
8th International Workshop on
Worst-Case Execution Time
Analysis

WCET 2008, July 1, 2008, Prague, Czech Republic

Edited by

Raimund Kirner

OASIcs – Vo l . 8 – WCET 2008 www.dagstuh l .de/oas i c s



Editor
Raimund Kirner
Real Time Systems Group
Department of Computer Engineering
Vienna University of Technology
Treitlstraße 1–3/182/1
1040 Wien, Austria
raimund@vmars.tuwien.ac.at

ACM Classification 1998
C.4 Performance of Systems, D.2.4 Software/Program Verification

ISBN 978-3-939897-10-1

Published online and open access by
Schloss Dagstuhl – Leibniz-Center for Informatics GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany.

Publication date
November, 2008.

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works license:
http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the author’s moral rights:

Attribution: The work must be attributed to its authors.
Noncommercial: The work may not be used for commercial purposes.
No derivation: It is not allowed to alter or transform this work.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/OASIcs.WCET.2008.i

ISBN 978-3-939897-10-1 ISSN 2190-6807 http://www.dagstuhl.de/oasics



iii

OASIcs – OpenAccess Series in Informatics

OASIcs aims at a suitable publication venue to publish peer-reviewed collections of papers emerging from
a scientific event. OASIcs volumes are published according to the principle of Open Access, i.e., they are
available online and free of charge.

ISSN 2190-6807

www.dagstuhl.de/oasics

WCET 2008





http://drops.dagstuhl.de/opus/volltexte/2008/1663
http://drops.dagstuhl.de/opus/volltexte/2008/1659
http://drops.dagstuhl.de/opus/volltexte/2008/1670


http://drops.dagstuhl.de/opus/volltexte/2008/1667
http://drops.dagstuhl.de/opus/volltexte/2008/1669


http://drops.dagstuhl.de/opus/volltexte/2008/1657
http://drops.dagstuhl.de/opus/volltexte/2008/1660


http://drops.dagstuhl.de/opus/volltexte/2008/1658
http://drops.dagstuhl.de/opus/volltexte/2008/1662
http://drops.dagstuhl.de/opus/volltexte/2008/1664


http://drops.dagstuhl.de/opus/volltexte/2008/1665
http://drops.dagstuhl.de/opus/volltexte/2008/1666


http://drops.dagstuhl.de/opus/volltexte/2008/1668
http://drops.dagstuhl.de/opus/volltexte/2008/1661


WCET TOOL CHALLENGE 2008: REPORT

Niklas Holsti1, Jan Gustafsson2, Guillem Bernat3 (eds.),
Clément Ballabriga4, Armelle Bonenfant4, Roman Bourgade4, 

Hugues Cassé4, Daniel Cordes7, Albrecht Kadlec5, 
Raimund Kirner5, Jens Knoop6, Paul Lokuciejewski7, 

Nicholas Merriam3, Marianne de Michiel4, Adrian Prantl6, 
Bernhard Rieder5, Christine Rochange4, Pascal Sainrat4, 

Markus Schordan6

Abstract
Following   the   successful  WCET   Tool  Challenge   in   2006,   the   second   event   in   this   series   was  
organized in 2008, again with support from the ARTIST2 Network of Excellence. The WCET Tool  
Challenge   2008   (WCC'08)   provides   benchmark   programs   and   poses   a   number   of   “analysis  
problems”   about   the   dynamic,   run­time   properties   of   these   programs.   The   participants   are 
challenged to solve these problems with their program­analysis tools. Two kinds of problems are 
defined:   WCET   problems,   which   ask   for   bounds   on   the   execution   time   of   chosen   parts   (sub­
programs) of the benchmarks, under given constraints on input data; and flow­analysis problems,  
which ask for bounds on the number of times certain parts of the benchmark can be executed, again  
under some constraints. We describe the organization of WCC'08, the benchmark programs, the  
participating   tools,   and   the   general   results,   successes,   and   failures.   Most   participants   found  
WCC'08 to be a useful  test  of  their  tools. Unlike  the 2006 Challenge, the WCC'08 participants  
include several tools for the same target (ARM7, LPC2138), and tools that combine measurements  
and static analysis, as well as pure static­analysis tools.

1. Introduction

1.1 Worst­Case Execution­Time: Why It is Needed, How to Get It

The chief characteristic of (hard) real­time computing is the requirement to complete the compu­
tation within  a  given  time or  by a  given  deadline.  The computation or  execution   time usually 
depends to some extent on the input data and other variable conditions. It is then important to find 
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the worst­case execution time (WCET) and verify that it is short enough to meet the deadlines in all 
cases. For a multi­threaded computation the usual approach is to find the WCETs of each thread and 
then verify  the system timing by some  scheduling analysis,  for example response­time analysis. 
Finding   the  WCET of   each   thread,   and  of  other   significant  parts  of   the   computation   such  as 
interrupt­disabled critical regions, is thus an important step in the verification of a real­time system.

Several methods and tools for WCET analysis have been developed. Some tools are commercially 
available. The recent survey by Wilhelm  et al. [42] is a good introduction to these methods and 
tools. Some tools use pure static analysis of the program; other tools combine static analysis with 
dynamic   measurements   of   the   execution   times   of   program   parts.   Unlike   most   applications   of 
program analysis, WCET tools must analyse the  machine  code, not (only) the source code. This 
means that the analysis depends on the target processor, so a WCET tool typically comes in several 
versions, one for each supported target processor or even for each target system with a particular set 
of caches and memory interfaces. Some parts of the machine­code analysis may also depend on the 
compiler that generates the machine code. For example, the analysis of control­flow in switch­case 
statements may be sensitive to the compiler's idiomatic use of jumps via tables of addresses.

In general, WCET tools use simplifying approximations and so determine an  upper bound on the 
WCET, not the true WCET. The pessimism, that is the difference between the true WCET and the 
upper bound, may be large in some cases. For most real, non­trivial programs a fully automatic 
WCET analysis is not (yet) possible which means that manual annotations or assertions are needed 
to define essential information such as loop iteration bounds. The need for such annotations, and the 
form  in which   the  annotations  are  written,  depends on both   the  WCET  tool  and on  the   target 
program to be analysed.

1.2 The WCET Tool Challenge: Aims and History

Several European developers and vendors of WCET tools collaborate in the Timing Analysis sub­
cluster of the ARTIST2 Network of Excellence which is financed under Frame Programme 6 of the 
European Union [3]. Early in this collaboration, Reinhard Wilhelm (Saarland University) proposed a 
“competition” for WCET tools, modelled on the existing tool competitions, in particular tools for 
automated deduction and theorem proving (ATP).

However, discussion within the ARTIST2 group found several important differences between ATP 
tools and WCET tools. Where ATP tools have a standard input format (mathematical logic in textual 
form), WCET tools use different input formats: different source and machine languages for different 
instruction sets. Moreover, where ATP tools have a common and unambiguous expected result (a 
proof or disproof) and the true answer for each benchmark problem is known, WCET tools have a 
numeric, nearly continuous range of approximate outputs (WCET bounds or WCET estimates) and 
the true WCET of a benchmark program is often unknown, at least when the target system has 
caches or other dynamic accelerator mechanisms.

After some discussion, the term “Challenge” was chosen to emphasize that the aim is not to find a 
“winning” tool, but to challenge the participating tools with common benchmark problems and to 
enable   cross­tool   comparisons   along   several   dimensions,   including   the   degree   of   analysis 
automation   (of   control­flow   analysis,   in   particular),   the   expressiveness   and   usability   of   the 
annotation mechanism, and the precision and safety of the computed WCET bounds. Through the 
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Challenge, tool developers can demonstrate what their tools can do, and potential users of these 
tools can compare the features of different tools.

As a result of this discussion, Jan Gustafsson of the Mälardalen Real­Time Centre organized the 
first WCET Tool Challenge in 2006 [13], using the Mälardalen benchmark collection [26] and the 
PapaBench benchmark [24],  with participation from five   tools.  The results   from WCC'06 were 
initially reported at the ISoLA 2006 conference [14] and later in complete form [15]. Lili Tan of the 
University of Duisburg­Essen did an independent evaluation of the tools on these benchmarks, also 
reported at ISoLA 2006 [36].

The second WCET Tool Challenge was organized in 2008 (WCC'08 [39]) and is the subject of this 
report.  The   report   combines   contributions   from  the  WCC'08  participants   and   is   edited  by   the 
WCC'08   steering  group,   some  of  whom  are   also  WCC'08   participants.  The   editors  wrote   the 
introductory sections 1 and 2 (the participants contributing the tool descriptions in section 2.4) and 
the general discussions of problems and results in sections 3 and 4. The participants wrote section 5 
to   explain  how  they  used   their   tools   to   analyse   the  WCC'08  benchmarks   and   to   discuss   their 
experiences and point out particular problems or successes. The editors wrote the summary and 
conclusion in section 6. 

2. Organization of WCC'08

While WCC'06 was quite a success, it had some significant shortcomings. The main problem was 
the lack of a common target processor – all tools in WCC'06 assumed different target processors, 
and so produced incomparable WCET values for the same benchmarks. Another problem was the 
lack of test suites for the WCC'06 benchmark programs, which made it difficult for measurement­
based or hybrid tools to participate – all WCC'06 results used static analysis only. Furthermore, 
many of these benchmarks were small or synthetic programs with a single execution path, and some 
were written in non­portable ways that made the analysis unduly difficult on some target processors. 
Finally, there was no precise definition of the Challenge “problems”, that is, which parts of the 
benchmarks were to be analysed, and under which assumptions, and no common form for presenting 
the analysis results.

After WCC'06, a working group for the next Challenge was set up and consisted of Jan Gustafsson, 
Guillem Bernat, and Niklas Holsti. This became the steering group for WCC'08, with the aim of 
correcting the shortcomings of WCC'06: choosing a common target processor; choosing portable 
benchmark programs; creating test suites to let measurement­based tools participate; defining the 
analysis  problems precisely enough to ensure  that all  participants make the same analyses;  and 
defining a common result format for easy comparison. We were fortunate to get some financial 
support from ARTIST2 for this work.

The   WCC'08   schedule   was   intended   to   produce   results   for   presentation   at   the   annual   WCET 
Workshop,  which   in  2008  took place  on  July  1.  However,   the  planning  and structuring  of   the 
Challenge took some time to converge. The final version of the “debie1” benchmark, which became 
the main benchmark, was not available until April 9. Moreover, some participants had to port their 
tools   to   the ARM7 target  which also caused delay.   In   the end,  only one participant   (OTAWA) 
produced results before the WCET Workshop; the rest entered their results later. For WCC'08 the 
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participants (tool developers) did all their own analyses. There was no “independent” analysis as 
done by Lili Tan for WCC'06 [36].

The main  tool   for  organizing WCC'08 was  the Wiki  site  hosted at  Mälardalen [40].  We  thank 
Hüseyn Aysan of MRTC for setting up the Wiki framework. Most of the initial Wiki content was 
written by Niklas Holsti with ARTIST2 funding. The Wiki defines the benchmark programs and the 
analysis problems – in other words, the questions that the participants should answer with their 
tools. For each benchmark program there is a page with result tables in which WCC'08 participants 
enter their results. WCC'08 participants have full editing access to the Wiki; non­participants have 
read­only access.  In addition to   the benchmarks,  analysis  problems, and result   tables,   the Wiki 
contains sundry information about the target processors and cross­compilers and a collection of 
questions and answers that arose during WCC'08.

2.1 The WCC'08 Benchmarks

For WCC'08 we wanted benchmark programs that are relatively large, preferably real programs, or 
based   on   real   programs,   rather   than   synthetic   ones,   and   are   provided   with   test   suites   for 
measurement­based  WCET analysis.  We also  wanted  new benchmarks   to  make a  change  from 
WCC'06. In the end, because of labour constraints, none of the WCC'06 benchmarks were included 
in WCC'08. We regret in particular the absence of PapaBench [24], caused by the lack of a test 
suite, and hope that it will be included in a future Challenge. WCC'08 defined five benchmarks: the 
“debie1”   benchmark,   courtesy   of   Space   Systems   Finland   Ltd   (SSF),   and   four   benchmarks 
contributed by Rathijit Sen and Reinhard Wilhelm of Saarland University. The rest of this section 
briefly describes these benchmarks.

The “debie1” benchmark

The “debie1” benchmark is based on the on­board software of the DEBIE­1 satellite instrument for 
measuring impacts of small space debris and micro­meteoroids [11]. The software is written in C, 
originally for the 8051 processor architecture, specifically an 80C32 processor that is the core of the 
the Data Processing Unit (DPU) in DEBIE­1. The software consists of six tasks (threads). The main 
function is interrupt­driven: when an impact is recorded by a sensor unit, the interrupt handler starts 
a chain of actions that read the electrical and mechanical sensors, classify the impact according to 
certain quantitative criteria, and store the data in the SRAM memory. These actions have hard real­
time deadlines that come from the electrical characteristics (hold time) of the sensors. Some of the 
actions are done in the interrupt handler, some in an ordinary task that is activated by a message 
from the interrupt handler. Two other interrupts drive communication tasks: telecommand reception 
and   telemetry   transmission.   A   periodic   housekeeping   task   monitors   the   system   by   measuring 
voltages  and  temperatures  and checking   them against  normal   limits,  and  by  other  checks.  The 
DEBIE­1   software   and   its   WCET   analysis   with   Bound­T   were   described   at   the   DASIA'2000 
conference [17]. The WCC'08 Wiki also has a more detailed description [40].

The real DEBIE­1 flight software was converted into the “debie1” benchmark by removing the 
proprietary   real­time  kernel   and   the   low­level  peripheral   interface   code   and   substituting  a   test 
harness that simulates some of those functions. Moreover, a suite of tests was created in the form of 
a test driver function. The benchmark program is single­threaded, not concurrent; the test driver 
simulates   concurrency   by   invoking   thread   main   functions   in   a   specific   order.   The   DEBIE­1 
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application functions, the test harness, and the test driver are linked into the same executable. This 
work was done at Tidorum Ltd by Niklas Holsti with ARTIST2 funding.

SSF provides the DEBIE­1 software for use as a WCET benchmark under specific Terms of Use 
that do not allow fully open distribution. Therefore, the “debie1” benchmark is not directly down­
loadable from the WCC'08 Wiki. Copies of the software can be requested from Tidorum8. SSF has 
authorized Tidorum to distribute the software for such purposes.

The benchmarks “rathijit_1” through “rathijit_4”

The goal of this group of benchmark programs, constructed and contributed by Rathijit Sen and 
Reinhard Wilhelm of Saarland University,  is to stress­test  both instruction­cache and data­cache 
analysers. The programs use a large number of C macros within loops. When these macros are 
instantiated by the C preprocessor the code size becomes quite large. The intent is to have a large 
instruction­cache footprint. The large code size means that these benchmarks also test the scalability 
of all analyses. There is no particular rationale or meaning behind choosing any particular constant, 
construct,  condition,  or  ordering.  They have been chosen at   random. The programs are single­
threaded.

The “rathijit_1” benchmark tests data reuse and control­flow analysis by initializing and walking 
through various parts of a 2D array. The “rathijit_2” benchmark aims to test control flow analysis, 
data­flow analysis, data reuse, and alias analysis. The basic unit has a 2­nested loop within a 3­
nested conditional check and accesses some portion of 4 arrays  through pointers  which are set 
depending on the arguments passed to the basic unit. Globally there are 4 2D arrays, and the basic 
unit is instantiated a number of times. The goal of “rathijit_3” is to test code and data reuse in 
functions across different  invocations.  The program contains a  2­dimensional  grid of functions, 
func_i_j, with i and j in 0 .. 10, for a total of 121 functions. The number of times each function is 
called depends on its position in the grid. Thus, func_i_j is called a number of times depending on i 
and j and should be able to reuse code and data fetched earlier, provided they have not been evicted 
from the cache. It is also possible that the data could have been fetched by some other function. The 
“rathijit_4” benchmark again  tests  control­flow analysis  and data   reuse by 4­nested switch­case 
statements, conditional branches and function calls from within the case statements.

The “rathijit” benchmarks are published under a liberal open­source licence and can be downloaded 
directly from the WCC'08 Wiki site [40].

2.2 The WCC'08 Analysis Problems

For each WCC'08 benchmark  a  number  of  analysis  problems  or  questions  are  defined,   for   the 
participants to analyse and answer. There are two kinds of problems: WCET­analysis problems and 
flow­analysis   problems.  Flow­analysis  problems   can  be  answered  by   tools   that   focus  on   flow­
analysis (for example SWEET [35], unfortunately not a WCC'08 participant) but that do not have 
the   “low­level”   analysis   for   computing   WCET   bounds   (for   the   ARM7   processor,   or   for   any 
processor).  Flow­analysis  problems  can  also   show differences   in   the   flow­analyses  of  different 
WCET tools, and this may explain differences in the WCET bounds computed by the tools.

8 niklas.holsti@tidorum.fi
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A typical WCET­analysis problem asks for bounds on the WCET of a specific subprogram within 
the   benchmark   program   (including   the   execution   of   other   subprograms   called   from   this 
subprogram). For example, problem 4a­T1 for the “debie1” benchmark asks for the WCET of the 
HandleTelecommand function when the variable input data satisfy some specific constraints.

A typical flow­analysis problem asks for bounds on the number of times the benchmark program 
executes   a   certain   statement,   or   a   certain   set   of   statements,   within   one   execution   of   a   root 
subprogram. For example, problem 4a­F1 for the “debie1” benchmark asks how many calls of the 
macro  SET_DATA_BYTE  can   be   executed   within   one   execution   of   the   function  HandleTele­
command,   under   the   same  input­data   constraints   as   in   the  WCET­analysis   problem 4a­T1.  By 
further requiring the analysis to assume that the execution time of SET_DATA_BYTE  is arbitrarily 
large we make it possible for pure WCET­analysis tools to answer this flow­analysis question, since 
this assumption forces the worst­case path to include the maximum number of  SET_DATA_BYTE 
calls; all alternative paths have a smaller execution time.

2.3 The WCC'08 Suggested Common Target Processor

After polling the potential participants, we decided to suggest the ARM7 processor as the common 
target for WCC'08. However, other targets were also allowed; the TuBound group used the C167. 
Since different ARM7 implementations may have different timing for memory accesses we picked a 
particular ARM7 chip, the LPC2138 from NXP Semiconductor [29]. The IF­DEV­LPC kit from 
iSYSTEM [18] was recommended for running LPC2138 benchmarks and was used by Tidorum and 
Rapita Systems. However,   iSYSTEM no longer supply this  kit   in single quantities.  The MTime 
group used another board, from OLIMEX [27]. The execution times should be the same on all 
LPC2138 boards because all timing interactions are on­chip and involve no off­chip components.

The ARM7 is basically a simple, deterministic processor that does not challenge the analysis of 
caches and complex pipelines that are important features of some WCET tools [42]. We had to 
choose such a simple common target because a more complex one would have required a large effort 
from most participants. Even so, some potential participants withdrew from WCC'08 because they 
did not have time to port their tools to the ARM7. More complex targets are under consideration for 
future Challenges and were certainly not excluded from the invitation to WCC'08.

