remaining cars must be another pure run. If case d occurs,
then same arguments of case c still hold. Summarizing, in all cases at most one
additional pure run is created. �

In a shunting plan, Lemma 1 is reflected in the need of at most one additional
code.

Lemma 2. For every input train Tin and considering A1
rec, any robust shunting

algorithm Arob must provide a unique code to each car of Tin.

Proof. Assume by contradiction that two cars v and w have the same code in
Arob. Without loss of generality, let v being expected before w in Tin. This
means that v should appear before w also in the outgoing train. Arob is assumed
to be robust for any possible change of one car position. Let us consider the
disruption where w precedes v in Tin. Since Arob associates the same code to v

and w, then w will appear before v also in the outgoing train. This contradicts
the hypothesis that Arob is a robust shunting algorithm with respect to any
change in the position of one car. �

Case 1-. As mentioned in Section 2, the solution proposed in [11] provides a
2-approximation of the optimum, i.e., apxr = 2. However, such a solution can
not be used for robustness purposes when considering A1

rec since it does not fulfil
condition of Lemma 2. On the other hand, Aout turns out to be optimal (in the
meaning of Definition 7).

Theorem 1. Considering A1
rec, there exists an optimal robust shunting algo-

rithm Arob such that PoR(RP , Arob) = max
i∈I

opt(ni,c)
opt(ri,c)

.

Proof. We make use of Aout described in Section 2, i.e., we have one different code
for each car without considering runs. Such a solution is clearly feasible for any
change in the cars order since it is completely independent on the incoming order.

From Lemma 2, PoR(RP) ≥ max
i∈I

opt(ni,c)
opt(ri,c)

. Moreover, from [11], the solution

provided by Aout is optimal in Case 1- when one unique code per car must be
assigned. �

Even though Aout is optimal for A1
rec, i.e., PoR(RP , Arob) = PoR(RP), it is

not exact since in general opt(n, c) ≥ opt(r, c).

Robust Algorithms and Price of Robustness in Shunting Problems 185

It is worth noting that the number of codes provided by the shunting algo-
rithm Arob of Theorem 1 is at most c times the number of codes provided by
the optimal solution. In fact, we are in the case of tracks of bounded size c, and
hence there cannot be more than c cars associated with the same code. This
implies that if a run is composed by more than c cars, it must be split into more
classification tracks.

Theorem 2. Considering A2
rec, there exists a polynomial robust shunting algo-

rithm Arob such that PoR(RP , Arob) = max
i∈I

apx(ri,c)+1
opt(ri,c)

≤ 2 + max
i∈I

1
opt(ri,c)

= 3.

Proof. By Lemma 1, the change in the order of one car may produce at most one
additional pure run, hence at most one additional code is necessary to cope with
such occurrence. By the solution proposed in [11] for Case 1-, the need of one
additional code might imply the need of one additional track pull since it might
be that codes of the original solution are already the maximum number available
to manage ri runs. However we are under Case 1- assumptions, i.e., unbounded
number of tracks. This implies that Arob must provide one additional track pull.
This can be obtained by calculating codes as in [11] for Case 1- and then adding
one bit (initially set to zero) corresponding to the new pull. In order to conclude
the proof we need to show that the modification of at most one code as defined
by A2

rec is enough in order to make the solution provided by Arob feasible with
respect to M .

Let v be the car implementing disruption M . From Lemma 1, the actual
situation is given by at most two pure runs instead of the pure run to which v

belonged. Without loss of generality, let the actual pure run containing v be the
one that composed the bottom part of the expected original pure run. Then an
algorithm in A2

rec simply assigns the same code as planned by Arob to v and its
actual pure run, and the same code but with the first bit set to one to the top
part of the expected original pure run.

By construction, in the first pulled track there is only part of the original
pure run to which v was expected to belong. This implies that the number of
cars composing such a new run is less than c, otherwise they could not have been
associated with the same code by Arob. Once the first pull has been performed,
the pulled run will be placed on top3 of the second part of the pure run composing
the expected pure run containing v, since their codes differ by just the first bit.
Hence the expected pure run is now built and the shunting plan continues as
was originally scheduled by Arob. �

As already said, every upper bound for A2
rec holds for A3

rec. Up to now no
better upper bound for A3

rec has been found than that of A2
rec.

Cases 2- and 3-. When considering A1
rec, similar arguments of Theorem 1 can

be applied, and the following corollary holds.

3 Clearly there can be other cars in the middle but this does not influence the solution
since codes exactly determine the outgoing order of the cars.

186 Serafino Cicerone et al.

Corollary 1. In Case 2- (Case 3- resp.), and considering A1
rec, there exists an

optimal robust shunting algorithm Arob such that PoR(RP , Arob) = max
i∈I

opt(ni,w)
opt(ri,w)

(PoR(RP , Arob) = max
i∈I

opt(ni)
opt(ri)

resp.).

When considering A2
rec, in both Case 2- and Case 3-, for non-trivial plans we

do not need to use one additional track since any track is big enough to contain
the whole train. Hence, there is always enough space to wait for the missing
car/run. The only exceptions arise when the number of track pulls required
by the optimal shunting plan is too small in order to restore the expected car
positions. For instance, this happens when Tin ≡ Tout. By applying similar
arguments of Theorem 2, we can show the following theorem.

Theorem 3. In Case 2- (Case 3-, resp.), considering A2
rec, there exists

a polynomial robust shunting algorithm Arob such that PoR(RP , Arob) =

max
i∈I

opt(ri,w)+1
opt(ri,w) = 1 + max

i∈I

1
opt(ri,w) = 2 (PoR(RP , Arob) ≤ 1 + max

i∈I

1
opt(ri)

= 2,

resp.).

Concerning the price of robustness of the problem, the following theorem
holds.

Theorem 4. In Cases 1-, 2- and 3-, and considering A2
rec, PoR(RP) ≥ 2.

Proof. As we have already remarked, by Lemma 1 the change in the order of
one car might imply the need of one additional code which in turn implies the
need of one additional track pull. Such a pull must be planned a priori by Arob

since every algorithm in A2
rec, by definition, affects only codes. This implies

PoR(RP) ≥ 1 + max
i∈I

1
opt(ri,c)

= 2 for Case 1-, PoR(RP) ≥ 1 + max
i∈I

1
opt(ri,w) = 2

for Case 2- and PoR(RP) ≥ 1 + max
i∈I

1
opt(ri)

= 2 for Case 3-. �

By Theorems 3 and 4, the following corollary can be stated.

Corollary 2. There exists a robust algorithm in Case 2- (and one in Case 3-)

that is optimal when considering A2
rec.

4.2 One New Car

Another possible modification M is given by the arrival of one unexpected car v

that was not scheduled in the original train but has to be consider in the actual
shunting.

In all Cases 1-, 2-, 3-, v should be assigned, in general, with a new code.
Again this might reflect the need of one further track pull.

Theorem 5. If we consider A1
rec, no robust shunting algorithm exists.

Proof. In order to have a robust shunting plan with A1
rec, v should be assigned a

priori by Arob with a code independent of its outgoing placement. On the other
hand, each code exactly determines the outgoing position of the corresponding
car with respect to all other cars, and the claim holds. �

Robust Algorithms and Price of Robustness in Shunting Problems 187

However, if we use A2
rec or A3

rec it is possible to find a robust shunting plan. In
particular, according to the incoming position of v, it might be enough to assign
with it the same code of some already existent pure run. If v has to be placed
at the end of the outgoing train, it may also happen that there are some spare
codes available and the problem is easily solvable. If no codes are available (this
happens if the size of the codes is already minimized according to the number
of cars) or the incoming position of v does not allow the merge with an existent
pure run, then we need some recovery strategy. Again, the strategy must be as
less “invasive” as possible.

Theorem 6. In Case 1-, considering A2
rec, there exists a polynomial robust

shunting algorithm Arob such that PoR(RP , Arob) = max
i∈I

opt(ni+1,c−1)+1
opt(ri,c)

Proof. A possible solution Arob is to use Aout (that assigns one different code
for each car) by considering tracks of size c−1 instead of c and considering code
0 assigned to the new possible car. Clearly, decreasing tracks size and preserving
code 0 from being used, implies an increase of needed track pulls. Moreover we
add one further bit, initially set to zero, in the rightmost position of each code.
In this way there are no consecutive integers represented by the provided set of
codes. This implies that wherever a new car should be considered there is always
an available code to which an algorithm in A2

rec can change code 0. Moreover c

constraint is preserved by having considered c − 1 instead of c. �

In order to better understand the intuition behind proof of Theorem 6, we
make use of an example. Assume we have tracks of size c−1 = 3 and we consider
5 tracks, then the available codes (as in the example of Figure 2) are: 00000,
00001, 00010, 00011, 00100, 00110, 01000, 01100, 10000, 10001, 11000 that must
be assigned to the unexpected car and to cars from 10 to 1 respectively. If the new
car must be inserted, for instance, between cars 2 and 1 we have many available
codes (namely, 10010, 10011, 10100, 10101, 10110, 10111). An algorithm in A2

rec

could change, for instance, 00000 in 10100. Contrary, if we need to insert the new
car between 10 and 9, then we do not have available codes since there is nothing
in between 00001 and 00010. The new car may get code 00001 if it arrives after
car 10 or code 00010 if it arrives before car 10 and car 9. If the new car arrives
before car 10 but after car 9 then we get in trouble since there is no way to
insert it between 9 and 10 without changing other codes. In order to cope with
this case we can consider a different set of codes in which we do not allow to
have two codes representing two consecutive integers. The new set of codes will
be given by 000000, 000010, 000100, 000110, 001000, 001100, 010000, 011000,
100000, 100010, 110000. Now we have available codes in between any pair.

Theorem 7. In Case 2- (Case 3-, resp.), and considering A2
rec, there ex-

ists a polynomial robust shunting algorithm Arob such that PoR(RP , Arob) =

max
i∈I

opt(ni+1,w)+1
opt(ri,w) (PoR(RP , Arob) = max

i∈I

opt(ni+1)+1
opt(ri)

, resp.).

Proof. In Case 2-, similarly to proof of Theorem 6, we preliminarily assign code
0 to the new car and we use one different code for each car. All codes will be

188 Serafino Cicerone et al.

again not consecutive with respect to their integer representation by scheduling
one additional initial track pull. In doing so, between two codes provided by Arob

there is always a code available to which code 0 can be changed by an algorithm
in A2

rec. The claim then follows by observing that the proposed algorithm in [11]
for Case 2- is optimal. Similar arguments hold for Case 3-. �

Lemma 3. Considering A2
rec, any robust shunting algorithm Arob must provide

one different code for each car.

Proof. Assume by contradiction that two cars v and w have the same code in
Arob. Arob is assumed to be robust for a new car to be inserted in any position.
Let z be an unexpected new car that must be inserted between v and w. Without
loss of generality, let the code a priori associated with z by Arob be inappropriate
for the desired positioning of z. It is easy to verify that, in general, the insertion
of z in between v and w requires a different code for z and for either v or w.
Contrary, A2

rec allows to change at most one code, hence the claim holds. �

The following corollary is a direct consequence of Lemma 3.

Corollary 3. In Case 1- (2- and 3-, resp.), and considering A2
rec,

PoR(RP , Arob) ≥ max
i∈I

opt(ni+1,c)
opt(ri,c)

(PoR(RP , Arob) ≥ max
i∈I

opt(ni+1,w)
opt(ri,w) and

PoR(RP , Arob) ≥ max
i∈I

opt(ni+1)
opt(ri)

, resp.).

Theorem 8. In Case 1- (2- and 3-, resp.), and considering A3
rec, there ex-

ists a polynomial robust shunting algorithm Arob such that PoR(RP , Arob) =

max
i∈I

apx(ri+1,c)
opt(ri,c)

(PoR(RP , Arob) = max
i∈I

opt(ri+1,w)
opt(ri,w) and PoR(RP , Arob) =

max
i∈I

opt(ri+1)
opt(ri)

, resp.).

Proof. Arob simply computes a set of codes for the expected train by considering
one additional pure run implied by a possible new car. If a new unexpected car
v arrives, any algorithm in A3

rec is able to reassign all codes, hence inserting v

in the desired position. �

Theorem 9. In Case 1- (2- and 3-, resp.), and considering A3
rec, PoR(RP) ≥

max
i∈I

opt(ri+1,c)
opt(ri,c)

(PoR(RP) ≥ max
i∈I

opt(ri+1,w)
opt(ri,w) and PoR(RP) ≥ max

i∈I

opt(ri+1)
opt(ri)

,

resp.).

Proof. The proof simply follows by observing that the new unexpected car, ac-
cording to its required position, may constitute itself a pure run. The need of
one further code is then necessary. �

From Theorem 8 and Theorem 9 the following corollary holds.

Corollary 4. There exists a robust algorithm in Case 2- (and one in Case 3-)

that is optimal when considering A3
rec.

Robust Algorithms and Price of Robustness in Shunting Problems 189

5 Conclusion

In this paper we have provided robustness in the context of shunting of train
cars. Robustness by itself is a not well defined property for optimization problems
when recovery strategies are available and/or necessary. We have focalized our
attention on the definition of robustness algorithms. An algorithm is said to be
robust according to some allowed recovery strategy, and against some specified
disruptions, if it provides a solution which is valid also if a disruption occurs by
possibly applying available recovery strategies. We also provide a measure for the
price of robustness for an algorithm as the ratio between its performances and
the performances of an optimal algorithm both applied on the expected input
(without disruptions). The definition turns out to capture interesting proper-
ties among our evaluations on different shunting problems and scenarios. The
proposed robust algorithms show how robustness heavily affects performances.
Some algorithms that are optimal (in the robust meaning) with respect to some
disruptions may become even unfeasible in other contexts. Another central is-
sue concerns the available recovery capabilities. Intuitively, the more available
recovery strategies are powerful, the less is the price of robustness for a robust al-
gorithm. Contrary, we have shown that there are cases where increasing recovery
capabilities does not affect obtained results.

This paper can be considered as a step forward in the definition and the
application of notions concerning robustness. Many other applications related
or not to shunting problems (or more in general to railways problems) can be
studied by following the used approach. Another interesting future work would
be also to study the dual of robust algorithms, i.e., recovery algorithms. What
would be the design of a recovery algorithm once fixed the power/capabilities of
a class of robust algorithms?

Acknowledgements

We like to thank Prof. Maria Domenica Di Benedetto for the constructive dis-
cussion and useful comments on robustness issues.

References

1. H. G. Bayer and B Sendhoff. Robust Optimization - A Comprehensive Survey.
Computer Methods in Applied Mechanics and Engineering, 2007. to appear.

2. A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Mathematical Programming: Special

Issue on Robust Optimization, volume 107. Springer, Berlin, 2006.
3. D. Bertsimas and M. Sim. The price of robustness. Operations Research, 52(1):35–

53, 2004.
4. U. Blasum, M.R. Bussieck, W. Hochstättler, C. Moll, H.-H. Scheel, and T. Winter.

Scheduling trams in the morning. Mathematical Methods of Operations Research,
49(1):137–148, 1999.

5. S. Cornelsen and G. Di Stefano. Track assignment. Journal of Discrete Algorithms,
5(2):250–261, 2007.

190 Serafino Cicerone et al.

6. E. Dahlhaus, P. Horak, M. Miller, and J. F. Ryan. The train marshalling problem.
Discrete Applied Mathematics, 103(1-3):41–54, 2000.

7. M. Demange, G. Di Stefano, and B. Leroy-Beaulieu. On the online track assignment
problem. Technical Report ARRIVAL-TR-0028, ARRIVAL Project, December
2006.

8. G. Di Stefano and M.L. Koči. A graph theoretical approach to the shunting prob-
lem. Electr. Notes Theor. Comput. Sci., 92:16–33, 2004.

9. M. Fischetti and M. Monaci. Robust optimization through branch-and-price. In
Proceedings of the 37th Annual Conference of the Italian Operations Research So-

ciety (AIRO), 2006.
10. R. Freling, R. M. Lentink, L. G. Kroon, and D. Huisman. Shunting of passenger

train units in a railway station. Transportation Science, 39(2):261–272, 2005.
11. R. Jacob. On shunting over a hump, Manuscript, 2007.
12. C. Liebchen, M. Lüebbecke, R. H. Möhring, and S. Stiller. Recoverable robustness.

Technical Report ARRIVAL-TR-0066, ARRIVAL Project, 2007.
13. T. Winter and U. Zimmermann. Real-time dispatch of trams in storage yards.

Annals of Operations Research, 96:287–315(29), 2000.

Approximate dynamic programming for rail operations

Warren B. Powell and Belgacem Bouzaiene-Ayari

Princeton University, Princeton NJ 08544, USA

Abstract. Approximate dynamic programming offers a new modeling and algo-
rithmic strategy for complex problems such as rail operations. Problems in rail
operations are often modeled using classical math programming models defined
over space-time networks. Even simplified models can be hard to solve, requir-
ing the use of various heuristics. We show how to combine math programming
and simulation in an ADP-framework, producing a strategy that looks like sim-
ulation using iterative learning. Instead of solving a single, large optimization
problem, we solve sequences of smaller ones that can be solved optimally using
commercial solvers. We step forward in time using the same flexible logic used in
simulation models. We show that we can still obtain near optimal solutions, while
modeling operations at a very high level of detail. We describe how to adapt the
strategy to the modeling of freight cars and locomotives.

For over 10 years we have been developing a series of models for optimiz-
ing locomotives and freight cars for a major freight railroad in the U.S. using
the principles of approximate dynamic programming. The projects span oper-
ational planning to strategic planning which generally impose very different
expectations in terms of the level of realism. In this paper, we review how these
projects unfolded and the surprising level of detail that was required to produce
implementable results, even for a strategic system.

The foundation of our solution strategy is approximate dynamic program-
ming, which combines the flexibility of simulation with the intelligence of op-
timization. ADP offers three distinct features that help with the development of
realistic optimization models in rail operations: a) It offers a natural way of de-
composing problems over time, while still offering near-optimal solutions over
the entire horizon. b) ADP allows us to model complex dynamics using the same
flexibility as a simulation model. c) ADP uses the same theoretical framework
as dynamic programming to solve multistage problems under uncertainty.

ADP is often presented as a method for solving multistage stochastic, dy-
namic problems. However, ADP can be thought of as a tool from three differ-
ent perspectives: 1) as a decomposition method for large-scale, deterministic
problems, 2) as a method for making simulations intelligent, and 3) as a set of
techniques for solving large-scale (possibly stochastic) dynamic programs. Our
original motivation for this work was as a decomposition technique for solving
a very large-scale driver management problem ([1]). The work in locomotives
described in this paper, while involving sources of uncertainty, has primarily
focused on solving deterministic formulations. These problems produce very

ATMOS 2007 (p.191-208)
7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems
http://drops.dagstuhl.de/opus/volltexte/2007/1180

192 Warren B. Powell and Belgacem Bouzaiene-Ayari

large-scale integer programming problems which have been widely approached
using various heuristics (see [2] and [3]).

ADP offers two unexpected features for solving these large-scale problems.
The first is that by breaking large problems into smaller ones, we can solve
these subproblems optimally using commercial solvers such as Cplex. Thus, the
problem of assigning locomotives to trains at a single yard (or in a region) at a
point in time is solved optimally. We depend on approximations to capture the
impact of decisions now on the future, so our overall solution is not guaranteed
to be optimal, but comparisons against optimal solutions have been extremely
encouraging.

The second feature is that ADP allows us to model problems at a much
higher level of detail. It is typically the case that large deterministic models typi-
cally introduce operational simplifications that impact the accuracy of the model
itself. ADP integrates simulation and optimization, allowing us to capture the
characteristics of the resources being used, as well as various operational rules,
at a very high level of detail. Thus, we are able to model each locomotive indi-
vidually, capturing detailed features such as its precise horsepower and adhesion
rating, its maintenance status, orientation on the track (is it pointing forward or
backwards), special equipment and ownership. This high level of detail does not
prevent us from solving subproblems to optimality.

Our work in freight transportation has spanned three classes of models:
1) strategic planning models, which address questions such as fleet size and
scheduling design, along with more complex studies of transit time reliability
and order acceptance policies, 2) short-term tactical planning, where we look
several days into the future to anticipate shortages of equipment and to manage
demands, and 3) real-time planning, where we wish to provide fast response to
user inputs and overrides.

The use of approximate dynamic programming to solve large, time-staged
optimization problems (which may or may not be stochastic) requires the use
of special modeling tools that are less familiar to a math programming-based
community (but common in simulation and control-theory communities). This
paper provides a general introduction to this modeling and algorithmic frame-
work, and then describes how it can be applied to both locomotive optimization
and the optimization of freight cars. We discuss the limitations of classical op-
timization models of fleet management, focusing not as much on the issue of
uncertainty but rather on the importance of capturing realistic operational de-
tails. We describe how the ADP paradigm makes it much easier to capture these
details, without losing the important features of optimization.

1 Literature review

There is an extensive literature on optimization models for rail operations. These
range from single commodity models for managing generic fleets of containers
(e.g., [4] and [5], to multicommodity models for handling multiple equipment
types with substitution ([6], [7], [8], [9], [10], [11], [12], [13], [14] and [15]). A

Approximate dynamic programming for rail operations 193

separate line of research has focused on handling the high level of uncertainty
in the demand for freight cars ([16], [17]); this research has continued under the
general heading of “stochastic fleet management” or “dynamic vehicle alloca-
tion” (see the reviews in [18] and [19], as well as [20]).

Many of these models are particularly well suited for managing fleets of
containers (box cars, trailers, intermodal containers). A separate literature has
evolved around the more complex problem of managing locomotives. This prob-
lem has been modeled almost exclusively as a large-scale integer programming
problem (see [11] for a review of the literature as of 1998). There are a host of
complicating issues with locomotives, including the cost of coupling and uncou-
pling groups of locomotives used to pull a single train, the handling of leader
locomotives, shop routing and a heterogeneous fleet of locomotives with differ-
ent levels of power (common in freight operations in the United States).

There has been significant recent interest in models for locomotive opti-
mization. [21] describes the use of modern branch and cut integer programming
algorithms for the locomotive problem, which was applied to Canadian National
Railway ([22]). [23] and [24] apply Benders decomposition to handle the si-
multaneous optimization of locomotives and cars. [2] presents a deterministic
optimization model of locomotive operations that takes into account the issue of
breaking up sets of locomotives that were joined to pull a previous train (“con-
sist busting”). The model is designed for strategic planning purposes; it does
not use a snapshot of the location of each locomotive, but instead works to iden-
tify repeatable cycles. The paper shows that the problem is NP-complete and
presents a neighborhood search heuristic.

2 Modeling rail operations

The management of freight cars and locomotives are both instances of resource
allocation problems. We begin by providing a general model, and then describe
how this was adapted to handle freight cars and locomotives.

2.1 A general resource allocation model

Rail operations can be modeled as “resources” (locomotives, freight cars) that
are serving “demands” (trains, customer orders). We model these using

a = the vector of attributes describing a resource,
Rta = the number of resources with attributea ∈ A in the system at

time t,
Rt = (Rta)a∈A,
b = the vector of attributes describing a demand,

Dtb = the number of demands of typeb ∈ B in the system at timet,
Dt = (Dtb)b∈B.

194 Warren B. Powell and Belgacem Bouzaiene-Ayari

We think of a (or at) as the state of a single resource, andRt is the state of
all the resources (the resource state vector). The state of our system is given
by St = (Rt, Dt), wheret represents the time at which a decision is made,
andSt is the information available at timet. New information is represented
as exogenous changes to the resource and demand vectors, as well as to other
parameters that govern the problem. These are modeled using

R̂ta = exogenous changes toRta from information that arrives during
time intervalt (betweent− 1 andt),

D̂tb = exogenous changes toDtb from information that arrives during
time intervalt (betweent− 1 andt).

R̂ta would be used to describe exogenous changes to resources such as equip-
ment failures and transit time delays.D̂tb would normally be used to describe
new customer requests, but could also be used to model changes in a customer
request (something that will be useful in the freight car problem). We describe
the exogenous information process generically usingWt = (R̂t, D̂t). Through-
out, we model information as if it were arriving in continuous time, whereWt is
the information that arrived between decision epochst− 1 andt. We always let
t index a decision epoch, not the time at which events actually happen (we can
decide at noon that a locomotive arriving at 3pm should be assigned to a train
leaving at 8pm).

Decisions are modeled using

DD = decision to satisfy a demand with attributeb (each decision
d ∈ DD corresponds to a demand attributebd ∈ B),

DM = decision to modify a resource (each decisiond ∈ DM has
the effect of modifying the attributes of the resource).DM in-
cludes the decision to “do nothing,”

D = DD ∪ DM ,
xtad = the number of resources that initially have attributea that we

act on with decisiond,
xt = (xtad)a∈A,d∈D.

For resource allocation problems, decisions always have to satisfy the con-
straints ∑

d∈D
xtad = Rta, (1)

∑
a∈A

xtad ≤ Dtbd , d ∈ DD, (2)

xtad ≥ 0. (3)

Approximate dynamic programming for rail operations 195

For specific applications (this is especially true with locomotives), there will be
additional constraints. We letXt be the feasible region, which would include
(1)-(3) as well as any other constraints that may be necessary.

Our problem is determining how to make a decision. For now, we represent
this step by assuming that we have a decision function, given by

Xπ
t (St) = a function that returns a decision vectorxt ∈ Xt, whereπ ∈ Π

is an element of the set of functions (policies)Π.

The state of the system evolves over time in a way that is described using a
transition function, represented using

St+1 = SM (St, xt,Wt+1).

The state transition function (known as the “system model” in some commu-
nities) can be broken down into components that act on specific parts of the
state. State transition functions are very familiar to specialists in simulation and
control, but not to the math programming community. It is important to realize
that this single equation hides a tremendous range of rules and calculations that
capture how the system evolves in time.

We are going to find it useful to divide the state transition into two steps:
the pure effect of the decision, and the pure effect of information. We write this
using

Sxt = the post-decision state variable

= SM,x(St, xt),

St+1 = SM,W (Sxt ,Wt+1).

The post-decision state variable is going to play a particularly important role in
our algorithmic strategy.

Of particular importance is the evolution of the attributes of a specific re-
source. For this, we define theattribute transition functionwhich describes the
effect of a decisiond on a resource with attributea, after which we observe
informationWt+1 (information that arrives after timet). This is described using

at+1 = aM (at, dt,Wt+1).

For notational convenience, we introduce theresource transition functionthat
describes the collective effect of a set of decisions (described by the vectorxt)
on the resource vectorRt using

Rt+1 = RM (Rt, xt,Wt+1).

To write this out algebraically, we first give the post-decision version of the
attribute transition functionaxt = aM,x(at, dt). It is useful to think ofaxt as the

196 Warren B. Powell and Belgacem Bouzaiene-Ayari

attribute of the resource which weexpectto happen as a result of a decision. We
then define the indicator function

δa′(a, d) =

{
1 if a′ = axt = aM,x(at, dt),
0 otherwise.

This allows us to write the post-decision resource vector as

Rxta′ =
∑
a∈A

∑
d∈D

δa′(a, d)xtad.

We then letR̂t+1,a be the exogenous change to the resource vectorRxt as a result
of exogenous information such as a transit time delay. This allows us to write

Rt+1,a = Rxta + R̂t+1,a.

For the moment, we model demands in a simple way. If a resource is as-
signed to a demand, then it is “served” and vanishes from the system. Otherwise,
it is held to the next time period. Let

δDtbd = the number of demands of typebd that are served at timet

=
∑
a∈A

xtad d ∈ DD,

δDt = (δDtb)b∈B.

The demand transition function can be written

Dx
t = Dt − δDt,

Dt+1 = Dx
t + D̂t+1.

The last dimension of our model is the objective function. For our resource
allocation problem, we define a contribution for each decision given by

ctad = contribution earned (negative if it is a cost) from using deci-
siond acting on resources with attributea.

The contribution function for time periodt is assumed to be linear, given by

Ct(St, xt) =
∑
a∈A

∑
d∈D

ctadxtad.

The objective function is now given by

max
π∈Π

E

{
T∑
t=0

Ct(St, Xπ
t (St))

}
.

