COMPUTING TIME AS A PROGRAM VARIABLE:
A WAY AROUND INFEASIBLE PATHS

Niklas Holsti'

Abstract

Conditional branches connect the values of program variables with the execution paths and thus
with the execution times, including the worst-case execution time (WCET). Flow analysis aims to
discover this connection and represent it as loop bounds and other path constraints. Usually, a
specific analysis of the dependencies between branch conditions and assignments to variables
creates some representation of the feasible paths, for example as IPET execution-count constraints,
from which a WCET bound is calculated. This paper explores another approach that uses a more
direct connection between variable values and execution time. The execution time is modeled as a
program variable. An analysis of the dependencies between variables, including the execution-time
variable, gives a WCET bound that excludes many infeasible paths. Examples show that the
approach often works, in principle. It remains to be seen if it is scalable to real programs.

1. Introduction

Static WCET analysis is usually divided into three main parts [16]: Flow analysis models the
possible execution paths (instruction sequences) as a control-flow graph (CFG). Processor-
behaviour analysis bounds the execution time of each basic block in the CFG. Bounds calculation
finds bounds on the execution time of entire execution paths. WCET tools often also make some
analysis of the possible values of program variables. This value analysis supports the data-
dependent parts of flow analysis and processor-behaviour analysis.

Define the structural paths as all paths through the CFG assuming that any conditional branch can
be taken or not taken — as though the conditions could have any value, at any time. Most programs
have loops and thus an infinite number of structural paths. Even after loop-bounds are applied to
make a finite set of paths, often many logically infeasible paths remain, leading to an overestimated
WCET bound. An infeasible path here means a connected sequence of CFG elements — nodes and
edges — that contains an edge for which the condition must evaluate to false if the path is executed
up to this edge and all earlier edge conditions on the path are frue.

Flow analysis can detect some infeasible paths, eg. [2, 14]. Typically, the computations (expressions,
assignments, branch conditions) are analysed and correlated to create some representation of the
feasible and infeasible paths (eg. dead code or mutually exclusive basic blocks). This “flow fact”
representation is then fed into the bounds calculation, for example as execution-count constraints for
IPET ([6] and other references in [16]). The connection between the computation and the execution
time is thus indirect: first from the computation to the flow facts, and then from the flow facts to the
execution time. This paper explores another approach with a more direct connection. Section 2

1 Tidorum Ltd, Tiirasaarentie 32, FI 00200 Helsinki, Finland

ECRTS 2008
8th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis 1
http://drops.dagstuhl .de/opus/volltexte/2008/1660

discusses the dependencies between values computed in a program, and how these lead to infeasible
paths. Section 3 presents the idea of the paper: to model the execution time as a program variable,
subject to dependency-sensitive value analysis. Section 3 shows analysis results for some examples
of infeasible paths, using a value analysis based on Presburger sets [12]. Section 4 describes this
analysis for loop-less code. Section 5 extends the Presburger-set analysis to loops. Section 6
considers how the loop analysis handles the execution-time variable and infeasible paths involving
loops. Section 7 closes the paper with a review of related work and a discussion.

2. Dependencies Between Variables and Values

Most variables in a program get their values from expressions that use the values of other variables,
which leads to dependencies between the values of these variables. Dependencies also arise when
different variables are independently computed and assigned within the same control structure. For
example, in an if-then-else structure, the values assigned in the then branch occur together, and
together with the true value of the condition, while those in the else branch occur together with the
false value, but mixtures are infeasible.

Several static program analyses discover such dependencies; eg. [1]. Few WCET tools do it, but
Lisper has suggested it [8]. Dependencies are the very reason for infeasible paths. Dependencies
between loop induction variables and the looping condition lead to loop repetition bounds. The
classic example of an infeasible path is two consecutive if-then-else structures with inter-dependent
conditions.

The Bound-T WCET tool [5] models variable values as sets of integer tuples constrained by
Presburger formulae — Presburger sets for short. Each element in a tuple models one variable; a
tuple models one possible combination of variable values; and a set of tuples models all possible
combinations of variable values. Dependencies between variables are included because the
Presburger formulae constrain the whole tuple, not each element (variable) separately. For example,
for two variables x, y, the set {[x, y] | x > 5 and y < 3x} models a state where x has any value
greater than 5 and y has any value less than 3x. Operations on Presburger sets include set
intersection, set union, set complement, relational join (mapping, application), convex hull, and test
for subset [12]. Bound-T currently uses its Presburger model mainly for loop-bound analysis and
does not search for other kinds of infeasible paths. This paper suggests how a dependency-sensitive
value-analysis, such as the one in Bound-T, can be used to compute WCET bounds that exclude
infeasible paths, without explicitly finding and representing the infeasible or feasible paths
themselves. In fact, a separate bounds-calculation phase is not needed; value analysis produces
WCET bounds.