The ARM7 architecture

The ARM7 [2] is a 32­bit pipelined RISC architecture with a single (von Neumann) address space. 
All basic ARM7 instructions are 32 bits long. Some ARM7 devices support the alternative THUMB 
instruction set, with 16­bit instructions, but this was not used in WCC'08. The ARM7 processor has 
16 general registers of 32 bits. Register 15 is the Program Counter. Thus, when this register is used 
as a source operand it has a static value, and if it is a destination operand the instruction acts as a 
branch.   Register   14   is   designated   as   the   “link   register”   to   hold   the   return   address   when   a 
subprogram call occurs. There are no specific call/return instructions; any instruction sequence that 
has the desired effect can be used. This makes it harder for static analysis to detect call points and 
return points in ARM7 machine code. The timing of ARM7 instructions is basically deterministic. 
Each instruction is documented as taking a certain number of “incremental” execution cycles of 
three   kinds:   “sequential”   and   “non­sequential”   memory­access   cycles   and   “internal”   processor 
cycles. The actual duration of a memory­access cycle can depend on the memory subsystem. The 
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term “incremental” refers to the pipelining of instructions, but the pipeline is a simple linear one, 
and the total execution­time of an instruction sequence is generally the sum of the incremental times 
of the instructions

The LPC2138 chip and the MAM

The NXP LPC2138 implements the ARM7 architecture as a microcontroller with 512 KiB of on­
chip flash memory starting at address zero and usually storing code, and 32 KiB of static on­chip 
random­access memory (SRAM) starting at adress 0x4000 0000 and usually storing variable data. 
There is no off­chip memory interface, only peripheral I/O (including, however, I2C, SPI, and SSP 
serial interfaces that can drive memory units).

The on­chip SRAM has a single­cycle (no­wait) access time at any clock frequency. The on­chip 
flash allows single­cycle access only up to 20 MHz clock frequency. At higher clock frequencies, up 
to   the LPC2138 maximum of  60 MHz,   the  flash needs wait  cycles.  This can delay  instruction 
fetching   and   other   flash­data   access,   but   the   LPC2138   contains   a   device   called   the  Memory 
Acceleration Module (MAM) that reduces this delay by a combination of caching and prefetching as 
follows.

The flash­memory interface width is 128 bits, or four 32­bit words. The MAM contains three 128­
bit buffers that store, or cache, flash contents: the Prefetch buffer, the Branch Trail buffer, and the 
Data buffer. When the MAM is enabled, the Prefetch buffer holds the 128­bit block that contains 
the current instruction. The MAM concurrently prefetches the next 128­bit flash block into a fourth 
internal buffer called the “latch”. If execution continues sequentially from the last instruction in the 
Prefetch buffer, the next instructions are often already present in the MAM latch and are then moved 
to the Prefetch buffer so that execution continues without delay. The MAM again starts to prefetch 
the next 128­bit block from the flash to the latch. Instructions that read data from the flash make the 
MAM abort the prefetch, read the requested data from the flash while the processor waits, and 
restart the prefetch. This can force the processor to wait also for the next 128­bit instruction block. 
The MAM Data buffer caches the most recently read 128­bit  block of flash data. This benefits 
sequential data access but is not useful for random access.

When a branch occurs, the processor must generally wait for the MAM to read the 128­bit block that 
contains the target instruction. The Branch Trail buffer in the MAM holds the last 128­bit block that 
has been the target of a branch. Thus, when an innermost loop has no internal branches, the loop­
repeating branch usually “hits” in the Branch Trail buffer and causes no fetch delays.

The effect of the MAM on WCET analysis is similar to that of a cache. The state of the MAM 
depends on the dynamic history of the execution, and the state affects the time for instruction fetch 
and data access from the flash memory. The flash memory is divided into 128­bit blocks, similar to 
cache lines, and execution­timing can depend on which block an instruction or a datum lies in, and 
whether it lies in the flash or in the SRAM. For branches the timing can also depend on the offset of 
the source and target instructions within their blocks, through the block­prefetch function.
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MAM configurations m2t1 and m2t3

In the available version of the LPC2138 the MAM has two bugs [25] that limit the useful MAM 
configurations to Mode 2 (MAM fully enabled). However, when the number of cycles for a flash 
access is set to 1 the MAM has no effect on timing, as if the MAM were disabled. We defined two 
MAM configurations for WCC'08: Mode 2 with 1 access cycle, and Mode 2 with 3 access cycles. 
These configurations are abbreviated m2t1 and m2t3. In m2t1 the MAM has no effect and timing is 
static. In m2t3 the MAM has a dynamic effect on timing as discussed above.

Other factors that affect execution timing on the LPC2138

The on­chip peripherals in the LPC2138 connect to a VLSI Peripheral Bus (VPB) which connects to 
the  Advanced High­performance Bus   (AHB)  through an  AHB­VPB bridge.  This  bus  hierarchy 
causes some delay when the ARM7 core accesses a peripheral register through the AHB. If the 
VPB is configured to run at a lower clock frequency than the ARM7 core this delay is variable 
because it depends on the phase of the VPB clock when the access occurs.

The programming tools

The IF­DEV­LPC kit from iSYSTEM comes with an integrated development environment called 
WinIDEA and a GNU cross­compiler and linker. The distributed benchmark binaries for WCC'08 
were  created with Build 118 of these tools using gcc­4.2.2 [19]. The IF­DEV­LPC kit has an USB 
connection   to   the  controlling  PC and  internally  uses   JTAG to  access   the  LPC2138.  WinIDEA 
supports debugging with breakpoints, memory inspections, and so on.

The   MTime   group   used   another   kit,   the   OLIMEX   LPC­H2138   board   [27]   with  openocd  and 
gcc­4.2.1 as the development environment. This board has a serial I/O port which the MTime group 
found useful for software instrumentation techniques.

2.4 Tools Participating in WCC'08

The   tools   that   participated   in  WCC'08   are   (in   alphabetical   order)  Bound­T,  MTime,  OTAWA, 
RapiTime, TuBound, and the WCET­aware C compiler wcc. Of these, only Bound­T and MTime 
also participated in the first Challenge in 2006. OTAWA, TuBound, and wcc are new tools and were 
not ready for use in 2006. RapiTime is a hybrid tool that needs a test suite for each benchmark, and 
such suites  were  not  available   for   the WCC'06 benchmarks.  Short  descriptions  of   the  WCC'08 
participating tools follow, in alphabetical order by tool name.

Bound­T from Tidorum Ltd

Bound­T [37] is a typical static WCET analysis tool for simple processors. It loads an executable 
file, decodes instructions to build control­flow graphs and the call­graph, uses data­flow analysis to 
find (some) loop bounds, and IPET (per subprogram) to find WCET bounds. The data­flow analysis 
models the computation with Presburger arithmetic as explained in [16]. An assertion (annotation) 
language is provided. There is no cache analysis or other support for complex, dynamic processors. 
Bound­T is at present a closed­source tool that Tidorum licenses to users.
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Bound­T is  implemented in Ada. It  uses no special  formalisms to describe target processors or 
analysis algorithms, and no generative methods, but does use generic Ada modules. For example, a 
generic least­fixpoint solver is instantiated for various data domains and transfer functions to create 
a constant propagator, a def­use analyser, and other data­flow analyses.

An early version of Bound­T was used to analyse the original DEBIE­1 program [17] from which 
the WCC'08 benchmark “debie1” is derived. Moreover, the principal author of Bound­T (Holsti) 
took part in the creation of the DEBIE­1 program and also converted that program into the “debie1” 
benchmark for WCC'08 and defined the analysis problems for the benchmark. Thus Bound­T and 
Tidorum may have had some head start on the analysis of this benchmark for WCC'08.

MTime from Vienna University of Technology

MTime is  a measurement based execution time analysis  tool.   It  uses static  analysis   to split   the 
program in smaller program segments (PS) with a manageable number of execution paths and uses 
model checking to generate test data [41]. The new version of the tool, which is currently under 
development, is also able to determine loop bounds by model checking [33]. Unfortunately, due to 
time constraints we were not able to prepare the new version for WCC'08. Thus we used the stable 
version of MTime within WCC'08, which is not able to analyze programs with loops. 

The test data generated by MTime are used to enforce the execution of all feasible paths within each 
PS  to  perform the  execution­time measurement.   In   the following calculation step  the measured 
execution times are combined and an estimate for the WCET is calculated. Mutually exclusive paths 
within each PS are excluded but pessimism can be introduced by mutually exclusive paths spanning 
over more than a single PS. The obtained WCET estimate can be guaranteed on simple hardware 
without dynamic run­time optimization or run­time resource allocation, when all instructions have 
constant execution time and the CFGs of the source code and object code are the same.

The aim of the tool is to provide a convenient and platform­independent way to perform execution­
time measurements. Since the tool operates on source code and uses a modular design, which makes 
it   possible   to   use   different   instrumentation   and   measurement   techniques   by   loading   different 
modules, it is virtually platform independent.

OTAWA from the TRACES group at IRIT

OTAWA [8,  28] is a framework dedicated to the development of WCET analyzers. It includes a 
range of facilities like:

• loaders (to load the binary code to be analyzed – several ISAs are supported –, flow facts, a 
description of the hardware, etc.), 

• code analyzers (eg. a CFG builder), 

• code processors that perform specific analyses (eg. pipeline analysis, cache analysis, branch 
prediction analysis, etc.) and attach some properties to code items (eg. a time value can be 
attached to each basic block, a cache access category can be attached to an instruction, etc.)

• an IPET module that builds the IPET formulation from the CFG, the flow facts and the results of 
the invoked code processors.
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OTAWA is an open software and has been designed to make the integration of new code processors 
easy. It is available under the LGPL licence.

RapiTime from Rapita Systems Ltd

RapiTime  [32]   is   a  measurement­based   tool,  i.e.,   it   derives   timing  information  of  how  long  a 
particular   section   of   code   (generally   a   basic   block)   takes   to   run   from   measurements.   Timing 
information   is   captured  on   the   running   system by   either   a   software   instrumentation   library,   a 
lightweight software instrumentation with external hardware support,  purely nonintrusive tracing 
mechanisms (like Nexus and ETM) or even traces from CPU simulators. The user has to provide test 
data from which measurements will be taken. Measurement results are combined according to the 
structure of the program to determine an estimate for the longest path through the program. The 
program structure is a tree that is derived from either the source code or from the direct analysis of 
executables. The user can add annotations in the code to guide how the instrumentation and analysis 
process will be performed, to bound the number of iterations of loops, etc.

RapiTime aims at medium to large real­time embedded systems on advanced processors. The tool 
does not rely on a model of the processor. Thus, in principle, it can model any processing unit (even 
with out­of­order execution, multiple execution units, various hierarchies of caches, etc.). Adapting 
the tool for new architectures requires porting the object code reader (if needed) and determining a 
tracing mechanism for that system. RapiTime is the commercial­quality version of the pWCET tool 
developed at the Real­Time Systems Research Group at the University of York [5].

TuBound from Vienna University of Technology

TuBound is a research prototype of a WCET­analysis and program­development tool­chain [30]. A 
distinctive feature of TuBound is that it allows to annotate programs with flow information at the 
source code level. This flow information is then transformed conjointly  to code transformations 
within the development tool chain. TuBound currently includes a C++ source­to­source transformer, 
a  static  analysis  component,  a  WCET­aware C compiler,  and a  static WCET analysis   tool.  The 
WCET analysis   tool currently  integrated into the TuBound tool­chain is  calc_wcet_167,  a  static 
WCET analysis tool that supports the Infineon C167 as target processor.

WCET­aware C compiler wcc from Dortmund University of Technology

In contrast to other tools participating in this challenge, the wcc [12] is not a pure WCET analyzer 
but a complex compiler framework allowing an automatic WCET minimization. The WCET­aware 
compiler has been used for the development of different compiler optimizations driven by WCET 
information. Examples for WCET­aware optimizations are Procedure Cloning [23] or a cache­based 
Procedure Positioning [22]. 

The compiler consists of a high­level intermediate representation (IR), called ICD­C IR, and a low­
level IR, called LLIR. This separation of the code representation offers potential for a wide range of 
different   analyses   and   optimizations.   The   currently   supported   target   hardware   is   the   Infineon 
TriCore 1.3, a 32­bit microcontroller­DSP architecture optimized for high performance  real­time 
embedded   systems.   The   processor   supports   different   memory   hierarchies   including   caches, 
scratchpad memories and flashes.
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Figure 1: Workflow of wcc

The workflow is depicted in Figure 1. After parsing the C code, possibly annotated with flow facts 
(FF), into the ICD­C IR, standard compiler analyses, like data­ and control­flow analyses, might be 
performed. In addition, the user can select from a large set of more than 30 average­case execution 
time (ACET) and WCET optimizations. The generation of the low­level IR is performed by the code 
selector. At the LLIR level, the user can choose again between standard analyses and numerous 
ACET and WCET optimizations. The code can be finally dumped into an assembly file and passed 
to the assembler. 

Besides the typical components of an optimizing compiler, the wcc  is extended by various WCET 
concepts.   The   fundamental   extension   distinguishing   our   compiler   from   other   compilers   is   the 
binding of the compiler back­end with the static WCET analyzer aiT [1] developed by the company 
AbsInt.   In   a   first   step,   the   LLIR   code   is   converted   into   CRL2,   a   machine­code   intermediate 
representation, and used as input for the automatic invocation of aiT. After the WCET analysis, 
WCET and execution count information is imported back into the compiler and can be exploited for 
further applications, e.g. low­level WCET­driven optimizations. 

The static loop analyzer [9] is another crucial module to turn a static WCET analysis framework into 
a fully automatic system. wcc's loop analysis operates on the high­level IR and is based on Abstract 
Interpretation and polytope models. In addition, a technique called Program Slicing is deployed to 
accelerate the static analysis. The loop analyzer computes loop bounds and dumps them either in a 
human­readable format or passes them to the Flow Fact (FF) Manager. 

The FF Manager is responsible for keeping flow facts, which are either read from the source code or 
generated by the loop analyzer, consistent. During optimizations, like Loop Unrolling, the original 
flow   facts   might   become   invalid.   The   manager   keeps   track   of   applied   optimizations   and 
automatically   adjusts   flow   facts   if   required.   In   addition,   the   manager   is   responsible   for   the 
translation of ICD­C flow facts into the LLIR and further into CRL2. Thus, at any level of the code 
representation and after the application of optimizations, flow facts are correct.
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To sum up, the  wcc  is a framework offering on the one hand standard compiler functionalities to 
translate   an   optimized   C   source   code   into   machine   code.   On   the   other   hand,   the   described 
extensions provide an automatic static WCET estimation of high­ and low­level code for a state­of­
the­art processor, compiler optimizations tailored towards an automatic WCET minimization and a 
static computation of flow facts. The latter is deployed to generate flow analysis results reported in 
the WCC'08.

3. Problems and Solutions

3.1 Life as Usual in the Embedded World

As usual for embedded programming, the participants that actually tried to run the benchmarks on a 
real processor had various problems with the development tools. For example, some versions and 
configurations of WinIDEA led to executables that did not initialize the global variables correctly; 
the  bugs   in   the  LPC2138 MAM [25]  made some programs  run   incorrectly  under   some MAM 
configurations; and some participants experienced flash “lock­ups” that prevented reprogramming 
of   the   flash   memory.   Solutions   to   these   problems   were   found   by   avoiding   MAM   modes   0 
and 1 [25]; upgrading the development tools [19]; and using correct settings in obscure tool menus.

3.2 Problems in the Analysis

As these benchmarks are new ones, not analysed before by any WCC'08 participant, some problems 
were to be expected. Although the DEBIE program had been analysed for WCET earlier [17], that 
was for a different target – the Intel 8051, or 80C32 to be exact – not for the ARM7. In fact, for some 
participants this was their first extensive analysis of ARM7 code: the MTime and OTAWA groups 
ported their tools to the ARM7 target for WCC'08, and the ARM7 version of Bound­T, initially a 
mere prototype,  was significantly extended for WCC'08.

Even so, most problems reported by the participants came not from the WCET tools, but from the 
wording of the definitions of the WCC'08 analysis problems or questions, some of which assume 
rather complex execution scenarios and constraints. The complexity was intentional, to stress the 
capability of the annotation languages. Indeed no tool was able to implement all constraints as flow­
fact annotations. The obscurities and omissions in the definitions were not intentional.

4. Results

4.1 Tools and Targets

Table 1 below shows which target processors each participant has addressed for WCC'08 (most tools 
support other target processors, too). A notable fact is that four of six tools do flow analysis on the 
source­code level. This means that their flow­analysis results could in principle be compared in 
source­code terms. For example, on the source­code level we can talk about iteration bounds for 
specific  loops,  which is not possible on  the machine­code  level because of code optimizations. 
Future Challenges should perhaps pose flow question also on the source­code level. Another fact 
shown in  Table 1  is that the suggested common target processor, the ARM7 LPC2138, is indeed 
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supported by many participants, at least in the simple m2t1 mode. Note also that although wcc was 
used in WCC'08 only for source­code flow­analysis, it can produce WCETs for its target processors.

Table 1: Tools and targets in WCC'08

 Source­code
flow analysis

LPC2138
m2t1

LPC2138
m2t3

C167

Bound­T +

MTime + + +

OTAWA + + +

RapiTime + +

TuBound + +

wcc +

4.2 Results

The full set of results is too large to be presented here; please refer to the Wiki [40]. Table 2 below 
shows the number of analysis problems for each WCC'08 benchmark, the number of flow­analysis 
and  WCET­analysis  questions   to  be  answered,   and   the  number  of  questions  answered  by  each 
participating tool (by 10 September 2008). If a tool answers the same question for several target 
processors, or for several MAM modes on the LPC2138, it still  counts as only one answer. The 
absence of results, so far, for MTime and RapiTime is explained in section 5. Note that at present it 
is not certain that all participants have interpreted the analysis problems in exactly the same way 
(same input and execution constraints) which means that the current results (on the Wiki) from 
different tools may not be comparable even for the same target. We are working on this.

Table 2: Number of posed and  answered analysis problems in WCC'08

Posed problems and questions

Benchmark debie1 rathijit_1 rathijit_2 rathijit_3 rathijit_4

Number of problems 18 2 6 1 2

Type of question Flow WCET Flow WCET Flow WCET Flow WCET Flow WCET

Number of questions 15 22 1  2 6 6 1 1 2 2

Answered questions (blank = none)

Bound­T 13 18 1 1

MTime

OTAWA 7 16 2

RapiTime

TuBound 11 18 1 1 1 1

wcc 15 1 6 1 2
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WCC'08 actually has two kinds of analysis questions for WCET. The more common kind asks for 
the WCET of a given subprogram. The less common kind asks for the WCET of the interrupt­
disabled   regions  within  a   given   subprogram,  which   is   an  an   important   input   to   schedulability 
analysis. However, no participant answered questions of the second kind, although such problems 
have been studied before [7].

5. Tools and Experiences

This   section   collects   the   participants'   reports   on   their   goals,   problems,   solutions,   and   other 
comments on WCC'08. It is divided into a subsection for each participating tool, written by the 
developers of that tool, edited only for uniform formatting.