Approximate dynamic programming for rail operations 197

One policy for solving this problem is a myopic policy, which involves making
decisions using

xt = arg max
xt∈Xt

C(St, xt). (4)

Here, we simply ignore the impact of decisions now on the future.
Most railroads in North America use a simple myopic model for assigning

freight cars to orders, although some use point estimates of supplies of and
demands for cars. There are several potential problems with a myopic model.
1) We might assign a car available now (on Monday) to an order that does not
have to be moved until Friday, that requires only a one-day transit time. This
ties up the car for four additional days, when a different car (not yet known)
might have covered the order. 2) It may be necessary to start moving cars now
to orders that have not yet been called in (and which may be highly uncertain).
3) Often, multiple car-types can be used to cover a particular order. It is helpful
to think about the value of different car-types at the destination of the order to
determine the best car to assign right now. 4) A railroad might want to make
decisions about whether to commit to a customer order for freight to be picked
up a week or two in the future. Myopic models cannot help with these decisions.
5) There are numerous planning problems, relating to issues such as the value of
freight, the value of cars of a particular type, the effect of transit time reliability
and the value of advance notice from shippers that require the ability to model
these effects.

This generic model for resource allocation problems allows us to describe
both freight cars and locomotives quite easily.

2.2 An adaptation for freight car management

The generic model given in section (2.1) can be applied directly to freight car
management. In the literature, the car distribution problem is almost always
modeled as a multicommodity flow problem using decision variables given by

xktij = the flow of resources of typek leaving nodei at timet going
to nodej.

We started a project with a major railroad using this same notation (see [25]),
but quickly found that it simply did not capture important characteristics of
the problem. By the completion of our project, we were using the following

198 Warren B. Powell and Belgacem Bouzaiene-Ayari

attributes:

a =

a1

a2

a3

a4

a5

a6

a7

a8

=

Location (current or origin)
Destination
Departure time
Estimated time of arrival
Car type
Equipment status
Cleanliness
Shipper pool

.

A major point of departure with classical deterministic models is that we model
the time at which an event happens as an attribute, which can be modeled in
continuous time, even if we make decisions in discrete time. Thus, a car can
arrive at 7:33 am and depart at 11.52am. The importance of doing this took us
by surprise, but laboratory experiments confirmed the feeling at the railroad that
this was important.

The attributes of an order were given by

b =

b1
b2
b3
b4
b5
b6
b7
b8
b9

=

Number of orders
Pickup location
Delivery location
Call-in time
Pickup window
Delivery window
Loading time
Unloading time
Shipper/industry/commodity type
Car types allowed

.

A significant issue with the modeling of car distribution was the complexity
of the information process. Most models assume that everything is known in
advance. The extensive literature on stochastic models assumes that demands
are stochastic, but once they become known, everything becomes known. In
practice, information evolves over time. For example, after the initial order is
made (at the call-in time), we will know the origin of the order, but not the
destination. The shipper does not let us know if the car is clean enough until the
car is delivered to the shipper. Loading and unloading times are not known until
the car is loaded or unloaded. The estimated time of arrival (for the car) evolves
continuously over a trip.

The call-in process had to be modeled with some care. Initial orders (which
include an estimate of the number of loads, pick-up location but not destination)
are generally made the week before. But the railroad often has to move cars that
are empty on Monday before orders arrive later in the week. If a shipper does

Approximate dynamic programming for rail operations 199

not place his order on, say, Wednesday, the order may arrive on Thursday or
Friday, or not at all. Thus, the order process is not Poisson.

The contribution function depends on the shipper, the distance traveled (empty
or loaded), and the degree to which the order is being picked up or delivered
early or late.

2.3 An adaptation for locomotive operations

When assigning locomotives to trains, the first issue that has to be considered
is how much power is needed to pull the train. A train might require 2.2 horse-
power per trailing ton (“trailing tons” refers to the aggregate weight of all the
cars being pulled). A train weighing 9,000 tons (gross weight, including the
weight of the cars), requiring 2.2 horsepower per ton would require enough lo-
comotives to provide 19,800 horsepower. This horsepower can be provided by
a mixture of locomotives with anywhere between 1,700 to over 4,000 horse-
power. Of course, we have to use an integer number of locomotives, and we
can mix and match to produce the right amount of power. We could use seven
3,000 horsepower locomotives which produce 21,000 horsepower, or four 3,000
horsepower units with two 4,000 horsepower units for a total of 20,000 horse-
power. As a result, this is a fairly challenging integer programming problem.

If we simply had to schedule a fleet of locomotives taking into consideration
the mix of horsepower and integrality requirements, this by itself would be a
fairly hard integer programming problem. We also have to consider the fact that
if we group multiple locomotives to pull a single train (this group of locomotives
is called aconsist), there is a cost if we have to separate one or more locomotives
from the consist. This introduces a significant complication, over and above the
challenge of finding an integer number of heterogeneous locomotives to move a
train. This complexity motivated the design of the neighborhood search heuristic
reported in [2].

Our work has identified a number of other issues which have proven to be
important not just for operational models (these tend to be more complex since
the results have to capture enough realism for implementation), but also for
strategic planning models. These details include the handling of leader-qualified
locomotives, shop routing, late trains, equipment failures and foreign power.

Shop routing is particularly difficult. A locomotive can still pull a train while
it is being routed to shop, but while we are routing a locomotive toward its shop
location, we have to try to minimize how often consists are broken. Shop routing
can not be solved independently of the original problem.

In strategic planning applications, it is also important to take into account the
random additions and cancellations, as well as delays. If an extra train moves
out of a yard 20 percent of the time (to various destinations), then we cannot
pretend that we know exactly when, and to where, these additional trains will
move.

200 Warren B. Powell and Belgacem Bouzaiene-Ayari

3 Approximate dynamic programming

Approximate dynamic programming has been evolving as a powerful tool for
solving more complex types of dynamic programs. In a series of papers mo-
tivated by problems in freight transportation, ADP has been adapted to solve
multistage stochastic linear (and integer) programs. Classical dynamic program-
ming starts with Bellman’s equation, given by

Vt(St) = max
x∈Xt

(C(St, xt) + γE {Vt+1(St+1)|St}), (5)

whereVt(St) is the value of being in stateSt at timet, andγ is a discount factor.
It is widely known that Bellman’s equation is hard to use because of the “curse
of dimensionality” which prevents us from solving (5) for each stateSt. If St is
a vector (for our applications,St is a very high-dimensional vector), we cannot
computeVt(s) for each states.

In the remainder of this section, we describe a generic strategy for using
approximate dynamic programming to solve resource allocation problems, and
then describe how this was adapted for car distribution and locomotive opti-
mization.

3.1 A generic ADP strategy

The approximate dynamic programming community replacesVt(St) with some
sort of approximation which we denotēVt(St). For example, we might use

V̄t(St) = θ0 +
∑
i

θ1Sti +
∑
i

θ2(Sti)2.

Now, we just have to estimate the three parameters(θ0, θ1, θ2). Aside from
the issue of whether this is an accurate approximation, this strategy still as-
sumes that we can compute the expectation in (5), and we need to find a high-
dimensional vectorxt.

We avoid the expectation by formulating Bellman’s equations around both
the pre- and post-decision statesSt andSxt . This allows us to break equation (5)
into two equations

Vt(St) = max
x∈Xt

(C(St, xt) + γV x
t (Sxt)),

V x
t (Sxt) = E {Vt+1(St+1)|Sxt } .

Here,Sxt = SM,x(St, xt) andSt+1 = SM,W (Sxt ,Wt+1). We do not actually
useVt(St). Instead, we replaceV x

t (Sxt) with an approximation̄Vt(Sxt). We then
make decisions using

xt = arg max
x∈Xt

(C(St, xt) + γV̄t(Sxt)). (6)

Approximate dynamic programming for rail operations 201

We need to create a value function approximation so that this problem can be
solved using a commercial solver. For resource allocation problems, it is natu-
ral to create a value function approximation around the post-decision resource
vectorRxt (rather than the full state variableSxt). A simple value function ap-
proximation is linear in the resource state,

V̄t(Rxt) =
∑
a∈A

v̄taR
x
ta.

We have generally found that linear approximations are too unstable. A much
better approximation uses separable, piecewise linear approximations which we
write generically as

V̄t(Rxt) =
∑
a∈A

V̄ta(Rxta),

whereV̄ta(Rxta) is a piecewise linear, scalar function. This approximation has
proven to be very effective for fleet management problems (see [26], [27], and
[25]). These functions can be estimated quite easily by using the dual variables
for constraint (1). Thus, instead of using an estimate of the value of being in
a state, we are using derivatives (or estimates of derivatives). [28] provides a
simple description of an algorithm (the CAVE algorithm) for estimating these
functions. [29] proves that these algorithms are convergent for special problem
classes, and provides comparisons against optimal algorithms to support the
claim that this approach offers very high quality solutions with fast convergence.

Figure 1 provides a detailed description of the steps of the algorithm. The
algorithm is run iteratively, forward in time. At iterationn, we follow a partic-
ular sample path, indexed byωn, forward in time, making decisions using the
value function approximation̄V n−1

t (Sxt) computed in the previous iteration. We
represent the updating of the value function using

V̄ n
t−1 ← UV (V̄ n−1

t−1 , S
x,n
t−1, v̂

n
t),

whereUV (·) is a general updating strategy. There are numerous ways for per-
forming this updating (in addition to the articles cited above, see the more com-
plete treatment in [30]).

3.2 An adaption for freight car management

The algorithm described in the previous section can be applied almost directly
to the freight car problem. The only adaptation involved the aggregation of the
resource vector in the value function approximation. Section 2.2 describes an
eight-dimensional attribute vector, which was needed to perform such calcula-
tions as computing the contribution function, and simulating the status of each
car. For the value function, we used a three-dimensional attribute capturing lo-
cation, estimated time of arrival and car type. This means that the dual vari-
able for an eight-dimensional attribute vector, denotedv̂ta, was used to update a

202 Warren B. Powell and Belgacem Bouzaiene-Ayari

Step 0. Initialization:
Step 0a. Initialize V̄ 0

t , t ∈ T .
Step 0b. Setn = 1.
Step 0c. Initialize S1

0 .
Step 1. Choose a sample pathωn.

Step 2. Do for t = 0, 1, 2, . . . , T :
Step 2a. Solve:

xnt = arg max
xt∈Xnt

(
Ct(S

n
t , xt) + γV̄ n−1

t (SM,x(Snt , xt))
)

(7)

and letv̂nt be the dual variables of the resource constraint (1).
Step 2b. If t > 0, update the value function:

V̄ nt−1 ← UV (V̄ n−1
t−1 , S

x,n
t−1, v̂

n
t).

Step 2c. Update the states:

Sx,nt = SM,x(Snt , x
n
t),

Snt+1 = SM,W (Sx,nt ,Wt+1(ωn)).

Step 3. Incrementn. If n ≤ N go to Step 1.
Step 4. Return the value functions(V̄ Nt)Tt=1.

Fig. 1.A generic ADP algorithm using dual variables to update the value function.

separable, piecewise linear value function approximationV̄ta(Rta), wherea is
represented using a three-dimensional attribute vector.

Figure 2 illustrates what a subproblem looks like. Cars are assigned to known
orders or to locations, where the value of a location is represented by a piecewise
linear value function approximation. Note that a car may be available (“action-
able”) now or in the future, just as orders may be available to be moved now or
at some point in the future. One problem that myopic models have is that a car
available now may be assigned to an order that does not have to be moved for a
week or more.

The car distribution problem required that we simulate randomness in cus-
tomer demands (the number of orders from a location), transit times, load and
unload times, the destination of an order (which became known only after the
car was loaded) and the acceptability of a car to the shipper. These random vari-
ables were simulated as the system evolved through time.

The freight car management system can be run in three modes: a) as a real-
time system for assigning cars to orders, b) as a short-term forecasting system,
projecting activities over a two or three week period to help with demand man-
agement and fleet planning, and c) as a strategic planning system, which might
be used to evaluate contracts, fleet mix, transit time reliability and customer
behaviors.

Approximate dynamic programming for rail operations 203

xxxx
xxxx
xxxx
xxxx

½
°
°
¾
°
°¿

Repositioning movements
based on forecasts

½
°
°
¾
°
°¿

Assignments to booked
orders.

Fig. 2. The optimization model for cars at timet, showing assignment of cars to known orders
and to value functions

3.3 An adaptation for locomotives

Modeling locomotives can be handled using the same framework, but locomo-
tives are considerably more complicated. With freight cars, there is a constraint
(equation (2)) that requires that we have one car per order. With locomotives,
several locomotives may be used to move a single train. A train might require,
for example, 13,000 horsepower. A single locomotive might have between 1,750
and 4,400 horsepower. The model has to mix and match locomotives to achieve
at least 13,000 horsepower, but it is possible to assign more horsepower because
the location to which the train is going needs additional locomotives. Locomo-
tives may be “repositioned” either by putting more power than is needed on a
train, or through the use of “light engine moves” which are locomotives moving
without pulling any cars.

Locomotive assignment has to consider other issues. One attribute of a lo-
comotive is the train-ID on which the locomotive arrived. If three locomotives
share the same train-ID, then this means that they are coupled into a “consist”
(locomotives have to be connected electrically and hydraulically to ensure that
they move as a common unit). If there are three locomotives in a consist but
we only want one or two of them, then we assess a consist-breakup cost (it

204 Warren B. Powell and Belgacem Bouzaiene-Ayari

Ratio of Empty Miles to Total Miles Traveled

0%

10%

20%

30%

40%

50%

60%

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Empty miles as a percent of total miles

History

Basic optimization model (engineering practice)

With approximate value functions

Iteration

Fig. 3. Empty miles as a percent of total from history, with a myopic optimization model, and
using approximate dynamic programming

also takes time). When we assign power to locomotives, we have to consider
consist-breakup (some authors refer to this as “consist busting”). We also have
to assign locomotives to trains that allow them to arrive at their shop location at
the scheduled time.

As we determine a good set of locomotives to pull a train, we also have to
take into account other requirements such as the need to have a leader-qualified
locomotive, or other special equipment requirements. For example, sometimes a
train moving up a steep grade requires the use of a radio-controlled locomotive
positioned at the middle of the train. That means that one of the locomotives in
the consist has to be equipped with radio power.

4 Experience with freight cars

An operational planning system based on approximate dynamic programming
has been implemented at the Norfolk Southern Railroad, one of the two ma-
jor freight railroads covering the eastern United States. We performed a set of
experiments comparing a myopic model and the solution obtained using ADP
to what was being achieved in history. The results are shown in figure 3. For
this dataset, cars were running 54 percent empty in history. A myopic model
reduced this to 48 percent, a result that is more than enough to justify the cost
of the model. Approximate dynamic programming reduced this to almost 35
percent.

Approximate dynamic programming for rail operations 205

25
21

30 32

41

21

3
7.7

10.6 12

0
5

10
15
20
25
30
35
40
45

Setouts Swaps Nonpreferred
consists

Underpowered Overpowered

Pe
rc

en
t

Fig. 4.Metrics from history and the model, where smaller is better

The freight car system can be run as a real-time assignment system (by
solving the single subproblem at time 0), but its primary use has been to provide
a forecast of activities over a three-week horizon. It can also be used to analyze
history to suggest new routing patterns, or as a strategic planning model to help
determine fleet size and mix, evaluate customers and analyze questions such as
the effect of transit time and transit time reliability on fleet requirements.

5 Experience with locomotives

Figure 4 provides a measure of the performance of the model for one major rail-
road, where we compare the model to history using five different performance
statistics such as setouts (breaking up a consist), swaps (exchanging locomo-
tives between trains, often to get a particular locomotive to a shop) and using
nonpreferred locomotives (the railroad preferred certain types of locomotives
on certain types of trains). We were able to outperform the railroad on all major
performance measures, including such detailed statistics as the productivity of
locomotives while they are being routed to shop.

In 2006, we began development of a second generation locomotive model,
drawing on a number of advances from our first generation model developed
over the 1996-2002 period. Figure 5 illustrates train coverage as the algorithm
adaptively learns the value function for the strategic planning model. The con-
vergence is fast and extremely stable, representing a significant improvement
over our first implementation (we attribute the stability to the use of nonlinear
value function approximations).

206 Warren B. Powell and Belgacem Bouzaiene-Ayari

Coverage

80

82

84

86

88

90

92

94

96

98

100

1 11 21 31 41 51 61 71 81

Iteration

Co
ve

ra
ge

Fig. 5.Train coverage for strategic planning model during the learning process

One of our most difficult lessons has been the high level of detail required
to perform accurate fleet sizing for strategic planning purposes. It is well known
in the railroad modeling community that optimization models routinely recom-
mend significant reductions in the number of locomotives. These “savings” arise
not because of sophisticated algorithms finding optimal solutions, but rather
in the many simplifications that are typically made in a mathematical model.
We found that issues such as consist-breaking, leader locomotives and special
equipment (ranging from radio controllers to coordinate different locomotives to
the requirement for flush toilets in certain regions of the United States) can have
a surprisingly significant impact on fleet sizing. Shop routing, and the proper
handling of freight power, can also have significant impacts on fleet require-
ments.

6 Conclusions

Over 10 years of development with two separate railroads has shown us that we
can handle the high level of complexity required to produce an accurate model
of rail operations. For the car distribution problem, this means handling car at-
tributes such as equipment type, maintenance status and ownership, but most
importantly the complex information processes covering the number of cars be-
ing ordered, the destination of cars (known only after the car is loaded), load,
unload and transit times, and the acceptability of a car. For locomotives, this has
meant handling issues such as consists, horsepower and adhesion, maintenance
status and ownership.

Approximate dynamic programming for rail operations 207

It is well known that these problems cannot be solved optimally, producing
an extensive literature on heuristics. However, these heuristics are typically used
to find near-optimal solutions to simplified models, which invariably underesti-
mate what is required to meet a set of demands (cars or locomotives). In many
applications, the ability to handle uncertainty is important, although our models
are frequently applied to history (which is deterministic). For example, it is not
enough to plan the locomotive fleet size for a perfect schedule where there are
no delays or failures. We have to anticipate that problems will arise, and plan for
them. Approximate dynamic programming easily handles uncertainty, allowing
us to produce robust solutions that will work in field implementations.

References

1. Powell, W.B., Shapiro, J.A., Sim̃ao, H.P.: An adaptive dynamic programming algorithm for
the heterogeneous resource allocation problem. Transportation Science36 (2002) 231–249

2. Ahuja, R.K., Liu, J., Orlin, J.B., Sharma, D., Shughart, L.A.: Solving real-life locomotive-
scheduling problems. Transportation Science39 (2005) 503–517

3. Glover, F., Kochenberger, G.: Handbook of Metaheuristics. Springer (2003)
4. White, W.: Dynamic transshipment networks: An algorithm and its application to the distri-

bution of empty containers. Networks2 (1972) 211–236
5. Herren, H.: Computer controlled empty wagon distribution on the SSB. Rail International8

(1977) 25–32
6. Glickman, T., Sherali, H.: Large-scale network distribution of pooled empty freight cars over

time, with limited substitution and equitable benefits. Trans. Res.19 (1985) 85–94
7. Dejax, P., Crainic, T.: A review of empty flows and fleet management models in freight

transportation. Transportation Science21 (1987) 227–247
8. Crainic, T., Rousseau, J.M.: Multicommodity, multimode freight transportation: A general

modeling and algorithmic framework for the service network design problem. Transportation
Research B20B (1988) 290–297

9. Haghani, A.: Formulation and solution of a combined train routing and makeup, and empty
car distribution model. Transportation Research23B (1989) 433–452

10. Crainic, T.G., Laporte, G.: Planning models for freight transportation. European Journal of
Operational Research97 (1997) 409–439

11. Cordeau, J.F., Toth, P., Vigo, D.: A survey of optimization models for train routing and
scheduling. Transportation Science32 (1998) 988–1005

12. Holmberg, K., Joborn, M., Lundgren, J.T.: Improved empty freight car distribution. Trans-
portation Science32 (1998) 163–173

13. Joborn, M.: Optimization of empty freight car distribution in scheduled railways. Ph.D.
thesis, Department of Mathematics, Linkoping University, Sweden (2001)

14. Lingaya, N., Cordeau, J.F., Desaulniers, G., Desrosiers, J., Soumis, F.: Operational car as-
signment at via rail canada. Transportation Reesarch B36 (2002) 755–778

15. Joborn, M., Crainic, T.G., Gendreau, M., Holmberg, K., Lundgren, J.T.: Economies of scale
in empty freight car distribution in scheduled railways. Transportation Science38 (2004)
121–134

16. Mendiratta, V., Turnquist, M.: A model for the management of empty freight cars. Trans.
Res. Rec.838(1982) 50–55

17. Jordan, W., Turnquist, M.: A stochastic dynamic network model for railroad car distribution.
Transportation Science17 (1983) 123–145

208 Warren B. Powell and Belgacem Bouzaiene-Ayari

18. Powell, W.B., Jaillet, P., Odoni, A.: Stochastic and dynamic networks and routing. In
Monma, C., Magnanti, T., Ball, M., eds.:Handbook in Operations Research and Manage-
ment Science, Volume onNetworks, Amsterdam, North Holland (1995) 141–295

19. Powell, W.B., Bouzaiene-Ayari, B., Simao, H.: Dynamic models for freight transportation. In
Laporte, G., Barnhart, C., eds.: Handbooks in Operation Research and Management Science:
Transportation. (2006)

20. Crainic, T., Gendreau, M., Dejax, P.: Dynamic stochastic models for the allocation of empty
containers. Operations Research41 (1993) 102–126

21. Ziarati, K., Soumis, F., Desrosiers, J., Solomon, M.: A branch-first, cut-second approach for
locomotive assignment. Management Science45 (1999) 1156–1168

22. Ziarati, K., Soumis, F., Desrosiers, J., Gelinas, S., Saintonge, A.: Locomotive assignment
with heterogeneous consists at CN North America. European journal of operational research
97 (1997) 281–292

23. Cordeau, J.F., Soumis, F., Desrosiers, J.: A Benders decomposition approach for the loco-
motive and car assignment problem. Transportation Science34 (2000) 133–149

24. Cordeau, J.F., Soumis, F., Desrosiers, J.: Simultaneous assignment of locomotives and cars
to passenger trains. Operations Research49 (2001) 531–548

25. Topaloglu, H., Powell, W.B.: Dynamic programming approximations for stochastic, time-
staged integer multicommodity flow problems. Informs Journal on Computing18 (2006)
31–42

26. Godfrey, G., Powell, W.B.: An adaptive, dynamic programming algorithm for stochastic
resource allocation problems I: Single period travel times. Transportation Science36 (2002)
21–39

27. Godfrey, G., Powell, W.B.: An adaptive, dynamic programming algorithm for stochastic
resource allocation problems II: Multi-period travel times. Transportation Science36 (2002)
40–54

28. Godfrey, G.A., Powell, W.B.: An adaptive, distribution-free approximation for the newsven-
dor problem with censored demands, with applications to inventory and distribution prob-
lems. Management Science47 (2001) 1101–1112

29. Powell, W.B., Ruszczýnski, A., Topaloglu, H.: Learning algorithms for separable approxi-
mations of stochastic optimization problems. Mathematics of Operations Research29(2004)
814–836

30. Powell, W.B.: Approximate Dynamic Programming: Solving the curses of dimensionality.
John Wiley and Sons, New York (2007)

Experimental Study on Speed-Up Techniques for
Timetable Information Systems ?

Reinhard Bauer, Daniel Delling, and Dorothea Wagner

Universität Karlsruhe (TH), 76128 Karlsruhe, Germany,
{rbauer,delling,wagner}@ira.uka.de

Abstract. During the last years, impressive speed-up techniques for DIJKSTRA’s
algorithm have been developed. Unfortunately, recent research mainly focused on
road networks. However, fast algorithms are also needed for other applications
like timetable information systems. Even worse, the adaption of recently devel-
oped techniques to timetable information is more complicated than expected.
In this work, we check whether results from road networks are transferable to
timetable information. To this end, we present an extensive experimental study
of the most prominent speed-up techniques on different types of inputs. It turns
out that recently developed techniques are much slower on graphs derived from
timetable information than on road networks. In addition, we gain amazing in-
sights into the behavior of speed-up techniques in general.

1 Introduction

Computing shortest paths in networks is used in many real-world applications like rout-
ing in road networks, timetable information, or air-plane scheduling. In general, DIJK-
STRA’s algorithm [1] can solve this problem. Unfortunately, the algorithm is too slow
to be used on huge datasets, e.g. the US road network has more than 20 million nodes.
In order to reduce query times for typical instances like road or railway networks, sev-
eral speed-up techniques have been developed during the last years (see [2, 3] for an
overview). Most recent research [4, 5] even made the calculation of the distance within
a road network a matter of microseconds.

Unfortunately, due to the availability of huge road networks, recent research focused
only on such networks [6]. However, fast algorithms are needed for other applications
as well. One might expect that all speed-up techniques can simply be used in any other
application, yet several problems arise: on the one hand, several assumptions which
hold for road networks may not hold for other networks, e.g. in timetable information
bidirectional search is prohibited as the arrival time is unknown in advance. Perfor-
mance is the other big issue. The fastest methods [4, 5] heavily exploit properties of
road networks in order to gain their huge speed-ups. Furthermore, most of the devel-
oped techniques only work in static scenarios, i.e. edge weights do not change between
two requests. However, in railway networks, delays occur frequently. Thus, a solution
for the dynamic timetable information problem is required.

? Partially supported by the Future and Emerging Technologies Unit of EC (IST priority – 6th
FP), under contract no. FP6-021235-2 (project ARRIVAL).

ATMOS 2007 (p.209-225)
7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems
http://drops.dagstuhl.de/opus/volltexte/2007/1169

210 Reinhard Bauer, Daniel Delling, and Dorothea Wagner

In this work, we evaluate the most prominent speed-up techniques on different types
of input classes. At a glance, using the techniques on time-expanded [7] graphs for
timetable information seems promising. Since road networks seem to have similar prop-
erties as railway networks—both incorporate some kind of natural hierarchy and both
are sparse—one might expect that speed-up techniques yield the same performance as
on road networks. However, our study reveals that speed-up techniques perform sig-
nificantely worse on time-expanded graphs than on road networks. Even worse, the
speed-ups obtained are below the blow-up factor of approximately 250 that exists be-
tween the time-dependent and time-expanded model [7]. As a consequence, a plain
time-dependent DIJKSTRA on the time-dependent graph is faster than any speed-up
techniques on the corresponding time-expanded graph. With the obtained results, we
conclude that for pure performance issues the time-dependent model is somewhat su-
perior to the time-expanded model. In addition, delays seem to be incorporated easier
by the time-dependent approach.

In addition, our extensive experimental study leads to intriguing insights into the be-
havior of speed-up techniques. For small world inputs, the biggest speed-up is achieved
by simply switching from uni- to bidirectional search and almost all speed-up tech-
niques do not yield an additional speed-up. Moreover, we reveal the influence of den-
sity and diameter on the techniques. As most algorithms have only been tested on road
networks, these new results are of independent interest.

1.1 Related Work

Systematic experiments of speed-up techniques can only be found in [8]. However,
in their work, the authors only use condensed railway networks and after its publica-
tion, several additional speed-up techniques have been developed which we incorporate
in this work. In [9] additional tests—besides road networks—on grid graphs are per-
formed.

There has been some research on adapting speed-up techniques to timetable in-
formation. In [10] basic speed-up techniques are used in time-dependent and time-
expanded timetable informations graphs. In [11], the multi-level speed-up technique is
applied on railway graphs. Geometric containers were evaluated in [12] on such graphs
as well. However, to our best knowledge, no extensive tests incorporating all recently
developed speed-up techniques have been published yet.

1.2 Overview

This paper is organized as follows. The most prominent speed-up techniques are shortly
introduced in Section 2. In Section 3 we briefly discuss existing approaches for mod-
eling timetable information as graphs. For all three approaches we discuss advantages
and disadvantages with a focus on the effort of adapting speed-up techniques to each
model. Our extensive experimental study is located in Section 4, where we evaluate the
speed-up techniques from Section 2 on several real-world and synthetic datasets. Our
work is concluded by a summary and possible future work in Section 5.