3. Execution Time as a Computed Value

If we can analyse dependencies between variables, and we want to analyse the dependency between
variables and execution time, perhaps we can get there by treating the execution time as a variable in
the computation. To do so, augment the program (for the analysis only) with a new global variable,
T say, that represents the execution time from the start of the program (or the subprogram, for a
modular analysis). Augment each basic block » with the assignment T := T + #(b), where #(b) is the
execution time of the basic block, as found by processor-behaviour analysis using the structural

paths. If the basic block can have a range of execution times, use interval arithmetic. Assume that T
is initially zero. Use a value analysis to find the values of T at the end of the program; these are the
execution times of the program. If the analysis models dependencies between variables, the final
bounds on T should exclude some or all infeasible computations, depending on the precision of the
analysis of the (indirect) dependencies between T and branch conditions.

3.1 Example: Condition after Condition
The classic example of infeasible paths is the correlated pair of if-then-else conditional statements:

if x < 1 then <compute for 100 cycles>;

else <compute for 10 cycles>; end if;
<code that does not change x, for 30 cycles>;
if x > 3 then <compute for 200 cycles>;

else <compute for 20 cycles>; end if;

(For clarity, the time for evaluating the conditions is included in the times for the then and else
branches.) Each conditional statement in this example has a fast branch and a slow branch. The
structural paths include the path that takes both the slow branches, totalling 100 + 30 + 200 = 330
cycles. However, this path is logically infeasible because the conditions for the two slow branches,
x < 1 and x > 3, cannot be true at the same time. The longest feasible path occurs when x > 3 and
gives 10 + 30 + 200 = 240 cycles. Now augment the code with the execution-time variable T :

T := 0;
if x < 1 then <compute for 100 cycles>; T := T + 100;
else <compute for 10 cycles>; T T + 10; end if;
<code that does not change x, for 30 cycles>; T := T + 30;
if x > 3 then <compute for 200 cycles>; T T + 200;
else <compute for 20 cycles>; T := T + 20; end if;

A value analysis of the augmented program with the Presburger method (to be described in
Section 4) gives a model of the final values of the variable tuple [x, T] as the three-part set:

{[x,T] | x<landT=150} U {[x,T] | 1€x<3andT=60} U {[x,T] | x>3and T = 240}

The analysis thus excludes the infeasible value T = 330 and gives the precise bounds T = 60 .. 240.

3.2 Example: Saturating a Value

This example code makes sure that the variable x does not exceed the interval min .. max:

if X < min then x := min; end if;
if x > max then x := max; end if;

This code has an infeasible path if min < max, because the assignment x := min makes the
condition in the second if false. (The infeasible path could be avoided with an else if, but some
programmers seem to prefer the above form.) Augment the program with an execution-time variable
T as follows, adding else branches just to model the condition-evaluation time:

T := 0;
if x < min then x := min; T :=
if x > max then x := max; T :

=T+ 1; end if;
T + 1; end if;

o
[
0n
o
=
I

Assume for simplicity that min = 1 and max = 10. The model of the final values of [x, T] is then:
{[x, 21| 1<x<10} U {[1,4]} U {[10,4]}

Thus, the infeasible value T = 6 is avoided, and the precise range T =2 .. 4 is computed. The correct
range for T is computed even if the actual values of min and max are unknown (variable), as long as
the analyser knows that min < max. The path-exclusion analysis of Stein and Martin [14] cannot
handle this example because the assignment x := min does not dominate the second conditional.
However, as Stein and Martin say, their analysis could be extended to such “non-linear slices™ at the
cost of more complex Presburger problems and increased analysis time.

4. Presburger Analysis Basics

This section describes the Presburger-set value-analysis that gives the above results, taking the
saturation code in section 3.2 as an example. The analysis is similar to the one in Bound-T [5].

In the absence of loops the analysis is quite simple. Assume that there are n variables. At the start of

the program the model is the universal set of all possible variable-value tuples Z", where Z is the set
of all integers. Our example has the variables x and T son = 2.