5.1 Bound­T (written by N. Holsti)

Adapting Bound­T to the ARM7

The basic ARM7 architecture is well suited to Bound­T. The only troublesome aspect is the lack of 
dedicated   call   and   return   instructions   which   makes   it   harder   to   split   the   target   program   into 
subprograms based on the machine code alone. For the ARM7 version of Bound­T, I took the timing 
of each ARM7 instruction from the “incremental” cycle numbers in the ARM7 manual [2]. The 
execution time of an instruction sequence is taken to be the sum of these numbers. In other words, I 
assumed that  the incremental numbers include all  possible pipeline stalls.  I  verified this  timing 
model by measuring the execution time of suitable parts of the “debie1” benchmark on an IF­DEV­
LPC kit. For these measurements, the software was instrumented with instructions to set the value 
of an LPC2138 output port (P0), the port was connected to a logic analyzer that recorded the value 
of  the port  on each clock,  and the number of clock cycles between instrumentation points  was 
computed from this record.

The value­analysis part of Bound­T at first had problems with the ARM7 code from gcc, because 
gcc often uses different registers as temporary pointers to stack variables. I extended the constant­
propagation part of the value­analysis to handle semi­symbolic values of the form P + c, where P is 
a symbol representing the initial value of the stack pointer (the base of the stack frame for the 
subprogram under analysis) and  c  is a constant. References to such memory addresses are  then 
resolved into references to statically identified parameters or local variables, even though the actual 
value of P  is unknown. This extension will be useful for other targets, too, in particular when the 
compiler uses frame pointers for some, but not all subprograms.

Problems with the LPC2138

Bound­T has no general cache analysis, but I planned to model the LPC2138 MAM using a specific 
abstract interpretation. However, while the MAM at first seems rather simple, from the description 
in [29], with more study one quickly finds undocumented areas. For example, the detailed timing of 
aborting and restarting an instruction prefetch is not clear. To investigate these questions I made 
several   test   programs   that   systematically   test   many   cases,   for   example   branches   with   all   16 
combinations of 128­bit­block offsets of the branch instruction and the target instruction. The test 
programs were densely instrumented with port  outputs and measured with the logic analyzer.  I 
found some interesting results, such as loops in which the execution time of the loop body alternates 
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between two values – faster on every other iteration, slower on the rest – even when every iteration 
executes the same instructions. I found no simple conceptual model that could explain the MAM 
timing. In desperation I  tried to make a cycle­accurate simulation of  the MAM, in the form of 
clocked registers and logic elements. This model accurately predicted most, but not quite all, of the 
observations. Running out of time and energy, I abandoned the MAM modelling, so for WCC'08 
Bound­T/ARM7 can analyse only the m2t1 configuration, where the MAM has no effect on timing.

Another, smaller problem with the LPC2138 is the location of the SRAM at the relatively large 
address of 0x4000 0000. The value­analysis in Bound­T depends on an external tool (the Omega 
Calculator [31]) that uses 32­bit integers and conservatively checks against overflow. However, this 
tool sometimes aborted the value­analysis of pointers into the SRAM because intermediate results 
threatened to overflow. I worked around this problem with annotations or by linking the benchmark 
programs with a memory map that uses a smaller SRAM address.

Problems and successes with the benchmarks

The Bound­T analysis of the “debie1” benchmark went in general as well as could be expected: 
many loop­bounds were found automatically, but many were not. Some of the WCC'08 execution 
constraints could be expressed in the Bound­T annotation language, but some could not, or required 
ugly work­arounds. For some “disjunctive” constraints I had to make several analyses with different 
annotations and combine the results manually. This is described in detail in the Bound­T notes on 
the WCC'08 Wiki site, including all annotations that I used. Of course, I had an unfair advantage 
over the other WCC'08 participants for this benchmark, because of my earlier association with the 
development   of   the   DEBIE­1   software   [17]   and   my   work   on   the   definition   of   the   “debie1” 
benchmark.

Bound­T was much less successful with the “rathijit” benchmarks. The subprograms in “rathijit_1” 
and  “rathijit_2”  are   too   large   for   the  value­analysis   in  Bound­T,  which  did  not   terminate   in   a 
reasonable time, or ran out of memory. Annotations can sometimes avoid the need for this value­
analysis,   but   are   no   help   in   this   case   because   Bound­T   needs   value­analysis   to   analyse   the 
dynamically branching code from the numerous switch­case statements. Also, the large number of 
loops   in   these   benchmarks   would   make   manual   annotation   cumbersome.   In   “rathjiit_3”   the 
compiled forms of the loops terminate by comparing the values of pointers to the LPC2138 SRAM 
area, and these values are too large for the value analysis in Bound­T. Relinking the program with a 
smaller SRAM address enabled successful automatic analysis of “rathijit_3”. In “rathijit_4”, the 
subprogram func1 is compiled to an irreducible control­flow graph. The current version of Bound­T 
cannot analyze loops in irreducible graphs.

Comments on the WCET Tool Challenge

Considering WCC'08 as a participant, not as one of the organizers, I found it quite useful for driving 
the ARM7 version of Bound­T from a prototype towards a practical tool. The comparison of the 
Bound­T   results   to   similar   tools   (in   particular   OTAWA)   was   a   good   check.   The   “rathijit” 
benchmarks   will     be   good   measures   of   future   progress   in   the   scalability   of   Bound­T.   As   an 
organizer, I enjoyed the contacts and discussions with all the participants.
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5.2 MTime (written by B. Rieder and R. Kirner)

This section presents the results of the MTime tool for the WCET Tool Challenge 2008. Although it 
has not been possible to measure WCET results for the given benchmarks there are some results.

Target Hardware
First, a new instrumentation and measurement module for the old version of the MTime framework 
was created to support the ARM7TDMI platform. To perform execution­time measurements the 
OLIMEX ARM­USB­OCD Programmer and the LPC­H2138 development board were used [27]. 
The used target hardware provides an RS232 port on the development board and the programmer 
provides an ARM JTAG interface and an USB­to­RS232 converter  on a single USB connector, 
which makes it the ideal choice for laptops or PCs without a serial port. An additional advantage is 
that the hardware is fully Linux compatible and fully supported by the openocd on­chip debugger 
while iSYSTEM, the manufacturer of the ITAG­U­ARM programmer and NXP LPC2138­M Mini­
Target  Board [18],  neither supplies Linux software nor supplies  information about  the  interface 
protocol of the ITAG­U­ARM JTAG programmer.

Measurements
The execution­time measurements are performed using the internal timer T0 of the LPC2138 which 
is set to run with the full CPU frequency. The measurement starts at the beginning of a PS with four 
assembly instructions which write “1” to the TCR0 register, which starts the timer, and ends at the 
end of the PS with another four instructions, writing a “0” to the TCR0 register for the timer to stop. 
The register width is 32 bits and there is an overflow register which is also 32 bits wide, resulting in 
a  maximum counter  value  of  264,  which  should  be   sufficient   for   all   applications.  The  current 
implementation uses a small boot loader, which is located in the flash, to download the application 
over the RS232 port. The test data and the measurement results are also transferred using the RS232 
connection. The measured program resides in the SRAM. For this reason the MAM problem does 
not arise, but results are likely to be different from flash­based solutions.

WCET Tool Challenge Benchmarks
The stable version of the MTime framework does not support loops, therefore no benchmarks from 
the challenge could be performed.

Comments on the WCET Tool Challenge

The challenge is a very good opportunity to compare current execution time analysis frameworks. 
To increase the comparability of the individual tools, we propose to add more synthetic benchmarks, 
with small isolated problems. Benchmarks should be ordered by increasing complexity starting from 
single­path code and ending in applications with nested loops with data­dependent control flow. 
Adding complexity gradually would also increase the comparability of the results and point out 
individual weaknesses or strengths of individual analysis tools, providing valuable information for 
the both tool developers and users. Additionally, it would be interesting to measure not only the 
quality of the WCET bound but also the effort required for the preparation of the analysis (how 
much time to add annotations, etc.) and the time required for the analysis.
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5.3 OTAWA (written by the TRACES group, see footnote 4 on title page)

General problems

The main problem we encountered is related to the specification of the “debie1” problems. First, we 
found it difficult to understand the meaning of some of the constraints and then we could not see 
how they should be translated into flow facts. We believe that defining a language to express the 
constraints would help, but this means that the constraints should probably be specified at a lower 
level (eg. line x in the foo.c source file – or instruction at address a in the executable code – is not 
executed, or is executed n times). A more formal description of the constraints could be more or less 
automatically   taken   into   account  by   the   tools.  Second,  many   flow  facts  had   to  be  determined 
manually (eg. loop bounds in the memcpy function according to the possible input values) and then 
specified manually to the WCET analyzer: this required much time for a single benchmark.

How we used OTAWA

To perform an automatic flow analysis, we used our oRANGE tool [10] which is not integrated to 
OTAWA at   this   time.  oRANGE determines  loop bounds  from  the  source code.  The  flow facts 
related   to   other   algorithmic   structures   as   well   as   the   loop   bounds   that   could   not   be   found 
automatically were specified as manual annotations.

Using the OTAWA framework, we have built a WCET analyzer that invokes the ARM binary code 
loader, the CFG builder, a flow fact loader that reads the flow facts provided by oRANGE as well as 
manual   annotations,   code   processors   that   analyze   the   MAM   (for   instructions   only)   and   the 
ARM7TDMI pipeline (they were specifically developed for the Challenge) and the IPET module. 
The MAM analysis is based on Abstract Interpretation [6] and the ARM7TDMI pipeline analysis 
uses execution graphs [34]. We reported results for the  m2t1  and  m2t3  MAM configuration. We 
considered that all the data were in the SRAM.

Comments on the WCET Tool Challenge

We found the Challenge very useful. First, it was one of our first experience with a “real” target (as 
part of our research activities, we are used to consider “generic” processor models). It also was the 
first time we really used our ARM loader. Second, the Challenge was an opportunity for people in 
the team to work for a common goal and to interact more deeply than usual.

5.4 RapiTime (written by G. Bernat and N. Merriam)

General comments 

RapiTime observes and measures actual executions of the target program and therefore needs a suite 
of tests to be executed and observed. The “harness” module of the “debie1” benchmark contains a 
test suite, reached from the main function, that was created (by Tidorum Ltd) with two goals:

– To answer the analysis problems and questions defined for the “debie1” benchmark.
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– To check that the modifications to the real DEBIE­1 flight software resulted in a benchmark 
program that still works as expected.

To satisfy the first goal, the test suite calls each “root” subprogram for each of the analysis problems 
defined for “debie1”, under several different conditions. The calls are grouped according to  the 
input and environment constraints for each analysis problem so that  the measurements for each 
problem can be identified from the whole mass of measurements.

To satisfy the second goal, the test suite makes some checks on the state of the “debie1” application, 
after executing each test. These checks are not part of the measured code.

For some target systems, RapiTime can use non­intrusive methods for observing and measuring 
executions. However, for the present case an intrusive method based on instrumentation was used. 
The RapiTime C­code instrumenter inserted instrumentation points in the “debie1” source­code. 
During execution, the instrumentation points emit trace information (using LPC2138 port P0) which 
is time­stamped and recorded by external equipment. After execution, the RapiTime analyzer parses 
the  trace,   relative  to   the known control­flow structure of   the program and  the  locations  of   the 
instrumentation points, computes the execution­time distribution of each measured block of code, 
and computes a WCET estimate using all possible execution paths.

The test­suite code contains special instrumentation points that delimit the traces relevant to each 
analysis problem defined for “debie1”. Thus, while the benchmark program is only executed and 
measured   once,   the   WCET   analysis   is   done   separately   for   each   analysis   problem.   Moreover, 
RapiTime also computes coverage measures showing which parts of the code were executed.

The porting of RapiTime for the target was very simple, a single I/O port was used to trace the 
execution of the software using a logic analyser on an automatically instrumented version of the 
tests.  The tests   then were run and traces corresponding to each of  the tests were collected and 
analysed successfuly.

We observed some rare but anomalously large execution  times in  the traces  that   indicate some 
transient behaviour of the processor. Only the m2t3 configuration (MAM Mode 2, MAMTIM = 3) 
of the LPC2138 and “debie1” has been subjected to RapiTime analysis.

Even though RapiTime reports were generated, a lack of time to refine the analysis with annotations 
lead to unusable WCET results. The effort of completing the analysis and publishing the finished 
results will continue and will be reported in the next edition of the Challenge.

Comments on the WCET tool challenge

We believe that the Challenge is a very positive and that should be continued. This will strengthen 
the WCET community as a whole and unify the different research and development efforts.
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5.5 TuBound (written by the TuBound group, see footnotes 5 and 6 on title page)

General remarks about the benchmarks and TuBound

At the current state of development, most effort went into the support of flow annotations and the 
transformation thereof. TuBound thus cannot yet cope with some of the additional constraints that 
were given in the problem descriptions.

This concerned mostly path annotations (e.g. function f will be executed at least once before the first 
invocation of function  g) and variable value annotations, which caused overestimations in several 
benchmarks. For technical reasons, the interval analysis cannot yet accept user­supplied annotations. 
Work is underway to add support for this feature; however, it is not expected until after the deadline 
of the 2008 WCET Tool Challenge.

Although TuBound is conceived from ground up to be modular and to support multiple WCET 
analysis back ends, there was not enough time to port TuBound to the common ARM7 platform. We 
thus reported results for the C167 platform, which is a single­issue, in­order architecture with a 
jump cache.

About the WCET Tool Challenge

We   found   the   WCET   Tool   Challenge   a   very   good   opportunity   to   evaluate   the   quality   and 
performance of TuBound. It was a driver of many of TuBound's features to be implemented. The 
WCET Tool  Challenge   also   revealed   the  necessity   of   supporting   the  proposed   common  target 
architecture to provide comparable results. We look forward to contributing to the next WCET Tool 
Challenge with a further enhanced version of TuBound. As a further improvement in comparability, 
we   consider   the   availability   of   a   highly   expressive   and   widely   supported   common   annotation 
language.  Such   a   language  has   been  demanded  by  our  WCET'07   contribution  on   the   “WCET 
Annotation   Language   Challenge”   [20,  38],   and   a   proposal   on   essential   ingredients   of   such   a 
language was contributed to the WCET'08 workshop [21]. A website has been created to collect 
contributions from the community to propose a common WCET annotation language [38].

5.6 Dortmund wcc (written by P. Lokuciejewski and D. Cordes)

Successes and suggestions for improvement

We considered only the flow­analysis problems, because we entered WCC'08 late (after the WCET 
2008 workshop, in fact) and were pressed for time. Also, we saw no reason to enter WCET results 
for the current wcc target processor (TriCore) since no other WCC'08 participants use that target so 
no comparison would be  possible.

The “debie1” benchmark is a complex real­world benchmark and its  analysis  is challenging for 
static analysis tools. However, its evaluation was a useful experience for us since it indicated which 
problems a static flow analysis must cope with in an industrial project. In the beginning, we had 
minor   difficulties   to   figure  out   how  some  problems   should  be   interpreted.  However,  with   the 
intensive help of the organizers, all uncertainties could be removed and our static flow analysis 
succeeded in producing results for all flow analysis problems. To avoid interpretation problems for 
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the future challenges, we are of the opinion that a common flow­fact annotation language supported 
by all participants that enables a formal description of the constraints would be beneficial. 

The second class of benchmarks, the “rathijit” benchmarks, could be all successfully analyzed. Due 
to   the   typical   flow  fact  questions   about   function  execution  counts,  no  understanding  problems 
occurred. In general, the WCC'08 showed that our loop analyzer is suitable for the flow analysis of 
complex software and if future WCET Tool Challenges feature our target processor, we would be 
challenged to compare our WCET analysis results with other participants.

Comments on the WCET Tool Challenge

We consider the Challenge as a valuable activity. It motivated us to extend our static loop analysis 
by further functionalities of practical relevance. In contrast to the originally provided loop bound 
information, our analyzer is now able to bound the number of calls to functions. The evaluation of 
the   “debie1”   benchmark   also   indicated   some   cases   where   our   static   loop   analyzer   originally 
produced unnecessary  overapproximations.  Driven  by   this   fact,   a   thorough  review of  our  code 
entailed  some modifications   that   improved our   tool's  analysis  precision.  Last  but  not   least,   the 
Challenge emphasizes the needs for a formal flow­fact language to enable a comparison of different 
tools.

6. Conclusion

How can we evaluate the success of WCC'08? Compared to the 2006 Challenge, the number of 
participating tools grew from five to six, but of these six, four are new tools that did not take part in 
2006, and three of the 2006 tools did not take part in 2008. So there was a major change in the 
participant  set.  One reason for   this  may be  that  the organizers gave  too much emphasis   to   the 
suggested common target (LPC2138); some potential participants abstained from WCC'08 because 
they did not have time to create ARM7 versions of their tools. The participation of MTime and 
RapiTime   means   that   WCC'08   met   its   goal   of   including   measurement­based   tools.   We   also 
succeeded in defining pure flow­analysis problems unrelated to WCET analysis, but this did not yet 
attract the participation of pure flow­analysis tools. Even  wcc, the only participant that answered 
only flow­analysis problems (and answered all of them), is a WCET­oriented tool. An important 
goal for the next Challenge should be to motivate the 2006 participants to rejoin the Challenge, 
without losing the new 2008 participants.

The number of benchmark programs was smaller in 2008 (5 benchmarks) than it was in 2006 (17 
benchmarks, counting the two programs in PapaBench as two benchmarks). However, the number of 
analysis  problems, or questions,  was  increased,  because each WCC'08 benchmark poses several 
questions. Perhaps the next Challenge should not make such large changes in the benchmark set and 
in the nature of the benchmarks. It should perhaps reintroduce some of the benchmarks from 2006 
(PapaBench in particular [24]). The suggestion from the MTime team to add a sequence of small, 
synthetic benchmarks, posing analysis problems of increasing difficulty, is also attractive.

Most  WCC'08 participants   found  it  difficult   to  understand  the  constraints  on   input  values   and 
execution flows defined for some of the WCC'08 analysis problems, in particular for the “debie1” 
benchmark. It is striking that the reports from many participants in section 5 ask for a more formal 
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and standard way to define such things. This is certainly an issue for the organizers of the next 
Challenge, and also an opportunity to interact with the Annotation Language Challenge [20, 21].

Using a shared Wiki was successful. However, the next Challenge should strive to make the Wiki 
even more of a shared resource,   jointly created and enjoyed by  the Challenge participants,  and 
indeed by any workers in the WCET analysis field.

With the conclusion of WCC'08, plans are being made for the next WCET Tool Challenge. The 
WCC'08 organizers suggest that the Challenge should be defined as a continuous process, allowing 
the addition of benchmarks, participants, and analysis results at any time, punctuated by an annual 
deadline. At the annual deadline, a snapshot of the results is taken and becomes the result of the 
Challenge for that year.
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A TOOL FOR AVERAGE AND WORST-CASE
EXECUTION TIME ANALYSIS

David Hickey1, Diarmuid Early1and Michel Schellekens1

Abstract
We have developed a new programming paradigm which, for conforming programs, allows the average-
case execution time (ACET) to be obtained automatically by a static analysis. This is achieved by
tracking the data structures and their distributions that will exist during all possible executions of a
program. This new programming paradigm is called MOQA and the tool which performs the static
analysis is called Distritrack. In this paper we give an overview of both MOQA and Distritrack.
We then discuss the possibility of extending Distritrack for static worst-case execution time (WCET)
analysis of MOQA programs using the tight tracking of data structures already being performed.