Experimental Study on Speed-Up Techniques for Timetable Information Systems 211

2 Speed-Up Techniques

Here, we briefly present those speed-up techniques which are evaluated in Section 4
(for a more detailed overview see [2, 3]). Due to the fact that many speed-up techniques
exist, we restrict ourselves to the most prominent ones and to those which do not need a
layout of the input graph. In addition, we do not consider transit-node routing, as it was
especially tuned for road networks [5]. For all techniques, we use the most sophisticated
variant.

Bidirectional DIJKSTRA. The most straightforward speed-up technique is bidirec-
tional search. An additional search is started from the target node and the query stops
as soon as both searches meet. The tuning parameter of this approach is the way for-
ward and backward search are alternated. We here use a strategy that strictly alternates
between both searches, balancing the work between them. Note that most sophisticated
methods are bidirectional approaches.

ALT [13]. Goal directed search, also called A∗ [14], pushes the search towards a tar-
get by adding a potential to the priority of each node. Given a 2-dimensional layout,
the usage of Euclidean potentials requires no preprocessing. The ALT algorithm, in-
troduced in [13], obtains the potential from the distances to certain landmarks in the
graph. Although this approach requires a preprocessing step, it is superior with respect
to search space and query times. In this work, we use the latest variant of ALT, intro-
duced in [15], with 16 maxCover landmarks as representative of goal-directed search.
The main advantages of ALT is its simple implementation and it can be used—without
modification for most updates—in a dynamic and time-dependent scenario [16], i.e.
edge weights may change between two queries. The main downside of ALT are very
fluctuating query times.

Arc-Flags [17, 18]. This approach uses a pruning strategy, i.e. by attaching additional
data to edges, a modified DIJKSTRA checks whether an edge can or cannot be on the
shortest path to the target. More precisely, the Arc-Flag approach partitions the graph
into cells and attaches a label to each edge. A label contains a flag for each cell indi-
cating whether a shortest path to the corresponding cell exists that starts with this edge.
As a result, Arc-Flag DIJKSTRA often only visits those edges which lie on the shortest
path of a long-range query. However, no speed-up can be achieved for queries within a
cell and the effort of the preprocessing is very high. In this work, we use the variant as
described in [19].

Highway Hierarchies [20]. This approach is a purely hierarchical method, i.e. an ap-
proach trying to exploit the hierarchy of a graph. Therefore, the network is contracted
and then “important” edges—the highway edges—are identified. By rerunning those
two steps, a natural hierarchy of the network is obtained. The contraction phase builds
the core of a level and adds shortcuts to the graph. The identification of highway edges

212 Reinhard Bauer, Daniel Delling, and Dorothea Wagner

(a) Dijkstra (b) ALT (c) REAL (d) Arc-Flags

Fig. 1. Search Space of some of the examined (bidirectional) speed-up techniques.

is done by local DIJKSTRA executions. In this work, we use the variant of Highway Hi-
erarchies (HH) as described in [20]. This variant stops building the hierarchy at a certain
point and computes a distance table containing all distances between the core-nodes of
the highest level. The advantages of HH are very low preprocessing and query times (15
minutes of preprocessing on the Western European road network result in query times
of 0.5 ms). However, this approach loses performance when using other metrics than
travel times [21].

RE/REAL [9]. Reach [22] is a centrality measure based on the intuition that a node is
important, if it is situated in the middle of long shortest paths. In [22], reach is used as
node-label in order to prune the search. Some crucial disadvantages, e.g. preprocessing
time, are remedied by enriching the graph by shortcuts in [9]. In addition, this ap-
proach naturally combines with ALT yielding impressive speed-ups in road networks.
The RE algorithm is a bidirectional reach-pruning DIJKSTRA on a shortcut-enriched
graph, while REAL is the combination of RE and ALT. Note that RE can be inter-
preted as a hierarchical method. RE has similar advantages and disadvantages like HH,
but preprocessing takes longer than for HH. The advantage of RE over HH is its sound
combination with ALT, which cannot be combined with HH easily [21].

Example. Figure 1 shows the search space of some of the above mentioned speed-up
techniques running the same query on the German road network. More precisely, the
source of the query is the university of Karlsruhe, the target the university of Mannheim.
A black edge depicts that it has been relaxed by the forward search, blue edges show
the backward search. Note that for REAL, shortcuts are inserted into the graph which
we unpack for visualization. As a consequence, the search space may look bigger than
for other techniques, but the number of settled nodes may be smaller.

We observe that ALT gives the search an excellent sense of goal-direction but al-
most all nodes are visited near source and target of the query. By adding reach to ALT
this drawback is compensated by pruning unimportant nodes. The search space of Arc-
Flags seems to be only slightly bigger than the actual shortest path.

Experimental Study on Speed-Up Techniques for Timetable Information Systems 213

3 Modeling Timetable Information

In this section, we briefly present existing approaches to model (dynamic) timetable
information as graphs (cf. [7] for details). In addition, we discuss problems of adapting
speed-up techniques to these models and how well delays can be covered.

Fig. 2. Condensed network of the European
timetable information data, provided by Ha-
Con [23] for scientific use.

Condensed Model. The easiest model is the
condensed model. Here, a node is introduced
for each station and an edge is inserted iff
a direct connection between two stations ex-
ist. The edge weight is set to be the min-
imum travel time over all possible connec-
tions between these two stations. The ad-
vantage of this model is that the resulting
graphs are small and we are able to use speed-
up techniques without modification. Unfortu-
nately, several drawbacks exist. First of all,
this model does not incorporate the actual
departure time from a given station. Even
worse, travel times highly depend on the time of the day and the time needed for chang-
ing trains is also not covered by this approach. As a result, the calculated travel time
between two arbitrary stations in such a graph is only a lower bound of the real travel
time. Furthermore, delays can hardly be incorporated by this model.

Station A Station B
Station C

Fig. 3. Time-dependent model.

Time-Dependent Model. This model tries
to remedy the main disadvantages of the con-
densed model. The main idea is to use time-
dependent edges. Hence, each station is also
modeled by a single node and an edge is again
inserted iff a direct connection between two
stations exist. But unlike for the condensed
model, several weights are assigned to each
edge. Each weight represents the travel time of a train running from one station to an-
other. The edge used during a query is then picked according to the departure time from
the station. See Fig. 3 for a small example. The advantage of this model is its still small
size and the obtained travel time is feasible. Furthermore, delays can easily be incorpo-
rated: the corresponding weight—representing the delayed connection—of an edge can
simply be increased. However, adapting speed-up techniques to time-dependent graphs
is more complicated than expected. While for time-independent graphs speed-ups of
over one million can be achieved [5], best results for time-dependent graphs only yield
speed-ups of factor 5 [16]. In addition, this model does not cover transfer times, yet
this can be remedied as shown in [24]. Note that the time-dependent model can be in-
terpreted as an extension of the condensed model. In this work we evaluate speed-up
techniques on the condensed model in order to select techniques that are worth adapting
to the dynamic time-dependent model.

214 Reinhard Bauer, Daniel Delling, and Dorothea Wagner

00:00

24:00tim
e

10:00

Station A Station B
Station C

Fig. 4. Time-expanded model.

Time-Expanded Model. This model does
not rely on time-dependent edge weights and
thus it is much easier to use existing speed-up
techniques in this model. Here, a node is used
for each arrival and departure event. An edge
is inserted for each connection between two
events. Figure 4 gives an example. The main
downside of this approach is that the result-
ing graphs are much bigger than for the time-dependent approach. For our datasets,
the number of nodes is roughly 250 times higher. Note that such graphs are strongly
connected as timetables are periodic.

In general, most unidirectional speed-up techniques can be used out-of-the-box on
such a time-expanded graph. However, sophisticated methods gain their speed-ups from
bidirectional search that needs to know the exact target node. Even worse, RE and HH
only work correctly if used in a bidirectional manner. Unfortunately, in this model each
node represents a specific event within the network and thus it is complicated to pick the
target node from which to start the backward search. In addition, some unidirectional
approaches, e.g. unidirectional ALT, also need the exact target node in order to work
properly. Another pitfall originates from the model. The ordering of nodes within a
station is very important for the correctness of timetable information queries. Whenever
a delay occurs, trains may arrive in a different order than expected, leading to a complete
change of the inner-edge structure of a station. As a consequence, delays yield changes
in the topology within the network which results in a bigger effort of updating the
preprocessed data of the speed-up techniques. Thus, adapting techniques to a dynamic
time-expanded model appears to be very complicated.

Note that transfer times are not covered correctly. For this reason, this model is
called the simple time-expanded model. However, this can be remedied by an extended
model, but the graph size additionally increases by a factor of approximately 2. In this
work, we evaluate the speed-up techniques on the static simple time-expanded model
in order to pick the most promising technique that is worth adapting to the dynamic
extended time-expanded model.

4 Experiments

In this section, we present an extensive experimental evaluation of the speed-up tech-
niques on different types of graphs. Our implementation is written in C++ using solely
the STL. As priority queue we use a binary heap. Our tests were executed on one core
of an AMD Opteron 2218 running SUSE Linux 10.1. The machine is clocked at 2.6
GHz, has 16 GB of RAM and 2 x 1 MB of L2 cache. The program was compiled with
GCC 4.1, using optimization level 3.

Default Settings. Unlike otherwise stated, we use the following settings. For ALT, we
use 16 maxCover landmarks. In our Arc-Flag setup, we use 128 cells obtained from
METIS [25]. In addition, we evaluate the hierarchical RE algorithm [9] and Highway
Hierarchies (HH) [20]. The performance of both approaches highly depends on the cho-
sen preprocessing parameters which we here tune manually. For HH, we use a distance

Experimental Study on Speed-Up Techniques for Timetable Information Systems 215

table as soon as the contracted graph has less than 10 000 nodes. Moreover, we evaluate
the combination of RE and ALT, named REAL, without reach-aware landmarks [26].

Unless otherwise stated, we determine the query-performance of all algorithms by
running 10 000 random queries. We log the average execution time and number of set-
tled nodes of the queries. By settled nodes we denote the number of nodes taken from
the priority queues.

4.1 Timetable Information

Condensed Model. We start our experimental study with the condensed network of
Europe, based on timetable information data provided by HaCon [23] for scientific
use. The graph has 29 578 nodes and 86 566 edges. In order to check whether speed-
ups derive from the topology of the network or if they are due to the used metric we
use—besides travel times—three additional metrics: distance depicts the real distance
between two stations, unit assigns weight 1 to each edge, and random reassigns each
edge weight with a value between 1 and 1000 picked uniformly at random. The resulting
figures are shown in Tab. 1.

We observe that plain DIJKSTRA settles the same number of nodes independent of
the applied metric. However, query times vary: DIJKSTRA is two times faster on the dis-
tance metric than on the random one. The number of DECREASEKEY operations causes
these different running times. Surprisingly, switching to bidirectional DIJKSTRA has a
completely different impact for different metrics. While for travel times and distances,
a speed-up of factor 2 is observed, queries using the unit metric get 12 times faster.
We observe several direct connections within the network. Thus, setting the weight of
these edges to 1 drastically reduces search space of bidirectional DIJKSTRA as forward

Table 1. Performance of speed-up techniques on the condensed railway network of Europe. Fig-
ures are based on 10 000 random queries. Prepro shows the computation time of the preprocess-
ing in minutes and the eventual additional bytes per node needed for the preprocessed data. For
queries, the search space is given in number of settled nodes, execution times are given in mil-
liseconds. Due to the graph size, we use the distance table for HH as soon as the core has less
than 1 000 nodes.

travel times distance unit random
PREPRO QUERY PREPRO QUERY PREPRO QUERY PREPRO QUERY

min B/n #sett. ms min B/n #sett. ms min B/n #sett. ms min B/n #sett.
Dijkstra 0.0 0 14761 3.48 0.0 0 14603 2.82 0.0 0 14691 3.35 0.0 0 14549
BiDijkstra 0.0 0 7520 1.83 0.0 0 8615 1.69 0.0 0 1158 0.27 0.0 0 1515
uni ALT 0.1 128 1191 0.47 0.1 128 1007 0.37 0.1 128 1840 0.90 0.1 128 1835
ALT 0.1 128 348 0.21 0.1 128 374 0.21 0.1 128 109 0.10 0.1 128 108
uni Arc-F. 0.6 47 236 0.13 0.5 47 327 0.14 0.6 47 160 0.08 0.7 47 178
Arc-Flags 1.1 94 50 0.03 1.0 94 75 0.03 1.1 94 19 0.01 1.5 94 26
RE 0.1 27 272 0.13 0.1 20 258 0.12 0.1 16 377 0.15 0.8 22 739
uni REAL 0.2 155 116 0.12 0.2 148 87 0.09 0.2 144 687 0.64 0.9 150 751
REAL 0.2 155 72 0.08 0.2 148 70 0.07 0.2 144 66 0.09 0.9 150 81
HH 0.1 46 88 0.04 0.1 78 226 0.11 0.1 24 338 0.12 0.1 38 125

216 Reinhard Bauer, Daniel Delling, and Dorothea Wagner

and backward search meet earlier. This observation also holds somewhat weaker for the
random metric, here the speed-up is of factor 10.

Analyzing our speed-up techniques, all approaches are able to preprocess the graph
in less than 1 minute. The fastest technique is bidirectional Arc-Flags having query
times of below 30 µs for all metrics. As for bidirectional DIJKSTRA, the lowest query
times are achieved for the unit metrics which is again due to direct connections. RE
requires the lowest amount of additional memory and thus has the best combination
of query times and preprocessing. Nevertheless, as we use the condensed model, the
obtained travel times cannot be used in a real world environment (cf. Section 3).

Time-Expanded Model. Our second set of experiments is executed on three simple time-
expanded graphs (cf. Section 3). The first shows the local traffic of Berlin/Brandenburg,
has 2 599 953 nodes and 3 899 807 edges, the second one represents local traffic of the
Ruhrgebiet (2 277 812 nodes, 3 416 597 edges), and the last graph depicts long distance
connections of Europe (1 192 736 nodes, 1 789 088 edges). Table 2 gives an overview
of the performance of speed-up techniques on these instances.

Note that RE, ALT, and HH cannot be used out-of-the-box for time-expanded net-
works (cf. Section 3). In order to gain insights in the performance of these techniques,
we also use bidirectional speed-up techniques by picking a random event at the tar-
get station. Thus, these bidirectional experiments are intended to give hints whether it
is worth focusing on adapting bidirectional search to such graphs. Only unidirectional
Arc-Flags—with a partitioning by station—are applicable, which perform roughly 12-
18 times faster than unidirectional DIJKSTRA. But when switching to bidirectional
search we gain another speed-up of factor 6-10. Thus, it may be worth focusing on
the question how to use bidirectional search in this scenario. However, we observe very
long preprocessing times for Arc-Flags on these networks. Although other approaches
have smaller search space, e.g. REAL, the smaller computational overhead of Arc-Flags
yields smaller query times. However, only ALT and HH can preprocess all graphs in
below one hour. RE seems to have problems on the local traffic networks as prepro-
cessing takes longer than 3 hours and speed-ups are only mild, while this does not hold

Table 2. Performance of speed-up techniques on time-expanded railway networks.

Berlin/Brandenburg Ruhrgebiet long distance
PREPRO QUERY PREPRO QUERY PREPRO QUERY

min B/n #sett. ms min B/n #sett. ms min B/n #sett. ms
Dijkstra 0 0 1299830 406.2 0 0 1134420 389.2 0 0 609352 221.2
BiDijkstra 0 0 496281 151.3 0 0 389577 122.8 0 0 143613 43.8
uni ALT 10 128 383921 133.6 10 128 171760 64.7 5 128 71194 26.0
ALT 10 128 47764 22.9 10 128 59516 30.5 5 128 31367 15.0
uni Arc-F. 2240 24 172362 72.2 2323 24 158174 66.4 1008 24 74737 32.4
Arc-Flags 4479 48 24004 9.2 4646 48 28448 10.7 2016 48 10560 3.5
RE 182 39 27095 25.5 290 45 38397 39.8 63 43 8978 8.3
uni REAL 192 167 20062 22.2 300 173 16649 21.1 68 171 6335 8.8
REAL 192 167 4159 6.6 300 173 7867 13.3 68 171 2479 4.5
HH 38 263 5285 56.1 65 202 9528 196.2 12 386 1930 7.3

Experimental Study on Speed-Up Techniques for Timetable Information Systems 217

for long distance connections. Regarding query times, HH has also problems with both
local traffic networks: on Berlin/Brandenburg, HH is only 3 times faster than bidirec-
tional DIJKSTRA, and on the Ruhrgebiet, HH is even slower. The problems of RE/HH
derive from a weaker hierarchy within the local networks compared to the long-distance
graph. Local traffic networks do not incorporate high-speed trains while the latter do.

Summarizing, the fastest techniques yield only mild speed-ups of a factor below
80. And this speed-up can only be achieved when using bidirectional search. As a con-
sequence, the blow-up of time-expanded graphs of factor 250 over the condensed—
and hence also time-dependent—graphs cannot be compensated. Plain DIJKSTRA on a
corresponding condensed network would be faster—with respect to query times—than
any other speed-up technique on the time-expanded model. Note that our input from
Tab. 1 covers even more stations than any input from Tab. 2. Also note that plain DI-
JKSTRA can be used in a dynamic time-dependent scenario [27], and time-dependent
ALT achieves an additional speed-up of factor 5 over plain DIJKSTRA [16].

4.2 Road Networks

Like railway networks, road graphs incorporate some kind of hierarchy. Hence, one
might expect that speed-up techniques have similar performance on those two types
of networks. We evaluate the German road network, provided by PTV AG [28] for
scientific use. It has 4 377 307 nodes and 10 667 837 edges. We use three different met-
rics: travel times, distance, and random. The latter reassigns edge weights uniformly
at random from 1 to 1000 to each edge. We hereby want to test whether the speed-up
techniques rely on the topology of the network or the speed-up derive from the used
metric. The results can be found in Tab. 3.

As expected, plain DIJKSTRA settles the same number of nodes for each metric.
Stunningly, query times vary heavily when switching metrics: DIJKSTRA’s algorithm is
two times faster on the distance metric than on the random. This derives from the num-
ber of DECREASEKEY operations of the used priority queue. However, when switching
from uni- to bidirectional DIJKSTRA, the situation changes. Surprisingly, the number

Table 3. Performance of speed-up techniques on the German road graph using different metrics.

travel times distance random
PREPRO QUERY PREPRO QUERY PREPRO QUERY

min B/n #settled ms min B/n #settled ms min B/n #settled ms
Dijkstra 0 0 2214820 1078.2 0 0 2159310 625.8 0 0 2256530 1335.4
BiDijkstra 0 0 1210570 545.0 0 0 1428140 405.7 0 0 1006260 530.0
uni ALT 23 128 139121 51.2 18 128 95385 33.823 23 128 143551 59.4
ALT 23 128 22150 12.4 18 128 45496 23.1 23 128 21433 12.2
uni Arc-F. 976 39 24290 10.6 720 39 59094 24.2 1139 39 24509 14.0
Arc-Flags 1952 78 1092 0.5 1440 78 13038 5.4 2278 78 897 0.4
RE 18 22 5080 3.1 20 27 10666 9.4 20 30 4879 3.5
uni REAL 41 150 1804 1.8 38 155 1642 2.1 43 158 2369 2.7
REAL 41 150 1035 1.2 38 155 1556 2.343 43 158 1130 1.4
HH 4 99 682 0.5 9 122 3602 3.8 5 83 1039 0.9

218 Reinhard Bauer, Daniel Delling, and Dorothea Wagner

of settled nodes is not the same for each metric. The reason for this are the motorways
which are favored differently by each metric.

Analyzing the speed-up techniques, we observe very high preprocessing times for
Arc-Flags which is due to the high number of DIJKSTRA executions during prepro-
cessing. However, Arc-Flags yields the fastest query times although the search space
is higher than for HH which is due to a smaller number of additional operations for
Arc-Flags, yet HH can preprocess the complete German network much faster than any
other technique. This result is not very surprising since HH was tuned for road networks
and exploits properties of the (European) datasets. For example, curves on motorways
are often modeled by a path with many degree-2 nodes which are shortcut during the
preprocessing of HH. The same holds for RE. For ALT, we observe that the number
of settled nodes is almost the same for travel times, unit, and random. This holds for
the uni- and bidirectional variant. However, for distance the situation is different: The
unidirectional variant is faster on this metric while the bidirectional is slower. As a con-
sequence, REAL (the combination of RE and ALT) has a surprising performance on
this metric. The undirectional variant is faster than the bidirectional one.

Summarizing, the distance metric seems to be very different from the other met-
rics. For the latter, Arc-Flags yield best query performances on road networks but for
the price of high preprocessing times. HH seem to have the best trade-off between
perprocessing time and query performance. But for distance, unidirectional REAL out-
performs all other techniques.

Similarity to Railway Networks. Comparing Tabs. 2 and 3 we observe different perfor-
mance of speed-up techniques on time-expanded graphs and road networks. So, at least
for the time-expanded model the assumption of similar properties seems not to hold.
However, comparing Tabs. 1 and 3, and taking the difference in size into account, it
seems as if road networks can be used as alternative for condensed railway networks.
But as graph sizes are very different from each other, we perform another test on a road
network of similar size like the European railway network. We choose the road network

Table 4. Performance of speed-up techniques on the Luxemburg road network.

travel times distance unit random
PREPRO QUERY PREPRO QUERY PREPRO QUERY PREPRO QUERY

min B/n #sett. ms min B/n #sett. ms min B/n #sett. ms min B/n #sett.
Dijkstra 0.0 0 15293 3.12 0.0 0 15230 2.87 0.0 0 15441 2.69 0.0 0 15156
BiDijkstra 0.0 0 7691 1.63 0.0 0 9526 1.77 0.0 0 7304 1.28 0.0 0 7056
uni ALT 0.1 128 1375 0.53 0.1 128 1052 0.37 0.1 128 1099 0.41 0.1 128 1122
ALT 0.1 128 448 0.21 0.1 128 451 0.21 0.1 128 458 0.21 0.1 128 456
uni Arc-F. 0.3 37 470 0.17 0.3 37 614 0.23 0.3 37 421 0.15 0.4 37 435
Arc-Flags 0.7 74 178 0.06 0.6 74 250 0.09 0.6 74 133 0.05 0.8 74 144
RE 0.1 28 532 0.21 0.1 29 348 0.16 0.1 22 358 0.12 0.1 34 385
uni REAL 0.2 156 229 0.20 0.2 157 105 0.10 0.2 150 171 0.14 0.2 162 174
REAL 0.2 156 119 0.11 0.2 157 86 0.09 0.2 150 97 0.08 0.2 162 101
HH 0.1 219 91 0.05 0.1 140 241 0.12 0.1 69 299 0.14 0.1 204 111

Experimental Study on Speed-Up Techniques for Timetable Information Systems 219

of Luxemburg which has nodes 30 746 and 71 655 edges. Again, we use the four metrics
travel times, distance, unit and random. The resulting figures can be found in Tab. 4.

We observe that for the most important—at least in our application—metric, i.e.
travel times, all speed-up techniques perform very similar as on the condensed railway
network. Differences in the unit and random metrics derive from direct connections
within the railway network that do not exist in road networks. We conclude that road
networks can be used as alternative data for the condensed model if timetable data is
lacking.

Important Subgraphs. The European road networks include roads which are closed
to public traffic, e.g. pedestrian zones, etc. By removing these roads from the Ger-
man network, the number of nodes decreases to 3 523 370 and the number of edges to
8 133 531, respectively. As these roads seem unimportant to shortest path computation,
one might expect that the performance of the evaluated speed-up techniques hardly
changes whether they are included or not. In addition, degree-1 and degree-2 nodes
seem to be unimportant for shortest paths as well: Nodes with degree 1 can only be
starting or ending points of a route and degree 2 nodes can often be shortcut. Table 5
shows the results of all speed-up techniques if non-public roads are excluded, using the
2-core as input (3 183 701 nodes, 8 280 625 edges), the graph with shortcut degree-2
nodes (3 723 319 nodes, 9 363 584 edges), and the 2-core with shortcut degree-2 nodes
(1 828 995 nodes, 5 469 750 edges). As metric, we use travel times.

Comparing the results from Tabs. 3 and 5, we observe that the search space of uni-
and bidirectional DIJKSTRA decreases with the size of the subgraphs. Astonishingly,
this does not hold for query times: shortcutting degree-2 nodes yields higher query
times than using the 2-core. The reason for this is that the number of edges differ: the
2-core has less edges than the other subgraph. However, this fact has no influence on
bidirectional ALT. The algorithm has the same performance on the first three subgraphs
and surprisingly, the performance is almost the same as on the full graph. Only when
using the shortcut 2-core search spaces decrease which is due to graph size.

Table 5. Performance of speed-up techniques on different subgraphs ofthe German road graph.

only public no deg. 2 2-core 2-core + no deg. 2
PREPRO QUERY PREPRO QUERY PREPRO QUERY PREPRO QUERY

min B/n #settled min B/n #settled min B/n #settled min B/n #settled
Dijkstra 0 0 1 729 390 0 0 1 809 350 0 0 1 580 610 0 0 913 476
BiDijkstra 0 0 974 453 0 0 978 311 0 0 855 943 0 0 497 760
uni ALT 14 128 112 814 17 128 119 778 14 128 106 668 8 128 59 907
ALT 14 128 21 914 17 128 19 589 14 128 19 757 8 128 10 668
uni Arc-F. 610 37 20 583 794 40 19 683 638 42 19 655 335 48 11 755
Arc-Flags 1 220 74 1 067 1 588 80 710 1 276 83 1 038 670 96 618
RE 6 18 2 328 17 22 5 139 14 27 4 764 12 31 4 958
uni REAL 20 146 855 34 150 1 838 28 155 1 652 20 159 1 500
REAL 20 146 506 34 150 1 105 28 155 950 20 159 856
HH 2 45 660 4 115 679 4 128 677 4 207 661

220 Reinhard Bauer, Daniel Delling, and Dorothea Wagner

The most interesting behavior is that of HH. On each subgraph the performance is
almost the same as on the full graph. Recalling the way the hierarchy is built the reason
is obvious. Preprocessing of HH starts with a contraction step of roughly building the 2-
core and shortcutting degree-2 nodes. Thus, HH has no advantage when applying these
steps before preprocessing.

4.3 Other Inputs

In order to gain further insights into the behavior of speed-up techniques, our last test-
sets use data that is completely different from road or railway networks. On the one
hand, we test the performance of speed-up techniques in small world graphs and on the
other hand, we want to evaluate the influence of density and diameter of the input on
the performance of speed-up techniques. For our density testset we use unit-disc graphs
used in the field of sensor networks (see [29] for a survey) with different average de-
grees. Our diameter testset uses multi-dimensional grid graphs with different numbers
of dimensions as inputs.

Small World. Up to this point, we concentrated on graphs with some kind of hierarchy.
In this test we use small world graphs as input without such a property. The first dataset
represents the internet on the router level, i.e. nodes are routers and edges represent
connections between routers. The network is taken from the CAIDA webpage [30] and
has 190 914 nodes and 1 215 220 edges. The second graph is a citation network, i.e.
nodes are papers and edges depict whether one paper cites another one. It is obtained
from crawling the literature database DBLP [31] and has 268 495 nodes and 2 313 294
edges. The final dataset is a co-authorship [32] network (299 067 nodes and 1 955 352
edges) which is also obtained from the DBLP: Nodes represent authors and two authors
are connected by an edge if they have written a paper together. The results for these
data is shown in Tab. 6.