Each statement (in Bound-T: each machine instruction) is modeled as a transfer relation between the

n input values and the n output values, a Presburger subset of Z2" = Z" x Z". For example, the
statement T := 0 is modeled by the transfer relation {[x, T, x', T'] | x' = x and T' = 0}. Here the
symbols x and T represent the variable values before the statement, while the primed symbols x'
and T' represent the values after the statement. This relation can be written more compactly as
{[x, T] — [x, 0]} where the arrow separates the “before” and “after” values and the constraints are

implied by the expressions. The universal 2-tuple set Z 2 is then written {[x, T]}.

Starting from the universal set {[x, T]} and applying the transfer relation {[x, T] — [x, 0]} produces
the set of new variable values {[x, 0]}, which models the variable values after the statement T := 0.
In this way, the variable-value model is propagated over the statements and nodes in the CFG. To
propagate the model over a CFG edge, the model set is intersected with the set defined by the edge
condition. When several edges converge to the same node, the union of the sets from each incoming
edge is computed. The union set is often non-convex, which increases both the power and the
complexity of the analysis, and differs from the model in [1]. Condition flags are another source of
non-convex sets, because their values are constrained by disjunctive formulas.

Figure 1 illustrates this analysis for the example in section 3.2. The figure shows the CFG with
Presburger sets placed before and after nodes to show the value-model at these points. Note the edge
from the second if towards the right, when x > 10; this edge condition eliminates the tuple [1, 3]
from the value set, which reflects the mutual exclusion of the two CFG nodes on the right. If the

analysis gives an empty Presburger set at some point — which does not happen in this example — that
part of the CFG is infeasible (dead).

{[xTI}

T:=0;
{[x,01}
{[x0] | x=1} 4+— ifx<l.. —» {[x0]|x<1}
x=1 x<1
T=T+1 2I('::Z #;+ 3;
{[x, 1] [x= 1} * {I1, 31}

{[x1]|x=1} u{[1,31}
{[x1] |1 =x=<10} u{[1,3]} *-— ifx>10.. ——» {[x1]|x>10}

x=10 x> 10 _]
T:=T+1; i -1rojr 3.
{[x2]1]1=x=<10} u {[1,4]} * {[10., 4]}

{[x2]|1=x=10} u{[1,4]} u{[10, 4]}

Figure 1: Presburger analysis of the saturation example

Computation with Presburger sets has exponential complexity in general. For practical purposes it is
important to minimize the number of constraints and union operations. If the T variable is updated
separately in each branch of a conditional, as above, T depends on every branch condition. For a
conditional where the branches have similar execution times, one could instead update T once for
the whole conditional, with T := T + max (then branch, else branch), as in the timing schema
methods [13]. The complexity can thus be reduced by a selective fall-back to a timing schema.

5. Presburger Analysis of Loops

This section extends the Presburger-set analysis to loops, showing how it can find bounds on the
number of iterations and bounds on the variables after the loop. As a running example, consider this
code that reverses the order of elements n .. n + 9 of the vector vec, where n is a variable:

i:=mn; j:=n+ 9;

while i < j loop
z := vec[i]; vec[i] := vec[]j]; vec[]] := z;
i:=1i+1; j =3 — 1;

end loop;

The analysis will ignore the values in vec because they have no effect on the loop or its execution
time, and pointer analysis is out of scope for this paper. The modeled variables are i, j, n, and z.
Since the vec values are ignored, the assignment to z is modeled as storing an unknown value in z.

Assume, initially, that there is only one loop, with a single loop head node that is the single point of
entry to the loop. The analysis is based on the repetition relation of the loop. One pass through the
loop body from the loop head up to and including a back edge is called a repetition of the loop. The

repetition relation is the Presburger relation that shows how one repetition changes variable values.
The repetition relation of the example loop above is {[i, j,n, z] = [i+1, j-1,n,z'] | i< 3},
where z', the new value of z, is unconstrained. Similarly, a pass through the loop body from the
loop head to an edge that leaves the loop is called an exit from the loop. The full execution of a loop
1s a sequence of zero or more repetitions, followed by one exit.