1. Introduction

Much work is being done on the development of ways to predict program execution times. The
efforts are concentrated into two areas -complexity theory in which various time measures have been
developed for counting the basic number of operations in a program andreal-time systems in which
constraints on the execution times of programs are imposed, e.g. deadlines, cost, etc.

In general however, the static analysis of programs to determine any property, one of which is time, is
known to be very difficult in practice. Measuring ACETs automatically is no different. Some analysis
techniques have been developed, e.g. [2], but these tend to be quite complicated involving many
difficult mathematical techniques. Along with this, it is required that in some cases the algorithms are
programmed in an unfamiliar style when compared to general programming languages.

MOQA involves a way to determine statically the distribution of all possible data structures at any
point in a program. This makes an ACET analysis possible. The underlying mathematical techniques
are less complicated than previous approaches and allow a common programming style. Currently
MOQA programs are coded in Java using an API implementingMOQA’s operations.

Distritrack is the tool that has been developed to automate the static ACET analysis ofMOQA
programs. It combines elements of a number of static analysis techniques in order to track the data
structures and their distributions as set out inMOQA. The output of an analysis is generally a recur-
rence equation representing the number of basic operations, e.g. comparisons, swaps or Java bytecode
instructions, executed on the data structures. As future research, low-level timing information for spe-
cific hardware could be combined with this in order to determine the expected “real” ACET (i.e. clock
cycles, milliseconds, etc.) for the program being considered taking into account caching, pipelining,
etc.

ACETs can be used in conjunction with other execution time measures in soft real-time systems to
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estimate deadlines. While deadlines determined in this way only guarantee enough time for a majority
of their associated tasks, they may however lead to a significant improvement in the utilisation of
system resources [7]. When deadlines are hard, WCET is a more suitable execution time measure.
Like ACET, this is often difficult to obtain. Here we examine if the tight tracking of data structures
that is performed by Distritrack might in fact also facilitate a WCET analysis.

This paper is organised as follows. In Section 2.MOQA is introduced. Then in Section 3. an
overview of Distritrack is given along with details of how data structures are tracked. Section 4.
gives an example of aMOQA program and the corresponding ACET output by Distritrack. Next
in Section 5. we examine possible ways of extending Distritrack’s current analysis in order to obtain
WCET estimates. Finally in Section 6. some concluding remarks are given.

2. MOQA

MOQA [9, 10] is a special purpose high-level language for data (re)structuring. Its data structures
are simply specified as finite partial orders. Its operations are based on the classical abstract data type
operations. However, each operation has been purposely designed to guarantee that data collections
remain random throughout the computations. This in turn guarantees a modular ACET analysis.

In this section an overview ofMOQA is given based on the main ideas discussed in [9].

2.1. Data Structures

The basic data structure in the current implementation ofMOQA is a series-parallel partial order
(SPPO) which is a partial order that only allows nodes to be in series, denoted by⊗, or in parallel,
denoted by‖. For example the SPPO in Figure 2(a) can be represented in series-parallel notation
by d ⊗ ((b ⊗ a)‖c). Sub-structures, which can be single nodes or more complex SPPOs, are called
components.

The data of the language are labellings of the data structures. A data-labelling is simply an assignment
of a finite number of values to each node of the data structure so that the directed links of the data
structure are respected, i.e. if there is a directed link from a node x to a node y, then the label assigned
to x must be less than the label assigned to y. These labels can be any value, e.g. natural or real
numbers, words, other data structures containing data such as trees, etc. Any two labels need to be
comparable with respect to a given order on labels. For instance, the order on natural number labels
typically is the usual order on natural numbers.

MOQA programs compute over data-labellings, and will at each stage transform data-labellings to
new data-labellings. In such computations it is important to identify the states that data-labellings can
be in.

A state represents a collection of order-isomorphic data-labellings, i.e. data-labellings whose labels
are arranged in the same relative order within data structures.

We illustrate this with the data-labellings for the tree of size 4 given in Figure 1. If we use four distinct
values, saya, b, c, d, to represent the states of the same tree, wherea < b < c < d, we have only three
possible states as displayed in Figure 2. Note that the data-labelling in Figure 1(a) matches the state
in Figure 2(a) and data-labelling in Figure 1(b) matches the state in Figure 2(b).
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Figure 1. Data-labellings on data structures.
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Figure 2. Data-structure states.

Essentially, states reflect the relative order that the labels can be in, on any given data structure. The
values of the labels are irrelevant in this context, only their relative order is captured.

For any given data structure, the finite collection of the set of states over this data structure, is referred
to as therandom structure over the given data structure.

This amounts to the assumption that inputs for software are equally likely to occur in any of a given
number of finite states. Random data can be concisely captured as above via the notion of a random
structure. In practice of course, there may be several possible data structures. To represent this, the
notion of random bags is introduced. Arandom bag consists of finitely many random structures,
R1, . . . , Rn, each of which has amultiplicity Ki, wherei ∈ 1, . . . , n, which is a natural number used
in the calculation of the probabilities involved in the distribution.

2.2. Operations

Operations inMOQA map input random bags to output random bags. Operations which correctly
do this arerandom bag preserving.

The multiplicities of the input random bags are the key to the calculation of the ACETs. The ACET
for an operationP with input random bagR = {(R1, K1), . . . , (Rn, Kn)} is

TP (R) =
n

∑

i=1

Ki|Ri|

|R|
× T P (Ri) (1)

where|Ri| indicates the number of states inRi,
Ki|Ri|
|R|

is the probability ofRi occurring andT P (Ri)
is the ACET of executingP with inputRi.

Then, taking random bag preserving programs/operationsP andQ such that executingP on random
bagR results in random bagR′, the ACET of executingP followed byQ is:

T P ;Q(R) = TP (R) + T Q(R′) (2)
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Figure 3. Distritrack architecture.

For the purpose of this paper we will focus on two mainMOQA operations. For a complete descrip-
tion of the operations, designed to capture traditional data structuring operations in a randomness
preserving fashion, we refer the reader to the Springer book [9].

Here we focus on theMOQA deletion operationDel, theMOQA product operation
⊗

and the
MOQA split operation.TheMOQA product operation enables the user to “merge” twoMOQA
data structures into a newMOQA data structure. For the specific case of list labellings, this operation
corresponds to the traditional merging of two lists. The product of a single element data structure
with a larger data structure amounts to the classial insertion operation of inserting an element into
a given data structure. TheMOQA product operation uses the traditional PushUp and PushDown
operations on labels as part of its internal working. TheMOQA deletion operation enables the user
to remove a label from a given labelling in such a fashion that the original data structure is reduced to
a random bag of new data structures, with labellings not containing the deleted label. TheMOQA
split operations simply reorders label relative to a given label, similar to the partitioning operation
of standard Quicksort. Details for these operations are provided in [9]. Most applications of the
operations reduce to the specific cases outlined above and hence the application of the operations
in practice are a great deal simpler than the definitions over general random structures as presented
in [9]. We will indicate later on how to handle the worst-case analysis for the case of these two
operations.

3. Distritrack

3.1. Overview

Figure 3 gives an overview of the design of Distritrack.

The most important aspect of Distritrack [3] is its ability to track theMOQA data structures. This is
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the fundamental requirement inMOQA which allows the ACET of its operations to be calculated.
To allow this,data structure representations were formulated. These reflect the series-parallel nature
of MOQA’s data structures and facilitate the application of thecomposition laws (cf. Chapter 6 of
[9]) and the evaluation of formulae for multiplicities and the numbers of states.

At any point in a program each variable referencing aMOQA data structure has arandom bag
tracker associated with it. A random bag is represented as a collection of the data structure represen-
tations, in effect corresponding to random structures, which together represent all possible states of
the corresponding data structures.

To achieve this, the static analysis performed by Distritrack takes each statement in the code and
handlers simulate its effects on the actual data structures by altering the corresponding data structure
representations in the random bags being tracked. This can be viewed as an abstract interpretation
of the semantics ofMOQA operations. The “abstract” semantics are encapsulated in XML and
processed by Distritrack’s XML engine.

In order to be able to analyse the code effectively on a statement by statement basis, Distritrack
performs a flow analysis [5] of the program. This is done by the construction of a control-flow graph
and call graph for the program using a tool called Soot [8]. Information on the analysis is encapsulated
in another graph called a BTSG.

Distritrack gives special attention to statements such asfor loops2, recursive calls andif statements
which affect the control flow. The first two complicate the tracking of the data structure represen-
tations because the effects of a statement can not generally be analysed in isolation and have to be
simulated for a symbolic number of executions, e.g.n. To solve this problem the use ofrecursive
data structures (RDS) [4] was incorporated.

RDSs are especially suited for recursion. InMOQA theory there are two templates defined for
recursion based on the series-parallel nature of the data structures. For Distritrack these have been
generalised to give a more standard template for recursion. It is calledseries-parallel recursion and
is defined informally as follows:

Q(Y ) = R(Y ); P (Q(Y1); . . . ; Q(Yk))

whereR transforms SPPOY into Y1, . . . , Yk which can be in series or parallel andP processes the
results of the recursive calls. EitherP or R can be optionally excluded.

We also developed a set of rules for the construction of RDS definitions directly from the code asso-
ciated withfor loops. These rules are quite powerful but also require templates to be imposed on the
loop bodies.

Processingif statements and more specifically the conditions they depend on was very challenging.
However for a limited category of conditions calculating probabilities and determining the effects on
data structure representations is possible to automate in Distritrack. When a probability is not possible
to calculatecases are incorporated into the formulae for the ACETs, effectively resulting in separate
ACETs for true and false branches.

Evaluating the formulae at various points in the analysis is achieved by interacting with Mathematica.

2Other types of loops likewhile are currently not considered.
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Figure 4. Group structure with a repeat value set to 3.

The final output of Distritrack are ACET formulae built in a modular way from the program statements
and RDS formulae if required. These will generally be recurrence equations.

The analysis performed by Distritrack is quite flexible. The analysis itself requires little user interac-
tion with only some guidance on the processing of RDSs being provided through code annotations.
The tool can handle not only all the features ofMOQA but also many aspects of the Java program-
ming language. The analysis is interprocedural and can span multiple Java classes. Constructors,
overloaded methods, class hierarchies and many other complex features can be handled.

Here we give an overview of the data structure representations that are incorporated into Distritrack for
tracking the random bags. We will also discuss how some of the required information for calculating
ACETs can be derived from these representations.

3.2. Data Structure Representations

The means by which Distritrack tracks values during its analysis ofMOQA programs is through the
use oftrackers. The most important of these arerandom bag trackers. A random bag tracker is a
set ofrandom structure representations built usingfundamental SPPO (series-parallel partial order)
representations. A multiplicity is attached to each random structure representation.

Currently the fundamental SPPO representations incorporated into Distritrack areempty structure,
basic structure, primitive structure andgroup structure. An empty structure contains nothing and
a basic structure represents a single data structure node. A primitive structure contains exactly two
components directly reflecting the binary nature of the series and parallel operators. Group structures
are n-ary structures, i.e. they can contain an arbitrary number of components, all joined either in
series or in parallel. The components within the group structure can have arepeat value set which
determines the number of occurrences of the components defined in the group structure. Figure 4
shows an example of this. The repeat value can also be set to a symbolic value. Thus group structures
form an important aspect of Distritrack’s symbolic analysis.

In practice the tracking of the data structures is quite complicated and requires some more sophisti-
cated representations, including RDSs as mentioned above.

The tracking of data structures can be compared toshape-analysis [11]. For example, the data struc-
ture representations can be viewed asshape graphs and the use of symbolic values for repeat values
can be viewed assummarization. In both cases an abstract interpretation of the operations that modify
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the shape graphs is used.

3.3. Calculating Operation ACETs

For a SPPO representation the most important values that need to be obtained are summarised as
follows:

|s| The size of the entire SPPOs.

|M(s)| The size of the set of maximal nodes (informally defined as having no parents) ins.

|m(s)| The size of the set of minimal nodes (informally defined as having no children) ins.

L(s) The number of states possible ons.

Composition Laws The ACET to manipulate labels in an SPPO based on the series-parallel struc-
ture. Currently the ACET is defined as the number of comparisons required, which is suitable
for the data restructuring algorithms currently implemented inMOQA. For example the sim-
ple composition lawσup, which gives the average number of comparisons to push the minimum
label from a minimal node up to a maximal node, is defined as follows (• is a single node):

σup(•) = 0

σup(A ⊗ B) = σup(A) + σup(B) + |m(A)|

σup(A‖B) =
|A|σup(A) + |B|σup(B)

|A| + |B|

Multiplicity The multiplicity of the random structure.

Many of these will be derived in a recursive way, with empty and basic structures providing the base
cases. The multiplicities are determined by the definitions of operation behaviour in the abstract
semantics supplied to Distritrack.

As an example lets look at primitive structures. A primitive structure can be represented as follows:
ps = s1 op s2, whereop is either⊗ or ‖ ands1, s2 are two components. The following lists the
recursive way in which the size related values are obtained:

• |ps| = |s1| + |s2|

• If op is⊗ then|M(ps)| = |M(s1)|. If op is ‖ then|M(ps)| = |M(s1)| + |M(s2)|.

• If op is⊗ then|m(ps)| = |m(s2)|. If op is ‖ then|m(ps)| = |m(s1)| + |m(s2)|.

Functions for counting the number of states and the composition laws are binary operations based
on the series parallel nature of the data structures. Therefore they can very naturally be applied to
primitive structures.

Though more complicated to derive, these values can also be obtained for group structures.

With these formulae, the ACET for an operation can then be obtained using Equation 1 where the
ACET on each random structure is derived using the composition laws.

7
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Figure 5. Output of MOQA’s split operation on an atomic random structure of size 4.

4. Example

Listing 1 gives the code for Quicksort implemented inMOQA. For simplicity the code for Java 5’s
generics is omitted. The input tomethod1 is considered always to be a list.

Line 9 is an annotation which tells Distritrack to build a RDS definition for the first of the method’s
parameters. In this case the RDS is a a simple single random structure - the sorted list. The representa-
tion for this is built into Distritrack and is calledLinear. In general however Distritrack will generate
a new RDS definition based on the code of the recursive method. All annotations to Distritrack are
optional and, except for those related to generating RDSs, give information to Distritrack which may
make the output simpler or the analysis more efficient.

Line 13 contains theMOQA operationsplit which partitions the input list around a random pivot.
Figure 5 shows the output random bag ofsplit for an input list with4 nodes. The number under each
random structure represents its multiplicity. In practice Distritrack tracks the output for symbolic
sizes.

Lines 15 and 16 then recurse on the resulting partitions similar to the non-MOQA version of Quick-
sort code.

Listing 1. Quicksort in MOQA.
1 p u b l i c c l a s s Q u i c k s o r t T e s t {
2
3 p u b l i c O r d e r e d C o l l e c t i o n method (
4 O r d e r e d C o l l e c t i o n oc ){
5 q u i c k s o r t ( oc ) ;
6 return oc ;
7 }
8
9 @Transform ( param =0 , rep =RDSBuild . SR , name = ‘ ‘ L inear ’ ’ )

10 p r i v a t e vo id q u i c k s o r t ( O r d e r e d C o l l e c t i o n oc ){
11 i f ( oc . s i z e ( ) > 1) {
12 NodeInfo p a r t i t i o n N I = oc . g e t D i r e c t N o d e I n f o I t e r ( ) . nex t ( ) ;
13 O r d e r e d C o l l e c t i o n p a r t i t i o n = oc . s p l i t ( p a r t i t i o n N I ) ;
14 I t e r a t o r aboveAndBelow = p a r t i t i o n . g e t D i r e c t S u b s e t I t e r ( ) ;
15 q u i c k s o r t ( aboveAndBelow . nex t ( ) ) ;
16 q u i c k s o r t ( aboveAndBelow . nex t ( ) ) ;
17 }
18 }
19 }

Listing 2. Quicksort ACET Mathematica package.
q u i c k s o r t [ n1 ] := Which [ Greater [ n1 , 1 ] , P lus [−1 ,n1 ,

Sum [ Times [ Power [ n1 ,−1] , q u i c k s o r t [P lus [−1 ,n1 ,Times [−1 , r0 ] ] ] ] , { r0 , 0 ,P lus [−1 , n1 ]} ] ,
Sum [ Times [ Power [ n1 ,−1] , q u i c k s o r t [ r0 ] ] ,{ r0 , 0 ,P lus [−1 , n1 ]} ] ] ,
True , 0 ] ;
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method [ n0 ] := q u i c k s o r t [ n0 ] ;

Listing 2 gives the Mathematica package generated by Distritrack for the ACETs of the methods
analysed in the Quicksort example. The ACET of thequicksort method corresponds to the standard
Quicksort recurrence:

qs[n] = n − 1 +
2

n

n−1
∑

i=0

qs[i]

5. Extending Distritrack for WCET Analysis

Adapting Distritrack for a WCET analysis requires new composition laws which calculate the worst-
case number of basic operations executed on a random structure when aMOQA operation is encoun-
tered. Effectively these will select one of the states represented within the random structure which
gives the largest execution time.

To illustrate how this can be achieved we briefly discuss the worst-case execution times for the two
main operations discussed in the present paper: the product operation

⊗

and the deletion operation
Del.

5.1. Worst Case Running Times of Basic Operations

5.1.1. Delete

Let R be a random structure with an underlying partial orderA. If we call Del(r, k) on each labeled
SPPOr in R, the greatest number of comparisons made by any operation call isδW

up(A, k).

The δW
up function satisfies the following series-parallel recurrences (whereA andB are non-empty,

disjoint partial orders):

1. δW
up(A ⊗ B, k) =







δW
up(A, k) + |Bmin| − 1 + δW

up(B, 1) k ≤ |A|

δW
up(B, k − |A|) k > |A|

2. δW
up(A‖B, k) = max

(

δW
up(A, min(k, |A|), δW

up(B, min(k, |B|)
)

3. δW
up(•, k) = 0

5.1.2. Product

Let R be a random structure with an underlying partial orderA. If we replace the smallest label on
each labeled SPPO inR with a label which is larger thank members of the label set and smaller than
the others, and then call PushUp on the node with that label which simply pushes up the label, the
greatest number of comparisons made by any operation call isπW

up(A, k). We defineπW
down(A, k) in a

similar manner by replacing thelargest label and calling PushDown to push down a label.

If we similarly replace the smallest label on each labeled SPPO inR with a label greater thank
members of the label set and call a PushUp, the new label may be the label of a maximal node in the
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output labeled SPPO. If this happens, then the greatest number of comparisons made by any PushUp
operation in these cases isµW

up(A, k). If not, thenµW
up(A, k) = −∞. We defineµW

down(A, k) in a
similar manner by replacing thelargest label and calling PushDown.