The most interesting observation is that the biggest speed-up is achieved by sim-
ply switching from uni- to bidirectional DIJKSTRA. This derives from the very small

Table 6. Performance of speed-up techniques on small world graphs.

router citations coAuthorship
PREPRO QUERY PREPRO QUERY PREPRO QUERY

min B/n #settled ms min B/n #settled ms min B/n #settled ms
Dijkstra 0 0 94 717 89.0 0 0 134 136 190.8 0 0 153 885 125.5
BiDijkstra 0 0 216 0.3 0 0 742 1.5 0 0 320 0.4
uni ALT 2 128 23 430 36.8 2 128 28 853 68.6 2 128 38 173 51.5
ALT 2 128 320 1.7 2 128 850 4.7 2 128 667 2.2
uni Arc-F. 351 102 5 453 12.9 1 488 138 46 318 113.7 507 105 28 225 62.8
Arc-Flags 702 204 42 0.1 2 977 276 231 0.7 1 014 209 117 0.3
RE 174 11 820 1.7 1 922 18 3 465 8.4 417 10 445 0.9
uni REAL 176 139 22 493 44.2 1 924 146 27 898 90.3 419 138 34 163 67.5
REAL 176 139 337 2.3 1 924 146 762 6.0 419 138 522 2.9
HH 38 1815 20 488 1 307.7 862 532 89 696 928.9 246 2982 61 703 1 713.7

Experimental Study on Speed-Up Techniques for Timetable Information Systems 221

diameter of the graph (less than 8 for all instances). Stunningly, only Arc-Flags yield
an additional but only mild speed-up. Taking the huge preprocessing of more than 10
hours into account, the usage of Arc-Flags cannot be justified. Any other approach is
even slower than bidirectional DIJKSTRA which is mainly due to computational over-
head. Analyzing HH, this approach seems to have serious problems with small world
graphs. The reason is the stopping criterion (cf. [20]). Normally, bidirectional search
can be stopped as soon as both search spaces meet. But for HH, this does not hold: the
search has to be continued as long as both searches have reached the highest core or
when the forward search settles the target node.

We conclude that—as long as bidirectional search is allowed—no speed-up tech-
nique is applicable. However, the situtation changes if a scenario arises with small-
world graphs and prohibited bidirectional search. In such a scenario, unidirectional
ALT yields the best tradeoff between preprocessing time and query performance.

Sensor Networks. During the last years, the field of sensor networks has drawn wide
attention. At a glance, routing in such networks has similar properties as routing in road
networks. Thus, we evaluate so called unit disk graphs which are widely used for exper-
imental evaluations [33] in that field. Such graphs are obtained by arranging nodes on
the plane and connecting nodes with a distance below a given threshold. It is obvious
that the density can be varied by applying different threshold values. In our setup, we
use graphs with about 1 000 000 nodes and an average degree of 5, 7, and 10, respec-
tively. As metric, we use the distance between nodes according to their embedding. The
results can be found in Tab. 7.

Uni- and bidirectional DIJKSTRA settle roughly the same number of nodes inde-
pendent of the average degree but query times again increase with higher density due
to more relaxed edges. Analyzing ALT, the bidirectional variant is twice as fast as
the unidirectional algorithm for the instance with degree 5 while for degree 10, both
approaches are equal to each other with respect to query times. The decreasing search
space of unidirectional ALT is due to the increasing number of edges. With more edges,
the shortest path is very close to the flight distance between source and target. In such

Table 7. Performance of speed-up techniques on unit disk graphs with different average degree.

average deg. 5 average deg. 7 average deg. 10
PREPRO QUERY PREPRO QUERY PREPRO QUERY

min B/n #settled ms min B/n #settled ms min B/n #settled ms
Dijkstra 0 0 487 818 257.3 0 0 521 874 330.1 0 0 502 683 399.0
BiDijkstra 0 0 299 077 164.4 0 0 340 801 225.1 0 0 325 803 269.4
uni ALT 8 128 22 476 17.1 8 128 16 634 15.1 10 128 14 561 16.0
ALT 8 128 9 222 8.5 8 128 10 565 11.8 10 128 11 749 15.6
uni Arc-Flags 53 80 8 556 7.9 299 112 16 445 16.8 801 160 21 413 24.2
Arc-Flags 105 160 2 091 1.8 598 224 4 761 4.6 1 602 320 7 019 7.5
RE 4 20 848 0.5 46 42 13 783 14.3 1 153 54 83 826 104.5
uni REAL 12 148 307 0.4 54 170 2 072 3.2 1 163 182 8 780 13.6
REAL 12 148 291 0.4 54 170 2 394 4.1 1 163 182 11 449 21.7
HH 2 251 203 0.2 12 549 5 068 8.5 71 690 23 756 49.1

222 Reinhard Bauer, Daniel Delling, and Dorothea Wagner

instances, the potentials deriving from landmarks are very good. Arc-Flags yield very
good query times but again for the price of high preprocessing times. Hierarchical meth-
ods work very good on average degrees of 5 and 7. For a degree of 10 preprocessing
and query times increase drastically. For RE, a reason is that node-labels are used for
pruning the search. With increasing density, many edges are never used by any shortest
path. As these edges cannot be pruned by using node-labels, query times increase.

Summarizing, for low densities, hierarchical methods like HH/RE yield the best
results on these instances, while ALT wins for high average degrees. Although Arc-
Flags are faster with respect to query times, preprocessing is much faster for ALT.

Grid Graphs. Our last testset exploits the influence of graph diameter on the perfor-
mance. Here, we vary the diameter of a graph by using multi-dimensional grid graphs
with 2, 3, and 4 dimensions. The number of nodes is set to 250 000, and thus, the num-
ber of edges is 1, 1.5, and 2 million, respectively. Edge weights are picked uniformly at
random from 1 to 1000. These results can be found in Tab. 8.

Like for sensor networks, unidirectional DIJKSTRA settles the same amount of
nodes on all graphs. But due to more edges relaxed query times increase with an in-
creasing number of dimensions. As the diameter shrinks with increasing an number
of dimensions, bidirectional DIJKSTRA settles less nodes on 4-dimensional grids than
2-dimensional grids. We already observed this effect more drastically for small world
graphs (cf. Tab. 6). This analysis also holds for the performance of uni- and bidirectional
ALT. Our hierarchical representatives RE/HH perform very good on 2-dimensional
grids but significantely lose performance when switching to higher dimensions. The
main reason is that the contraction phase of the algorithms fail.

Summarizing, ALT has the best trade-off with respect to preprocessing and query
times on higher-dimensional grids. Only Arc-Flags are faster but for the price of a much
higher effort in preprocessing. Hierarchical methods like RE/HH can only compete with
ALT on 2-dimensional grids.

Table 8. Performance of speed-up techniques on the grid graphs with different numbers of di-
mensions.

2-dimensional 3-dimensional 4-dimensional
PREPRO QUERY PREPRO QUERY PREPRO QUERY

min B/n #settled ms min B/n #settled ms min B/n #settled ms
Dijkstra 0 0 125 675 36.7 0 0 125 398 78.6 0 0 122 796 137.5
BiDijkstra 0 0 79 962 24.2 0 0 45 269 28.2 0 0 21 763 20.3
uni ALT 1 128 5 452 2.5 2 128 4 223 3.8 3 128 5 031 7.5
ALT 1 128 2 381 1.5 2 128 1 807 2.2 3 128 1 329 2.5
uni Arc-Flags 45 64 4 476 1.9 415 94 8 996 5.7 1 559 122 25 125 26.8
Arc-Flags 89 128 1 340 0.6 830 189 1 685 1.0 3 117 244 2 800 2.3
RE 13 31 3 797 2.1 220 102 18 177 27.1 2 243 89 20 587 40.2
uni REAL 14 159 799 0.8 222 230 5 081 10.6 2 246 217 10 740 30.3
REAL 14 159 829 0.9 222 230 3 325 8.5 2 246 217 3 250 11.6
HH 2 1682 583 0.6 32 1954 17 243 95.8 680 662 61 715 343.0

Experimental Study on Speed-Up Techniques for Timetable Information Systems 223

5 Conclusion and Outlook

We learned a lot about the performance of the most prominent speed-up techniques
on graph classes other than road networks. For timetable information, the speed-up
achieved on time-expanded graphs is much smaller than the speed-up on road network,
even without necessary modifications that will most probably decrease performance.
Even worse, the speed-up obtained by all techniques is below the blow-up factor of
approximately 250 between time-dependent and corresponding time-expanded graphs.
We observed that plain DIJKSTRA yields lower query times on a condensed network
than any other speed-up techniques on the time-expanded graphs. Recall that the time-
dependent model can be interpreted as an extension of the condensed one. In [27], it is
shown that plain DIJKSTRA can be used in a dynamic time-dependent scenario easily,
and time-dependent ALT achieves an additional speed-up of factor 5 over plain DIJK-
STRA [16]. In addition, incorporating delays seems to be easier in the time-dependent
model than in the time-expanded one. We conclude that it is promising to work on the
dynamic time-dependent model for solving the timetable information problem.

Regarding time-expanded data, we do not see an alternative to real-world data: on
other inputs, all examined speed-up techniques perform completely different than on
our real-world time-expanded datasets. However, road networks seem to be a good al-
ternative for condensed graphs and thus, also for the time-dependent model. We expect
that an approach working well in a (dynamic) time-dependent road network will also
perform well on (dynamic) time-dependent railway networks.

Concerning speed-up techniques in general, we gained further and interesting in-
sights by our extensive experimental study. Hierarchical approaches seem to have prob-
lems with high-density networks, the chosen metric has a high impact on achieved
speed-ups, edge-labels are somewhat superior to node-labels, and small diameters yield
big speed-ups for bidirectional search. As a consequence, the choice of which technique
to use highly depends on the scenario. However, of all examined speed-up techniques,
ALT provides a reasonable trade-off of preprocessing time and space on the one hand
and achieved speed-up on the other hand. Although this approach is slower on hier-
archical inputs it is more robust with respect to the input. In addition, ALT works in
dynamic and time-dependent scenarios.

We see a lot of future work for speed-up techniques on timetable information sys-
tems. First of all, we plan to tackle the dynamic time-dependent approach. However,
as soon as we do multicriteria routing, e.g. minimize number of transfers, the time-
expanded model has several advantages over the time-dependent one [7]. Thus, it seems
promising to develop new speed-up techniques tailored for the time-expanded model
that exploit specific properties of these graphs. We assume that such highly specialized
techniques can compete with the time-dependent approach. However, the problem of
incorporating delays in expanded graphs persists.

Acknowledgments. We would like to thank Dominik Schultes for providing the High-
way Hierarchies code and his help on parameter settings. We also thank Robert Görke
and Bastian Katz for providing data and Daniel Karch for implementing Arc-Flags.

224 Reinhard Bauer, Daniel Delling, and Dorothea Wagner

References

1. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik
1 (1959) 269–271

2. Wagner, D., Willhalm, T.: Speed-Up Techniques for Shortest-Path Computations. In: 24th
International Symposium on Theoretical Aspects of Computer Science (STACS). (2007) 23–
36

3. Sanders, P., Schultes, D.: Engineering fast route planning algorithms. In: 6th Workshop on
Experimental Algorithms (WEA). (2007) 23–36

4. Delling, D., Holzer, M., Müller, K., Schulz, F., Wagner, D.: High-Performance Multi-Level
Graphs. In: 9th DIMACS Challenge on Shortest Paths. (2006)

5. Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In Transit to Constant Time
Shortest-Path Queries in Road Networks. In: Algorithm Engineering and Experiments
(ALENEX). (2007) 46–59

6. 9th DIMACS Implementation Challenge: Shortest Paths. http://www.dis.uniroma1.

it/~challenge9/ (2006)
7. Müller-Hannemann, M., Schulz, F., Wagner, D., Zaroliagis, C.: Timetable information: Mod-

els and algorithms. In et. al., F.G., ed.: Algorithmic Methods for Railway Optimization.
Volume 4359 of Lecture Notes in Computer Science., Springer Verlag (2007) 67–90

8. Holzer, M., Schulz, F., Wagner, D., Willhalm, T.: Combining speed-up techniques for
shortest-path computations. ACM Journal of Experimental Algorithmics 10 (2005) article
2.5

9. Goldberg, A., Kaplan, H., Werneck, R.: Reach for A*: Efficient Point-to-Point Shortest Path
Algorithms. In: Algorithm Engineering and Experiments (ALENEX). (2006) 129–143

10. Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Efficient models for timetable information
in public transportation systems. ACM Journal of Experimental Algorithmics 12 (2007)
article 2.4

11. Schulz, F., Wagner, D., Zaroliagis, C.: Using multi-level graphs for timetable information in
railway systems. In: Proc. Algorithm Engineering and Experiments. Volume 2409 of LNCS.,
Springer (2002) 43–59

12. Wagner, D., Willhalm, T., Zaroliagis, C.: Geometric containers for efficient shortest-path
computation. ACM Journal of Experimental Algorithmics 10 (2005) 1–30

13. Goldberg, A.V., Harrelson, C.: Computing the shortest path: A∗ meets graph theory. In: 16th
ACM-SIAM Symposium on Discrete Algorithms. (2005) 156–165

14. Hart, P.J., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of mini-
mum cost paths. IEEE Transactions on Systems Science and Cybernetics 4 (1968) 100–107

15. Goldberg, A.V., Werneck, R.F.: An efficient external memory shortest path algorithm. In:
Algorithm Engineering and Experimentation (ALENEX). (2005) 26–40

16. Delling, D., Wagner, D.: Landmark-Based Routing in Dynamic Graphs. In: 6th Workshop
on Experimental Algorithms (WEA). (2007) 52–65

17. Lauther, U.: An extremely fast, exact algorithm for finding shortest paths in static networks
with geographical background. In: Geoinformation und Mobilität – von der Forschung zur
praktischen Anwendung. Volume 22., IfGI prints, Institut für Geoinformatik, Münster (2004)
219–230

18. Möhring, R.H., Schilling, H., Schütz, B., Wagner, D., Willhalm, T.: Partitioning graphs to
speed up Dijkstra’s algorithm. In: 4th International Workshop on Efficient and Experimental
Algorithms. (2005) 189–202

19. Hilger, M., Köhler, E., Möhring, R.H., Schilling, H.: Fast Point-to-Point Shortest Path Com-
putation with Arc-Flags. In: 9th DIMACS Challenge on Shortest Paths. (2006)

Experimental Study on Speed-Up Techniques for Timetable Information Systems 225

20. Sanders, P., Schultes, D.: Engineering highway hierarchies. In: 14th European Symposium
on Algorithms (ESA). Volume 4168 of LNCS., Springer (2006) 804–816

21. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Highway Hierarchies Star. In: 9th DI-
MACS Challenge on Shortest Paths. (2006)

22. Gutman, R.J.: Reach-based routing: A new approach to shortest path algorithms optimized
for road networks. In: Algorithm Engineering and Experiments (ALENEX), SIAM (2004)
100–111

23. HaCon: Ingenieurgesellschaft mbH. http://www.hacon.de (1984)
24. Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Towards realistic modeling of time-table

information through the time-dependent approach. In: Proceedings of the 3rd Workshop on
Algorithmic Methods and Models for Optimization of Railways (ATMOS’03). Volume 92
of Electronic Notes in Theoretical Computer Science., Elsevier (2004) 85–103

25. METIS: A family of multilevel partinioning algorithms. http://glaros.dtc.umn.edu/
gkhome/views/metis/ (1995)

26. Goldberg, A.V., Kaplan, H., Werneck, R.: Better Landmarks within Reach. In: 6th Workshop
on Experimental Algorithms (WEA). (2007) 38–51

27. Cooke, K., Halsey, E.: The shortest route through a network with time-dependent intemodal
transit times. Journal of Mathematical Analysis and Applications 14 (1966) 493–498

28. PTV AG: Planung Transport Verkehr. http://www.ptv.de (1979)
29. Rajaraman, R.: Topology Control and Routing in Ad hoc Networks: A Survey. SIGACT

News 33 (2002) 60–73
30. CAIDA: Cooperative Association for Internet Data Analysis. http://www.caida.org/

(2001)
31. DBLP: DataBase systems and Logic Programming. http://dblp.uni-trier.de/ (2007)
32. An, Y., Janssen, J., Milios, E.E.: Characterizing and mining the citation graph of the com-

puter science literature. Knowl. Inf. Syst. 6 (2004) 664–678
33. Kuhn, F., Wattenhofer, R., Zollinger, A.: Worst-Case Optimal and Average-Case Efficient

Geometric Ad-Hoc Routing. In: Proceedings of the 4th ACM International Symposium on
Mobile Ad Hoc Networking and Computing (MOBIHOC’03). (2003)

Maintenance of Multi-level Overlay Graphs for

Timetable Queries⋆

Francesco Bruera, Serafino Cicerone, Gianlorenzo D’Angelo,
Gabriele Di Stefano and Daniele Frigioni

Dipartimento di Ingegneria Elettrica e dell’Informazione,
Università degli Studi dell’Aquila, I-67040 Monteluco di Roio, L’Aquila - Italy.

E-mail: francesco.bruera@gmail.com;
{cicerone, gdangelo, gabriele, frigioni}@ing.univaq.it

Abstract. In railways systems the timetable is typically represented as
a weighted digraph on which itinerary queries are answered by shortest
path algorithms, usually running Dijkstra’s algorithm. Due to the con-
tinuously growing size of real-world graphs, there is a constant need for
faster algorithms and many techniques have been devised to heuristically
speed up Dijkstra’s algorithm. One of these techniques is the multi-level

overlay graph, that has been recently introduced and shown to be ex-
perimentally efficient, especially when applied to timetable information.
In many practical application major disruptions to the normal oper-
ation cannot be completely avoided because of the complexity of the
underlying systems. Timetable information update after disruptions is
considered one of the weakest points in current railway systems. This
determines the need for an effective online redesign and update of the
shortest paths information as a consequence of disruptions. In this paper,
we make a step forward toward this direction by showing some theoretical
properties of multi-level overlay graphs that lead us to the definition of a
new data structure for the dynamic maintenance of a multi-level overlay
graph of a given graph G while weight decrease or weight increase oper-
ations are performed on G. Our solution is theoretically faster than the
recomputation from scratch and allows fast queries.

Keywords. Timetable Queries, Speed-up techniques for shortest paths

1 Introduction

The computation of shortest paths is a central requirement for many applica-
tions, such as route planning or search in huge networks. In a railways system,
timetables are typically represented as weighted directed graphs and itinerary
queries are answered by shortest path algorithms, usually running Dijkstra’s al-
gorithm. Due to the continuously growing size of real-world graphs, there is a

⋆ This work was partially supported by the Future and Emerging Technologies Unit of
EC (IST priority - 6th FP), under contract no. FP6-021235-2 (project ARRIVAL).

226

ATMOS 2007 (p.226-242)
7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems
http://drops.dagstuhl.de/opus/volltexte/2007/1171

Maintenance of Multi-level Overlay Graphs for Timetable Queries 227

constant need for faster algorithms and in the course of the years a large number
of techniques have been devised to heuristically speed up Dijkstra’s algorithm.

In most of the above mentioned practical application major disruptions to the
normal operation cannot be avoided because of the complexity of the underlying
systems. This determines the need for an effective online redesign and update of
the shortest paths information as a consequence of these disruptions. Timetable
information update after disruptions is considered one of the weakest points
in current railway systems, and it has received little attention in the scientific
literature. Hence, there is a constant need of dynamic algorithms that are faster
than the recomputation from scratch of shortest paths, especially when applied
to huge graphs as those resulted from many practical applications.

Previous works There are numerous approaches to speed-up single-pair shortest
path computations when the graph is static [1–10]. On the one hand, there are
speed-up techniques that are based on pruning strategies of the search space
of Dijkstra’s algorithm (see, e.g., [3, 6, 8]). On the other hand, there are speed-
up techniques that require to preprocess the graph at an off-line step so that
subsequent on-line queries take only a fraction of the time used by Dijkstra’s al-
gorithm. The known preprocessing techniques are based on different approaches:
geometric information [10], hierarchical decomposition [1, 4, 9, 11–13], landmark
distances [2, 3], and arc-labelling [14]. For a survey of speed-up techniques for
shortest paths computation see [15].

Despite the great job done in the last years in this area, very few solutions
have been proposed that are suitable to be used in a dynamic environment, where
modifications can happen to the underlying graph and preprocessed information
on shortest paths have to be recomputed. Up to now only dynamic approaches
based on geometric information and landmark distances are known as that in [16,
17]. Unfortunately, the known theoretical approaches for dealing with dynamic
shortest path problems are based on a matrix representation of shortest path
information, whose size is at least quadratic (see, e.g., [18]) to the number of
nodes of the graph. For instance, for graphs representing timetable information,
with typically millions of nodes and edges, such an approach cannot be applied.

Results of the paper One of the speed-up techniques for shortest paths requiring
preprocessing is known as multi-level overlay graph and it has been introduced in
[4]. Given a weighted directed graph G and a sequence S1, S2, . . . , Sl of subsets
of V such that V ⊃ S1 ⊃ S2 ⊃ . . . ⊃ Sl, a multi-level overlay graph is defined
as M(G; S1, ..., Sl) = (V, E ∪ E1 ∪ E2 ∪ . . . ∪ El), where Ei, 1 ≤ i ≤ l, is a set
containing the so called i-level edges, which are additional edges determined by
the nodes in Si that represent pre-computed shortest paths in G. When a s-t
distance query is asked, this hierarchical decomposition allows to build a graph
Mst(Vst, Est) whose size is much smaller than the size of the original graph G,
and such that the distance from s to t is the same in Mst and in G. Thus, an
s-t distance query can be answered faster in Mst than in G.

In [4], multi-level overlay graphs have been shown to be experimentally ef-
ficient when applied to timetable information, as it has been done with other

228 Francesco Bruera et al.

multi-level approaches (see, e.g., [9]). In [19] a dynamic approach has been pro-
posed to update a variation of the multi-level overlay graphs. Experiments on the
Western European road network, show that this technique is potentially suitable
for practical application. However, there is no theoretical and experimental study
about the efficient dynamic maintenance of this data structure after disruptions.

In this paper, we make a first step forward toward this direction by propos-
ing a theoretical study that leads us to the definition of a new data structure
for the dynamization of a multi-level overlay graph, while weight decrease or
weight increase operations are performed on the original graph. In particular,
let be given a multi-level overlay graph M(G; S1, ..., Sl) of a given weighted
directed graph G = (V, E), with n nodes and m edges. We show theoretical
properties of M(G; S1, ..., Sl) that allow us to: (i) store the information on M

in a data structure requiring O(n + m + |
⋃l

i=1Ei|) optimal space; (ii) compute
M in O(|S1|(m + n log n)) worst case time; (iii) answer s-t distance queries as
in [4], in O(m + |S1|

2 + |Vst| log |Vst|) worst case time, |Vst| < n; (iv) dynamize
the newly introduced data structure with the additional storage of |S1| shortest
paths trees. In fact, we show that, if a modification (either a weight decrease or a
weight increase operation on an edge) occurs on G, to update M(G; S1, ..., Sl), it
is sufficient to update the stored |S1| shortest paths trees. We propose a dynamic
algorithm that requires O(|S1|(m+n)) space, O(|S1|(m+n) log n) preprocessing
time, and O(|S1|n+m+∆

√
m log n) worst case time to deal with a modification,

by using the fully dynamic algorithm in [20]. Here, ∆ is the number of pairs in
S1 × V that change the distance as a consequence of a modification, and hence
∆ = O(|S1|n).

We show that the proposed dynamic solution is asymptotically better than
the recomputation from scratch in the case of sparse graphs; while, in the case
of random graphs (that are connected with high probability) and dense graphs,
the dynamic algorithm is better than the recomputation from scratch when
∆ = o(|S1|n/ log n), that is a log n factor far from its maximum value. However,
since the graphs representing timetables are usually huge in size, it is important
to keep the space occupancy of the dynamic algorithm within the optimal space
of the static algorithm. To this aim we fix |S1| = O(1), thus reducing the query
time to O(m + |Vst| log |Vst|).

2 Multi-Level Overlay Graphs

Let us consider a weighted directed graph G = (V, E, w), where V is a finite
set of nodes, E is a finite set of edges and w is a weight function w : E → R

+.
The number of nodes and the number of edges of G are denoted by n and m,
respectively. Given a node v ∈ V , we denote as N(v) the neighbors of v, that
is the nodes in the adjacency list of v. A path in G between nodes u and v is
denoted as P = (u, . . . , v). The weight of P is the sum of the weights of the
edges in P and we denote it by weight(P). A shortest path between nodes u and
v is a path from u to v with the minimum weight. The distance between u and

Maintenance of Multi-level Overlay Graphs for Timetable Queries 229

v is the weight of a shortest path from u to v and is denoted as d(u, v). In the
remainder of the paper, we will assume that graphs are connected.

Multi-level overlay graphs have been introduced in [4] and represent a speed-
up technique to improve the computation of single-pair shortest paths. Infor-
mally, a multi-level overlay graph M of G is a graph obtained by adding edges
to G which represent precomputed shortest paths in G. Once M has been com-
puted, for each pair of nodes s, t ∈ V it is possible to compute a subgraph Mst

of M, such that the distance from s to t in Mst is equal to the distance from s to
t in G, and Mst is smaller than G. In what follows we give a brief description of
multi-level overlay graphs. For more details on multi-level overlay graphs, refer
to [4].

Given G and a sequence S0, S1, . . . , Sl of subsets of V such that V ≡ S0 ⊃
S1 ⊃ S2 ⊃ . . . ⊃ Sl, a multi-level overlay graph is defined as M(G; S1, ..., Sl) =
(V, E ∪E1 ∪E2 ∪ . . .∪El), where Ei, 1 ≤ i ≤ l, is a set containing the so called
i-level edges, which are additional edges determined by shortest paths among
nodes in Si. In particular, for each (u, v) ∈ Si × Si, the pair (u, v) belongs to Ei

if and only if there exists a path from u to v in G and for each shortest path P

from u to v in G no internal node of P belongs to Si. The weight of a level edge
(u, v) is d(u, v).

In [4] the authors show that, to build level i of an overlay graph M, |Si|
single source shortest paths trees, each rooted in a node x in Si, have to be
computed on a graph Gi

x obtained from G by assigning to each edge (u, v) of G

a new weight wi
x(u, v) = (w(u, v), tix(u, v)), where tix(u, v) is defined as follows:

tix(u, v) =

{

−1 if u belongs to Si \ {x}
0 otherwise

Then, the results of the execution of a simple variation of Dijkstra’s algorithm
on Gi

x are the pairs (d(x, z), si
x(z)), for each node z ∈ V . Here d(x, z) is the

distance from x to z in G and si
x(z) is the sum of tix(u, v) for each (u, v) belonging

to the computed shortest path from x to z in Gi
x. At this point, it remains only

to select which pairs (x, z) ∈ Si ×Si are i-level edges. This can be easily checked
because (x, z) is an i-level edge if and only if si

x(z) = 0 and d(x, z) 6= ∞.
Graph M(G; S1, ..., Sl) can be used to speed-up single-pair distance queries.

Based on the source node s and the target node t, a subgraph Mst of M is
determined; in a real world graph G, the size of Mst is smaller than that of the
original graph. In [4], the authors show that the distance from s to t is the same
in G and in Mst. Hence, the shortest path from s to t is computed in Mst.

The computation of Mst uses the tree of connected components of M (also
called component tree), which is denoted as TM. Formally, TM is defined in what
follows. For each level i, let us consider the subgraph of G that is induced by the
nodes in V \Si. The set of connected components of this subgraph is denoted by
Ci. For a node v ∈ V \Si, let Cv

i denote the component in Ci that contains v. The
nodes of TM are the connected components in C1 ∪ C2 ∪ . . . ∪ Cl. Additionally,
there is a root Cl+1 and, for each node v ∈ V , a leaf Cv

0 in the tree. The parent
of a leaf Cv

0 is determined as follows. Let i be the largest level with v ∈ Si. If

230 Francesco Bruera et al.

i = l, the parent is the root Cl+1. Otherwise, the level with smallest index where
v is contained in a connected component is level i + 1, and the parent of Cv

0 is
the component Cv

i+1. The parent of the components in Cl is the root Cl+1. For
the remaining components Ci ∈ Ci, the parent is the component Cu

i+1, u ∈ Ci.
The subgraph Mst of M is computed as follows. Let L be the level such that

Cs
L = Ct

L is the lowest common ancestor of Cs
0 and Ct

0 in TM. Then, the path
(Cs

0 , Cs
k, Cs

k+1, . . . , C
s
L = Ct

L, . . . , Ct
k′+1, C

t
k′ , Ct

0), from Cs
0 to Ct

0 in TM induces
a subgraph Mst = (Vst, Est) of the multi-level overlay graph M as follows. For
each component C ∈ {Cs

0 , Cs
k, Cs

k+1, . . . , C
s
L−1} ∪ {Ct

0, C
t
k′ , Ct

k′+1, . . . , C
t
L−1}, all

edges of level i incident to a node in component C belong to Est. Further, all
edges of level L belong to Est. Vst contains the nodes induced in G by edges in
Est. Once Mst has been computed, a s-t-distance query is answered by running
Dijkstra’s algorithm on Mst. In [4], it has been experimentally shown that it is
better to build Mst and run Dijkstra’s algorithm on Mst, rather than running
Dijkstra’s algorithm on G.