5.1 Classifying Variables as Invariant, Induction, or Fuzzy

For a program with loops, static analysis needs some form of induction or least-fixpoint iteration.
The Presburger-set domain has infinite ascending chains, so least-fixpoint iteration cannot be used
directly. Instead, we analyse the repetition relation of the loop to divide the variables into three
classes: an invariant variable is not changed at all; an induction variable is changed by a bounded
increment (possibly negative); and the rest are fuzzy variables that change in other ways.

Let R be the repetition relation of a loop and x a variable. Introduce a new variable dx on the
domain side to represent the possible increment in x, making R a relation in Z™*! x Z”. This role of
dx is expressed by the relation Rd =R N {[..,, x, ..., dx] = [..., x + dx, ...]}. Compute bounds on dx
by taking the domain of Rd, then projecting away the other variables to leave only the set of dx
values, and finally computing the convex hull of this one-dimensional set. The convex hull is the
interval that bounds dx. If dx is bounded to zero, x is invariant; otherwise, if dx is bounded to a
finite interval, x is an induction variable; otherwise x is a fuzzy variable. Note that dx can depend
on the other variables, but the projection and convex-hull operations discard those dependencies in
order to arrive at constant lower and upper bounds on dx. This is a necessary approximation at this
step of the analysis because the next step uses the bounds on dx to multiply a variable, and the
Presburger model allows multiplication only when at most one of the factors is a variable.

It 1s practical to introduce all increment variables at once. In the vector-reversal example, this
introduces the variables di, d3j, dn, and dz and gives the extended loop repetition relation

Rd = {[i, j, n, z,di, dj,dn, dz] — [i+1, j-1,n,z'] | i<}
M {[i9 j7 n, z, dia dj9 dn9 dZ] — [i+di7 j+dj5 n+dn9 Z+dZ]}

Computing bounds on di, dj, dn, dz from this Rd shows that di =1, dj =-1, dn =0, and dz is not
bounded. Thus i and j are induction variables, n is invariant, and z is a fuzzy variable.

5.2 Bounding the Number of Loop Repetitions

Introduce a new variable ¢ to model the iteration number 0, 1, 2, The value-model at the start of
the loop-head node is a Presburger set where each invariant variable has its initial (and invariant)
value, each induction variable equals its initial value plus c times its increment, and all fuzzy
variables are unconstrained”. Propagate the model from the loop head to all parts of the loop as in
section 4. Next, check if the Presburger sets on the back edges or exit edges of the loop (which
include the repetition or termination conditions) imply bounds on c; if so, these are the loop
repetition bounds.

2 A better but more complex model includes variable dependencies from the preceding iteration. Bound-T does so.

For the vector-reversal example, the Presburger set on the loop back edge is
{[i,3.n,2,c] | i-1<3j+1and i =n+1+c and j =n+8-c}

Here i and j represent the variable values at the end of the loop body, after they have been
incremented by di and dj. Projecting this set to the variable ¢ and computing the convex hull gives
the constraint ¢ < 4, which shows that the loop is repeated at most 5 times (for ¢ =0 .. 4). Of course,
if the number of repetitions of a loop is bounded by a user annotation, it is unnecessary to compute
bounds on ¢, as they are given by the annotation.

5.3 Modeling Variables After the Loop

The final step of the Presburger analysis of a loop is to model the variable values after the loop as
the result of some number of loop repetitions followed by a loop exit. For an induction variable, the
repetitions are modeled by multiplying the number of repetitions with the increment of the variable.
Both factors have constant bounds, but simply multiplying these constants would hide possible
dependencies between the increments, the number of loop repetitions, and other variables. At this
point there is a choice: one, but not both, of the factors can be treated as a Presburger variable,
making the analysis sensitive to dependencies between this variable and other variables. I have not
found a way to compute the number of repetitions as a Presburger variable, only as a constant
extracted from the Presburger model (bounds on the iteration number c), and therefore I choose the
increment factor as the Presburger variable, leaving the number of loop repetitions as a constant
factor. In the subsequent analysis of the post-loop code, the auxiliary variables for the increments
can be projected away; their relationships, if any, are still encoded in the structure of the projected
set.

In the vector-reversal example, there are no dependencies between the increments and other
variables. Similar analysis (omitted here) shows that the minimum number of repetitions is also 5,
so the values after the loop are modeled by the set {[i, j, n, z] | i =n+5 and j = n+4}.