Let TW
P [I1, I2] be the worst-case running time for the unary product on the componentsI1 andI2 over

all labellings in the random structureR with underlying structureI1‖I2. Then we have

TW
P [I1, I2] ≤ (min(|I1|, |I2| + 1))(|I1,max| + |I2,min| − 1)+

+

min(|I1|,|I2|)
∑

i=1

[

πW
down(A, i) + πW

up(B, |B| + 1 − i)
]

TheπW
up andµW

up functions satisfy the following series-parallel recurrences (whereA andB are non-
empty, disjoint partial orders):

1. πW
up(A ⊗ B, i) =







max
(

πW
up(A, i), µW

up(A, i) + |Bmin|
)

i ≤ |A|

πW
up(A, |A|) + |Bmin| + πW

up(B, i − |A|) i > |A|

2. πW
up(A‖B, i) = max

(

πW
up(A, min(i, |A|)), πW

up(B, min(i, |B|))
)

3. µW
up(A ⊗ B, i) =

{

−∞ i ≤ |A|
µW

up(A, |A|) + |Bmin| + µW
up(B, i − |A|) i > |A|

4. µW
up(A‖B, i) = max

(

µW
up(A, min(i, |A|), µW

up(B, min(i, |B|)
)

5. πW
up(•) = µW

up(•) = 0

5.2. Extending Distritrack

The advantage of extending Distritrack for WCET analysis is that the input-output trace that it cur-
rently undertakes leads to very accurate WCETs. With the new composition laws Distritrack can
compute the WCET for each random structure representation in a random bag being tracked as input
into an operation. This can be done without altering the way in which the random bag trackers are
generated. When an entire method/program is analysed, the information obtained for each operation
is combined and the sequence of operation WCETs for the overall WCET can be derived. Existing
WCET tools already incorporate techniques for finding the maximum time required for different exe-
cution paths in a program, for example [1, 6]. These techniques could be applied in a similar fashion
to determine the WCET from the times associated with the random structures.

As an alternative, Distritrack could maintain the WCET to build a random structure up to each point
in the program analysis. Say operationopi is being analysed and its input is the random bagR.
Let WCETi−1(Rj) be the WCET required to build random structureRj within R by thei − 1 op-
erations beforeopi andT W

i (Rj) be the WCET of executingopi on Rj . Each random structure in
the output random bag resulting from the execution ofopi on Rj will be associated with the WCET
WCETi−1(Rj) + T W

i (Rj).

Then, after the last operation in a path of execution in a program, the WCET of that path will be the
maximum WCET value from the random bag output from the operation.
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Other than this, the static analysis currently performed by Distritrack can remain largely unchanged.

This however does not use all the information provided by the data structure representations built by
Distritrack. The multiplicities may sometimes be useful in obtaining time estimates for the inputs to
an operation which are “most likely” to occur. In [7] this is shown to be important when, using the
WCET alone to determine deadlines in a real-time system, there is a large waste of resources when the
input that causes it occurs very infrequently. Therefore Distritrack can, for example, drop a WCET
value if the WCET occurs in a random structure that has a probability of occurring less than1

20
. This

of course is only relevant for soft real-time systems.

However multiplicities in this case only lead to a partial solution. While the states within a random
structure have a uniform distribution, we currently do not have information on the distribution of
the execution times over the states. It may be possible however to develop ways of extracting such
information, again similar to the way the current composition laws derive ACETs.

Multiplicities may also indicate which random structures contain the worst case state for an operation.
It has been observed that the WCET generally occurs in a random structure which contains the largest
atomic (single nodes in parallel) components. In terms ofdivide and conquer, this makes sense. As
it turns out, the output from operations that create atomic components in series appear to always have
the lowest multiplicity attached to the random structure containing the largest atomic components.
This may be because these random structures contain more states and therefore fewer copies occur.
An example of this can be found in the output ofMOQA’s split operation. For size4, in Figure 5
it can be clearly seen that the random structures containing the largest atomic components have the
lowest multiplicity. These also form the worst case input into the recursive call of quick sort.

6. Conclusion

In this paper we have given an overview of a new programming paradigm calledMOQA and a corre-
sponding tool called Distritrack. Distritrack performs a static analysis ofMOQA programs, tracking
the data structures and their distributions as they are input to and output from program statements in
order to derive the ACET.

We discussed how Distritrack can have its ACET static analysis extended to derive WCET and other
time measures using the information provided by the tracking of the data structures. We have pro-
vided some initial ideas to serve as a basis on which to investigate this further, supporting a future
implementation of the tool in which the estimates provided for improved resource budgeting in soft
real-time applications can be supplemented with accurate WCET deadlines for hard real-time appli-
cations.

The price of the accurate results obtained by Distritrack are some limitations on the static analysis
which are required to obtain the tight tracking of the data structures, e.g. the analysis must be context-
sensitive in that all program paths have to be analysed separately.
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APPLYING WCET ANALYSIS AT
ARCHITECTURAL LEVEL

Olivier GILLES, Jérôme HUGUES1

Abstract
Real-Time embedded systems must enforce strict timing constraints. In this context, achieving precise
Worst Case Execution Time is a prerequisite to apply scheduling analysis and verify system viability.
WCET analysis is usually a complex and time-consuming activity. It becomes increasingly complex
when one also considers code generation strategies from high-level models.

In this paper, we present an experiment made on the coupling of the WCET analysis tool Bound-T
and our AADL to code generator OCARINA. We list the different steps to successfully apply WCET
analysis directly from model, to limit user intervention.

1. Introduction

Distributed Real-time and Embedded (DRE) systems must enforce strict timing constraints. Run-
time mechanisms exist to control the execution time of each processing thread, and eventually detect
overrun, like Ada 2005 execution time timers. Yet, these techniques are usually resource consuming,
and not sufficient when building critical systems [11].

A better option for resource-constrained or critical systems is to rely on precise WCET analysis
techniques. These techniques rely on the careful examination of the source code and/or assembly-
level code to extract longest execution path. However, they are hard to master, and time-consuming.
Yet, one needs evaluation of the WCET of some functions early in the definition of the software
system.

At the same time, model-based development, the idea that a system can be described in a high-
level formalism and then leads to fully generated systems emerge. We claim that this approach is
interesting provided that the modeling process fully integrates engineering concerns for real-time
systems, including performance analysis.

In this paper, we present a process for evaluating DRE systems WCET metrics relying on both archi-
tectural model and binary code analysis. In the second section, we present a taxonomy of relevant
information for evaluating a system’s performance and how one can model the whole system and
its properties. In the third section, we present a full process to analyse models performance in an
integrated framework. In the last section, we provide a use case, showing how to achieve full system
evaluation and conclude on the needs for more advanced analysis techniques.
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2. Defining a toolchain for building critical real-time systems

In this section we list contextual information on our research work, prior to illustrating the benefits of
automating WCET analysis in an automated toolchain.

2.1. A taxonomy of performance criteria

DRE systems must comply to multiple and contradictory constraints. In this section, we present a
taxonomy of those constraints and then classify them relatively to their analyzability.

Deterministic behavior : Ensuring a fully deterministic behavior is a complex issue. As a general
rule, one should select a computational model that is amenable to full analysis. This usually implies
restricting the set of constructs allowed at either model or programming levels.

Schedulability : Once deterministic behavior is achieved, one can apply scheduling analysis on the
set of tasks using scheduling-related data (eg. periodicity, deadline, execution time) of each thread in
the software model. Furthermore, interferences of critical section accesses must be analyzed too, and
thus expressed in the model.

WCET : this is the key factor for determining schedulabity of a system. Worst-Case Execution Time
provides a hint on the duration of some computations. A wrong estimate leads either to pessimistic
usage of resource, or some runtime errors. While direct analysis of the binary code can be used in
order to extract some values (such as a subprogram WCET), more complete evaluations will need to
capture the system semantics. Architectural-level relations, in particular, must be captured in order
to make scheduling and latency analysis easier. (cf. [6] and [12]). Still, the analysis of the WCET
should be also compatible with both the modeled system, and the code that will actually execute it.

Therefore, we claim that these constraints are better expressed at model-level, and then enforced in
an automatic code generation and then analysis process process. Code generation process would
enforce deterministic behavior and also ensure generated code is amenable to WCET analysis at
object or source code level. We selected the AADL, an architectural description language, to describe
framework-level and program-level properties. We then present the code generator we developed, and
show how to combine it with the WCET analysis tool Bound-T [7].

2.2. AADL

AADL (Architecture Analysis and Description Language) [8] aims at describing DRE systems by
assembling components. AADL allows for the description of software and hardware parts. It focuses
on the definition of interfaces, and separates the implementations from these interfaces.

An AADL description is made of components. The AADL standard defines software components
(data, thread, thread group, subprogram, process) and execution platform components
(memory, bus, processor, device) and hybrid components (system). Components describe
well identified elements of the actual architecture. Subprograms model procedures as in C or Ada.
Threads model the active part of an application (such as POSIX threads). AADL threads may have
multiple operational modes. Each mode may describe a different behavior and property values for the
thread. Processes are memory spaces that contain the threads. Processors model micro-processors
and a minimal operating system (mainly a scheduler). Memories model hard disks, RAMs, buses



model all kinds of networks, wires, devices model sensors, etc.

An AADL model also describes non-functional facets: embedded or real-time characteristics of the
components (execution time, memory footprint. . . ), behavioral descriptions, etc. Description can be
extended either through new property sets, or through annexes. Annexes are extensions to the core
language. A complete introduction to the AADL can be found in [2].

We have developed the OCARINA [13] tool-suite to manipulate AADL models. OCARINA proposes
AADL model manipulation based on a compiler-like API. “Back-end” modules can generate formal
models, perform scheduling analysis and generate distributed high-integrity applications in Ada. Gen-
erated code relies on the POLYORB-HI middleware to ensure communications and task allocation.
POLYORB-HI ensures that a minimal and reliable middleware is generated for a given distributed
application. Furthermore, it relies on strong design patterns to ensure the code is compatible with the
requirements from the High-Integrity domain, easing further analysis. For a complete description of
the code generation strategy enforced by POLYORB-HI, please refer to [3].

2.3. Setting framework properties

As explained above, AADL not only offers a language to describe architectural relations, but also
allows to define run-time oriented properties such as a subprogram WCET, the worst-case duration of
a context switch, etc. However, the user must provide those values, which is definitively not a trivial
task, since such values are highly architecture-dependent and often non-deterministic.

To our knowledge, no reliable method exists to compute such values from high-level architectural
level. In order to obtain those values, we proceeded to an analysis of the binary code generated from
the architectural model by OCARINA, using tools such as Bound-T, which allows to extract a local
subprogram upper bound on the WCET in terms of processor cycles.

3. Evaluation tool suite

A design-level software model cannot directly compute all of system properties, as some of them are
highly OS-specific, hardware-specific or compiler-specific. In particular, subprogram WCET or code
size cannot be guessed reliably at design level. In order to perform a realistic evaluation, one should
first generate the exact binary code for the system, and then perform analysis on the code and then
using together the software architecture and the binary code metrics to refine the initial model. In this
section, we present the structure of the tool suite, and then we show a use case with a simple example.

3.1. The evaluation pipeline

As illustrated in figure 1, we divided the evaluation into 3 stages : Code generation, model annotation
and model evaluation.

1. Code generation

This stage takes as input the native (ie. user-designed) architectural model plus the legacy code,
and build the binary code. Code generation relies on OCARINA and POLYORB-HI [14], which
is a middleware generator for high-integrity environment. Of course, the same tools must be
used for the final binary code generation to preserve computed properties.



Figure 1. Evaluation tool suite process

2. Model annotation

This stage takes as input the binary code and the native architectural model, and build an an-
notated architectural model which takes account of code-specific properties. It relies on tools
such as : gnatstack or Bound-T for computing an upper-bound on thread’s stack size; Bound-T
for extraction of the subprograms’ WCET.

Finally, we use the AADL model manipulation capacities of OCARINA in order to build the
annotated model. In case of external tools (Bound-T, gnatstack), glue code has been developed
in order to set the tool parameters and extract the results.

3. Model evaluation

Model evaluation is performed via third-party tools like Cheddar [9] that perform schedulatib-
lity analysis on a complete AADL model; OSATE [10] for computing latency in the system or
performing processor assignment based on thread requirements for CPU usage.

In the following, we illustrate how the toolchain effectively proceeds to evaluate precisely the WCET,
and why automation is interesting in that setup.

4. Use case

As an illustration, we selected the SunSeeker AADL model, from the OCARINA distribution2.
SunSeeker models a rocket whose goal is to be directed to the sun. It exhibits a traditional sub-
system in charge of Guidance, Navigation and Control. This system is made of periodic threads
exchanging information on the systems, and commands to be sent to actuators.

This system is amenable to RMA analysis, but requires precise WCET analysis to do so. Besides,
even if the overall architecture is already known, the actual computation functions may change as the
system evolve. Automating WCET analysis would remove such a time consuming operation, while
allowing for early detection of errors when dimensioning the system. In the following, we show how
combining stringent code generation strategies and tool can help solving this issue.

4.1. Code generation

Sunseeker relies on AADL semantics for concurrent execution. This model exhibits some periodic
execution, on the same processor. Data exchange occurs through Ada protected data component.

2See http://aadl.enst.fr/polyorb-hi/examples.html for more details



AADL strong semantics allow us to precisely derive supporting runtime entities. OCARINA uses all
information in the model to generate minimal code that will support its execution.

Furthermore, in order to be amenable to analysis, the initial model and the code patterns used are both
compatible with the Ravenscar profile [1], but also restricts all usage of dynamicity at source-code
level (no pointers to procedure, no object orientation, etc.). This ensures the code is deterministic and
amenable to analysis. The code to be analyzed encompasses user specific code, execution glue code
generate (e.g. threads deduce from application needs), and the supporting kernel and driver. This
code, and its compiled counterpart are not enough to allow for WCET analysis.

4.2. Performing WCET analysis

To ensure that WCET analysis can be performed, we must ensure the supporting tools has enough
information to proceed. Bound-T inspects object files produced after compilation to evaluate the
WCET of a set of function. This analysis relies on a performance model of the processor. We retained
the ERC32 processor model, a derivative of the SPARC processor used by ESA. The tool computes
all execution path in the system, and return the time to traverse the longest one, if it converges. The
latter is the hard point of the analysis.

The code generated by OCARINA strictly follows requirements for high-integrity domain and use the
corresponding design patterns for some task artifacts (periodic, sporadic activation patterns, inter-
ask communication, . . . ). In this setting, Bound-T offers a Hard Real-Time mode that can carefully
analyse these patterns. In this context, Bound-T requires the name of the root subprograms on which
it must perform WCET analysis: it is the name of the subprogram called at each dispatch time.

Moreover, some of the subprograms used by either legacy code or generated code can be unbounded
in term of WCET. To try to analyze them would impede complete WCET analysis. Bound-T allows
to specify an assertion file that contains the list of subprograms that must not be analyzed, either by
providing a well-known WCET (e.g. upper bound for printing a data) or by simply forbidding their
analysis (e.g. exception handler). Since generated code follows regular patterns which can be de-
duced from the AADL model, we can predict which subprograms will ultimately have an unbounded
WCET in the binaries. Thus, we generate the assertion file along with the root subprograms from the
information found AADL model and the code patterns used by the code generator.

Unbounded WCET occurs when there exist loops in the source code whose upper-bound depends on
interactions with other software or hardware elements. We first ensured no portion of generated code
has unbounded WCET time per Bound-T analysis. Yet, a typical example is a device driver which
completes its work after receiving a signal for the device. We set its value to zero at this level, we
tackle this case in a further analysis step.

4.3. Building the annotated model

Once Bound-T completes, we annotate back the AADL model with the information computed by
the tool. In hard real-time mode, Bound-T returns an Execution Skeleton File (ESF) that stores the
result of the analysis. We parse the file to fill the WCET value of each thread. First, we deduce the
corresponding AADL thread from the name of its root function’s name; then, we compute the exact
WCET using the cycles information provided by Bound-T and the the actual processor speed.



Unbounded code cannot be analyzed through Bound-T, we noted it can be either device driver code
or user-provided code. The latter is under the responsibility of the designer. The sooner can be
accommodated thanks to communication patterns. All task patterns follow a “read-execute-write”
cycle. Therefore, we know when a call to the device driver is made. Furthermore, we can deduce
from the thread’ interface the size of the data to be sent and add it to the WCET of a thread thanks
to device metrics information (latency, bandwidth). This ensures one can provide a complete WCET
analysis of all the code generated plus user code.

Then, we complete the AADL model with the newly-acquired WCET in the corresponding threads
using the Compute Execution Time property, as seen in code example 1. In this context, we
show how Bound-T and Ocarina can be linked in an efficient way. Let us note the process is limited
by Bound-T scalability and the complexity of the generated code. Our experiment illustrates it per-
forms correctly in HRT mode thanks to the careful patterns used for inter-task communications.

thread implementation Plant Type . P lan t
ca l ls

p lan t : subprogram Sunseekerplant Subprogram . Beacon ;
connections

parameter C o n t r o l l e r i n p u t −> p lan t . C o n t r o l l e r i n p u t ;
parameter p lan t . Outputfeedback −> Outputfeedback ;

properties
Dispa tch Pro toco l => Per iod i c ;
Per iod => 10 Ms;
Compute Execution Time => 120 Us . . 120 Us ; −− Computed by Bound−T

end Plant Type . P lan t ;

thread implementation Cont ro l l e r Type . C o n t r o l l e r
ca l ls

c t r l : subprogram Sunseekercontro l ler Subprogram . Impl ;
connections

parameter Outputfeedback −> c t r l . Outputfeedback ;
parameter c t r l . C o n t r o l l e r i n p u t −> C o n t r o l l e r i n p u t ;

properties
Dispa tch Pro toco l => Per iod i c ;
Per iod => 10 Ms;
Compute Execution Time => 15 Us . . 15 Us ; −− Computed by Bound−T

end Cont ro l l e r Type . C o n t r o l l e r ;

Listing 1. Sunseeker Threads Implementation

4.4. Completing evaluation

In order to ensure real-time constraints are met, a system schedule must be established. In the context
of preemptive tasks, Rate Monotonic Analysis is a quite common solution. Others scheduler such as
Earliest Deadline First (EDF), while less common, offer a more optimal usage of the CPU cycles.

An efficient solution in order to verify schedulability is to use Cheddar, a real time scheduling
tool which supports popular scheduling methods such as RMA or EDF and takes as inputs AADL
files. In order to perform the analysis, Cheddar will need 2 declared properties in the AADL files:
Cheddar Properties::Fixed Priority, which defines the priority assigned to the task;
Compute Execution Time, which defines the WCET of the thread root subprogram, as com-
puted by Bound-T and the analysis of the communication pattern. To complete some analysis, one
may also to define other time-impacting non-functional properties such as Period, Deadline or
Dispatch Protocol. Now that the thread root program WCET has been computed in the anno-
tation phase, Cheddar can perform scheduling analysis and conclude to system schedulability.



Another solution in order to analyze the scheduling is to perform a Response Time Analysis (RTA).
While RMA indicates whether the tasks can meet their deadline or not, RTA gives a value for the
total task WCET, including perturbating ones such as context switch due to preemption, blocking,
clock signal, etc. [4]. The worst-case response time of a process is defined by the time it takes for
that process to complete its most demanding set of activities in response to a single activation event
occurring under maximum contention from the rest of the system. The worst-case response time of
a given activity (ie. a task) can be computed by a recurrence on the sum of three components, which
are: the worst-case execution time of the task; the interference incurred by the task; the blocking
experienced by the task.

Authors in [12] give a complete definition of each term involved in Response Time Analysis (RTA),
and provides formal expressions in order to compute them within a Ravenscar-compliant model. An
important thing about these expressions is that they involve the knowledge of the subprogram WCET
and the worst-case time of some framework primitives or actions such as a context switch or an clock
interrupt handler duration. The run-time environment we used is based on the same mechanisms as
the one developed in this analysis. We can then reuse these equations and validate the system. In
this context, knowing precisely when the different runtime primitives are used is relevant. We have
developed REAL3, a domain-specific language that allows one to perform queries and computations
on AADL models. We implemented a set of REAL subprograms which allows to proceed to full RTA
by taking into account the different impacting factors of an RTA analysis. Similar extensions can be
written, to take into account other platform-specific or domain-specific analysis.