3 Computation of multi-level overlay graphs

In this Section we first give some theoretical properties of multi-level overlay
graphs (that are proved in [21]), then we show how to use these properties to
build a new algorithm for the computation of M.

3.1 Characterization of level edges

Given a digraph G and the sets S1, . . . , Sl, the computation of M consists of
calculating the level edges Ei, for each i = 1, 2, . . . , l. For each (u, v) ∈ Si × Si,
(u, v) is an i-level edge if and only if for each shortest path P from u to v in
G no internal node of P belongs to Si. That is, if there exists a shortest path
from u to v that contains a node in Si different from u and v, then the pair
(u, v) is not an i-level edge. For a fixed source u, and for each v ∈ V , let us
denote as Pu(v) the set of nodes x such that x is different from u and v, and
x belongs to at least one shortest path from u to v in G. Furthermore, given
x ∈ V , let us denote as maxlevel(x) the maximum level containing x, that is
maxlevel(x) = max{j | x ∈ Sj}.

Definition 1. Given u, v ∈ V , the barrier level su(v) of pair (u, v) is:

su(v) =

{

max{maxlevel(x) | x ∈ Pu(v)} if Pu(v) 6≡ ∅
0 if Pu(v) ≡ ∅

Informally, the barrier level su(v) of pair (u, v) is the maximum level containing
a node in Pu(v). Next lemma gives a property of level edges and barrier levels.

Lemma 1. Let j ∈ {1, 2, . . . , l} and u, v ∈ Sj. The pair (u, v) is a j-level edge

if and only if there exists a path from u to v in G and su(v) < j.

Maintenance of Multi-level Overlay Graphs for Timetable Queries 231

For each i = 1, 2, . . . , l, in order to test whether a pair (u, v) ∈ Si ×Si is a i-level
edge it is sufficient to compute su(v). Since su(v) does not depend on a specific
level i and S1 ⊃ S2 ⊃ . . . ⊃ Sl, then, we only need to compute su(v), for each
(u, v) ∈ S1 ×S1. It is clear that an edge (u, v) can belong to more than one level
of M, thus implying the necessity of multiple storing of each level edge. The
next lemma gives a property that allows us to store a level edge only once.

Lemma 2. If e = (u, v) ∈
⋃l

i=1Ei, then there exist j, k ∈ N, 1 ≤ j ≤ k ≤ l,

such that e ∈ Ei, ∀i ∈ {j, j + 1, . . . , k}, and e /∈ Ei, ∀i /∈ {j, j + 1, . . . , k}.

Lemma 2 allows us to store the multi-level overlay graph as follows. For each
edge (u, v) belonging to

⋃l

i=0 Ei, with E ≡ E0, we store a triple

wM(u, v) = (d̄(u, v), f (u, v), ℓ(u, v)).

If (u, v) is a level edge, d̄(u, v), f (u, v) and ℓ(u, v) are defined as follows:

– d̄(u, v) is equal d(u, v);
– f (u, v) is the smallest level j, with 1 ≤ j ≤ l, such that (u, v) ∈ Ej . Since, by

Lemma 1, (u, v) is a j-level edge only if su(v) < j, then f (u, v) = su(v) + 1;
– ℓ(u, v) is the largest level k, with f (u, v) ≤ k ≤ l, such that (u, v) ∈ Ek. Let

k′ = maxlevel(u) and k′′ = maxlevel(v), then ℓ(u, v) = min{k′, k′′}.

If (u, v) is not a level edge, then (d̄(u, v), f (u, v), ℓ(u, v)) = (w(u, v), 0, 0). By
these definitions, to assign wM(u, v), we need to know whether (u, v) is a level
edge or not. The following lemma gives us a condition to recognize a level edge.

Lemma 3. The pair (u, v) ∈ S1 × S1 is a level edge if and only if there exists a

path from u to v in G and su(v) < min{maxlevel(u), maxlevel(v)}.

In conclusion, in order to build M, we need to compute su(v) for each u, v ∈ S1.

3.2 Computation of barrier levels

Given G = (V, E, w), the sets S1, . . . , Sl and u, v ∈ S1, then su(v) can be com-
puted by running Dijkstra’s shortest paths algorithm on a graph Gu obtained
by suitably labelling the edges of G. Formally, for each u ∈ S1, Gu is defined as
follows: Gu = (V, E, wu), where wu(x, y) = (w(x, y), mu(x)) for each (x, y) ∈ E.
Here, w(x, y) is the weight of (x, y) in G, and

mu(x) =

{

maxlevel(x) if x 6≡ u

0 otherwise

As shown in [22], Dijkstra’s algorithm finds the single source shortest paths in
a weighted graph when the edge weights are elements of a closed semiring. In
what follows, we define an algebraic structure that is a closed semiring in such a
way that, if weights wu of edges in Gu are elements of this algebraic structure,
then (d(u, v), su(v)) is the distance between u and v in Gu. Here, d(u, v) is the
distance from u to v in G.

232 Francesco Bruera et al.

Definition 2. (K, minK,⊕K) is an algebraic structure where:

– K = {(w, i) | w ∈ R
+, i ∈ N} ∪ {(∞, 0)}.

– Given a1 = (w1, i1) and a2 = (w2, i2) in K, the relation ≤K is defined by

a1 ≤K a2 ⇔ w1 < w2 ∨ (w1 = w2 ∧ i1 ≥ i2)

– Given a1, a2 ∈ K,

minK{a1, a2} =

{

a1 if a1 ≤K a2

a2 otherwise

– Given a1 = (w1, i1) and a2 = (w2, i2) in K,

a1 ⊕K a2 =

{

(w1 + w2, max {i1, i2}) if a1 6= (∞, 0) ∧ a2 6= (∞, 0)
(∞, 0) if a1 = (∞, 0) ∨ a2 = (∞, 0)

The properties of (K, minK,⊕K) are shown in the next theorem.

Theorem 1. (K, minK,⊕K, (∞, 0), (0, 0)) is a closed semiring.

Theorem 1 allows us to define the weight of a path and the distance from u to
v in Gu as in the next definition.

Definition 3. Let u ∈ S1 and v ∈ V ,

– let P = (u ≡ x1, x2, . . . , xk ≡ v) be a path from u to v in Gu, the weight

of P in Gu is defined as weightK(P) = wu(x1, x2) ⊕K wu(x2, x3) ⊕K . . . ⊕K

wu(xk−1, xk)
– the distance from u to v in Gu is defined as

du(v) = minK{weightK(P) | P is a path from u to v in Gu}
if there exists a path from u to v in Gu, while du(v) = (∞, 0) otherwise.

Theorem 2. Let G = (V, E, w) be a weighted directed graph and u ∈ V . If Gu =
(V, E, wu) is a graph where wu : E → K, such that wu(x, y) = (w(x, y), mu(x))
for each (x, y) ∈ E, then du(v) = (d(u, v), su(v)), for each v ∈ V .

Theorems 1 and 2 allows us to run Dijkstra’s algorithm to compute d(u, v)
and su(v). Hence, in order to compute all level edges of M, we run Dijkstra’s
algorithm on Gu, for each node u ∈ S1. As a result, we obtain a shortest paths
tree Tu rooted in u such that, each node v ∈ Tu is labeled with the distance from
u to v in Gu that is, the pair (d(u, v), su(v)).

3.3 Computation of M and TM

First of all we have to compute the graphs Gu, for each u ∈ S1. We assume that
the sets S1, . . . , Sl are given in input as a linked list LS1

of the nodes in S1 and
an array S of size n such that, for each node v ∈ V , S[v] = maxlevel(v). The
array S allows us to check in constant time whether a node belongs to a given

Maintenance of Multi-level Overlay Graphs for Timetable Queries 233

Input a graph G = (V,E, w), a node u ∈ V , the array S

Output the graph Gu = (V, E,wu)

Procedure Label

1. for each (x, y) ∈ E do

2. if x 6≡ u then

3. wu(x, y) := (w(x, y), S[x])
4. else

5. wu(x, y) := (w(x, y), 0)
Fig. 1.

level. As a consequence, for each u ∈ S1, we can build graph Gu in linear time
using Procedure Label in Figure 1.

Now, we show how to compute a multi-level overlay graph M as an adjacency
list in O(n + m + |

⋃l

i=1Ei|) optimal space. The solution we propose is given in
Figure 2. Lines 1 and 2 initialize wM(u, v) for each (u, v) ∈ E. The block at
Lines 4–19 is performed for each node u in S1. Line 5 computes Gu, while Line
6 computes d(u, v) and su(v), for each v ∈ V (see Theorems 1 and 2). Lines
7–17 use d(u, v) and su(v) to compute wM(u, v) for each v ∈ S1. To this aim,
block at Lines 7–13 visits the adjacency list of u and, using S, tests whether
v ∈ N(u) belongs to S1 (Line 8). In the affirmative case, Lines 10 and 11 test
whether (u, v) is a level edge (see Lemma 3) and, possibly, overwrites wM(u, v)
(see Lemma 2). Finally, Line 12 marks v to record that the edge (u, v) has been
already visited and added to M as a level edge. Subsequently, for each pair (u, v)
such that v ∈ S1 and v is unmarked (see Line 15), Lines 16–17 test whether the
pair (u, v) is a level edge (see Line 16) and, possibly, add (u, v) to M and set
wM(u, v) (see Line 17). Finally, Line 18 unmarks each v ∈ V .

Lemma 4. Procedure ComputeOverlay requires O(|S1|(m + n log n)) time.

Proof. Lines 1–2 require O(n + m) time. Line 5 requires O(n + m) time and is
performed |S1| times, thus requiring O(|S1|(n+m)) overall time. Line 6 is a Dijk-
stra’s computation and hence requires O(m+n log n) time; since it is performed
|S1| times, it requires O(|S1|(m+n log n)) overall time. Lines 7–13 require O(n)
worst case time and are performed |S1| times, thus requiring O(n|S1|) overall
time. Lines 14–17 require O(n) worst case time and are performed |S1| times,
thus requiring O(n|S1|) overall time. Line 18 requires O(n) worst case time and
is performed |S1| times, thus requiring O(n|S1|) overall time. It follows that the
total time needed to build M is O(|S1|(m + n log n)).

The component tree TM is computed by visiting the subgraphs of G induced
by nodes in V \Si, for each i = 1, 2, . . . , l. This can be done in O(l(n+m)) worst
case time. Since l ≤ |S1|, the time needed to compute TM does not increase the
overall preprocessing time. The component tree TM is stored in a data structure
denoted as TM and described in what follows:

234 Francesco Bruera et al.

Input a graph G = (V,E, w), the array S, the list LS1

Output the graph M = (V,E ∪ E1 ∪ E2 ∪ . . . ∪ El, wM)

Procedure ComputeOverlay

1. for each (u, v) ∈ E do

2. wM(u, v) := (w(u, v), 0, 0)
3. for each u ∈ LS1

do

4. begin

5. Gaux := Label(G, u, S)
6. Dijkstra(Gaux, u)
7. for each v ∈ N(u) do

8. if S[v] ≥ 1 then

9. begin

10. if (su(v) < min{S[u], S[v]} and d(u, v) 6= ∞) then

11. overwrite wM(u, v) as (d(u, v), su(v) + 1, min{S[u], S[v]})
12. mark(v)
13. end

14. for v := 1 to n do

15. if S[v] ≥ 1 and unmarked(v) then

16. if (su(v) < min{S[u], S[v]} and d(u, v) 6= ∞) then

17. add (u, v) to M with wM(u, v) := (d(u, v), su(v) + 1, min{S[u], S[v]})
18. for each v ∈ V do unmark(v)
19. end

Fig. 2.

– for each i = 1, 2, . . . , l, we store in a circularly linked list, denoted as Ci,
the connected components at level i of the set Ci. For each C ∈ Ci, the
corresponding element in C contains the nodes in C \

⋃

v∈C

Cv
i−1 and a link

to its parent Ci+1. Given a node v ∈ V , we denote as C
v
i the element of Ci

corresponding to Cv
i ;

– components in C0 (i.e., leaf components) are represented by an array C0. This
array is indexed by nodes in V and C0[v] contains a link to the element of
TM corresponding to the parent of Cv

0 in TM;
– the list Cl+1 contains only one element representing the nodes in Sl.

3.4 Distance queries

As in [4], we answer s-t distance queries in two phases. First, we compute the
subgraph Mst = (Vst, Est) of M described in Section 2, then we run Dijkstra’s
algorithm on Mst. Procedure ComputeMst in Figure 3 shows the computation
of Mst by using our data structures. In detail, Line 1 finds the path from Cs

0

to Ct
0 in the component tree. Lines 2–6 add to the edge set Est of Mst all edges

of level i incident to a node in component C = Cx
i , with x ∈ {s, t} and i < L.

Lines 7–10 add to Est all edges of level L.

Lemma 5. Procedure ComputeMst requires O(m + |S1|
2) worst case time.

Maintenance of Multi-level Overlay Graphs for Timetable Queries 235

Input a multi-level overlay graph M, the component tree TM, nodes s and t

Output the graph Mst

Procedure ComputeMst

1. Find the path (Cs

0
, Cs

k, Cs

k+1
, . . . , Cs

L = C
t

L . . . , Ct

k′
+1

, Ct

k′ , C
t

0
) in TM

where Cs

L = Ct

L is the lowest common ancestor of Cs

0
and Ct

0
in TM

2. for each C ∈ {Cs

0
, Cs

k, Cs

k+1
, . . . , Cs

L−1
} ∪ {Ct

0
, Ct

k′ , C
t

k′
+1

, . . . , Ct

L−1
} do

3. for each v ∈ C do

4. for each (v, z) in M do

5. if (v, z) ∈
L−1

∪
j=i

Ej then

6. add (v, z) to Est and z to Vst

7. for each v ∈ C
s

L do

8. for each (v, z) in M do

9. if (v, z) ∈ EL then

10. add (v, z) to Est and z to Vst

Fig. 3.

Proof. Line 1 requires O(m) time. In fact, in the worst case, each set C ∈
{Cs

0, C
s
k, Cs

k+1, . . . , C
s
L−1, C

s
L} ∪ {Ct

0, C
t
k′ , Ct

k′+1, . . . , C
t
L−1}, contains only one node.

Therefore the number of these sets visited by the algorithm is at most |Vst| ≤
n = O(m). Lines 2-10 require O(m + |S1|

2) time. In fact, they consider the

edges of M which belong either to E or to
⋃l

i=1Ei, and |
⋃l

i=1Ei| ≤ |S1|
2. For

each considered edge, Lines 2-10 requires constant time. In fact, the test at Line
5 can be done by checking whether ((i ≤ f (v, z) ≤ L − 1) ∨ (i ≤ ℓ(v, z) ≤
L − 1) ∨ (f (v, z) < i ∧ ℓ(v, z) > L − 1)), and the test at Line 9 can be done by
checking whether f (v, z) ≤ L ≤ ℓ(v, z). Hence, Lines 2–10 require O(m + |S1|

2)
time.

Corollary 1. An s-t distance query is answered in O(m+ |S1|
2 + |Vst| log |Vst|)

time.

4 Maintenance of Multi-Level Overlay Graphs

In this section we propose a dynamization of the algorithm given in Section 3.3,
whose aim is to maintain the information on M(G; S1, ..., Sl), when a sequence of
update operations on the weights of G are performed. The dynamic environment
we consider is defined as follows.

– We are given the following data structures:
1. a weighted directed graph G = (V, E, w);
2. a sequence S1, S2, . . . , Sl of subsets of V such that V ⊃ S1 ⊃ S2 ⊃ . . . ⊃

Sl, stored in the array S[] as defined in Section 3;
3. the set S1 stored in the list LS1

as defined in Section 3.3;
4. a multi-level overlay graph M(G; S1, ..., Sl) = (V, E∪E1∪E2∪ . . .∪El),

where Ei, 1 ≤ i ≤ l, is the set of i-level edges , stored as adjacency lists;

236 Francesco Bruera et al.

5. the component tree TM of M(G; S1, ..., Sl) stored in the data structure
TM as defined in Section 3;

– We are given a sequence σ = 〈σ1, σ2, . . . , σh〉 of modifications, where a modi-
fication is either a weight decrease or a weight increase operation on an edge
of G.

– Every time a modification occurs we have to update the information on
M(G; S1, ..., Sl), without recomputing it from scratch.

First of all, notice that the topology of the original graph G never changes as a
consequence of a weight decrease or a weight increase operation, and the same
happens to data structures S[], LS1

and TM. This implies that we can answer
s-t distance queries as described in Section 3.4, by simply constructing Mst and
computing the distance from s to t in Mst. Hence, in what follows we concen-
trate on the description of the dynamic algorithm to update M(G; S1, ..., Sl). As
shown in Section 3, the information needed to compute M(G; S1, ..., Sl) can be
stored in |S1| shortest paths trees. In particular, for each node u ∈ S1, we need to
store and maintain a shortest paths tree Tu such that, for each node v ∈ Tu, the
distance of v is the pair (d(u, v), su(v)). Using this information we can recognize
if edge (u, v) appears as a level edge: by Lemma 3, (u, v) is a level edge if and
only if su(v) < min{maxlevel(u), maxlevel(v)} and there exists a path from u

to v in G. As a consequence, every time a weight decrease or a weight increase

operation occurs on G, it is sufficient to update the |S1| shortest paths trees Tu,
u ∈ S1. To this aim, we apply to each Tu, the fully dynamic algorithm proposed
in [20] to update shortest paths.

The algorithm in [20] works for any graph and its complexity depends on the
existence of a so called k-bounded accounting function for G as defined below.

Definition 4. [20] Let G = (V, E, w) be a weighted graph, and s ∈ V be a source

node. An accounting function for G = (V, E, w) is any function A : E → V such

that, for each (x, y) ∈ E, A(x, y) is either x or y, which is called the owner of

(x, y). A is k-bounded if, for each x ∈ V , the set of the edges owned by x has

cardinality at most k.

As an example, if G is planar then, there exists a 3-bounded accounting
function for G, while for a general graph with m edges k = O(

√
m). Furthermore,

it is easy to see that, if G has average degree equal to d (d = m/n), then there
exists a k-bounded accounting function for G where k = O(d).

In detail, for any sequence of weight increase and weight decrease operations,
if the final graph has a k-bounded accounting function, then the complexity of
the algorithm in [20] is O(k log n) worst case time per output update.

To obtain this bound, every time a node z changes the distance to the source,
the algorithm in [20] needs to know the right edges adjacent to z that have to
be scanned. To efficiently deal with this problem, the algorithm requires some
auxiliary data structure that stores the information given in the next definition.

Definition 5. [20] Let G = (V, E, w) be a weighted graph, and s ∈ V be a source

node. The backward level (forward level) of edge (z, q) and of node q, relative to

Maintenance of Multi-level Overlay Graphs for Timetable Queries 237

node z, is the quantity b levels(z, q) = d(s, q)−w(z, q) (f levels(z, q) = d(s, q)+
w(z, q)).

The intuition behind Definition 5 is that the level of an edge (z, q) provides
information about the shortest available path from s to q passing through z. For
instance, let us suppose that, while processing a weight decrease operation, the
new distance of z, denoted as d′(s, z), decreases below b levels(z, q), i.e., there
exists an edge (z, q) such that b levels(z, q)−d′(s, z) = d(s, q)−w(q, z)−d′(s, z) >

0, i.e., d(s, q) > d′(s, z) + w(q, z). This means that we have found a path to q

shorter than the current shortest path to q. In this case, scanning the edges (z, q)
in nonincreasing order of b level ensures that only the right edges are considered,
i.e., edges (z, q) such that also q decreases the distance from s. The case of a
weight increase operation is analogous.

To apply the above strategy, the algorithm of [20] needs to maintain explicitly
the information on the b level and the f level for all the neighbors of each node.
This might require the scanning of each edge adjacent to an updated node.

To bound the number of edges scanned by the algorithm each time that
a node is updated, the set of edges adjacent to each node is partitioned in
two subsets: any edge (x, y) has an owner, denoted as owner(x, y), that is ei-
ther x or y. For each node x, ownership(x) denotes the set of edges owned
by x, and not-ownership(x) denotes the set of edges with one endpoint in
x, but not owned by x. If G has a k-bounded accounting function then, for
each x ∈ V , ownership(x) contains at most k edges. Furthermore, the edges in
not-ownership(x) are stored in two priority queues as follows:

1. Bs,x is a max-based priority queue; the priority of edge (x, y) (of node y) in
Bs,x, denoted as bs(x, y), is the computed value of b levels(x, y);

2. Fs,x is a min-based priority queue; the priority of edge (x, y) (of node y) in
Fs,x, denoted as fs(x, y), is the computed value of f levels(x, y).

While the definition of accounting function can be borrowed from [20] as it is,
the definition of backward and forward levels have to be adapted to our context.
To this aim, we need to define two further binary operators in K working on
quantities defined in Gu: ⊖K and maxK.

Definition 6. For each v ∈ V , for each (q, v) ∈ E, and for each u ∈ S1,

du(v) ⊖K wu(q, v) = (d(u, v), su(v)) ⊖K (w(q, v), mu(v))
= (d(u, v) − w(q, v), su(q)).

Definition 7. Given a1, a2 ∈ K,

maxK{a1, a2} =

{

a1 if a2 ≤K a1

a2 otherwise.

It is easy to see that K is closed under maxK and that maxK is associative,
while ⊖K is defined on a subset of K×K, given by distances and weights in Gu.
According to the definition of operators ⊖K and ⊕K, we redefine the notions of
backward level and forward level as follows.

238 Francesco Bruera et al.

Definition 8. Let u ∈ S1, and let (v, q) and q be an edge and a node in Gu,

respectively. The backward level and forward level of (v, q) are defined, respec-

tively, as follows:

b levelu(v, q) = du(q) ⊖K wu(v, q)

f levelu(v, q) = du(q) ⊕K wu(v, q)

We store these information in the following data structures:

– for each v ∈ V , ownership(v), that is the set of edges owned by v, stored as
a linked list (note that, an ownership function for the graph G = (V, E, w)
is also an ownership function for graphs Gu, for each u ∈ S1; hence, these
information have to be stored only once);

– for each v ∈ V , not-ownership(v), that is the set of edges with an end-
point in v but not owned by v. For each v ∈ V and for each Gu, u ∈ S1,
not-ownership(v) is stored in two priority queues as follows:

1. Bu(v) is a max-based priority queue; the priority of edge (v, q) in Bu(v),
is the computed value of b levelu(v, q) in Gu with respect to source u.
Here, the maximum is computed as in Definition 7;

2. Fu(v) is a min-based priority queue; the priority of edge (v, q) in Fu(v),
is the computed value of f levelu(v, q) in Gu with respect to source u.

Hence, in order to use the algorithm in [20] to update trees Tu, u ∈ S1, we have
to compute and store the above data structures before the sequence of edge
modifications occurs. Algorithm ComputeOverlay given in Section 3.3 is not
suitable to be used in the dynamic environment described above since it does not
store trees Tu, u ∈ S1. In fact, it computes only one shortest paths tree at a time
and computes M stepwise. Thus, we propose a new preprocessing algorithm,
denoted as PreprocessOverlay and shown in Figure 4. This algorithm is
similar to ComputeOverlay but it first computes all the |S1| shortest paths
trees along with the above auxiliary data structures, and then uses these trees
to compute M.

PreprocessOverlay works as follows. Line 1 computes an accounting func-
tion of G as the sets ownership(v) and not-ownership(v), for each v ∈ V . The
instructions at Lines 3–9 are performed for each u ∈ S1. In particular, Lines 4
and 5 compute and store the graphs Gu and the shortest paths trees Tu. Lines
6–8 compute the queues Bu(v) and Fu(v) for each node v ∈ V . Lines 10 and 11
initialize wM(u, v) for each (u, v) ∈ E. Then, Lines 12–26 compute wM(u, v),

for each (u, v) ∈
⋃l

i=0 Ei using the information on d(u, v) and su(v), for each
u ∈ S1 and for each v ∈ V , stored in the trees Tu. The computation of wM(u, v)
is performed as in ComputeOverlay.

The correctness of the Procedure PreprocessOverlay is a straightforward
consequence of Lemmata 2 and 3, and Theorems 1 and 2. The time complexity
of Procedure PreprocessOverlay is given in the next lemma.

Lemma 6. Procedure PreprocessOverlay requires O(|S1|(m+n) log n) time.

Maintenance of Multi-level Overlay Graphs for Timetable Queries 239

Input a graph G = (V,E, w), the array S, the list LS1

Output the graph M = (V,E ∪ E1 ∪ E2 ∪ . . . ∪ El, wM)

Procedure PreprocessOverlay

1. Compute an accounting function for G

2. for each u ∈ LS1
do

3. begin

4. Gu := Label(G, u, S)
5. Tu := Dijkstra(Gu, u)
6. for each v ∈ V do

7. for each (v, q) ∈ not − ownership(v) do

8. compute b levelu(v, q), f levelu(v, q) and add (v, q) to Bu(v) and Fu(q)
9. end

10. for each (u, v) ∈ E do

11. wM(u, v) := (w(u, v), 0, 0)
12. for each u ∈ LS1

do

13. begin

14. for each v ∈ N(u) do

15. if S[v] ≥ 1 then

16. begin

17. if (su(v) < min{S[u], S[v]} and d(u, v) 6= ∞) then

18. overwrites wM(u, v) as (d(u, v), su(v) + 1, min{S[u], S[v]})
19. mark(v)
20. end

21. for v := 1 to n do

22. if S[v] ≥ 1 and unmarked(v) then

23. if (su(v) < min{S[u], S[v]} and d(u, v) 6= ∞)then

24. add (u, v) to M with wM(u, v) := (d(u, v), su(v) + 1, min{S[u], S[v]})
25. for each v ∈ V do unmark(v)
26. end

Fig. 4.

Proof. Line 1 requires O(m) time (see [23]). Lines 4–5 require O(|S1|(m +
n log n)) time. Lines 6–8 requires O(|S1|m log n) time. Lines 10–11 requires
O(n + m) time. As in ComputeOverlay, Lines 12–26 require O(n) worst case
time and are performed |S1| times, thus requiring O(n|S1|) overall time. Sum-
ming up these values, the total time needed by PreprocessOverlay to build
M(G; S1, . . . , Sl) is O(|S1|(m + n) log n).

The space requirements to store M(G; S1, . . . , Sl) and the additional data struc-
tures used for the maintenance of M is O((n + m)|S1|).

The data structure computed by PreprocessOverlay has to be updated
during the sequence σ = 〈σ1, σ2, . . . , σh〉 of modifications on G. Our dynamic
solution starts after each σi and works in three phases as follows:

Procedure DynamicOverlay

1. Update Gu, for each u ∈ S1;

240 Francesco Bruera et al.

2. Apply the fully dynamic algorithm for shortest paths given in [20] to each
Tu, u ∈ S1;

3. Perform Lines 10–26 of PreprocessOverlay to build M using the new
values of d(u, v) and su(v), updated at phase 2 above.

Let δu be the set of nodes in Gu that change either the distance or the shortest
path to u as a consequence of a weight decrease or a weight increase operation. If
we denote as ∆ the quantity

∑

u∈S1
|δu| and considering a k-bounded accounting

function for G, then the cost of the algorithm is given in the next lemma.