For a loop that has more than one entry point, in other words more than one head node, a repetition
is defined as a pass through the loop from some head node to some back edge, and an exit is defined
as a pass from some head node to some edge that leaves the loop. The repetition relation is defined
as the union of the transfer relations from all possible repetition paths, and the set of initial values as
the union of the initial-value sets at all head nodes. The analysis itself remains the same.

If there are nested loops the Presburger-set analysis has two phases. The first phase analyses the
loops bottom-up, from the innermost to the outermost, classifies the variables as invariant,
induction, or fuzzy for each loop, and makes an approximate model of the total effect of each loop
as a relation that uses this classification but an unknown number of loop repetitions. The repetition
relation of an outer loop uses these approximations for all inner loops. The second phase analyses
the loops top-down, from outermost to innermost, and in flow order for loops at the same level. This
second phase computes loop-repetition bounds and better post-loop value models that include
bounds on the induction-variable increments and bounds on the number of repetitions. In some
cases the models can be further improved by iterating these two phases a few times. Note also that
user annotations that place bounds on variable values, at one program point or everywhere, are quite

easy to include in the Presburger sets, apart from the practical problem of mapping source-level
variable identifiers to machine-level storage locations.

6. Execution Time of Loops

This section considers how the Presburger-set analysis of loops applies to the execution-time
variable T, and in particular whether the bounds on T include or exclude infeasible paths in loops.
The execution-time variable T is evidently an induction variable, and its increment dT is the
execution time of the loop body. From section 5 the model of T after the loop is the initial value T
of T (the cumulated execution time up to the start of the loop) plus dT times the number of loop
repetitions, plus the execution time of loop exit. This is roughly the same formula as in the timing
schema methods [13] but here both T, and dT can depend on other variables. The exit from a loop is
analysed using the methods in section 4 and is already “outside” the loop from the viewpoint of
loop analysis. Thus, only loop repetitions are discussed here.

Loops can involve many kinds of dependencies and infeasible paths. For some kinds, the proposed
analysis excludes infeasible paths; for others it does not, as discussed below.

6.1 Iteration-Independent Dependencies

A dependency or an infeasible path is iteration-independent if it applies on every repetition of the
loop. In the simplest case, the loop contains a path that is infeasible on every repetition, whatever
happens outside the loop or in other repetitions or in an exit from the loop. An example is a loop
that contains the “saturation” code from section 3.2. The Presburger analysis omits the infeasible
path from dT, and so also from the final value of T.

Another example is a conditional outside the loop that conflicts with a conditional inside the loop,
on every repetition of the loop. For example, put a loop around the second if-then-else statement in
the example in section 3.1, keeping the variable x as a loop invariant, thus:

t := 0;
if x <1 then t := t + 100;
else t := t + 10; end if;
for i in 1 .. 7 loop
if x > 3 then t := t + 200;
else t := t + 20; end if;

end loop;

In the repetition relation Rd the T-increment AT now depends on x, as can be seen in the domain of
Rd projected to the variables [x, dt], which is the set {[x,20] | x<3} U {[x,200] | x>3}. If
execution takes the slow branch of the first conditional, before the loop, it must then take the fast
branch of the second conditional, inside the loop, on every loop iteration. This dependency is
reflected in the model of the values after the loop. Projected to the variables [x, T] this set is

{[x,240] | x <1} U {[x, 150] | 1<x<3} U {[x, 1410] | 4 < x}

The infeasible path where both slow branches are taken would give a final T of 100 + 7 X 200 =
1500 cycles, which this analysis evidently excludes. The worst case takes the fast branch before the
loop and the slow branch in every repetition of the loop, giving 10 + 7 x 200 = 1410 cycles.

6.2 Iteration-Specific Dependencies

Some dependencies and infeasible paths apply only on some repetitions. For example, put a loop
around the second if-then-else statement in the example in section 3.1, but also add a statement in
the loop that changes x on repetition 4. Now the combination of the two slow branches is infeasible
for repetitions 0 through 3, but may be feasible for later repetitions. The Presburger analysis cannot
exclude these infeasible paths because the bounds on dT are computed over all repetitions together.

When a loop contains important iteration-dependent “unbalanced” conditionals, it is possible to
introduce new variables to model how often each branch is executed, and compute the final T as the
sum of these execution frequencies times the execution times (dT's) of the branches. This is very
similar to the IPET formulation, but now the dT's of the branches can depend on other variables, so
iteration-independent infeasible paths can be excluded. The execution frequencies could perhaps be
computed analytically from the Presburger model [11] or by other methods [4, 8].