4.5. Assessment and Related work

The complete process proved to be efficient to analyse directly model. This is mostly due to the
fact that Bound-T and the Ocarina code generator relies on the same family of patterns. Writing the
annotations for Bound-T is therefor natural.

The complete automation leads to a shortened development time: developer needs only to focus on
a high-level design representing its system, joint work by Ocarina, Cheddar and Bound-T allows the
designer to validate its system directly. Yet, the validation is done atomically for a complete system.
Incremental validation on subparts is a current work in progress.

The combination of a modeling toolsuite and WCET analysis tools is an interesting feature for the
system designer: he can test various configurations automatically. This has been already tested in
different settings.

Authors in [5] discuss the integration of a WCET tool in Matlab/Simulink. The approach developed
is notionally equivalent. The key difference resides in the code to be analyzed. In the case of Matlab,
the code is highly sequential whereas our code generator introduces Ada concurrent entities (threads
and protected objects). In both cases annotations are built from an a priori knowledge of the code
generated. Our approach exploits a higher level description language, AADL, that can integrate
multiple languages to implement its functional blocks (e.g. SCADE, C or Ada). We extend this work
to a more complete engineering framework.

3REAL sources and documentation can be accessed from http://aadl.enst.fr/ocarina/real.html



5. Conclusion

In this paper, we discussed the issue of performing WCET analysis for complex systems. We noted
that such analysis is required, yet it is time consuming. We linked this activity to schedulability
analysis, usually performed on a high-level model of a system.

In this context, we proposed to use the same model to 1/ generate code, and 2/ perform WCET analysis
on the code generated to 3/ refine the model with precise WCET values for the system. We proposed
a complete process based on the AADL modeling notation and the AADL toolsuite we developed.
AADL defines precise semantics for all its constructs, this allows one to derive precise code and
provide roots for analysis.

Typical WCET analysis tools require “hints” to point the code executed by the processing threads,
the potential infinite loops of these threads, path irrelevant to the analysis, etc. By computing these
information as part of the code generated, and then passing it to the Bound-T analysis tool, we shorten
the distance between model and executable system, allowing for precise analysis as the model evolves.

This provides one step forward a complete toolchain to build critical real-time systems from high-level
models, combining precise descriptions of the system resources, code generation with high-integrity
restrictions enforced, precise WCET analysis, and the capability of performing schedulability analysis
or performance evaluation in a uniform framework.

Future work will consider the extension of this toolsuite to exploit all computed information to per-
form model-based optimizations of the system, e.g. computing precisely the minimal number of
threads to provide an semantically-equivalent system, reducing latency, etc.
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COMPUTING TIME AS A PROGRAM VARIABLE:
A WAY AROUND INFEASIBLE PATHS

Niklas Holsti1

Abstract
Conditional branches connect the values of program variables with the execution paths and thus  
with the execution times, including the worst­case execution time (WCET). Flow analysis aims to 
discover this connection and represent it as loop bounds and other path constraints. Usually, a  
specific  analysis  of   the  dependencies  between  branch  conditions  and  assignments   to   variables 
creates some representation of the feasible paths, for example as IPET execution­count constraints,  
from which a WCET bound is calculated. This paper explores another approach that uses a more  
direct connection between variable values and execution time. The execution time is modeled as a  
program variable. An analysis of the dependencies between variables, including the execution­time  
variable,   gives   a   WCET   bound   that   excludes   many   infeasible   paths.   Examples   show   that   the  
approach often works, in principle. It remains to be seen if it is scalable to real programs.

1. Introduction

Static  WCET analysis   is  usually  divided   into   three  main  parts   [16]:  Flow analysis  models   the 
possible   execution   paths   (instruction   sequences)   as   a   control­flow   graph   (CFG).  Processor­
behaviour analysis bounds the execution time of each basic block in the CFG. Bounds calculation 
finds bounds on the execution time of entire execution paths. WCET tools often also make some 
analysis   of   the   possible   values   of   program   variables.   This  value   analysis  supports   the   data­
dependent parts of flow analysis and processor­behaviour analysis.

Define the structural paths as all paths through the CFG assuming that any conditional branch can 
be taken or not taken – as though the conditions could have any value, at any time. Most programs 
have loops and thus an infinite number of structural paths. Even after loop­bounds are applied to 
make a finite set of paths, often many logically infeasible paths remain, leading to an overestimated 
WCET bound. An infeasible path here means a connected sequence of CFG elements – nodes and 
edges – that contains an edge for which the condition must evaluate to false if the path is executed 
up to this edge and all earlier edge conditions on the path are true.

Flow analysis can detect some infeasible paths, eg. [2, 14]. Typically, the computations (expressions, 
assignments, branch conditions) are analysed and correlated to create some representation of the 
feasible and infeasible paths (eg. dead code or mutually exclusive basic blocks). This “flow fact” 
representation is then fed into the bounds calculation, for example as execution­count constraints for 
IPET ([6] and other references in [16]). The connection between the computation and the execution 
time is thus indirect: first from the computation to the flow facts, and then from the flow facts to the 
execution time. This paper explores another approach with a  more direct connection.  Section  2 
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discusses the dependencies between values computed in a program, and how these lead to infeasible 
paths. Section 3 presents the idea of the paper: to model the execution time as a program variable, 
subject to dependency­sensitive value analysis. Section 3 shows analysis results for some examples 
of infeasible paths, using a value analysis based on Presburger sets [12]. Section  4 describes this 
analysis   for   loop­less   code.   Section  5  extends   the   Presburger­set   analysis   to   loops.   Section 6 
considers how the loop analysis handles the execution­time variable and infeasible paths involving 
loops. Section 7 closes the paper with a review of related work and a discussion.

2. Dependencies Between Variables and Values

Most variables in a program get their values from expressions that use the values of other variables, 
which leads to dependencies between the values of these variables. Dependencies also arise when 
different variables are independently computed and assigned within the same control structure. For 
example, in an  if­then­else structure, the values assigned in the  then  branch occur together, and 
together with the true value of the condition, while those in the else branch occur together with the 
false value, but mixtures are infeasible.

Several static program analyses discover such dependencies;  eg. [1]. Few WCET tools do it, but 
Lisper has suggested it [8]. Dependencies are the very reason for infeasible paths. Dependencies 
between loop induction variables and the looping condition lead to  loop repetition bounds. The 
classic example of an infeasible path is two consecutive if­then­else structures with inter­dependent 
conditions.

The  Bound­T  WCET   tool   [5]  models   variable   values   as   sets   of   integer   tuples   constrained   by 
Presburger formulae –  Presburger sets  for short. Each element in a tuple models one variable; a 
tuple models one possible combination of variable values; and a set of tuples models all possible 
combinations   of   variable   values.   Dependencies   between   variables   are   included   because   the 
Presburger formulae constrain the whole tuple, not each element (variable) separately. For example, 
for two variables x,  y, the set {[x,  y]   ∣ x > 5 and y < 3x} models a state where x has any value 
greater   than   5   and  y  has   any   value   less   than   3x.   Operations   on   Presburger   sets   include   set 
intersection, set union, set complement, relational join (mapping, application), convex hull, and test 
for subset [12]. Bound­T currently uses its Presburger model mainly for loop­bound analysis and 
does not search for other kinds of infeasible paths. This paper suggests how a dependency­sensitive 
value­analysis, such as the one in Bound­T, can be used to compute WCET bounds that exclude 
infeasible   paths,   without   explicitly   finding   and   representing   the   infeasible   or   feasible   paths 
themselves.   In   fact,  a  separate  bounds­calculation phase  is  not  needed;  value analysis  produces 
WCET bounds.

3. Execution Time as a Computed Value

If we can analyse dependencies between variables, and we want to analyse the dependency between 
variables and execution time, perhaps we can get there by treating the execution time as a variable in 
the computation. To do so, augment the program (for the analysis only) with a new global variable, 
T  say, that represents the execution time from the start of the program (or the subprogram, for a 
modular analysis). Augment each basic block b with the assignment T := T + t(b), where t(b) is the 
execution time of the basic block, as found by processor­behaviour analysis using the structural 
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paths. If the basic block can have a range of execution times, use interval arithmetic. Assume that T 
is initially zero. Use a value analysis to find the values of T at the end of the program; these are the 
execution times of the program. If the analysis models dependencies between variables, the final 
bounds on T should exclude some or all infeasible computations, depending on the precision of the 
analysis of the (indirect) dependencies between T and branch conditions.

3.1 Example: Condition after Condition

The classic example of infeasible paths is the correlated pair of if­then­else conditional statements:

if x < 1 then <compute for 100 cycles>;
         else <compute for 10 cycles>; end if;
<code that does not change x, for 30 cycles>;
if x > 3 then <compute for 200 cycles>;
         else <compute for 20 cycles>; end if;

(For clarity, the time for evaluating the conditions is included in the times for the  then  and  else 
branches.) Each conditional statement in this example has a fast branch and a slow branch. The 
structural paths include the path that takes both the slow branches, totalling 100 + 30 + 200 = 330 
cycles. However, this path is logically infeasible because the conditions for the two slow branches, 
x < 1 and x > 3, cannot be true at the same time. The longest feasible path occurs when x > 3 and 
gives 10 + 30 + 200 = 240 cycles. Now augment the code with the execution­time variable T :

T := 0;
if x < 1 then <compute for 100 cycles>; T := T + 100;
         else <compute for 10 cycles>; T := T + 10; end if;
<code that does not change x, for 30 cycles>; T := T + 30;
if x > 3 then <compute for 200 cycles>; T := T + 200; 
         else <compute for 20 cycles>; T := T + 20; end if;

A   value   analysis   of   the   augmented   program   with   the   Presburger   method   (to   be   described   in 
Section 4) gives a model of the final values of the variable tuple [x, T] as the three­part set:

{[x, T]   ∣ x < 1 and T = 150}     {[∪ x, T]   1 ≤ ∣ x ≤ 3 and T = 60}     {[∪ x, T]   ∣ x > 3 and T = 240}

The analysis thus excludes the infeasible value T = 330 and gives the precise bounds T = 60 .. 240.

3.2 Example: Saturating a Value

This example code makes sure that the variable x does not exceed the interval min .. max:

if x < min then x := min; end if;
if x > max then x := max; end if;

This   code  has   an   infeasible  path   if  min    max,   because   the  assignment  x  :=  min  makes   the 
condition in the second  if  false. (The infeasible path could be avoided with an  else if, but some 
programmers seem to prefer the above form.) Augment the program with an execution­time variable 
T as follows, adding else branches just to model the condition­evaluation time:
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T := 0;
if x < min then x := min; T := T + 3; else T := T + 1; end if;
if x > max then x := max; T := T + 3; else T := T + 1; end if;

Assume for simplicity that min = 1 and max = 10. The model of the final values of [x, T] is then:

{[x, 2]   1 ≤ ∣ x ≤ 10}     {[1, 4]}     {[10, 4]}∪ ∪

Thus, the infeasible value T = 6 is avoided, and the precise range T = 2 .. 4 is computed. The correct 
range for T is computed even if the actual values of min and max are unknown (variable), as long as 
the analyser knows that  min   max. The path­exclusion analysis of Stein and Martin [14] cannot 
handle this example because the assignment  x  :=  min  does not dominate the second conditional. 
However, as Stein and Martin say, their analysis could be extended to such “non­linear slices” at the 
cost of more complex Presburger problems and increased analysis time.

4. Presburger Analysis Basics

This   section  describes   the  Presburger­set  value­analysis   that  gives   the above  results,   taking   the 
saturation code in section 3.2 as an example. The analysis is similar to the one in Bound­T [5]. 

In the absence of loops the analysis is quite simple. Assume that there are n variables. At the start of 
the program the model is the universal set of all possible variable­value tuples Z n, where Z is the set 
of all integers. Our example has the variables x and T so n = 2.

Each statement (in Bound­T: each machine instruction) is modeled as a transfer relation between the 
n  input values and the  n  output values, a Presburger subset of  Z 2n  =  Z n  Z n. For example, the 
statement T := 0 is modeled by the transfer relation {[x, T, x', T']   ∣ x' = x and T' = 0}. Here the 
symbols x and T  represent the variable values before the statement, while the primed symbols x' 
and  T'  represent the values after the statement. This relation can be written more compactly as 
{[x, T]  [x, 0]} where the arrow separates the “before” and “after” values and the constraints are 
implied by the expressions. The universal 2­tuple set Z 2 is then written {[x, T]}.

Starting from the universal set {[x, T]} and applying the transfer relation {[x, T]  [x, 0]} produces 
the set of new variable values {[x, 0]}, which models the variable values after the statement T := 0. 
In this way, the variable­value model is propagated over the statements and nodes in the CFG. To 
propagate the model over a CFG edge, the model set is intersected with the set defined by the edge 
condition. When several edges converge to the same node, the union of the sets from each incoming 
edge  is  computed.  The union set   is  often non­convex, which  increases  both  the power and  the 
complexity of the analysis, and differs from the model in [1]. Condition flags are another source of 
non­convex sets, because their values are constrained by disjunctive formulas.

Figure 1  illustrates this analysis for the example in section  3.2. The figure shows the CFG with 
Presburger sets placed before and after nodes to show the value­model at these points. Note the edge 
from the second  if  towards the right, when  x > 10; this edge condition eliminates the tuple [1, 3] 
from the value set, which reflects the mutual exclusion of the two CFG nodes on the right. If the 
analysis gives an empty Presburger set at some point – which does not happen in this example – that 
part of the CFG is infeasible (dead).

4



Figure 1: Presburger analysis of the saturation example

Computation with Presburger sets has exponential complexity in general. For practical purposes it is 
important to minimize the number of constraints and union operations. If the T variable is updated 
separately in each branch of a conditional, as above,  T  depends on every branch condition. For a 
conditional where the branches have similar execution times, one could instead update T once for 
the whole conditional,  with  T  :=  T  +  max  (then  branch,  else  branch),  as  in  the  timing schema 
methods [13]. The complexity can thus be reduced by a selective fall­back to a timing schema.

5. Presburger Analysis of Loops

This section extends the Presburger­set analysis to loops, showing how it can find bounds on the 
number of iterations and bounds on the variables after the loop. As a running example, consider this 
code that reverses the order of elements n .. n + 9 of the vector vec, where n is a variable:

i := n; j := n + 9;
while i < j loop

z := vec[i]; vec[i] := vec[j]; vec[j] := z; 
i := i + 1; j := j – 1;

end loop;

The analysis will ignore the values in vec because they have no effect on the loop or its execution 
time, and pointer analysis is out of scope for this paper. The modeled variables are i, j, n, and z. 
Since the vec values are ignored, the assignment to z is modeled as storing an unknown value in z.

Assume, initially, that there is only one loop, with a single loop head node that is the single point of 
entry to the loop. The analysis is based on the repetition relation of the loop. One pass through the 
loop body from the loop head up to and including a back edge is called a repetition of the loop. The 

 T := 0; 

 {[x,T]} 

 {[x,0]} 

x := 1;
T := T + 3; 

 {[x,0] | x < 1} 

 {[1, 3]} 

x < 1

T := T + 1;

 {[x,0] | x ≥ 1} 

 {[x, 1] | x ≥ 1} 

if x < 1 ...

x ≥ 1

 {[x,1] | x ≥ 1}  {[1,3]} 

x := 10;
T := T + 3;

 {[x,1] | x > 10} 

 {[10, 4]} 

x > 10
T := T + 1; 

 {[x,1] | 1 ≤ x ≤ 10}  {[1,3]}

 {[x,2] | 1 ≤ x ≤ 10}  {[1,4]}

if x > 10 ...
x ≤ 10

 {[x,2] | 1 ≤ x ≤ 10}  {[1,4]}  {[10, 4]}  
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repetition relation is the Presburger relation that shows how one repetition changes variable values. 
The   repetition   relation  of   the   example   loop  above   is  {[i, j, n, z]  [i+1, j­1, n, z'] ∣ i < j}, 
where z', the new value of  z, is unconstrained. Similarly, a pass through the loop body from the 
loop head to an edge that leaves the loop is called an exit from the loop. The full execution of a loop 
is a sequence of zero or more repetitions, followed by one exit.

5.1 Classifying Variables as Invariant, Induction, or Fuzzy

For a program with loops, static analysis needs some form of induction or least­fixpoint iteration. 
The Presburger­set domain has infinite ascending chains, so least­fixpoint iteration cannot be used 
directly. Instead, we analyse the repetition relation of the loop to divide the variables into three 
classes: an invariant variable is not changed at all; an induction variable is changed by a bounded 
increment (possibly negative); and the rest are fuzzy variables that change in other ways.

Let  R  be the repetition relation of a loop and  x  a variable. Introduce a new variable  dx  on the 
domain side to represent the possible increment in x, making R a relation in Z n+1  Z n. This role of 
dx is expressed by the relation Rd = R  {[..., x, ..., dx]  [..., x + dx, ...]}. Compute bounds on dx 
by taking the domain of Rd, then projecting away the other variables to leave only the set of  dx 
values, and finally computing the convex hull of this one­dimensional set. The convex hull is the 
interval that bounds dx. If  dx  is bounded to zero,  x  is invariant; otherwise, if  dx  is bounded to a 
finite interval, x is an induction variable; otherwise x is a fuzzy variable. Note that dx can depend 
on the other variables, but the projection and convex­hull operations discard those dependencies in 
order to arrive at constant lower and upper bounds on dx. This is a necessary approximation at this 
step of the analysis because the next step uses the bounds on  dx  to multiply a variable, and the 
Presburger model allows multiplication only when at most one of the factors is a variable.

It   is  practical   to   introduce  all   increment  variables  at  once.   In   the  vector­reversal  example,   this 
introduces the variables di, dj, dn, and dz and gives the extended loop repetition relation

Rd = {[i, j, n, z, di, dj, dn, dz]  [i+1, j­1, n, z']  ∣  i < j}
      {[i, j, n, z, di, dj, dn, dz]  [i+di, j+dj, n+dn, z+dz]}

Computing bounds on di, dj, dn, dz from this Rd shows that di = 1, dj = ­1, dn = 0, and dz is not 
bounded. Thus i and j are induction variables, n is invariant, and z is a fuzzy variable.

5.2 Bounding the Number of Loop Repetitions

Introduce a new variable c to model the iteration number 0, 1, 2, .... The value­model at the start of 
the loop­head node is a Presburger set where each invariant variable has its initial (and invariant) 
value,  each  induction variable  equals   its   initial  value plus  c  times   its   increment,  and all   fuzzy 
variables are unconstrained2. Propagate the model from the loop head to all parts of the loop as in 
section 4. Next, check if the Presburger sets on the back edges or exit edges of the loop (which 
include   the   repetition  or   termination  conditions)   imply  bounds  on  c;   if   so,   these  are   the   loop 
repetition bounds.