Lemma 7. The fully dynamic algorithm requires O(|S1|n + m + k∆ log n) time

per operation.

Proof. Phase 1 requires O(|S1|n) time. By definition of ∆, Phase 2 requires
O(k∆ log n) worst case time as shown in [20]. Phase 3 requires O(|S1|n + m)
worst case time as shown in the proof of Lemma 6. Thus, the fully dynamic
algorithm requires O(|S1|n + m + k∆ log n) time per operation.

The correctness of Phases 1 and 3 above is straightforward, while the cor-
rectness of Phase 2 comes from [20].

5 Discussion

In this section we propose a critical evaluation of our dynamic solution. The aim
of this discussion is to capture the values of parameters |S1| and ∆ that make
our fully dynamic solution better than the recomputation from scratch. Since no
theoretical results is known for the construction of a multi-level overlay graph of
a given graph, we compare the new fully dynamic solution DynamicOverlay

with the optimal space solution ComputeOverlay given in Section 3.3, that
requires O(|S1|(m + n log n)) time.

We first bound the value of ∆. Notice that by definition ∆ = O(|S1 × V |) =
O(|S1|n). We analyze the cases of sparse graphs, random graphs and dense
graphs. In any case, we derive the values of ∆ for which the dynamic algo-
rithm is better than the recomputation from scratch, that is the values of ∆ for
which O(|S1|n+m+k∆ log n) is asymptotically better than O(|S1|(m+n log n)).
More precisely, the values of ∆ such that:

|S1|n + m + k∆ log n = o(|S1|(m + n log n))

Since |S1|n + m = o(|S1|(m + n log n)), then we need the values of ∆ such that:

k∆ log n = o(|S1|(m + n log n)) (1)

Sparse graphs In this case m = O(n). This implies that k = O(1). Hence, by
inequality (1) we obtain:

∆ log n = o(|S1|n log n)

∆ = o(|S1|n)

Maintenance of Multi-level Overlay Graphs for Timetable Queries 241

Random graphs In this case we consider random graphs that are connected with
high probability, that is graphs such that m = O(n log n) (see [24]). This implies
that k = O(log n). Hence, by inequality (1) we obtain:

∆ log2 n = o(|S1|n log n)

∆ = o(|S1|n/ log n)

Dense graphs In this case m = O(n2). This implies that k = O(n). Hence, by
inequality (1) we obtain:

n∆ log n = o(|S1|n
2)

∆ = o(|S1|n/ log n)

Summarizing, in the case of sparse graphs DynamicOverlay is asymptotically
better than the recomputation from scratch by applying ComputeOverlay;
while, in the case of random graphs and dense graphs, DynamicOverlay is
better than the recomputation from scratch by applying ComputeOverlay

when ∆ is at least a log n factor far from its maximum value.
Now we need to bound the value of |S1|. Let us consider the space needed

by the dynamic algorithm, which is O(|S1|(n + m) + |
⋃l

i=1Ei|), compared with

the space needed by the static solution, which is O(n + m + |
⋃l

i=1Ei|). Notice
that, the value |S1| appears in the space requirements of the dynamic algorithm.
To keep the space occupancy of the dynamic algorithm within that of the static
algorithm, we need to fix |S1| = O(1). In this case, the time needed to perform an
s-t query, given in Section 3.4, becomes O(m + |Vst| log |Vst|). A very ambitious
open problem in this area is to develop a theoretical framework that help to
properly choose the sets S1, S2, . . . , Sl in order to speed up as much as possible
shortest path queries.

Acknowledgements

We like to thank Prof. Luigia Berardi for the constructive discussion and useful
comments on algebraic structures.

References

1. Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In transit to constant
shortest-path queries in road networks. In: Workshop on Algorithm Engineering
and Experiments (ALENEX07), SIAM (2007) 46–59

2. Goldberg, A., Harrelson, C.: Computing the shortest path: A* search meets graph
theory. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms
(SODA05), SIAM (2005) 156–165

3. Goldberg, A., Kaplan, H., Werneck, R.: Reach for A*: Efficient point to point
shortest path algorithms. In: Workshop on Algorithm Engineering and Experi-
ments (ALENEX06), SIAM (2006)

242 Francesco Bruera et al.

4. Holzer, M., Schulz, F., Wagner, D.: Engineering multi-level overlay graphs for
shortest-path queries. In: Proceedings of the Eight Workshop on Algorithm Engi-
neering and Experiments (ALENEX06), SIAM (2006) 156–170

5. Holzer, M., Schulz, F., Wagner, D., Willhalm, T.: Combining speed-up techniques
for shortest-path computations. ACM J. of Experimental Algorithmics 10 (2006)

6. Möhring, R.H., Schilling, H., Schutz, B., Wagner, D., Willhalm, T.: Partition-
ing graphs to speed-up Dijkstra’s algorithm. In: Workshop on Experimental and
Efficient Algorithms (WEA05). Volume 3503 of LNCS. (2005) 189–202

7. Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Experimental comparison of
shortest path approaches for timetable information. In: 6th Workshop on ALgo-
rithm ENgineering and EXperiments (ALENEX04), SIAM (2004) 88–99

8. Schulz, F., Wagner, D., Willhalm, T.: Dijkstra’s algorithm on-line: An empirical
case study from public railroad transport. ACM Journal of Experimental Algo-
rithmics 5 (2000)

9. Schulz, F., Wagner, D., Zaroliagis, C.: Using multi-level graphs for timetable in-
formation in railway systems. In: Workshop on ALgorithm ENgineering and EX-
periments (ALENEX02). Volume 2409 of LNCS., Springer (2002) 43–59

10. Wagner, D., Willhalm, T.: Geometric speed-up techniques for finding shortest
paths in large sparse graphs. In: Proceedings of 11-th European Symposium on
Algorithms (ESA03). LNCS, Springer (2003) 776–787

11. Delling, D., Holzer, M., Müller, K., Schulz, F., Wagner, D.: High-performance
multi-level graphs. Technical Report 0012, Project ARRIVAL (2006)

12. Sanders, P., Schultes, D.: Highway hierarchies hasten exact shortest path queries.
In: 13th European Symposium on Algorithms (ESA). Volume 3669 of LNCS.,
Springer (2005)

13. Sanders, P., Schultes, D.: Engineering highway hierarchies. In: 14th European
Symposium on Algorithms (ESA). Volume 4168 of LNCS., Springer (2006)

14. Köhler, E., Möhring, R., Schilling, H.: Acceleration of shortest path and con-
strained shortest path computation. In: Workshop on Experimental and Efficient
Algorithms (WEA05). Volume 3503 of LNCS., Springer (2005)

15. Willhalm, T., Wagner, D.: Shortest paths speed-up techniques. In: Algorithmic
Methods for Railway Optimization. LNCS, Springer (2006)

16. Delling, D., Wagner, D.: Landmark-based routing in dynamic graphs. In: 6th
Workshop on Experimental Algorithms (WEA07). LNCS, Springer (2007) 52–65

17. Wagner, D., Willhalm, T., Zaroliagis, C.: Dynamic shortest path containers. Elec-
tronic Notes in Theoretical Computer Science 92 (2003)

18. Demetrescu, C., Italiano, G.F.: A new approch to dynamic all pairs shortest paths.
Journal of ACM 51 (2004) 968–992

19. Schultes, D., Sanders, P.: Dynamic highway-node routing. In: 6th Workshop on
Experimental Algorithms (WEA07). LNCS, Springer (2007) 66–79

20. Frigioni, D., Marchetti-Spaccamela, A., Nanni, U.: Fully dynamic algorithms for
maintaining shortest paths trees. Journal of Algorithms 34 (2000) 251–281

21. Bruera, F., Cicerone, S., D’Angelo, G., Stefano, G.D., Frigioni, D.: On the dy-
namization of shortest path overlay graphs. Technical Report 0026, ARRIVAL
(2006)

22. Mohri, M.: Semiring frameworks and algorithms for shortest-distance problems.
Journal of Automata, Languages and Combinatorics 7(3) (2002) 321–350

23. Frigioni, D., Marchetti-Spaccamela, A., Nanni, U.: Fully dynamic shortest paths
in digraphs with arbitrary arc weights. Journal of Algorithms 49 (2003) 86–113

24. Bollobas, B.: Random Graphs. London Academic Press (1985)

Improved Search for Night Train Connections

Thorsten Gunkel, Matthias Müller–Hannemann and Mathias Schnee

Darmstadt University of Technology, Computer Science,
64289 Darmstadt, Hochschulstraße 10, Germany

muellerh,schnee@algo.informatik.tu-darmstadt.de,
http://www.algo.informatik.tu-darmstadt.de

Abstract. The search for attractive night train connections is funda-
mentally different from ordinary search: the primary objective of a cos-
tumer of a night train is to have a reasonably long sleeping period without
interruptions due to train changes. For most passenger it is also undesired
to reach the final destination too early in the morning. These objectives
are in sharp contrast to standard information systems which focus on
minimizing the total travel time.
In this paper we present and compare two new approaches to support
queries for night train connections. These approaches have been inte-
grated into the Multi-Objective Traffic Information System (MOTIS)
which is currently developed by our group. Its purpose is to find all train
connections which are attractive from a costumer point of view.
With a computational study we demonstrate that our specialized algo-
rithms for night train connections are able to satisfy costumer queries
much better than standard methods. This can be achieved with reason-
able computational costs: a specialized night train search requires only
a few seconds of CPU time.

Keywords: timetable information system, multi-criteria optimization,
night trains, computational study

1 Introduction and Motivation

Marketing campaigns of major railway companies praise the advantages of night
trains: “By traveling at night you save paying a hotel night, and you gain a
full day of activities.” Compared to traveling by plane, passengers can take
more luggage with them, and they save the check-in procedures at airports and
transfers from the airport to the city center.

At a first glance, it may seem surprising that the same railway companies
spend only little effort to support potential customers in their search for attrac-
tive night train connections. However, we will explain later in this paper why an
efficient night train search is computationally quite challenging.

Current search engines either do not support an explicit search for night
trains at all or their functionality is quite limited. The latter type of search en-
gines supports only direct connections and requires that the user already knows
from which night train station he wants to start and at which night train station

243
ATMOS 2007
7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems
http://drops.dagstuhl.de/opus/volltexte/2007/1178 (p.243-258)

244 Thorsten Gunkel, Matthias Müller–Hannemann and Mathias Schnee

Mannheim Hbf

Hannover Hbf

Stuttgart Hbf

Hamburg Hbf

Karlsruhe Hbf

Stuttgart Hbf

Hamburg Hbf

Fig. 1. Example: Alternative night train connections from Stuttgart Hbf to Ham-
burg Hbf.

he wants to leave. Of course, the search of direct connections is algorithmically
very simple. The problem immediately becomes much more difficult if the start-
ing point or the final destination are not served by a night train connection at all.
In general, there will be several night train stations in the neighborhood of the
starting point and the destination of a journey which has to be planned. Thus,
this paper deals with a complex environment of a relatively dense network (like
the railway network of central Europe) which offers many alternatives. The goal
of this paper is to introduce and to discuss several approaches for an effective
night train search for such a scenario.

In general, we look for a connection consisting of three parts (the first and
third part may be empty):

– one or more feeder trains from the origin to the entry point of a night train,

– a night train, and

– again one or more feeder trains from the station exit point of the night train
to the final destination.

The purpose of the initial feeder trains is to bring the costumer in time (with
a certain safety margin) to the night train. For the feeder trains (in the first
and the third part), we aim for fastest and most convenient connections with
respect to the number of interchanges, whereas the night train section should
have a minimum length of h hours. The parameter h can be set by the costumer,
a typical choice might be h = 6 hours.

Thus, the overall connection which we are looking for will typically not be
the fastest possible, and that is why information servers which focus on fastest
connections will fail to find and offer them. If there are several alternatives for the
arrival time at the destination, the search engine should present all alternatives.
Fig. 1 shows an example of a query from Stuttgart Hbf to Hamburg Hbf with
two alternative night train connections. The first connection is faster with a total
duration of 8 h 23 min, but requires two train changes and has a sleeping period
of only 5 h 19 min. The second connection has a total duration of 9 h 54 min,
only one train change but offers an uninterrupted sleeping period of 8 h 02 min.

Improved Search for Night Train Connections 245

Related work. In recent years, there has been strong interest in efficient
algorithms for timetable information. Two main approaches have been pro-
posed for modeling timetable information as a shortest path problem: the time-

expanded [1,2,3,4,5], and the time-dependent approach [6,7,8,9,10,11,12,5]. The
common characteristic of both approaches is that a query is answered by apply-
ing some shortest path algorithm to a suitably constructed graph. These models
and algorithms are described in detail in a recent survey [13].

Several recent publications on timetable information systems focus merely on
performance issues to find fastest connections, and mostly consider only greatly
simplified single criteria scenarios. These simplified models ignore aspects like
days of operation, transfer times and restrictions, desired train attributes, meta
stations, footpaths between stations, just to name a few.

Multi-criteria search for train connections in a realistic environment has been
studied in [4]. In this paper, we adopt the same philosophy: our underlying model
has to ensure that each proposed connection is indeed feasible, that is, can be
used in reality by a potential costumer. Moreover, our focus is on the quality
of the proposed connections and we aim at presenting attractive alternatives to
customers.

Our Contribution. We are not aware of any previous work on night train
search. Our first contribution in this paper is a formal model which tries to
capture the notion of attractive night train connections. In Section 2, we first
review the notion of relaxed Pareto optimality from [4]. Afterwards, we discuss
how to model that a connection offers enough sleeping time and what other
aspects should be considered.

Based on this formal model, we develop two general approaches for night
train search. The first approach is an enumerative approach. It is based on the
idea that there are only relatively few night trains which are candidates for a
given query.

Our second approach considers sleeping time as an additional criterion in a
multi-criteria search. Here we extend a multi-criteria version of Dijkstra’s algo-
rithm to this additional criterion.

The basic versions of both general approaches are quite inefficient. Therefore,
we have engineered both of them. By using appropriate speed-up techniques we
achieve acceptable average running times of only a few seconds per query. In
an extensive computational study we show that our fastest versions yield high
quality solutions, much better than what we can reach by standard methods.

Overview. The rest of the paper is organized as follows. We start with our
formalization of attractive night train connections, followed by a brief description
of MOTIS in Section 3. Then, we introduce two general approaches to night train
search in Section 4. Afterwards we present computational results based on a large
test set of real customer queries. Finally, we conclude with a short summary.

246 Thorsten Gunkel, Matthias Müller–Hannemann and Mathias Schnee

2 Attractive Night Train Connections

2.1 General Considerations

A simple measurement for the “attractiveness” of a connection does not ex-
ist. Different kinds of costumers have differing (and possibly contrary) prefer-
ences. Key criteria for the quality of a connection are travel time, ticket cost
and convenience (number of interchanges, comfort of the used trains, time for
train changes). In order to build a traffic information system that can provide
attractive connections we avoid the drawbacks of weighted target functions or
“preference profiles”. Instead we want to serve each possible costumer by pre-
senting him a selection of highly attractive alternatives with one single run of
the algorithm.

When dealing with multiple criteria a standard approach is to look for the
so-called Pareto set. For two given k-dimensional vectors x = (x1, . . . , xk) and
y = (y1, . . . , yk), x dominates y if xi ≤ yi for 1 ≤ i ≤ k and xi < yi for at least
one i ∈ {1, . . . , k}. Vector x is Pareto optimal in set X if there is no y ∈ X that
dominates x. Here, we assume for simplicity that all criteria shall be minimized.
It should be obvious how these definitions have to be adapted if some criterion
has to be maximized.

We argued in [4] that the set of Pareto optima still does not contain all
attractive connections and proposed to apply the concept of relaxed Pareto op-

timality. It provides more alternatives than Pareto optimality can give. Under
relaxed Pareto dominance

– connections that are nearly equivalent but differ slightly do not dominate
each other;

– the bigger the difference in time between start or end of two connections the
less influence they have on each other.

We use the following rules to compare connections A and B which have de-
parture times dA, dB , arrival times aA, aB, travel times tA, tB (all data given in
minutes) and iA, iB interchanges, respectively. Connection A dominates connec-
tion B

– with respect to the criterion travel time if B does not overtake A and

tA + α(tA) · min{|dA − dB|, |aA − aB|} + β(tA) < tB,

where, α(tA) := tA/360 and β(tA) := 5 +
√

tA/4;
– with respect to the number of interchanges only if iA < iB;

For ease of exposition we omit in this paper further rules which consider
ticket costs. The interested reader is referred to [14].

2.2 Discussion of Objectives for Night Trains

How can we ensure that a connection offers enough sleeping time? From a mod-
eling point of view, we could simply impose a lower bound on the sleeping time

Improved Search for Night Train Connections 247

as a side constraint. Let us call this lower bound minimum sleeping time and
denote its value by lbst.

Unfortunately, the choice of some suitable constant lbst is not obvious since
different customers may have very different opinions on what they regard as
sufficient sleeping time. But even if customers are allowed to choose this constant
individually according to their personal preferences, any sharp border imposed
by such a constant is questionable. If we choose lbst too large we may miss
valuable alternatives (which are just below the given value). In contrast, choosing
the constant lbst too small may lead to relatively short sleeping periods, since
the search algorithm has no incentive to favor alternatives with longer sleeping
periods.

However, to use the pure objective “maximize the sleeping time” is also
questionable as it supports unnecessary, but costly detours. Thus, we have to
balance the goal to maximize the sleeping time with the usual goal to minimize
the overall travel time.

Therefore, we combine both ideas and propose the following model. We
choose a fairly small lower bound on the minimum sleeping time, to distinguish
night train connections which include a reasonable sleeping period from other
connections which only partially use a night train.

Suppose we want to compare two connections c1 and c2 with total travel
times tt(c1) and tt(c2) and sleeping times st(c1) and st(c2), respectively. We
suggest the following domination rules:

1. If connection c1 is faster than c2, then the increase in sleeping time st(c2)−
st(c1) should be at least as large as the increase in total travel time tt(c2)−
tt(c1). Otherwise, we consider c2 as dominated by c1 with respect to these
two criteria.

2. We also impose an upper bound on the sleeping time ubst. The idea is that
sleeping times longer than this upper bound should not be considered as
beneficial for the customer. Thus, instead of using the original sleeping time
st, we use a modified sleeping time mst := min{st, ubst} in our comparisons
of connections.

2.3 Filtering Attractive Solutions

Trains are considered as night trains if they are officially labeled as such (and
not just operate during the night). A connection is considered as a night train

connection only if it includes a night train with a sleeping time of at least lbst

minutes.
This definition does only partially capture what passengers will consider as

an attractive night train connection. Therefore, we propose to apply additional
criteria to reduce the result sets further. In this paper, we use the following
additional rules:

– We remove all night train connections with an extremely long feeder section,
since such connections usually imply a large detour. To this end, we use an
upper bound on feeder lengths ubfe.

248 Thorsten Gunkel, Matthias Müller–Hannemann and Mathias Schnee

– We also remove all connections which have more than two additional in-
terchanges than some other night train connection as such connections are
quite uncomfortable.

– From the remaining solutions, we filter out all dominated solutions, where
we use modified sleeping time mst := min{st, ubst} as explained above.

Since ticket costs depend very much on the chosen train category and the
fare system is quite complicated, we do not consider ticket costs in this paper
for ease of exposition.

3 The Information Server MOTIS

This section is intended to give a brief introduction to MOTIS and the main ideas
behind it. In the following subsections we first explain what kind of queries can
be handled. Afterwards we briefly touch upon the graph model used and the
general search algorithm.

3.1 Queries

A query to a timetable information system usually consists of the start station

(or origin) of the connection, the terminal station (destination) and an inter-

val in time in which either the departure or the arrival of the connection has
to be, depending on the search direction, the user’s choice whether to provide
the interval for departure (“forward search”) or arrival (“backward search”). If
several stations are relatively close together, they are grouped together to form
virtual meta-stations. The search engine treats all stations belonging to the same
meta-station as equivalent. Additional query options include:

Train class restrictions. Each train has a specific train class assigned to it. These
classes are high-speed trains such as the German ICE and French TGV; ICs and
ECs and the like; local trains, “S-Bahn” and subway; busses and trams. The
query may be restricted to a subset of all train classes.

Attribute requirements and night train categories. Trains have attributes de-
scribing additional services they provide. Such attributes are for example: “bike
transportation possible” or“board restaurant available”. Night trains offer differ-
ent categories, for example reclining seats, couchettes (unisex sleeping compart-
ments), or sleepers (private and comfortable sleeping accommodation available
as singles, doubles or triples). Users who wish to have a minimum standard of
comfort can specify which night train categories are acceptable for them. The
default specification in night train search is to accept all night train categories.

3.2 Time-Expanded Graph Model

The basic idea of a so-called time-expanded graph model is to introduce a directed
search graph where every node corresponds to a specific event (departure, arrival,
change of a train) at a station.

Improved Search for Night Train Connections 249

A connection served by a train from station A to station B is called elemen-

tary, if the train does not stop between A and B. Edges between nodes represent
either elementary connections, waiting within a station, or changing between two
trains. For each optimization criterion, a certain length is associated with each
edge.

Traffic days, possible attribute requirements and train class restrictions with
respect to a given query can be handled quite easily. We simply mark train edges
as invisible for the search if they do not meet all requirements of the given query.
With respect to this visibility of edges, there is a one-to-one correspondence
between feasible connections and paths in the graph.

More details of the graph model can be found in [4].

3.3 The Search Algorithm in MOTIS

Our algorithm is a “Pareto-version” of Dijkstra’s algorithm using multi-dimensio-
nal labels. Pseudocode is given in Algorithm 1. See Möhring [15] or Theune [16]
for a general description and correctness proofs of the multi-criteria Pareto-
search. In this algorithm, each label is associated with a node v in the search
graph. A label contains key values of a connection from a start node up to v.
These key values include the travel time, the number of interchanges, a ticket
cost estimation and some additional information. For every node in the graph
we maintain a list of labels that are not dominated by any other label at this
node. In the beginning, all label lists are empty.

Then, start labels are created for all nodes with a timestamp within the
query interval and stored in a priority queue (lines 5-7). In the main loop of the
algorithm, one label is extracted from the priority queue in each iteration (line
9). For the corresponding node of that label all outgoing edges are scanned and
labels for their head nodes are created, provided that the edge is feasible (lines
10-12). Any new label is compared to all labels in the list corresponding to its
node. It is only inserted into that list and into the priority queue if it is not
dominated by any other label in the list. On the other hand, labels dominated
by the new label are removed (line 18).

As a further means of exploiting dominance we keep a short list of Pareto-
optimal labels at the terminal station (called topTerminalLabelList) and com-
pare each new label to these labels (line 14). To compare labels at an intermediate
node v with a node at the terminal, we use lower bounds on the key values of
a shortest, a most convenient, and a cheapest path from v to the terminal sta-
tion. We increase the criteria of the label at v by lower bounds on the according
values. If the label with its increased values is dominated by any label at the
terminal, it is excluded from further search.

Since this optimization can only work with at least one label at the termi-
nal station, we initially determine a guaranteed fastest connection from source
to target using a goal-directed single criterion search in an initialization phase
before the actual multi-criteria search. This search is by orders of magnitude
faster than the multi-criteria search and can be performed in less then 50ms on
average.

250 Thorsten Gunkel, Matthias Müller–Hannemann and Mathias Schnee

Input: a timetable graph and a query
Output: a set of Pareto-optimal labels at the terminal

foreach node v do1

list<Label> labelListAt(v) := ∅;2

list<Label> topTerminalLabelList := ∅;3

PriorityQueue pq := ∅;4

foreach node v in start interval do5

Label startLabel := createStartLabel(v);6

pq.insert(startLabel);7

while ! pq.isEmpty() do8

Label label := pq.extractLabel();9

foreach outgoing edge e=(v,w) of v=label.getNode() do10

if isInfeasible(e) then continue; // ignore this edge11

Label newLabel := createLabel(label, e);12

if newLabel is dominated by labelListAt(w) then continue;13

if newLabel is dominated by topTerminalLabelList then continue;14

// newLabel is not dominated15

pq.insert(newLabel);16

labelListAt(w).insert(newLabel);17

labelListAt(w).removeLabelsDominatedBy(newLabel);18

if newLabel qualifies for topTerminalLabelList then19

topTerminalLabelList.insert(newLabel);20

Algorithm 1: Pseudocode for the generalized Dijkstra algorithm.

4 Approaches for Night Train Search

In this section we describe two new approaches which we have developed for
night train search.

4.1 Pre-Selection of Night Trains

We first present an enumerative approach. Its general idea is to select suitable
night train sections first, and then to compute corresponding feeder sections.
The main steps can be stated quite easily.

1. Iterate over all night trains of the train schedule which operate on the query
day.

2. For each such train, determine all stations which may serve as entry point
and all stations which may serve as exit points.

3. For each such pair, determine feeder sections to compose complete connec-
tions.

4. Let C be the collection of connections determined. Apply Pareto dominance
to filter out all dominated connections from C. Return the result.

In the following we will first describe steps 2 and 3 in more detail, afterwards
we will discuss how to speed up this general approach.

Improved Search for Night Train Connections 251

a

Entrance

Start station Terminal station

b

c

Alternative entranceNight Train

Exit

Alternative exit

Fig. 2. Selection of pairs of entry and exit points. Pairs are rejected if a+b > α·c,
i.e., if they would induce a too large detour.

Selection of Entry and Exit Points. Given a query and a particular night
train, we have to select in step 2 suitable pairs of entry and exit points to this
train. This has to be done with care to achieve a reasonable efficiency. Thus in
this phase we intend to reject as many pairs as possible without loosing valuable
solutions.

A station where a night train stops (and boarding/deboarding is allowed)
qualifies as a possible entry or exit point if it is close with respect to some
distant metric to the start or to the terminal station of the query, respectively.

To this end, two metrics can be used: Euclidean distance and lower bounds on
the travel time for the feeder section. The advantage of Euclidean based bounds
is that we can compute them in constant time. However, such bounds ignore
completely the railway network and the train schedule. Two stations which are
geographically close may be far from each other with respect to public transport.
Estimates on the required travel time between two stations would allow to make
more accurate decisions. We propose to use lower bound on the travel time as
estimates. These bound can be computed quite efficiently.

As the length of required feeder sections depends very much on the given
query, we do not use any fixed absolute bound to decide whether two stations
are close enough to each other. Instead we propose to use a query-dependent
rejection rule which is visualized in Fig. 2. A pair of entry and exit points is
rejected for a query if the bound a on the feeder length from the start station
to the entry point and the bound b on the feeder length from the exit point
to the terminal station together exceed the bound c on the length of a direct
connection between start and terminal station by some factor α, i.e., if

a + b > α · c.

Our experiments revealed that setting α := 1 is a suitable conservative choice.
Finally, we accept a pair of entry and exit stations only if the travel time

of the corresponding night train between these two stations is above our lower
bound on the sleeping time lbst.

Computation of Feeders. Given a pair of entry and exit points for a night
train the next step is to compute feeder trains.

252 Thorsten Gunkel, Matthias Müller–Hannemann and Mathias Schnee

The entry point for the night train determines when we have to arrive at this
particular station at the latest. Since we really want to reach the night train we
incorporate some extra safety margin to this calculation. Then we can use an
ordinary backward search from this station and the latest arrival time to the
start station to find suitable feeder trains.1 Likewise we perform an ordinary
forward search from the exit point to the terminal station.

Since entry and exit points are likely to appear in several pairs, we have
to make sure not to compute the same feeder sections several times. To avoid
repeated calculations, we therefore introduced a caching mechanism which stores
the results of each feeder search.

Pruning the Search Space. A naive implementation of our enumerative ap-
proach would do the feeder computation in an arbitrary order for all selected
pairs. Since the selection of pairs is done in a very conservative way, the resulting
algorithm would be quite inefficient.