6.3 Dependent Loop Bounds

Important infeasible paths may arise when loop bounds correlate with conditionals, as here:

if <cond> then <compute for 100 cycles>; n := 5;
else <compute for 10 cycles>; n := 20; end if;
for i in 1 .. n loop <compute for 10 cycles>; end loop;

A normal WCET analysis includes the infeasible path where the slow then branch is followed by 20
iterations of the loop, for a total of 300 cycles, although this branch implies only 5 iterations and
150 cycles. The actual WCET is 210 cycles, for the fast else branch followed by 20 iterations. The
analysis of this paper does no better and reports a WCET bound of 300 cycles, because the bound
on the number of loop repetitions is modeled as a constant (20), not as a Presburger variable (n) that
can depend on other variables. As explained in section 5.3 the loop bound and the increment dT
cannot both be Presburger variables, because the Presburger model does not allow multiplication of
two variables. Thus, one cannot at the same time model the dependencies of AT and of the loop
bound.

7. Discussion

The two main points in this paper are to model execution time as a program variable, and to use a
dependency-sensitive value-analysis to exclude infeasible values. Neither point is novel in itself, but
the combination is new, as far as I know. Haase [3] defined execution time as a program variable,
for proving real-time properties using weakest-precondition calculus. Haase's work influenced
Shaw's definition of timing schemata [13], but the max (then, else) schema for conditionals discon-
nects execution time from other variables. The annotation language described by Mok et al. [9] is a
kind of program to compute the execution time, but it is evaluated apart from the target program.

Model-checking approaches to timing analysis [10] must treat execution time as a variable, and may
use semi-symbolic state representations. The analysis of Cousot and Halbwachs [1] identifies affine
dependencies between variables, but uses convex hulls, which I believe means that its ability to
exclude infeasible paths is weak. Lisper included dependency-sensitive value analysis in his
ambitious proposals [8], but without execution time as a variable. Stein and Martin use Presburger
models in their analysis of exclusive paths [14]. However, they create constraints for bounds
calculation by IPET, and do not use a time variable.

The method explored in this paper needs a name. Let us call it the time-variable method. Different
value analyses can be used with this method; the Presburger analysis is only one possibility. The
examples show that the time-variable method with Presburger analysis excludes some kinds of
infeasible paths, but not all kinds. The method is in principle applicable to more kinds of of
infeasible paths than some other methods, such as [14]. The time-variable method does not need a
representation of feasible and infeasible paths (a flow-fact language) nor a separate bounds-
calculation phase. A drawback is that it does not, by itself, exclude infeasible paths from the
processor-behaviour analysis. This could lead to over-estimated WCETs of CFG elements. However,
while it is easy to exclude single infeasible (dead) nodes and edges from the processor-behaviour
analysis, it seems much harder to exclude longer infeasible paths, because the analysis would have to
identify which paths generate which processor states. Hence this drawback may be insignificant.

In processors with caches and other accelerators the execution time #(b) of a basic block b is not
constant but depends on the history of execution. Using a history-independent worst-case #(b) can be
a gross over-estimation. Current WCET tools have two approaches to this problem. The first
approach (virtually) expands the CFG so that the same basic block is represented by different CFG
nodes in different contexts, and thus by different context-specific values of #(b) [15]. The most
common expansion peels the first iteration from each loop so as to separate the I-cache misses that
may occur on the first iteration, from the I-cache hits that are assured on later iterations. The time-
variable method allows such CFG expansions and their benefits are the same as in the IPET method.

The second approach to handle history-sensitive accelerators is to expand the IPET problem by new
ILP variables that model the states of the accelerator mechanisms (eg. the contents of the I-cache)
and the additional execution time required by accelerator state transitions (eg. an I-cache miss) [7].
As the time-variable method does not use IPET, it cannot use this approach as such. In principle,
new Presburger variables could model accelerator states, but the complexity would likely be
impractical.

Experience with the Bound-T tool [5] shows that the Presburger analysis is practical in many cases
for analysis of loop bounds, but also impractical in some cases (large subprograms), at least in its
current implementation. I think that the complexity comes mainly from the disjunctions (set
unions). In [14] Stein and and Martin restrict their analysis to “linear” slices and thus avoid
disjunctions. Still, I believe that disjunctions are necessary for analysing several kinds of infeasible
paths. Better slicing to simplify the Presburger model, selective use of a timing schema for well-
balanced conditionals, and perhaps taking the convex hull of the Presburger sets at selected program
points may reduce the analysis time. Bound-T currently calculates WCET bounds with IPET, not
with the time-variable method. Implementation and experimental evaluation of the time-variable
method is future work.