2 A better but more complex model includes variable dependencies from the preceding iteration. Bound­T does so.
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For the vector­reversal example, the Presburger set on the loop back edge is

{[i, j, n, z, c]  ∣  i­1 < j+1 and i = n+1+c and j = n+8­c}

Here  i  and  j  represent   the  variable  values  at   the  end of   the  loop body,  after   they have been 
incremented by di and dj. Projecting this set to the variable c and computing the convex hull gives 
the constraint c  4, which shows that the loop is repeated at most 5 times (for c = 0 .. 4). Of course, 
if the number of repetitions of a loop is bounded by a user annotation, it is unnecessary to compute 
bounds on c, as they are given by the annotation.

5.3 Modeling Variables After the Loop

The final step of the Presburger analysis of a loop is to model the variable values after the loop as 
the result of some number of loop repetitions followed by a loop exit. For an induction variable, the 
repetitions are modeled by multiplying the number of repetitions with the increment of the variable. 
Both factors have constant bounds,  but simply multiplying  these constants  would hide possible 
dependencies between the increments, the number of loop repetitions, and other variables. At this 
point there is a choice: one, but not both, of the factors can be treated as a Presburger variable, 
making the analysis sensitive to dependencies between this variable and other variables. I have not 
found a way to compute the number of repetitions as a Presburger variable,  only as a constant 
extracted from the Presburger model (bounds on the iteration number c), and therefore I choose the 
increment factor as the Presburger variable, leaving the number of loop repetitions as a constant 
factor. In the subsequent analysis of the post­loop code, the auxiliary variables for the increments 
can be projected away; their relationships, if any, are still encoded in the structure of the projected 
set.

In   the   vector­reversal   example,   there   are   no   dependencies   between   the   increments   and   other 
variables. Similar analysis (omitted here) shows that the minimum number of repetitions is also 5, 
so the values after the loop are modeled by the set {[i, j, n, z]  ∣  i = n+5 and j = n+4}.

For a loop that has more than one entry point, in other words more than one head node, a repetition 
is defined as a pass through the loop from some head node to some back edge, and an exit is defined 
as a pass from some head node to some edge that leaves the loop. The repetition relation is defined 
as the union of the transfer relations from all possible repetition paths, and the set of initial values as 
the union of the initial­value sets at all head nodes. The analysis itself remains the same.

If there are nested loops the Presburger­set analysis has two phases. The first phase analyses the 
loops   bottom­up,   from   the   innermost   to   the   outermost,   classifies   the   variables   as   invariant, 
induction, or fuzzy for each loop, and makes an approximate model of the total effect of each loop 
as a relation that uses this classification but an unknown number of loop repetitions. The repetition 
relation of an outer loop uses these approximations for all inner loops. The second phase analyses 
the loops top­down, from outermost to innermost, and in flow order for loops at the same level. This 
second  phase   computes   loop­repetition  bounds   and  better   post­loop  value  models   that   include 
bounds on the induction­variable  increments and bounds on the number of repetitions. In some 
cases the models can be further improved by iterating these two phases a few times. Note also that 
user annotations that place bounds on variable values, at one program point or everywhere, are quite 
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easy to include in the Presburger sets, apart from the practical problem of mapping source­level 
variable identifiers to machine­level storage locations.

6. Execution Time of Loops

This   section   considers   how   the   Presburger­set   analysis   of   loops   applies   to   the   execution­time 
variable T, and in particular whether the bounds on T include or exclude infeasible paths in loops. 
The   execution­time  variable  T  is   evidently   an   induction  variable,   and   its   increment  dT  is   the 
execution time of the loop body. From section 5 the model of T after the loop is the initial value T0 

of  T  (the cumulated execution time up to the start of the loop) plus  dT  times the number of loop 
repetitions, plus the execution time of loop exit. This is roughly the same formula as in the timing 
schema methods [13] but here both T0 and dT can depend on other variables. The exit from a loop is 
analysed using the methods in section 4  and is already “outside” the loop from the viewpoint of 
loop analysis. Thus, only loop repetitions are discussed here.

Loops can involve many kinds of dependencies and infeasible paths. For some kinds, the proposed 
analysis excludes infeasible paths; for others it does not, as discussed below.

6.1 Iteration­Independent Dependencies

A dependency or an infeasible path is iteration­independent  if it applies on every repetition of the 
loop. In the simplest case, the loop contains a path that is infeasible on every repetition, whatever 
happens outside the loop or in other repetitions or in an exit from the loop. An example is a loop 
that contains the “saturation” code from section  3.2. The Presburger analysis omits the infeasible 
path from dT, and so also from the final value of T.

Another example is a conditional outside the loop that conflicts with a conditional inside the loop, 
on every repetition of the loop. For example, put a loop around the second if­then­else statement in 
the example in section 3.1, keeping the variable x as a loop invariant, thus:

t := 0;
if x < 1  then t := t + 100;

else t := t +  10; end if;
for i in 1 .. 7 loop

if x > 3  then t := t + 200;
else t := t +  20; end if;

end loop;

In the repetition relation Rd the T­increment dT now depends on x, as can be seen in the domain of 
Rd projected to  the variables [x, dt],  which is  the set  {[x, 20] ∣ x  3}    {[x, 200] ∣ x > 3}. If 
execution takes the slow branch of the first conditional, before the loop, it must then take the fast 
branch of   the second conditional,   inside   the   loop,  on  every   loop  iteration.  This  dependency  is 
reflected in  the model of the values after the loop. Projected to the variables [x, T] this set is

{[x, 240] ∣ x < 1}    {[x, 150] ∣ 1  x  3}   {[x, 1410] ∣ 4 < x}

8



The infeasible path where both slow branches are taken would give a final  T  of 100 + 7  200 = 
1500 cycles, which this analysis evidently excludes. The worst case takes the fast branch before the 
loop and the slow branch in every repetition of the loop, giving 10 + 7  200 = 1410 cycles.

6.2 Iteration­Specific Dependencies

Some dependencies and infeasible paths apply only on some repetitions. For example, put a loop 
around the second if­then­else statement in the example in section 3.1, but also add a statement in 
the loop that changes x on repetition 4. Now the combination of the two slow branches is infeasible 
for repetitions 0 through 3, but may be feasible for later repetitions. The Presburger analysis cannot 
exclude these infeasible paths because the bounds on dT are computed over all repetitions together.

When a loop contains important  iteration­dependent “unbalanced” conditionals,  it   is possible to 
introduce new variables to model how often each branch is executed, and compute the final T as the 
sum of these execution frequencies times the execution times (dT's) of the branches. This is very 
similar to the IPET formulation, but now the dT's of the branches can depend on other variables, so 
iteration­independent infeasible paths can be excluded. The execution frequencies could perhaps be 
computed analytically from the Presburger model [11] or by other methods [4, 8].

6.3 Dependent Loop Bounds

Important infeasible paths may arise when loop bounds correlate with conditionals, as here:

if <cond> then <compute for 100 cycles>; n :=  5;
          else <compute for  10 cycles>; n := 20; end if;
for i in 1 .. n loop <compute for 10 cycles>; end loop;

A normal WCET analysis includes the infeasible path where the slow then branch is followed by 20 
iterations of the loop, for a total of 300 cycles, although this branch implies only 5 iterations and 
150 cycles. The actual WCET is 210 cycles, for the fast else branch followed by 20 iterations. The 
analysis of this paper does no better and reports a WCET bound of 300 cycles, because the bound 
on the number of loop repetitions is modeled as a constant (20), not as a Presburger variable (n) that 
can depend on other variables. As explained in section 5.3  the loop bound and the increment  dT 
cannot both be Presburger variables, because the Presburger model does not allow multiplication of 
two variables. Thus, one cannot at the same time model the dependencies of  dT  and of the loop 
bound.

7. Discussion

The two main points in this paper are to model execution time as a program variable, and to use a 
dependency­sensitive value­analysis to exclude infeasible values. Neither point is novel in itself, but 
the combination is new, as far as I know. Haase [3] defined execution time as a program variable, 
for   proving   real­time   properties   using   weakest­precondition   calculus.   Haase's   work   influenced 
Shaw's definition of timing schemata [13], but the max (then, else) schema for conditionals discon­
nects execution time from other variables. The annotation language described by Mok et al. [9] is a 
kind of program to compute the execution time, but it is evaluated apart from the target program. 
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Model­checking approaches to timing analysis [10] must treat execution time as a variable, and may 
use semi­symbolic state representations. The analysis of Cousot and Halbwachs [1] identifies affine 
dependencies between variables, but uses convex hulls, which I believe means that its ability to 
exclude   infeasible   paths   is   weak.   Lisper   included   dependency­sensitive   value   analysis   in   his 
ambitious proposals [8], but without execution time as a variable. Stein and Martin use Presburger 
models   in   their   analysis   of   exclusive   paths [14].   However,   they   create   constraints   for   bounds 
calculation by IPET, and do not use a time variable.

The method explored in this paper needs a name. Let us call it the time­variable method. Different 
value analyses can be used with this method; the Presburger analysis is only one possibility. The 
examples  show that   the  time­variable  method with Presburger  analysis  excludes  some kinds  of 
infeasible  paths,  but  not   all   kinds.  The  method   is   in  principle   applicable   to  more  kinds  of  of 
infeasible paths than some other methods, such as [14]. The time­variable method does not need a 
representation   of   feasible   and   infeasible   paths   (a   flow­fact   language)   nor   a   separate   bounds­
calculation  phase.  A drawback  is   that   it   does  not,   by   itself,   exclude   infeasible  paths   from  the 
processor­behaviour analysis. This could lead to over­estimated WCETs of CFG elements. However, 
while it is easy to exclude single infeasible (dead) nodes and edges from the processor­behaviour 
analysis, it seems much harder to exclude longer infeasible paths, because the analysis would have to 
identify which paths generate which processor states. Hence this drawback may be insignificant.

In processors with caches and other accelerators the execution time  t(b) of a basic block  b  is not 
constant but depends on the history of execution. Using a history­independent worst­case t(b) can be 
a   gross   over­estimation.   Current   WCET   tools   have   two   approaches   to   this   problem.   The   first 
approach (virtually) expands the CFG so that the same basic block is represented by different CFG 
nodes in different contexts,  and thus by different context­specific values of  t(b)  [15].  The most 
common expansion peels the first iteration from each loop so as to separate the I­cache misses that 
may occur on the first iteration, from the I­cache hits that are assured on later iterations. The time­
variable method allows such CFG expansions and their benefits are the same as in the IPET method.

The second approach to handle history­sensitive accelerators is to expand the IPET problem by new 
ILP variables that model the states of the accelerator mechanisms (eg. the contents of the I­cache) 
and the additional execution time required by accelerator state transitions (eg. an I­cache miss) [7]. 
As the time­variable method does not use IPET, it cannot use this approach as such. In principle, 
new   Presburger   variables   could   model   accelerator   states,   but   the   complexity   would   likely   be 
impractical.

Experience with the Bound­T tool [5] shows that the Presburger analysis is practical in many cases 
for analysis of loop bounds, but also impractical in some cases (large subprograms), at least in its 
current   implementation.   I   think   that   the   complexity   comes   mainly   from   the   disjunctions   (set 
unions).   In   [14]   Stein   and   and  Martin   restrict   their   analysis   to   “linear”   slices   and   thus   avoid 
disjunctions. Still, I believe that disjunctions are necessary for analysing several kinds of infeasible 
paths. Better slicing to simplify the Presburger model, selective use of a timing schema for well­
balanced conditionals, and perhaps taking the convex hull of the Presburger sets at selected program 
points may reduce the analysis time. Bound­T currently calculates WCET bounds with IPET, not 
with the time­variable method. Implementation and experimental evaluation of the time­variable 
method is future work.
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IMPROVING THE WCET COMPUTATION TIME
BY IPET USING CONTROL FLOW GRAPH

PARTITIONING

C. Ballabriga, H. Cassé1

Abstract
Implicit Path Enumeration Technique (IPET) is currently largely used to compute Worst Case Ex-
ecution Time (WCET) by modeling control flow and architecture using integer linear programming
(ILP). As precise architecture effects requires a lot of constraints, the super-linear complexity of the
ILP solver makes computation times bigger and bigger. In this paper, we propose to split the control
flow of the program into smaller parts where a local WCET can be computed faster - as the result-
ing ILP system is smaller - and to combine these local results to get the overall WCET without loss
of precision. The experimentation in our tool OTAWA with lp_solve solver has shown an average
computation improvement of 6.5 times.

1. Introduction

Hard real-time systems are composed of tasks which must imperatively finish before their deadlines.
To guarantee this termination, scheduling analysis requires the knowledge of each task WCET. To
obtain this WCET, three steps are necessary: (1) the task control flow analysis, which determines
the possible program paths, (2) the architecture effects analysis, which takes into account the various
hardware components (CPU pipeline, instruction cache, etc) to produce timings for program paths,
and (3) the final WCET computation.

A widely-used approach for the last step is the Implicit Path Enumeration Technique (IPET) [10]. The
different components of the computation (control flow, pipeline execution, etc) are represented as in-
teger linear constraints and the WCET as a linear expression to maximize. The result is then obtained
using an Integer Linear Programming (ILP) solver that consumes a lot of time, and is often one of
the most time consuming tasks in the WCET computation. The resolution time is usually a function
(often non linear) of the number of constraints and variables in the ILP system. For example, the
approach for instruction caches of Ferdinand [7] provides good results but the virtual loop unrolling
multiplies the number of variables and constraints of a block nested in n level of loops by 2n.

In this paper, we attempt to reduce the time cost of the WCET computation by splitting the WCET
computation into smaller ILP systems and by merging the intermediate results. According to the built
constraints, the program is split into small regions where a local safe WCET can be computed. This
result is then re-used to compute bigger regions until the whole program is covered. Notice that the
first two steps - control flow and architecture effects analyses - are left untouched. This approach has
shown time computation improvements in different contexts (taking into account various architecture
effects) for the ILP solver lp_solve.

1IRIT, Université de Toulouse, CNRS - UPS - INP - UT1 - UTM, 118 rte de Narbonne, 31062 Toulouse cedex 9,
email: {ballabri,casse}@irit.fr

ECRTS 2008 
8th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis 
http://drops.dagstuhl.de/opus/volltexte/2008/1670
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The approach is related to [5], where the author partitions the WCET computation into fact clusters.
The fact clusters are composed of sets of flow facts and the scopes they are applied to (a scope is a
structured CFG subgraphs). The clusters bound the range of flow facts in order to get an accurate and
feasible WCET computation. Our approach uses a different method to partition the CFG (producing
smaller regions) and to take hardware effects into account (especially the pipeline and the instruction
cache) without loss of precision.

In the next section, we describe precisely the ILP constraints generated to model the control flow of the
task and the architecture effects. Then we describe our approach for splitting the WCET computation
and, in particular, we describe the problems caused by hardware modeling constraints for local effects
and global effects. The CPU pipeline and the instruction cache are taken as examples. The next
section presents the experimentation results of our method and we conclude in the last section.

2. Description of the ILP systems.

As there are a lot of different methods to handle the hardware features in the IPET approach, we
present in this section the variant our survey is based on.

2.1. Constraints related to the task control flow

The task control flow analysis as presented in [10] involves representing the analyzed program by a
Control Flow Graph (CFG), a directed graph whose nodes are Basic Blocks (BB). A BB is a sequence
of instructions with exactly one entry point and one exit point (i.e. no jump in or from the middle).
An edge connects two BB if the control can pass directly from the predecessor BB to the successor
BB (which can happen if the two BB are in sequence, or in case of a branch, a function call/return,
etc).

For each BB and each edge, an ILP variable is created, representing the number of times we execute
the BB or take the edge. We name xi the variable associated with basic block i, and name ei,j the
variable associated with edge going from basic block i to j. To represent the structure of the CFG,
structural constraints are created for each BB: the sum of execution count for all incoming edges must
be equal to the sum of execution count for all outgoing edges, and to the execution count of the basic
block (example for BB Bi:

∑
e∗,Bi

= xBi
=

∑
eBi,∗).

An additional set of constraints is used to represent the loop bounds. A loop can be identified by a
loop header L. The edges ingoing L can be divided into entry edges, and back edges. The entry edges
are entering the loop, while the back edges correspond to edge allowing to perform a new iteration.
The iteration bound for a loop being N means that the loop is executed at most for N iterations every
time it is entered. This is matched by the constraint:

∑
backEdges ≤ ∑

entryEdges × (N − 1).
The WCET is computed by maximizing an objective function that contains a term tBi

× xBi
for each

basic block. Therefore the resulting WCET is max(
∑

tBi
× xBi

).

2.2. Instruction Cache modeling constraints

C. Ferdinand et al. presents in [7, 6, 15, 1] a method to handle the instruction cache in the IPET
approach. This article proposes a method to predict by abstract interpretation the behavior of set-
associative instruction caches with a Least Recently Used (LRU) replacement policy. Thanks to three
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distinct analyses, the Must, the May, and the Persistence analyses, it categorizes the basic blocks1 ac-
cording their behavior in the cache as Always Hit, Always Miss, Persistent, or Not Classified. Always
Hit and Always Miss means that the access to the cache block results ever, respectively, in a cache
hit or in a cache miss. Persistent means, intuitively, that the first block access is a miss and the next
accesses give hits. Not Classified means that we do not know what will happen to the block when it
is accessed.

Former approach of C. Ferdinand was only considering May and Must analyses and was using loop
unrolling in order to cope with a limited form of the persistence, that is, miss at the first iteration
and hit in the following iteration. In [13], and later in [2], an improved approach for dealing with
Persistence is proposed. In these papers, it is proposed a new form of Persistent category that takes as
parameter the loop that is associated with the Persistent instruction: if the block B is categorized as
Persistent at loop L, it means that L is the outer-most loop such that B can not be replaced from the
cache within L. That is, L and its inner loops does not wipe out the cache block containing B and the
Persistent block cause at most one miss each time the loop L is entered.

To integrate this approach with IPET, the number of hits and miss for cache blocks is represented by
the variables xhit

i and xmiss
i . In all cases, we assert that xhit

i + xmiss
i = xi. The most straightforward

constraints are derived from the Always Hit, resp. Always Miss: xmiss
i = 0 (resp. xhit

i = 0). As the
Persistent category means that the block will cause a miss at most each time the related loop L is
entered, we can safely generate the constraint xmiss

i <=
∑

e∗,L (where e∗,L represents the entry edges
of the loop L).

2.3. Constraints for the CPU pipeline

In the original article of Li and Malik [10], the execution time of a basic block is viewed as a constant
time produced, for example, by measuring the basic block execution time on a real processor. In [4],
Engblom proposes to use simulation to compute the basic block execution times and to refine them
on pipelined processor according to the neighbouring basic blocks. Yet, this approach is not safe if
the processor exhibits “timing anomalies” or “long time effects”.

We have preferred the approach presented in [14] that allows to take into account the basic block
context modeled from a set of parameters. The execution time can be expressed as a function of these
parameters. This method is based on [9], which expresses the execution pattern of a basic block by an
execution graph. This graph conveys the precedence constraints between instructions, and analyses
it to derive the basic block execution time considering pessimistic assumptions about the execution
context.

If the method is simply used to compute the execution time of a basic block by considering the
union of possible contexts, no constraints are generated: the execution time of the basic block is
modified according to the pipeline effects, and this impacts only the objective function. However, for
more precision, it is possible to consider the basic block predecessors: if a basic block has several
predecessors, then due to pipeline effects the basic block execution time is different, depending on
the previously executed predecessor. In this case, the differences in execution time are associated to
the in-edges by additional terms in the objective function.