A more clever refinement of this approach uses a priority queue to determine
the order of feeder computations. The idea is that already computed solutions
can be used to prune the search space. The priority queue contains all pairs
for which at least one feeder has not been computed yet. The key by which we
order the entry and exit point pairs in the priority queue is an estimate on the
travel time of the overall connection. This travel time estimate is composed by
the known length of the night train section plus estimates on the feeder lengths.
When a particular feeder has been determined during the course of the algorithm,
our estimates are updated for all elements in the priority queue where this feeder
fits. In each iteration we select and remove the top element from the priority
queue. For the corresponding pair we check whether it is already dominated
by previously computed connections. If this is the case, we discard this pair.
Otherwise, we compute one missing feeder. Afterwards we either obtain a set of
complete connections for this pair, or the other feeder section is still missing. In
the latter case, we reinsert the pair into the priority queue with the updated key
information.

4.2 Multi-Criteria Search with an Additional Criterion

The second approach which we propose adds sleeping time as a new criterion to
the multi-criteria search for attractive connections. Form a software-engineering
point of view the multi-criteria framework implemented in MOTIS is easily ex-
tendable to an additional criterion. In general, only two modifications are nec-
essary.

1. We have to make sure that the labels representing partial connections keep
track of the additional criterion.

1 Ordinary search allows the replacement of start and terminal stations by equivalent
meta-stations. The possibility for such a replacement has to be switched off for the
entry and exit point as in our scenario we really have to arrive at the pre-selected
station and not at some equivalent one.

Improved Search for Night Train Connections 253

2. The domination rules have to be adapted so that they effectively prune
labels.

While the modification of labels is straightforward, finding good domination rules
is much more difficult (and usually requires some experimental evaluation).

Pruning of labels during search by domination can only be done with the
help of good and efficiently computable bounds, lower bounds for minimization
and upper bounds for maximization, respectively.

Thus, for the maximization criterion sleeping time we need an upper bound.
Given a partial connection, this bound should limit the maximum additional
sleeping time this connection can accumulate to the terminal station. With the
help of such an upper bound a label of a partial connection can be dominated
with respect to the criterion sleeping time if the current sleeping time plus the
additional sleeping time is smaller than the sleeping time of some known com-
plete connection. Unfortunately, we do not know such upper bounds, except for
trivial ones which are far too loose to help in pruning.

Since a Pareto search without pruning is hopeless (although the search space
is polynomially bounded in practice [17], it is still way too large to achieve
computation times of a few seconds), we have to use heuristic domination rules
which cannot guarantee to find all attractive solutions.

We adapt the domination rules of MOTIS as follows: A complete connection
c is only allowed to prune a partial connection p

– if p “has used and already left” a night train but did not reach at least lbst

sleeping time, or
– if p “has used and already left” a night train but did not reach more sleeping

time than c, or
– if p is currently “in a night train” then c has to have sleeping time above

the threshold lbst, and the sleeping time of c has to be at least the sleeping
time of p plus β times a lower bound on the remaining travel time for p (for
some constant β), or

– if p contains no night train at all.

While the first two rules are still exact, the two others are aggressive heuristics.2

If c is allowed to prune it still needs to be “relaxed Pareto smaller” with
respect to the other criteria. For the comparison of labels belonging to the
same node (i.e., partial connection against partial connection) nothing has to
be changed.

5 Computational Results

5.1 Test Cases

We took the train schedule of trains within Germany of July 2007. For our ex-
periments, we used a snapshot of about 25000 real customer queries of Deutsche

2 Initial experiments showed that without these heuristics the average CPU time would
be about one minute. This is clearly not acceptable for on-line use of information
systems.

254 Thorsten Gunkel, Matthias Müller–Hannemann and Mathias Schnee

Fig. 3. The railway network of Germany. All night train routes are highlighted.

Bahn AG. From these we selected and processed only those 1782 queries where
the straight line distance between start and terminal station was at least 350
km. For all other queries the distance is likely to be too short to allow for a
reasonable night train connection.

Among the 1782 queries, we have 347 queries which possess a direct night
train connection and 940 require only one feeder. The remaining 495 queries
need two feeders. The current schedule and the derived time-expanded graph
have sizes as shown in Table 1.

5.2 Specific Definition of Attractive Solutions

We have chosen the following constants to specify our notion of attractive night
train connections as introduced in Section 2.

– A connection is considered as a night train connection only if it includes a
night train with a sleeping time of at least lbst = 240 minutes.

– We limit the maximal travel time of some feeder section also to ubfe := 240
minutes.

– In our definition of the modified sleeping time mst := min{st, ubst} (as
introduced in Section 2) we have chosen the upper bound as ubst = 420
minutes.

5.3 Computational Environment

All computations are executed on an AMD Athlon(tm) 64 X2 dual core processor
4600+ with 2.4 GHz and 4 GB main memory running under Suse Linux 10.2.
Our C++ code has been compiled with g++ 4.1.2 and compile option -O3.
We compare the following variants:

– Algorithm A: our standard MOTIS version which was designed to find all
attractive train connections with respect to travel time minimization and
minimizing the number of train interchanges. MOTIS requires a time interval
specifying when the connection has to start. To use MOTIS for a night

Improved Search for Night Train Connections 255

number of stations 8 916
number of trains 56 994
number of night trains 229
number of nodes 2 400 534
number of edges 3 715 557

Table 1. Key parameters of the schedule and the corresponding graph.

train search, we set this start interval to a period between 6:00 pm on the
traffic day and 2:00 am on the following day. For our comparison with other
variants, we considered only night train connections.

– Algorithm B: the enumerative approach of pre-selecting night trains as de-
scribed in Section 4.1.

– Algorithm C: a heuristic version of Algorithm B. We replace the multi-
criteria search for feeders by a single-criteria search with respect to travel
time. The latter is much more efficient, but may lead to additional inter-
changes. The idea behind this variant is that feeder connections should in
general not be very complicated.

– Algorithm D: the multi-criteria version of MOTIS with sleeping time as an
additional criterion as described in Section 4.2.

5.4 Experiments

Experiment 1. In our first experiment we want to study the basic question:
How often is it necessary to use a specialized night train search to find any
suitable night train connection?

To answer this question we compared Algorithm A with all other variants, see
Table 2. Algorithm A (standard MOTIS) does not find any night train connection
in 370 out of 1782 test cases (20.75%), whereas Algorithms B and C always
found at least one reasonable night train connection. This already shows that a
specialized night train search can offer much more to customers. Our version of
Algorithm D (MOTIS with one additional criterion) fails to find a night train
connection in 41 cases (2.3%). This is due to our heuristic version of domination
rules.

Experiment 2. How does the quality of the result sets compare to each other?
The comparison of the result sets in a multi-objective search space can be

done in several ways. A first, but only rough indicator is the size of the solution
set after filtering out dominated solutions. The largest result set is delivered by
Algorithm B (4223 solutions over all instances), followed by Algorithm C (3939
solutions) and Algorithm D (3196 solutions). Algorithm A delivers only 2334
solutions.

Next we studied which algorithmic variant was able to find the most at-
tractive connection. For this comparison we introduced a quality measure which
allows us to rank the solutions for each query.

256 Thorsten Gunkel, Matthias Müller–Hannemann and Mathias Schnee

Algorithm # connections CPU time # failures

A (standard MOTIS) 2334 1.87s 370 20.75 %
B (pre-selection+feeder) 4223 14.20s 0 0 %
C (pre-selection+fast feeder) 3939 3.72s 0 0 %
D (MOTIS with additional criterion) 3196 2.34s 41 2.3 %

Table 2. The total number of connections found, average running times in
seconds, and the number of failures for all variants.

Given a connection c with travel time tt(c) in minutes, modified sleeping time
mst(c) also in minutes, and number of interchanges ic(c), we measure the cost
of c by the function

q(c) := tt − mst + k · ic,

where we set the constant k := 20 and ubst = 420 minutes. The smaller the
cost value, the better we regard the quality of the corresponding connection.
Our cost function can be interpreted as follows: We have to pay for each minute
of travel time. This cost can be reduced by the sleeping time up to our upper
bound ubst. An interchange is counted as 20 minutes extra travel time. We now
rank the solutions as follows: A direct night train connection has always first
rank. All other connections are ranked according to increasing cost. We have
experimented with different constants in our cost function. It turned out that
the ranking of our algorithms is quite robust against changes it these values.

With respect to this ranking of solutions, we now compared the quality of the
first rank solutions against each other. Table 3 shows how often the first ranked
solutions have strictly better quality, how often they match, and how often they
are strictly worse. We observe that the quality of Algorithm B and Algorithm C
is quite similar, whereas Algorithm D has a slightly poorer quality.

Experiment 3. Is their a trade-off between computational efficiency and quality
of the solutions?

See Table 2 for the average CPU times for all variants. Standard MOTIS
(with an exceptionally long query interval of 8 hours) is the fastest variant with
only 1.87 seconds, but fails too often to find a night train connection. Algo-
rithm B which gives the overall best quality is about four times slower than
Algorithm C. Since the quality delivered by Algorithm C comes close to that of
Algorithm B, it will usually not be worth to use the more expensive Algorithm B.

Algorithm D is slightly faster than Algorithm C, but its quality is also slightly
poorer. Thus depending on what is more important either Algorithm D or Al-
gorithm C should be used.

Experiment 4. To gain more insight into the behavior of Algorithms B and
C we did some operation counting. The following numbers always represent
averages.

From the set of all possible entry and exit points, 1719 have been rejected
since they are not served on the query date, from the remaining 1605 entry

Improved Search for Night Train Connections 257

B vs. C # cases

B wins 48
C wins 13
both match 1721

B vs. D # cases

B wins 317
D wins 229
both match 1220

C vs. D # cases

C wins 312
D wins 250
both match 1220

Table 3. Pairwise comparison of the first ranked solutions.

points 1144 have been rejected because of our distance criterion, and 1205 pairs
were removed because of insufficient sleeping time. We had to calculate 111 feeder
sections for each query. This explains why it was crucial to speed up Algorithm B
by a more efficient feeder computation. It is worth noting that additional 405
feeder computations have been avoided by our caching mechanism.

6 Conclusions

Our computational study shows that a specialized night train search delivers
many more attractive connections than an ordinary search. We have observed a
trade-off between quality of the solution sets and computation time. Our imple-
mentation of a multi-criteria search with one additional criterion fails to find a
good night train connection in a few cases, but is most efficient. The pre-selection
approach with a fast feeder computation never failed and delivers almost optimal
quality. Both variants are fast enough to be applied in on-line information sys-
tems. With additional tuning the running times can probably be reduced further
while keeping high quality.

We see two promising perspectives to apply our algorithms in practice. The
first one is the scenario for which this paper was written: the user explicitly asks
for a night train connection. Then we would recommend to use Algorithm C
which delivers an excellent quality. The second scenario is an ordinary query with
a start interval in the evening. Then it would be an option to run MOTIS with
an additional criterion (Algorithm D) but without spending too much additional
computation time. If this search finds attractive night train connections, they
can be offered as alternatives to those computed for the query interval.

Acknowledgments

This work was partially supported by the DFG Focus Program Algorithm En-
gineering, grant Mu 1482/4-1. We wish to thank Wolfgang Sprick for fruitful
discussions and close collaboration in the development of MOTIS, and Deutsche
Bahn AG for providing us timetable data for scientific use.

References

1. Pallottino, S., Scutellà, M.G.: Shortest path algorithms in transportation models:
Classical and innovative aspects. In: Equilibrium and Advanced Transportation
Modelling. Kluwer Academic Publishers (1998)

258 Thorsten Gunkel, Matthias Müller–Hannemann and Mathias Schnee

2. Schulz, F., Wagner, D., Weihe, K.: Dijkstra’s algorithm on-line: An empirical case
study from public railroad transport. ACM Journal of Experimental Algorithmics
5 (2000) Article 12

3. Müller-Hannemann, M., Schnee, M., Weihe, K.: Getting train timetables into the
main storage. In: Proceedings of the 2nd Workshop on Algorithmic Methods and
Models for Optimization of Railways (ATMOS 2002). Volume 66 of Electronic
Notes in Theoretical Computer Science. Elsevier (2002)

4. Müller-Hannemann, M., Schnee, M.: Finding all attractive train connections by
multi-criteria Pareto search. In: Proceedings of the 4th Workshop in Algorithmic
Methods and Models for Optimization of Railways (ATMOS 2004). Volume 4359
of Lecture Notes in Computer Science, Springer Verlag (2007) 246–263

5. Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Efficient models for timetable
information in public transportation systems. ACM Journal of Experimental Al-
gorithmics (JEA) 12 (2007) 2.4

6. Cooke, K.L., Halsey, E.: The shortest route through a network with time-dependent
internodal transit times. Journal of Mathematical Analysis and Applications 14

(1966) 493–498
7. Orda, A., Rom, R.: Shortest-path and minimum-delay algorithms in networks with

time-dependent edge-length. Journal of the ACM 37 (1990) 607–625
8. Orda, A., Rom, R.: Minimum weight paths in time-dependent networks. Networks

21 (1991) 295–319
9. Kostreva, M.M., Wiecek, M.M.: Time dependency in multiple objective dynamic

programming. Journal of Mathematical Analysis and Applications 173 (1993)
289–307

10. Nachtigal, K.: Time depending shortest-path problems with applications to railway
networks. European Journal of Operations Research 83 (1995) 154–166

11. Brodal, G.S., Jacob, R.: Time-dependent networks as models to achieve fast exact
time-table queries. In: Proceedings of the 3rd Workshop on Algorithmic Methods
and Models for Optimization of Railways (ATMOS 2003). Volume 92 of Electronic
Notes in Theoretical Computer Science. Elsevier (2004) 3–15

12. Pyrga, E., Schulz, F., Wagner, D., Zaroliagis, C.: Towards realistic modeling of
time-table information through the time-dependent approach. In: Proceedings
of the 3rd Workshop on Algorithmic Methods and Models for Optimization of
Railways (ATMOS 2003). Volume 92 of Electronic Notes in Theoretical Computer
Science. Elsevier (2004) 85–103

13. Müller-Hannemann, M., Schulz, F., Wagner, D., Zaroliagis, C.: Timetable informa-
tion: Models and algorithms. In: Algorithmic Methods for Railway Optimization.
Volume 4395 of Lecture Notes in Computer Science., Springer Verlag (2007) 67–89

14. Müller-Hannemann, M., Schnee, M.: Paying less for train connections with
MOTIS. In Kroon, L.G., Möhring, R.H., eds.: 5th Workshop on Algorithmic
Methods and Models for Optimization of Railways, Internationales Begegnungs-
und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany (2006)
<http://drops.dagstuhl.de/opus/volltexte/2006/657>.

15. Möhring, R.H.: Verteilte Verbindungssuche im öffentlichen Personenverkehr:
Graphentheoretische Modelle und Algorithmen. In: Angewandte Mathematik -
insbesondere Informatik, Vieweg (1999) 192–220

16. Theune, D.: Robuste und effiziente Methoden zur Lösung von Wegproblemen.
Teubner Verlag, Stuttgart (1995)

17. Müller-Hannemann, M., Weihe, K.: On the cardinality of the Pareto set in bicriteria
shortest path problems. Annals of Operations Research 147 (2006) 269–286

A Simulation/Optimization Framework for

Locomotive Planning

Artyom Nahapetyan1, Ravindra Ahuja1, F. Zeynep Sargut1,
Andy John2, and Kamalesh Somani2

1 Innovative Scheduling Inc.
Gainesville Technology Enterprise Center (GTEC)

2153 SE Hawthorne Road, Suite 128
Gainesville, FL 32641, USA

2 Locomotive Management - CSX Transportation
3019 Warrington Street

Jacksonville, FL 32254, USA

Abstract. In this paper, we give an overview of the Locomotive Simu-
later/Optimizer (LSO) decision support system developed by us for rail-
roads. This software is designed to imitate locomotive movement across
a rail network, and it simulates all four major components of the system;
trains, locomotives, terminals, and shops in an integrated framework. It
includes about 20 charts that allow evaluating system performance using
standard measures. LSO can be used by locomotive management to per-
form “)-1(what-if” analysis and evaluate system performance for different
input data; it provides a safe environment for experimentation. We have
tested the software on real data and output showed that the software
closely imitates day-to-day operations. We have also performed differ-
ent scenario analysis, and reports illustrate that the software correctly
reflects input data changes.

1 Introduction

All US Class I railroads companies have a centralized group of managers respon-
sible for assigning specific locomotives to specific trains around the clock, 365
days per year. Each manager is responsible for trains originating in a particular
geographic region. A director presides over the managers and is responsible for
the entire system. Class I railroads typically have thousands of train origina-
tions per day, and the managers must assign several thousands of locomotives
to those trains. Locomotive assignment consists of assigning sets of locomotives
to trains and developing routings for all locomotives while satisfying pulling
power requirements of all trains and maintenance and fueling requirements of
locomotives.

Many railroads use plan-based locomotive assignment as shown in Figure
1. The locomotive planning problem assigns sets of locomotives to each train
in a preplanned weekly train schedule so that each train in the weekly train
schedule receives sufficient power to pull its load and the total cost of locomotive

ATMOS 2007 (p.259-276)
7th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems
http://drops.dagstuhl.de/opus/volltexte/2007/1182

260 Artyom Nahapetyan et al.

Locomotive
Planning System

Real-Time Locomotive
Assignment System

Locomotive power plan is
conveyed to the real-time
locomotive assignment
system.

Power plan is adjusted
considering current and
forecasted terminal-wide
and system-wide needs
and availabilities.

Fig. 1. Role of locomotive planning in real-time locomotive assignment.

usage is minimized (Vaidyanathan et. al. [2007], Ahuja et. al. [2005], and Ziarati
et. al. [1997] and [1999]). The resulting plan must honor a variety of business
rules, cannot require more locomotives than what is available in the total fleet,
and must result in a plan that is relatively simple and repeatable. Another
important feature of the locomotive planning problem is that some locomotives
may deadhead on trains or light travel. Deadheaded locomotives do not pull the
train but are pulled by active locomotives from one place to another. In the case
of light travel, a set of locomotives form a group, and one locomotive in the group
pulls the others from an origin station to a destination station. Deadheadings
and light travels play an important role in locomotive planning, enabling extra
locomotives to be moved from surplus locations to locations where locomotives
are in short supply. Light travel is not limited by the train schedule, making
it much faster than deadheading. However, light travel is costlier, as a crew
is required and the move does not generate any revenue, as there are no cars
attached.

A power plan specifies which types of locomotives will pull each train and
how locomotives will deadhead or light travel to obtain the overall network-wide
efficiency. The power plan is a white sheet plan that specifies the locomotive
assignment to the trains. It also shows train-to-train connections for locomotives
at each terminal. The plan may or may not be fueling or servicing-friendly. Each
locomotive must be fueled before it runs out of fuel (typically, around 900 miles)
and must be serviced periodically (either after it has traveled a certain number of
miles or a certain number of days have elapsed since the last servicing). However,
the power plan does not account for locomotive breakdowns, train delays, train
cancelation, and adding extra trains. It assumes that all trains run on time and
locomotives do not breakdown.

The solution of the locomotive planning problem serves as a blueprint to
guide day-to-day real-time locomotive assignment, called tactical locomotive as-
signment (Chih et. al. [1993]). However, the following disruptions take place in
the system and locomotive managers must further refine and adjust the locomo-
tive assignment.

A Simulation/Optimization Framework for Locomotive Planning 261

– If a locomotive is due for a regular maintenance, then managers cannot assign
it to a train that takes it too far from a shop, as it cannot return before its
maintenance-due date.

– Locomotives also break down, and managers must substitute them.
– While generating a locomotive plan, we assume that all trains run on time.

However, trains are often delayed and sometimes are canceled altogether. As
a result, terminals might not have enough locomotives to depart outbound
trains.

– There are usually unanticipated, unscheduled trains that require locomotives
not listed in the blueprint.

– Other unplanned events that frequently occur and must be immediately
addressed as the data is communicated to the locomotive managers include
train derailments, out-of-fuel locomotives, crew no-shows, severe weather,
and holding outbound trains to capture priority shipments.

The decision problem faced by locomotive managers is how to change the plan
with minimum disruption to the field operations while minimizing the impact
on locomotive-related costs. As the operations unfold across the network, the
locomotive managers must assess each piece of new data and determine how their
current plan should be adjusted and locomotives be assigned to the outbound
trains. The managers constantly monitor and adjust daily tactical plans to ensure
efficient use of resources while maximizing the on-time operations and protecting
the fluidity of the network.

In this paper, we discuss Locomotive Simulater/Optimizer decision support
system, which we henceforth refer to as LSO. This decision support system simu-
lates the movement of locomotives across a railroad network. It simulates a real-
life environment in which travel times are random variables, locomotives visit
shops for quarterly maintenances, and locomotives break down and go to shops
for repairs. LSO simulates all of the four major resources involved in locomotive
assignment: locomotives, trains, terminals, and shops. It uses the logic similar to
that used by locomotive managers and directors to assign locomotives to trains:
it uses historical train data to model train delays, historical locomotive data to
model locomotive breakdowns, and historical data of shops to model repair and
maintenance of locomotives at shops. LSO keeps track of the status, inventory,
and detailed plans for individual trains by ID and date, individual locomotives,
and individual terminals. As time progresses, LSO collects detailed statistics for
locomotives, trains, terminals, and shops. It simulates several months of loco-
motive assignment in a matter of minutes. After several runs of simulation have
been performed, it summarizes the results of these simulation runs and prints
various reports and charts.

LSO is an invaluable tool for railroad locomotive management division to
make numerous planning and strategic decisions related to locomotive opera-
tions. The ultimate goal of locomotive management is to achieve high levels of
locomotive productivity and reliable train operations at the lowest possible cost.
To achieve this objective, locomotive management must understand (i) the im-
pact of strategy changes on system performance, (ii) where to focus efforts in

262 Artyom Nahapetyan et al.

improving efficiency and effectiveness, (iii) how many resources are required for a
given level of system performance, and (iv) how to prepare for and recover from
random disruptions. LSO can assist locomotive management in making these
decisions. Specifically, it allows testing the efficacy and robustness of the locomo-
tive planning and real-time locomotive assignment systems by simulating a near
real-life environment. LSO also enables senior executives, locomotive directors,
and locomotive managers to test various management policies, priorities, busi-
ness rules, and “what-if” strategic questions such as fleet sizing, shop closures,
and on-time train performance. The simulation system will show the locomo-
tive director or locomotive managers the downstream implications of changing
the system’s recommendation in terms of operating cost, train delay, locomotive
utilization, consist busting, missed repair commitments, mismatched power, etc.
It will also assist locomotive departments in testing service design plans before
accepting them and publishing them to the rest of the organization. Indeed, LSO
provides a safe environment for experimentation before implementation.

Locomotive operation divisions usually use the following measures to evaluate
overall performance of the locomotive assignment procedure, and LSO has about
20 reports and charts that address those measures and allow users to analyze
the effect of any strategic changes from different perspectives.

– Origination performance: The percentage of trains departing on time from
their origins per day.

– Arrival performance: The percentage of trains arriving at their destinations
on time per day.

– Dwell time of locomotives: The amount of time a locomotive spends at a
terminal or shop.

– Out-of-service (OOS) rate: The percentage of locomotives that cannot be
assigned to a train due to breakdowns or maintenance.

– Setbacks trains: Percentage of trains held for power (or delayed) in a day.
– Setbacks hours: Average delay time of trains due to insufficient power.
– Consist power plan compliance: Percentage of trains departing with a set of

locomotives specified in the power plan.
– Locomotive utilization: Percentage of time a locomotive actively pulls trains,

deadheading or light traveling per day.

2 LSO Components and their Relationship

In this section, we provide an overview of LSO components, input and output
requirements of the program, and report generating procedure. Figure 2 illus-
trates the relationship between different components and below we discuss these
components in more detail.

LSO requires several types of inputs describing trains, locomotives, termi-
nals and shops. The power plan provides information on trains, origin and des-
tination terminals of the trains, scheduled active and deadheading locomotive
requirements, scheduled departure and arrival times and other train related in-
formation. However, the power plan does not contain all data required by LSO,

A Simulation/Optimization Framework for Locomotive Planning 263

Railroad

Information
System

Input

Data
Bridge

Core

Simulation
Engine

Errors

Input

Sanity

Checking
Routine

Parameters

Simulation
Parameters

Railroad

Inputs
Simulation

Inputs

Simulation

Parameters

Reports

&
Charts

Output

Data
Bridge

Railroad

Outputs

Fig. 2. Overview of LSO components.

and additional data such as properties of locomotive classes and their fleet size,
description of the consist types used in the simulation, train consist priorities,
probability of sending a locomotive to a shop from a specified terminal, histori-
cal travel time of trains, terminal processing distribution, locomotive breakdown
rates, etc., is supplied using Excel spreadsheets or Access databases. Using the
inputs, LSO performs sanity checking and transforms the data into a format
consistent with tables of LSO input database. If during this process the software
finds errors in the provided data then it writes corresponding massages into a
log file.

After populating tables of the LSO input database, a user can specify sim-
ulation parameters and start the simulation. In the beginning, LSO sets up the
initial state of the simulation and then executes events from the event list. The
events imitate all activities, e.g., train arrivals and departures, locomotive fail-
ures, consist busting and terminal processing, consist assignment, locomotive
light moves, shop repair procedure, etc., and record statistical data into corre-
sponding tables in the LSO output database. During the simulation process, the
module also records all events in a log file for debugging purpose.

Based on the output data, the LSO creates reports describing the overall
performance of the system. Specifically, it retrieves data from the LSO output
database, performs statistical analysis, and displays reports in Excel spread-
sheets in the form of tables and charts. The current version of the engine gener-
ates about 20 reports describing train arrival and departure performance, per-
centage of delayed trains and average delay hours for each terminal, power plan
compliance, out-of-service rate, events taking place at a specific terminal at a
specific week, details on inventory level of the selected terminal at each sim-
ulation day, statistics on shop queue and repair time, details on light moves
performed between terminals, etc.

264 Artyom Nahapetyan et al.

3 Overview of Simulation Engine

Locomotive operations require the interplay of the following major resources:
trains, locomotives, shops, and terminals. Figure 3 gives an overview for LSO,
and its details are discussed next.

Train Events Locomotive Events

Event Generator

Decision Engines

Train Arrival
Module

Shop Routing
Module

Light Travel
Module

Initial State

- Trains

- Terminals

- Locomotives
- Shops

Reports,

Charts &
Analysis

Loco Simulation

Decision Support
System

Shop Events

Train Departure
Module

Terminal Events

Fig. 3. Overview of LSO algorithmic logic.

We define the state of a system to be the collection of state variables associ-
ated with its entities. An event is an instantaneous occurrence that may change
some state variables of the system. In the beginning of the simulation, LSO is
populated (or seeded) with the current status of the trains, locomotives, termi-
nals, and shops, which constitute the initial state variables. As events take place
with respect to the four entities, trains, locomotives, terminals, and shops, the
state of the system will change. The simulation engine generates train events ac-
cording to the train schedule, locomotive events from the historical data of the
locomotives, and shop events from the historical data of shops. LSO employs
decision engines to assign locomotives to trains, route failed locomotives to the
shops, and simulate light travels. It utilizes the locomotive plan as an input that
could be generated either manually or using the optimal locomotive plan. As the
simulation runs, the engine collects detailed statistics for locomotives, trains,
stations, and shops and prints various reports and charts. LSO keeps track of
the status, inventory, and detailed plans for individual trains and locomotives
by ID, type and date, individual shops and terminals. The system runs on one-
minute time increments and simulates trains being ordered, departed, operated

A Simulation/Optimization Framework for Locomotive Planning 265

over the line of road, and arriving at a destination. Each individual train is mod-
eled deterministically. It is assumed that a particular train occurrence is ready
to run at the stipulated time and takes the stipulated time to cross the line of
road and arrive at the destination. If locomotives are available and ready by the
scheduled departure time of the train, no locomotive delay is attributed to that
train, even if it runs later than scheduled. If locomotives are not ready at the
time the train is ready, locomotive delay is calculated from the ready time until
the train gets locomotives and departs the terminal according to the simulation.
The system simulates locomotive breakdowns and the repairs of locomotives at
shops. The locomotive simulation assigns locomotives to trains and reposition
locomotives via light engine moves.