10

8. References

(1]

(2]

(3]

(4]

(5]

(6]

[10]

[11]

[12]

[13]

[15]

[16]

COUSOT, P., HALBWACHS, N., Automatic discovery of linear restraints among variables of a program, in: Proc.
of the 5Sth ACM SIGACT-SIGPLAN Symp. on Principles of Programming Languages, January 1978.

GUSTAFSSON, J., ERMEDAHL, A., SANDBERG, C., and LISPER, B., Automatic derivation of loop bounds
and infeasible paths for WCET analysis using abstract execution, in: Proc. of the 27th IEEE International Real-
Time Systems Symposium (RTSS'06), December 2006.

HAASE, V.H., Real-time behaviour of programs, in: IEEE Transactions on Software Engineering, Vol SE-7,
No. 5, September 198]1.

HEALY, C., SIODIN, M., RUSTAGI, V., WHALLEY, D., and ENGELEN, R. V., Supporting Timing Analysis by
Automatic Bounding of Loop Iterations, in: Real-Time Systems, vol. 18, no. 2-3, May 2000.

HOLSTI, N., Bound-T Reference Manual. Tidorum Ltd, http://www.bound-t.com/, February 2008.

LL Y.-T. S., MALIK, S., Performance analysis of embedded software using implicit path enumeration, in: Proc. of
the 32:nd Design Automation Conference. 456—461, 1995.

LI Y.-T. S., MALIK, S. WOLFE, A., Cache modeling for real-time software: beyond direct mapped instruction
caches, in: Proc. of the 17th IEEE Real-Time Systems Symposium, December 1996.

LISPER, B., Fully automatic, parametric worst-case execution-time analysis, in: Proc. of the 3rd International
Workshop on Worst-Case Execution Time Analysis, Porto, Portugal, July 2003.

MOK, A.K., AMERASINGHE, P., CHEN, M., and TANTISIRIVAT, K., Evaluating tight execution time bounds
of programs by annotations, in: Proc. 6th IEEE Workshop on Real-Time Operating Systems and Software,
Pittsburgh, PA, USA, May 1989.

NAYDICH, D., GUASPARI, D., Timing analysis by model checking, in: Lfm2000 — Fifth NASA Langley Formal
Methods Workshop, Technical Report NASA-2000-cp210100.

PUGH, W., Counting solutions to Presburger formulas: how and why, in: Proc. of the ACM SIGPLAN 1994
Conference on Programming Language Design and Implementation, Orlando, Florida, United States, June 1994.

PUGH, W., et al., The Omega project: frameworks and algorithms for the analysis and transformation of scientific
programs, University of Maryland, http://www.cs.umd.edu/projects/omega.

SHAW, A.C., Reasoning about time in higher-level language software, in: IEEE Transactions on Software
Engineering, Vol 15, No 7, July 1989.

STEIN, 1., MARTIN, F., Analysis of path exclusion at the machine code level, in: Proc. of the 7th International
Workshop on Worst-Case Execution Time Analysis, Pisa, Italy, July 2007.

THEILING, H., FERDINAND, C., Combining Abstract Interpretation and ILP for Microarchitecture Modelling
and Program Path Analysis, in: Proc. of the 19th IEEE Real-Time Systems Symposium, December 1998.

WILHELM, R., et al., The worst-case execution time problem — overview of methods and survey of tools, in:
ACM Transactions on Embedded Computing Systems, Volume 7, Issue 3, April 2008.

11

	1.Introduction
	2.Dependencies Between Variables and Values
	3.Execution Time as a Computed Value
	3.1Example: Condition after Condition
	3.2Example: Saturating a Value

	4.Presburger Analysis Basics
	5.Presburger Analysis of Loops
	5.1Classifying Variables as Invariant, Induction, or Fuzzy
	5.2Bounding the Number of Loop Repetitions
	5.3Modeling Variables After the Loop

	6.Execution Time of Loops
	6.1Iteration-Independent Dependencies
	6.2Iteration-Specific Dependencies
	6.3Dependent Loop Bounds

	7.Discussion
	8.References