The length of the simulation period is an input of the system, and the system
is designed to simulate pre-specified months of normal operations. Specifically,
user can enter the start and end dates and time of the simulation and then run the
simulation for the specified time horizon. Users may want to repeatedly simulate
the specified time horizon to collect sufficient observations to see system-average
results over an extended period of time. The simulation is provided with a fleet
of locomotives that can be assigned to the trains. We realize that given the
initial state of the system, it requires some warm-up time to reach a steady
state before any observations can be taken. We thus need to account for some
warm-up period in the simulation, and when determining statistics, we should
ignore the data for the warm-up period.

4 Main Simulation Modules and Engines

In this section, we discuss main modules that are necessary to run LSO. We first
describe the initial state setup and then engines used in the simulation; subse-
quent subsections provide a short description of the corresponding components
and their functionality.

4.1 Initial State of LSO

Before proceeding to the simulation, LSO creates locomotive, train, terminal,
and shop entities and initializes the state of the system and counters. We next
discuss each of these procedures in detail.

Entity Construction.

– Locomotives: LSO creates a certain number of locomotive entities according
to the locomotive class fleet size. Each entity has different attributes describ-
ing the locomotive ID, type, class, horsepower, axel count, manufacturer,
average time between breakdowns, and other features of the locomotive.

– Terminals: LSO considers all origin and destination terminals of the trains
and creates corresponding entities. Each entity has attributes describing ter-
minal ID and terminal processing and consist busting time distributions.

266 Artyom Nahapetyan et al.

– Trains: LSO creates a train entity for each train described in the train run
table. The attributes of the train describe the train ID, type, priority, ton-
nage, origin and destination terminals, scheduled departure day and time,
list of preferred and accepted consists, planned deadheading locomotives,
travel time distribution, and other features of the train.

– Shops: LSO creates shop entities according to their location. Each shop
has attributes describing the shop ID, type, number of spots, service time
distribution, and other features.

Initial State Setup.

– Locomotive Initial Location: LSO takes a snapshot of the power plan at a
specific time, e.g., Sunday midnight, and distributes the pool of available
locomotives among terminals. Specifically, for all trains that are on the way
to their destination terminal it creates corresponding consists described in
the power plan, assigns them to those trains and triggers train arrival events
for the trains at appropriate times. Next it looks at the power plan to count
the number of consists at each terminal at the time of the snapshot. These
consists constitute the initial inventory at terminals. Finally, it randomly
distributes the remaining locomotives, if any, among terminals that have
shops.

– Populate List of Events: LSO maintains a list of events, which is sorted
according to the time they should occur. Some events, e.g., tactical reposi-
tioning events, should be triggered at certain points of the planning horizon,
and others, e.g., train arrival events, are triggered by other events during
the simulation. Before proceeding to the simulation, LSO populates the list
by the following known events.

• Train departures

• Train arrivals

• Tactical repositionings

• Locomotive Q-maintenances and breakdowns

• Consist assignments

– Initialize Simulation Counters: LSO assigns initial values for all counters
used in the simulation.

4.2 Main Modules of LSO

Train Arrival Module: Depending on the condition of active and deadhead-
ing locomotives, train arrivals require different actions at the terminal. If no
locomotive in a consist fails upon arrival, then the consist can be assigned to an
outbound train. However, if at least one of the locomotives fails, the consist must
be busted, the failed locomotives are sent to shops, and remaining locomotives
and consists can be used to pull other trains. Before a consist is assigned to an
outbound train, it also should go through certain terminal activities, which we
refer to as terminal processing.

A Simulation/Optimization Framework for Locomotive Planning 267

LSO imitates locomotive breakdowns using certain locomotive failure rates.
Locomotive Q-maintenance and Breakdown module assigns a “red” status to
failed locomotives and locomotives that are due for quarterly maintenance. Train
Arrival module checks active and deadheading consists of the train up on arrival.
If one of the locomotives in the consist fails, the module creates a consist bust-
ing event, which will bust the consist and process failed and good locomotives
separately, i.e., route failed locomotives to shops and send good locomotives to
terminal processing. The time it takes to bust a consist can either be a random
number generated from a pre-specified distribution or a fixed time interval. If ar-
riving locomotives do not have “red” status, then we imitate terminal processing
of locomotives, i.e., main track, main line fueling, truck fueling, or servicing. Ter-
minal processing takes a random amount of time generated from a pre-specified
distribution. After terminal processing, locomotives are ready for train assign-
ments, and they are stored at the terminal.

Consist Assignment Module: Consist assignment of outbound trains is per-
formed by locomotive managers based on the availability of the preferred consist,
availability of accepted consists, consist busting time, and priorities of the out-
bound trains. Specifically, in the locomotive shortage environment, locomotive
managers prefer assigning available locomotives to trains with higher priority.
However, if a lower-priority train has been delayed for a certain time, then they
try to find a consist to depart the train. Train on-time departure also depends
on the availability of the consist given in the power plan, and locomotive man-
agers might delay the train for a certain time if the consist is not available.
Mangers continuously monitor consist availability at terminals (i.e., consist in-
ventory, arriving consists, and consist failure) and adjust consist assignment of
the departing trains.

Consist Assignment module analyzes the locomotive availability at the termi-
nal. Specifically, it considers all currently available locomotives and locomotives
that have already departed on trains and will arrive at the terminal during a
certain time horizon. Using collected data, the module tries to find a proper con-
sist for selected trains. During this assignment process, it also takes into account
a user-specified amount of time a train can be delayed to assign the preferred
consist, i.e., the consist specified by power plan. If a proper consist has not been
found for the train, the module considers the consist busting option, i.e., tries
to create a consist from available locomotives. If a consist has been assigned
to a train before its scheduled departure time, then the train departs on time;
otherwise, the train is delayed until a proper consist is assigned to the train by
following runs of Consist Assignment module. The module also handles planned
locomotive deadheading and light moves. Specifically, if a train has such require-
ments, then module tries to assign those locomotives to the train. If the number
of available locomotives is insufficient, then the module departs the train on time
with the available set of locomotives.

268 Artyom Nahapetyan et al.

Train Departure Module: On-time departure of trains depends on the avail-
ability of proper consists, and ideally each departing train should have a proper
consist assignment prior to the scheduled departure time. However, if there are
not enough locomotives available to power all outbound trains, locomotive man-
agers assign available consists to higher-priority trains and delay lower-priority
trains. The managers usually make consist assignment decisions in advance, and
at the scheduled departure time trains either have a consist to depart or they
should be delayed.

Tactical Repositioning Module: During the real-time locomotive assignment
procedure, locomotive imbalances at terminals are created; that is, some termi-
nals may have surplus locomotives while other terminals may face locomotive
deficits. These imbalances are created due to various reasons including surplus
and deficit locations designed in the power plan, locomotive breakdowns, which
create surpluses at shops and deficits at other terminals, train annulments, sec-
ond section of trains, violation of power plan consist assignments, variance in
train travel times. etc. Locomotive managers employ unscheduled deadheading
and light travel options to move locomotives from surplus terminals to deficit
terminals to restore locomotive balance in the network.

Since LSO imitates the real-time locomotive assignment process, it creates
locomotive imbalance at terminals as well. Specifically, if there is an imbalance
between the number of inbound and outbound locomotives at a terminal, then
the terminal either accumulates certain types of locomotives or encounters a
shortage of locomotives. Tactical Repositioning module looks ahead to analyze
the inventory level for a user-specified time horizon (from several hours to sev-
eral days) and determines the surplus and deficit terminals. During this process,
it imitates assignment of inbound locomotives to outbound trains using a logic
similar to the Consist Assignment module. If a terminal has a shortage of loco-
motives, LSO computes the demand of the terminal for each locomotive type.
After identifying surplus and deficit locations as well as supply/demand of ter-
minals, the module tries to satisfy the demand of deficit terminals by surpluses
at surplus locations by solving a multicommodity network flow problem (Ahuja
et. al. [1993]). Since speed is of critical issue in simulation, we solve the multi-
commodity problem heuristically. The solution of this problem yields the tactical
repositionings necessary to meet the demand.

Locomotive Q-Maintenance and Breakdown Module: Class I railroads
operate thousands of locomotives, and each day some of them break down due
to mechanical or weather-related reasons. In the simulation, we assume that
locomotives can fail whether they are active, i.e., pulling a train, or inactive,
i.e., deadheading or waiting at a terminal. The locomotive failure rate describes
the number of times a locomotive class breaks down during a year, and it is an
input of the simulation. Although locomotive failures can occur on the way to
the destination terminal, locomotive managers can route a locomotive to a shop
only when the train arrives at its destination terminal.

A Simulation/Optimization Framework for Locomotive Planning 269

According to FRA requirements, each locomotive must undergo preemptive
maintenance at some designated shop on or before 92 days have elapsed since
its last maintenance. Otherwise, the locomotive must be shut down and moved
as a deadhead. This maintenance is also known as a quarterly maintenance or
Q-maintenance. When the due date of the Q-maintenance is near (within 4-5
days), locomotive managers try to assign the locomotive to a train that departs
to one of the shops. Depending on the manufacturer of the locomotive, it should
be sent to an appropriate shop.

Shop Processing Module: Locomotive assignment to a shop is performed
by locomotive managers based on (i) the type of repair it requires, (ii) travel
time to the shops, and (iii) the number of locomotives at the shops. Different
shops have different number of spots to perform repairs; therefore, the capacity
and output rates of shops are different. Some shops maintain different spots for
broken locomotives and locomotives that are due for Q-maintenance. If the shop
is congested, locomotives wait in a queue upon arrival.

In the simulation, we assume two types of repairs: breakdowns and Q–
maintenance. After arriving at a shop, a locomotive should wait in the cor-
responding queue to be processed. If the locomotive is due for Q-maintenance,
then the module adds the locomotive at the end of the Q-maintenance queue.
Otherwise, the locomotive joins the queue of broken locomotives. Both queues
are simulated according to first-in-first-out logic. In the simulation, we allow
each shop to maintain three types of spots, i.e., spots for broken locomotives,
spots for Q-maintenance, and spots that can perform both repairs. When a spot
is ready to seize the next repair request, this module checks the type of the
spot and proceeds according to one of the following two cases: (i) the spot can
perform only one of the repairs, and (ii) the spot can perform both repairs.
After finishing the repair, the locomotive leaves the shop, goes through terminal
processing, and joins the locomotive inventory at this terminal. In addition, the
module triggers the next Q-maintenance and breakdown events if necessary.

5 LSO Reports and Charts

During the simulation process, LSO records statistical data into output tables of
its database, and based on the collected data constructs various charts and tables
describing overall performance of the system. Current version of the software
generates about 20 charts and tables using Excel spreadsheets, and in this section
we provide an overview of most important reports.

The train on-time performance is one of the most important statistics, and
LSO provides several charts that allow analyzing the train on-time performance
from different perspectives. The chart in Figure 4 describes the percentage of
on-time train departures and arrivals for each day of the simulation. A user can
either specify a terminal for which he/she would like to draw the chart or view
the chart for all terminals. In the later case, we compute and display the average
percentage over all terminals. Figure 5 describes another chart that shows the

270 Artyom Nahapetyan et al.

Train Arriv al and Departure Pe rformance

0%

20%

40%

60%

80%

100%

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

1
0

5

1
1

0

1
1

5

1
2

0

1
2

5

1
3

0

1
3

5

1
4

0

1
4

5

1
5

0

1
5

5

1
6

0

1
6

5

1
7

0

1
7

5

1
8

0

Simulation Days

P
er

ce
nt

ag
e

% On-Time Dep.

% On-Time Arr.

% On-Time Arr.+2

Fig. 4. Train Arrival and Departure Performance.

Trains Held-For-Power

�� �� �� �� �� � �� � �� � �
� � �� �� 	� 	�
�
� �� �� �� �� �� �� � � �� �� �� �� ��� ��� ��� ��� �	� �	� �
� �
� ��� ��� ��� ��� ��� ��� �� �� ���

Simulation Days

S
et

ba
ck

 T
ra

in
s �� �� � �� � �� � �� � �� � �� � �� � �� � �� � �

S
et

ba
ck

 H
ou

rs

Setback Trains

Setback Hours

Fig. 5. Trains Held for Power.

total number of delayed trains and the total number of delayed hours for each
simulation day. As before, the user can either select a terminal to view the
chart or display the data for all terminals. In addition, the software provides two
charts that describe average percentage of on-time train departures and arrivals,
percentage of delayed trains and average delay hours for each terminal.

OOS Rate

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

14
0

14
5

15
0

15
5

16
0

16
5

17
0

17
5

18
0

Simulation Day

P
e

rc
en

ta
g

e

Fig. 6. Out-of-service Rate.

Locomotive managers also employ out-of-service (OOS) rate and percentage
of power plan compliance to evaluate the overall performance of the system.
Specifically, OOS rate measures the percentage of locomotives that cannot be
assigned to trains due to breakdowns and Q-maintenances. Power plan compli-

A Simulation/Optimization Framework for Locomotive Planning 271

Power Plan Compliance

0%

20%

40%

60%

80%

100%

120%

0 5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

14
0

14
5

15
0

15
5

16
0

16
5

17
0

17
5

18
0

Simulation Days

P
er

ce
n

ta
g

e

Fig. 7. Power Plan Compliance.

Number of Late Trains at the Terminal

0

2

4

6

8

10

12

14

16

0.
00

2.
00

4.
00

6.
00

8.
00

10
.0

0

12
.0

0
14

.0
0

16
.0

0
18

.0
0

20
.0

0
22

.0
0

0.
00

2.
00

4.
00

6.
00

8.
00

10
.0

0

12
.0

0
14

.0
0

16
.0

0
18

.0
0

20
.0

0
22

.0
0

0.
00

2.
00

4.
00

6.
00

8.
00

10
.0

0
12

.0
0

14
.0

0

16
.0

0
18

.0
0

20
.0

0
22

.0
0

0.
00

2.
00

4.
00

6.
00

8.
00

10
.0

0

12
.0

0
14

.0
0

16
.0

0
18

.0
0

20
.0

0
22

.0
0

0.
00

2.
00

4.
00

6.
00

8.
00

10
.0

0

12
.0

0
14

.0
0

16
.0

0
18

.0
0

20
.0

0
22

.0
0

0.
00

2.
00

4.
00

6.
00

8.
00

10
.0

0
12

.0
0

14
.0

0

16
.0

0
18

.0
0

20
.0

0
22

.0
0

0.
00

2.
00

4.
00

6.
00

8.
00

10
.0

0

12
.0

0
14

.0
0

16
.0

0
18

.0
0

20
.0

0
22

.0
0

1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7
Time

of

 la
te

 tr
ai

ns

Priority III Trains

Priority II Trains

Priority I Trains

Fig. 8. Number of Late Trains at the Terminal.

ance measures the percentage of trains that have not been assigned the consist
specified in the power plan. Charts in Figures 6 and 7 describe the corresponding
measures for each simulation day.

Locomotive Inventory at the Terminal - By LocoType

0

100

200

300

400

500

600

700

800

900

0.
00

2.
00

4.
00

6.
00

8.
00

10
.0

0

12
.0

0
14

.0
0

16
.0

0
18

.0
0

20
.0

0

22
.0

0
0.

00
2.

00

4.
00

6.
00

8.
00

10
.0

0
12

.0
0

14
.0

0
16

.0
0

18
.0

0

20
.0

0
22

.0
0

0.
00

2.
00

4.
00

6.
00

8.
00

10
.0

0

12
.0

0
14

.0
0

16
.0

0

18
.0

0
20

.0
0

22
.0

0

0.
00

2.
00

4.
00

6.
00

8.
00

10
.0

0
12

.0
0

14
.0

0
16

.0
0

18
.0

0

20
.0

0
22

.0
0

0.
00

2.
00

4.
00

6.
00

8.
00

10
.0

0

12
.0

0

14
.0

0
16

.0
0

18
.0

0
20

.0
0

22
.0

0

0.
00

2.
00

4.
00

6.
00

8.
00

10
.0

0
12

.0
0

14
.0

0

16
.0

0
18

.0
0

20
.0

0

22
.0

0
0.

00

2.
00

4.
00

6.
00

8.
00

10
.0

0

12
.0

0

14
.0

0
16

.0
0

18
.0

0
20

.0
0

22
.0

0

1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7

Time

o

f
L

o
co

m
o

ti
ve

s

CW60AC

CW44AC

CW40-8

GP40

SD40

Fig. 9. Locomotive Inventory at the Terminals by Locomotive Type.

In addition to the average numbers, users can choose to view details for each
simulation week. The chart in Figure 8 describes the number of late trains in
each two-hour bucket for the fourth simulation week. The chart displays the
data for each train priority. As before, the user can choose to view the chart for
a specific terminal. The software also provides a similar chart for train delayed
hours. Users also can look at locomotive inventory of the terminals. Figure 9
describes the locomotive inventory at terminals for each locomotive type for the
same fourth simulation week.

272 Artyom Nahapetyan et al.

In addition to the charts above, LSO generates reports that describe all events
taking place at a terminal during a specific week, light moves performed during
the simulation, dwell time of locomotives at a terminal and at each simulation
day, and statistics on shop repair and queue times.

6 Performing “What-If” Analysis Using LSO

In this section, we describe how the software can be used to perform “what-if”
analysis on the system. To illustrate this, we have designed five scenarios that
help to understand the influence of different parameters on key measures used by
locomotive managers to evaluate overall system performance. In each case, we
simulate the process by executing several runs and then present average results
in the charts.� � � � � � � � � 	
 � � � � � � �
 � � � � � � � � � � � �

� �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � � �
� �� � � � � � ! �

On Time Arrival % On Time Departure %

� � � � � � � � � 	 � � " � � � # � � $ � % # � � � � � � � &' (� �) �) �
 � � � � � # * " � # #
 � �
� � �� � �� � �� � �� � �� � �� � �� � �� � �� � �

� �� � � � � � ! � � �� � + �� �� � + �� �� � + �� �� � + �
Power Plan Compliance % A vg Terminal Dwell Time (hrs)

Fig. 10. On-Time Train Performance, Power Plane Compliance and Average Terminal
Dwell Time for Different Locomotive Fleet Sizes.

In Scenario 1, we analyze the influence of locomotive fleet size on train on-
time departures and arrivals, power plan compliance, and average terminal dwell
time. In this experiment, we proportionally change the locomotive fleet size for
all five locomotive types used in the simulation. Charts in Figure 10 show that
by increasing the locomotive fleet size, we improve train on-time performance as
well as the power plan compliance. Since less locomotives are required to move
between terminals to restore terminal imbalances, it also increases the terminal
dwell time of locomotives.

When locomotive managers assign locomotives to outbound trains, they
might delay a train for several hours to assign the consist described in the power
plan. Scenario 2 is designed to capture the influence of delay hours on the same
three measures used in the previous scenario, i.e., train on-time performance,
power plan compliance, and average terminal dwell time. In this experiment,

A Simulation/Optimization Framework for Locomotive Planning 273� � � � � � � � � 	
 � � � � � � �
 � � � � � � � � � � � �
� �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � � �

�� ��� � !" #$�%& '$�%&()$�%&(*$�%&(+$�%&(, - . / . 0 1 2 . 3 4
On Time Arrival % On Time Departure %

� � � � � � � � � 	 � � 5 � � � 6 � � 7 � 8 6 � � � � � � � 9: ; � � < � < �
 � � � � � 6 = 5 � 6 6
 � �
� � �� � �� � �� � �� � �� � �� � �� � �

�� ��� � !" #$�%& '$�%&()$�%&(*$�%&(+$�%&(, - . / . 0 1 2 . 3 4 ������ �� �� �
Power P lan Compliance % A vg Terminal Dwell Time (hrs)

Fig. 11. On-Time Train Performance, Power Plan Compliance and Average Terminal
Dwell Time for Different Waiting Hours for Right Consist.

we employ the same delay hours for all three priority trains. In Figure 11, we
can see that by increasing the waiting time for the right consist, i.e., consist
described in the power plan, we improve power plan compliance but worsen on-
time train performance. Note that we do not count these delays towards the
terminal deficit; therefore, average number of light moves does not change and
the average terminal dwell time of locomotives remains the same.> ? @ A B C D E F G H C B D A I A J H D K @ L @ C M E C K B A ? @

N O PQ O PR O PS O PT O PU O PV O PW O O P
X O Y V X O Y U X O Y T X O Y S X O Y R XZ [\ [] [^ _ ` a b c _ d e f a g c ^ a

On Time Arrival % On Time Departure %

> ? @ A B C D E F G I I > h B i @ B A j k l @ C B m @ n o @ p pH D K @
O Y O PW Y O Pq Y O PN Y O PQ Y O PR Y O PS Y O PT Y O P

X O Y V X O Y U X O Y T X O Y S X O Y R XZ [\ [] [^ _ ` a b c _ d e f a g c ^ a W qW q Y RW NW N Y RW QW Q Y RW RW R Y R
OOS Rate % Avg Terminal Dwell Time (hrs)

Fig. 12. On-Time Train Performance, Out-Of-Service Rate and Average Terminal
Dwell Time for Different Values of Locomotive Failure Rates.

In the next scenario, Scenario 3, we analyze the influence of locomotive failure
rates on on-time train performance, out-of-service rate, and locomotive dwell
time at terminals. In this experiment, we proportionally change failure rates of

274 Artyom Nahapetyan et al.� � � � � � � � � 	
 � � � � � � �
 � � � � � � � � � � � �
� �� � �� � �� � �� � �� � �� � �� � �� � �� � �� � � �

� �� � � ! " � # $! % & � ' (!
On Time Arrival % On Time Departure %

� � � � � � � � � 	 � �) � � � * � � + � , * � � � � � � � -. / � � 0 � 0 �
 � � � � � * 1) � * *
 � �
� 2 � �� � 2 � �� � 2 � �� � 2 � �� � 2 � �� � 2 � �� � 2 � �� � 2 � �� � 2 � �

� �� � � ! " � # $! % & � ' (! ������ �� �� �� �� �
Power Plan Compliance % Avg Terminal Dwell Time (hrs)

Fig. 13. On-Time Train Performance, Power Plan Compliance and Average Terminal
Dwell Time for Different Values of Train Travel Time.

all locomotive classes used in the simulation. Charts in Figure 12 show that by
deceasing the locomotive failure rate we reduce the OOS rate of locomotives
as it is expected. On the other hand, reducing locomotive failure rate increases
the locomotive dwell time at terminals and slightly improves the train on-time
performance.

Next, in Scenario 4, we analyze the influence of train velocity on system
performance. Specifically, in this experiment, we increase or decrease the train
travel time by a certain percentage. Charts in Figure 13 depict that a higher
travel time worsens the on-time train performance as well as the power plan
compliance. If trains do not arrive on time, outbound trains do not have enough
locomotives to depart. As a result, the module considers moving locomotive to
those location; therefore, it reduces the dwell time of locomotive at terminals.3 4 5 6 7 8 9 : ; < = 8 7 9 6 > 6 ? = 9 @ 5 A 5 8 B : 8 @ 7 6 4 5

C DE C DF C DG C DH C DI C DJ C DK C DL C DM C D
C N E C D N F C D N G C DO P Q R S T U V R W P X Y O Q Y Q Z V [\

On Time A rrival % On Time Departure %

3 4 5 6 7 8 9 : ; < > > 3] 7 ^ 5 7 6 _ ` a 5 8 b 7 b 5= 5 8 @ 9 6 7 c d e 5 c c = 9 @ 5
C f C DF f C DH f C DJ f C DL f C DE C f C DE F f C DE H f C D

C N E C D N F C D N G C DO P Q R S T U V R W P X Y O Q Y Q Z V [\ E E f HE E f JE E f LE FE F f FE F f HE F f JE F f LE GE G f F
OOS Rate % Avg Terminal Dwell Time (hrs)

Fig. 14. On-Time Train Performance, OOS Rate and Average Terminal Dwell Time
for Different Shop Capacities.

A Simulation/Optimization Framework for Locomotive Planning 275

In the last scenario, Scenario 5, we run the simulation for different values of
shop capacities. In this experiment, we gradually reduce shop capacities of all
10 shop locations we consider in the simulation. In Figure 14, we can see that
a small change in shop capacities slightly changes the OOS rate and does not
change on-time train performance and dwell time of locomotives. However, when
the capacities are reduced beyond a certain threshold, shops cannot repair all
the locomotives which accumulate in queues. As a result, the system shows a
huge jump in the OOS rate, reduction in locomotive dwell time at terminals and
on-time train performance.

7 Summary and Conclusions

In the paper, we have discussed LSO software, which simulates the movement
of locomotives across a railroad network. Specifically, it simulates the locomo-
tive assignment to outbound trains, train arrivals and departures, locomotive
breakdowns and maintenances, locomotive repair procedure at shops, terminal
processing, tactical repositioning, etc. We have tested the software on real data
obtained from CSX Transportation, one of the Class I railroads. The results show
that the statistical data of simulation is very close to the figures obtained from
day-to-day operations, and the software closely imitates the real-time locomotive
assignment and locomotive movement in the network. The software is able to
simulate six months of operations in about three minutes. All charts generated
in the reports show a very short warm-up period after which the system reaches
a steady state.

We have designed several scenarios to test the software and analyze the in-
fluence of different input parameters on the system performance. In the paper,
we have presented some of these results. In all scenarios, the output data has
correctly reflected the changes in the input parameters, and the software shows
a stable performance in terms of running time, warm-up period and convergence
to a steady state.

References

Ahuja, R.K., Liu, J., Orlin, J.B., Sharma, D., Shughart, L.A.: Solving real-life locomo-
tive scheduling problems. Transportation Science 39 (2005) 503–517.

Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and
Applications. Prentice Hall, Englewood Cliffs, NJ (1993).

Chih, K.C., Hornung, M.A., Rothenberg, M.S., Kornhauser, A.L., 1990. Implemen-
tation of a real time locomotive distribution system. In Computer Applications
in Railway Planning and Management, T.K.S. Murthy, R.E. Rivier, G.F. List, J.
Mikolaj (eds.), Computational Mechanics Publications, Southampton, UK, pp. 39-
49.

Vaidyanathan, B., Ahuja, R.K., Orlin, J.B., and L.A. Shughart: Real-life locomotive
planning: New formulations and computational results. To appear in Transporta-
tion Research B (2007).

276 Artyom Nahapetyan et al.

Ziarati, K., Soumis, F., Desrosiers, J., Gelinas, S., Saintonge, A.: Locomotive assign-
ment with heterogeneous consists at CN North America. European Journal of Op-
erational Research 97 (1997) 281–292.

Ziarati, K., Soumis, F., Desrosiers, J., Solomon, M.M.: A branch-first, cut-second ap-
proach for locomotive assignment. Management Science 45 (1999) 1156-1168.

	ATMOS07_Preface.1237.pdf
	vol007-oasics-frontmatter
	ATMOS07_Preface.1237

	07001_abstracts_collection.1184
	ATMOS 2007 - Abstracts Collection Selcted Papers from the 7th Workshop Algorithmic Approaches for Transportation Modeling, Optimization, and Systems
	 Ravindra K. Ahuja, Christian Liebchen, Juan A. Mesa

	07001.GarciaRicardo.Paper.1177
	07001.ClausenJens.Paper.1181
	07001.ClausenJens.Paper.1183
	07001.CapraraAlberto.Paper.1174
	07001.BorndoerferRalf.Paper.1170
	07001.CacchianiValentina.Paper.1172
	07001.AbbinkErwin.Paper.1168
	07001.SteinzenIngmar.Paper.1167
	07001.CaimiGabrioCurzio.Paper.1173
	07001.FischettiMatteo.Paper.1176
	07001.MaueJens.Paper.1179
	07001.CiceroneSerafino.Paper.1175
	07001.PowellWarren.Paper.1180
	07001.BauerReinhard.Paper.1169
	07001.BrueraFrancesco.Paper.1171
	07001.GunkelThorsten.Paper.1178
	Improved Search for Night Train Connections
	Thorsten Gunkel, Matthias Müller--Hannemann and Mathias Schnee

	07001.AhujaRavindra.Paper.1182