1For the sake of clarity in the paper, we consider that the basic blocks are split according to cache block boundaries
(allowing us to have a single category for each basic block), but our implementation handles regular basic blocks.

3



Figure 1. lp_solve solving time Figure 2. region building

For example, if a basic block B has two predecessors P1 and P2, then the terms diffP1,B. × eP1,B

and diffP2,B × eP2,B are added to the objective function, where diffP1,B and diffP2,B represent the
execution time of B when the control flow comes from P1 and P2.

2.4. ILP solving performance problems

The last few sections have shown that a lot of variables and constraints are required to compute the
WCET. To sum it up, in the control flow constraints, we need a variable for each basic block and for
each edge, resulting in two constraints for each basic block. Moreover, we need one more constraint
for each loop header. To handle the cache, we need two additional variables and constraints (one for
the category and one for xi = xhit

i + xmiss
i ) for each basic block.

Finally, the use of the contextual execution graph requires only to add terms to the objective function.
For a task with nN basic blocks, nL loops and nE edges, usually nE > nN , we produce an ILP system
with 3nN variables and 5nN + nL constraints). With tasks of several thousands of basic blocks,
this makes huge system to resolve and things become worse with the loop unrolling that duplicates
constraints for block in nested loops (×2n for n nesting levels).

As the basic approach to resolve ILP systems has a super-linear complexity relatively to the constraint
number, the resulting systems are very costly to solve, and takes a large part of the WCET computation
time. This is illustrated in Figure 1 that shows the measured execution time for a collection of WCET
computation on the lp_solve solver [11]. We have performed our measures on 100 pieces of code
coming from parts or whole programs from the Mälardalen benchmark [12]. One may notice that it
would be efficient to split the ILP system into subsystems smaller enough (about 100-300 constraints)
because the sum of their computation times would be much lesser than the computation of the whole
system. Next section introduces a method to approach such a solution.

3. Our approach

The main constraint in splitting the problem into smaller ILP subsystems is to keep the same WCET
when the ILP systems are computed separately (our approach does not cause loss of WCET precision).
The idea is to isolate sub-systems such such that (1) their local WCET is a constant and (2) the sub-
system can be replaced in the global WCET by the product of the local WCET and of the number of
times it is executed. Therefore, the subsystem isolation depends on the structure of the system, i.e. on
the constraints generated to model the control flow and architecture effects.
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3.1. Single-Entry Single-Exit regions

The structural constraints, for each basic blocks, relates the sum of incoming and outgoing edge count
to the basic block execution count. We can observe that if a region of the CFG is connected to the
outside by one entry edge, and one exit edge, the only constraints connecting region blocks with
blocks outside the region are the structural constraints at the entry edge successor (BBentry), and at
the exit edge predecessor (BBexit), whose form are BBentry = entryEdge and BBexit = exitEdge.
Furthermore, since we have a region with a single entry and single exit, all control flow entering by the
entry edge leaves by the exit edge such that BBentry = BBexit = entryEdge = exitEdge = xregion,
with xregion representing the execution count of the whole region.

Therefore, all variables representing execution count of basic blocks in the region depends ultimately
only on xregion. Thus we can compute locally the WCET of the region, assuming xregion = 1 and
taking into account only structural constraints and objective function terms corresponding to the re-
gion blocks. When the main program is analyzed, we can substitute a single edge for the region,
remove from the whole system the constraints of the subsystem, remove from the objective function
the terms depending on xi ∈ region and add to the objective function xregionEdge × WCETregion.
This is illustrated in Figure 2.

It is important to keep in mind that it is consistent because the objective function terms that represents
the region contribution to the WCET depends only (directly or indirectly) on xregion. In other words,
it means that the region WCET is always the same, regardless of the execution context. Those single-
entry single-exit regions are called SESE regions and surveyed in [8].

3.2. Handling CPU pipeline analysis

We consider here the pipeline analysis method already discussed in section 2.3. This method can
compute each basic block execution time for the union of all possible contexts. In this case, the
execution time of each basic block is independent, and the WCET of the region is the same in every
context. Only the objective function needs to be modified: each term ti × xi is adjusted (ti is set to
the execution time of basic block i computed by the pipeline analysis). In this case, no additional
problem appears, and the SESE region approach presented in the last section can be used as is.

The CPU pipeline analysis method can also compute the basic block execution depending on the
predecessors. In this case, the objective function is enhanced by diffi,B.× ei,B terms for each prede-
cessor of each basic block B. The unique basic block whose predecessor may be outside the region
is the entry basic block (that is, the sink block of the region entry edge). Because the regions are
single-entry single-exit, the entry basic block has only one predecessor, and thus, one possible execu-
tion time. Therefore, in this case, too, no additional problem appears. To sum it up, the CPU pipeline
handling does not cause problems with our approach, provided we limit ourselves to (1) a single time
for each basic block or (2) a time dependent on the predecessor only. Experimental results found
in [14] shows that WCET tightness is pretty good with a context of only one predecessor.

3.3. Handling cache related constraints

The cache categorization method by C. Ferdinand et al [7, 6, 15, 1] computes categories such as
Always Hit, Always Miss, Persistent, and Not Classified, and generates ILP constraints based on those
categories as described in section 2.2. In order to know if the cache categorization raise any issue
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Figure 3. From PST to Feasible Tree

regarding our region partitioning approach, we need to study the ILP constraints generated by each of
the possible categories (except for Not Classified, which does not generate any constraints).

The Always Hit and Always Miss categories means that the block causes, respectively, always a hit or
a miss. Therefore, the generated constraints, xhit

i = xi or xmiss
i = xi, and the objective function con-

tribution, xhit
i × thit

i and xmiss
i × tmiss

i , does not cause any difficulty because their value is proportional
to xi (either equal, or zero) that, in turn, in derived from xregion. So the terms of the objective function
to handle the cache may be embedded in xregion ×WCETregion. The loop unrolling approach does
not induce any problem as it only duplicates some parts of the code.

The Persistent category have more complex constraints that link together basic blocks count variables
from distant CFG parts. The Persistent category means that the first execution of the instruction may
result in a miss, but all the subsequent executions will result in hits. The corresponding constraint
has the form xmiss

i <=
∑

e∗,HL
(HL is the loop header of L, the loop associated with the Persistent

block). If the loop header is outside the region, then xmiss
i depends on something that can not be

derived from the execution count of the region, xregion. In other words, for each execution of the
region, the hit/miss status of the Persistent basic block depends on the presence of the block in the
cache at the region entry. Therefore, the region WCET is different depending on the context.

The Persistent category show us that the constraints induce specific limitations to the local compu-
tation of region WCET: a region can be computed independently if for any Persistent basic block,
the associated loop header is also in the region, else the region is infeasible. In a more generic way,
the region partition is driven by the nature of the constraints and the objective terms applied to the
basic blocks of the region. A region is feasible if (1) the objective function terms tied to the region
blocks are proportional to the number of times the region is executed, xregion, and (2) any constraint
containing variables tied to the region blocks contains only variables tied to the region blocks.

3.4. The Program Structure Tree

We have seen that hardware effects (cache) may disrupt our approach by making some regions infea-
sible, thus slowing the overall WCET computation. So, to improve the efficiency of our method, we
propose to compensate the apparition of non-feasible regions by organizing the integration of local
WCET in a hierarchy of computations. This forms a tree called Program Structure Tree (PST) [8].
This paper introduces the concept of Single-Entry Single-Exit (SESE) regions, a sub-graph of the
CFG with one entry edge and one exit edge. It defines a canonical SESE region as a SESE region that
does not contain any other SESE region that shares its entry or its exit edges. It is then shown that the
canonical SESE regions can be structured in a PST that can be computed in linear time.

The PST is not usable as is, because the hardware effects makes some regions infeasible. The PST
building must be modified to remove the infeasible regions, as described in the Figure 3. The PST
is visited from the leaves to the root. When an infeasible region is found, it is removed by moving
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(a) time gained with lp_solve (b) sensitivity to random dependencies

Figure 4. Experimental results

its basic blocks and its children regions to its parent region. The result is a tree containing only
feasible regions. Finally, the whole WCET is computed by performing a bottom-up visit of the PST,
computing each region WCET once all its children are processed and by reporting the children WCET
into the parent region system.

4. Evaluation

To validate our approach, we have experimented with it using OTAWA [3], our WCET computation
framework. The target architecture features a simple pipelined processor (handled by contextual
execution graph) and a 4-way set-associative instruction cache (handled by cache categorization).
The measurements have been done on a subset of big-enough Mälardalen benchmarks [12]), with
the lp_solve solver [11]. A “big-enough” benchmark means that the generated ILP system provides
enough space to extract regions (generating more than 300 constrains).

4.1. Comparison of analysis times

For each selected test of the Mälardalen benchmarks, we have computed the WCET with both the
traditional and the region partitioning approaches, and measured the computation time (excluding
program path and architecture effects analysis that remains unchanged in our approach). In the case
of the region partitioning approach, we have taken into account the time needed to do the partitioning
(PST building, identification of infeasible regions, etc).

On average, with our approach the analysis is 6.5 times faster, and results exactly in the same com-
puted WCET. Details can be found on figure 4(a), which gives for each test the percent of the ratio
timenew−approach

timeold−approach
(for example, 33% means that we go approximately 3 times faster), with and without

loop unrolling.

4.2. Results with random dependencies

To evaluates the limits of our approach, we have also experimented measurement with additional
random dependencies. These dependencies generalize the concept of long range dependencies as
generated by First Miss blocks in the cache analysis: such a block is linked to the loop header by a
constraint. In other words, the dependency from a source basic block BB1 to a sink basic block BB2
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represents the fact that we need information about BB1 number of executions to know the execution
time of BB2.

This property could also be applied on any analysis involving categorization, not just cache behavior
prediction. As we have no WCET algorithm to produce these dependencies, we have used a ran-
dom generator. The generated dependencies prevents the feasibility of some regions and stresses our
algorithm.

The figure 4(b) shows the impact of these random dependencies on the analysis time. The X axis
represents the ratio in percent of the basic blocks affected by a dependency, while the Y axis represents
the mean analysis time over all tests for the same Mälardalen benchmarks as in previous section. The
results shows that, even if almost every other basic block is affected by a dependency, we still have
some time gain.

5. Conclusion

This paper proposes an approach to alleviate the problem of high analysis time for WCET compu-
tation with the IPET method by partitioning the program into smaller regions that can be computed
independently. We have presented the general principle of our approach (building the PST and vis-
iting it in a bottom-up fashion to compute the WCET of the program) in the trivial case where we
do not take into account architecture effects. We have then identified the limitations of our approach
in more realistic conditions, including cache behavior prediction, CPU pipeline analysis and even
random generation of dependencies between basic blocks. The experimentation conducted in several
situations shows a significant time gain.

In future works, we plan to support more architecture effect modeling like the branch prediction unit
or the data caches. Although the random dependency generation seems to show that the approach re-
mains efficient, it would be interesting to stress the algorithm with more complex constraints as found
in Cache Conflict Graph for example. Another way of experimentation concerns the validation of the
method with other industrial or publicly available ILP solvers. Any solver based on the dual simplex
algorithm should exhibit some improvements in computation time but additional ILP techniques may
offset the time spent in our analysis.
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INFER: INTERACTIVE TIMING PROFILES
BASED ON BAYESIAN NETWORKS 1

Michael Zolda2

Abstract
We propose an approach for timing analysis of software-based embedded computer systems that
builds on the established probabilistic framework of Bayesian networks. We envision an approach
where we take (1) an abstract description of the control flow within a piece of software, and (2) a set
of run-time traces, which are combined into a Bayesian network that can be seen as an interactive
timing profile. The obtained profile can be used by the embedded systems engineer not only to obtain
a probabilistic estimate of the WCET, but also to run interactive timing simulations, or to automat-
ically identify software configurations that are likely to evoke noteworthy timing behavior, like, e.g.,
high variances of execution times, and which are therefore candidates for further inspection.

Keywords: Bayesian networks, embedded systems, hardware modeling, measurement-based execu-
tion time analysis, software modeling, probabilistic modeling, profiling, real-time systems

1. Introduction

With the increasing number of embedded computer systems in everyday life applications, like cars,
digital entertainment systems, or mobile phones, knowledge about the real physical behavior of such
systems is becoming more and more important. In particular, when a computer system is embedded in
a real physical process, like in an engine control system, or a digital media stream decoder, knowledge
of its timing properties becomes crucial.

Despite the notable advances in timing analysis of embedded computer systems, performing a WCET
analysis of state-of-the-art systems is becoming more difficult, as intricate processor features, like
caches, pipelining, and branch prediction, trickle down from the desktop and server to the embedded
processor domain. As a result, such systems are becoming too complex for a complete, detailed
analysis.

Whenever we have to reason about systems the complexity of which prohibits us from explicitly
dealing with each special case, but the details are too important to simply ignore them, it is common
and acknowledged practice to use models that summarize the impact of exceptions.

Probabilistic network models [10] provide a theoretically sound framework for summarizing complex
relationships as probabilistic dependencies. Besides providing mechanisms for simulating the model’s
behavior under various user-defined scenarios, probabilistic network models offer a better traceability

2Institut für Technische Informatik, Technische Universität Wien, Treitlstraße 3/182/1, A-1040 Wien, Austria,
e-mail: michaelz@vmars.tuwien.ac.at

1The research leading to these results has received funding from the Austrian Science Fund (Fonds zur Förderung der wis-
senschaftlichen Forschung) within the research project “Formal Timing Analysis Suite of Real-Time Systems” (FORTAS-
RT) under contract P19230-N13.

ECRTS 2008 
8th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis 
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of effects, compared to traditional regression models.

We propose an approach that uses Bayesian networks to model program execution times of software-
based embedded systems. The structure of our networks is based on the structural properties of the
soft- and/or hardware under test. The network is subsequently parameterized with empirical data
obtained from run-time measurements on the actual target hardware.

2. State Machine Models

2.1. Reactive Systems

Depending on their method of operation, embedded computer systems can be classified into reactive
systems and transformative systems. Whereas a reactive system keeps on running continuously, inter-
acting with its physical environment, a transformative system is characterized by a “one-shot” mode
of operation: the system starts by taking all its inputs, performs some calculation, and terminates with
some output. Transformative systems are popular basic building blocks for more complex systems,
where they are invoked periodically by a scheduler. If the transformative system is part of a (hard
or soft) real time system [5], then it must fulfill certain previously specified timing constraints. Not
meeting those timing constraints is considered a system failure.

We consider software-based transformative systems. Even though there have been various proposals
to make such systems time-predictable by design, software that was written by applying traditional
programming techniques, and/or which is running on modern processors has a highly unpredictable
temporal behavior [4].

When we take a mathematical point of view on such a system, we essentially face an extremely
complex state machine, where each state corresponds to an intricate hardware configuration, and
where the transitions correspond to the change from one such configuration to another. Since each
change between states corresponds to a real physical processes, we can associate an execution time
with each transition. At this level of detail, the system is deterministic, and the execution time for
each transition is cycle-accurate.

Unfortunately, we usually cannot describe a real transformative system in all details, for various
reasons, like, e.g., inadequate detail of the available hardware specification, or sheer size. So we have
to abstract our state machine model (SMM).

We consider three forms of abstraction, which are performed in the given order: State elimination,
Existential abstraction and segment abstraction.

2.2. State Elimination

State elimination is achieved by removing states from the SMM. When a state s is removed, each of its
incoming edges is redirected to the unique successor node s′1. Subsequently, the transition between s
and s′ is dropped, after adding its associated execution time to each of the redirected edges.

1The uniqueness is guaranteed by our premise of determinism of the SMM. From this uniqueness, it also follows that the
SMM is free of cycles, because we are modeling a transformative system that is supposed to terminate with some output.
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2.3. Existential Model Abstraction

Existential abstraction is achieved by collecting the concrete states of the SMM into sets, and viewing
these sets as the abstract states of an abstract state machine model (ASMM). The transitions of the
ASMM are induced by may-semantics: There is an abstract transition between two abstract states of
the ASMM, iff there is at least one concrete transition between two concrete states of the underlying
SMM. Accordingly, the execution times of all the concrete transitions are collected into a multi-set
with a corresponding may-semantics.

For software written in imperative programming languages, we usually consider basic blocks and
their static control flow structure. In that case, transitions are identified with basic blocks, and abstract
states are identified with basic block numbers.

Figure 1(a) gives an example source code written in the C programming language. Figure 1(b) shows
the structure of the corresponding ASMM.

2.4. Segment Model Abstraction

Segment Abstraction is another form of abstraction, normally performed after existential abstraction.
Whereas in existential abstraction we collect states into abstract states, in segment abstraction we
collect paths into segments.

A segment is characterized by its entry/exit interface. It essentially binds together all paths that start
at the entry interface (which is given as a collection of states) and end at the exit interface (another
collection of states).

The utility of segments is threefold:

Handling of path explosion. The execution time of an individual basic block generally depends on
the execution history. As a consequence, the execution times of individual basic blocks are not com-
posable without loss of information. If the executions times are, for example, given as probability
distributions, combining them through a convolution operator might lead to over- and underestima-
tion of the probabilities of certain execution times. Even more importantly, in the measurement-based
approach individual measuring of basic blocks may totally miss execution times that depend on a rare
system state that is only reached through certain execution histories.

For maximal accuracy w.r.t. the ASMM, in the measurement-based approach, we would have to
measure the execution time of each ASMM path. However, the number of ASMM paths is typically
prohibitively large.

Segments are used to specify restricted measurement/coverage regions. They should be chosen such
as to contain a limited number of paths, thus alleviating the path explosion problem. However, the
paths within the segments should not be too short, such as not to sacrifice too much history-dependent
information. A good segmentation algorithm should balance these two opposed goals.

Dependencies across segments can be captured/modeled by the Bayesian network model.

Obtaining accurate measurements. When we want to obtain the execution time information through
measurement, we face the problem that some measurement methods are intrusive in the sense that the

3



s0: if(m==0) {
s1: if(y!=0)
s2: m=x%y;
s3: if(m==0)
s4: z++;
s5: k++;

} else {
s6: f=1;

}
s7: if(m==0) {
s8: f=0;

}
s9:

(a) Example source code
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(b) Abstract state machine
model (ASMM)
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(c) ASMM with segmentation
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(d) Abstract view on the
segmentation

Figure 1. Illustration of an abstract state machine model (ASMM) and its segmentation

act of measuring affects the result. A typical example of this is measuring using software instrumenta-
tions. Such instrumentations affect the hardware state and may therefore also the affect the execution
time of subsequent code. Secondly, some measurement methods can only provide limited accuracy,
e.g. if they employ a timer with low granularity.

Both effects can be alleviated by avoiding the measuring of short sequences of instructions. Segments
are used to specify measurement spans of a minimal length that is specific to the applied measurement
method.

Logical Structuring. We do not only want to model the overall execution time behavior of the entire
program, but also want to get more insight into the timing interactions within the program.

Segment are used to structure the program into smaller parts whose execution time behavior is made
visible to the user.

For example, the engineer might consider a small loop as basic unit of functionality. Then this loop
would be a candidate for a segment.

A segment is an ordered pair 〈E,X〉, where E is a set of entry states, and X is a set of exit states.
Semantically, E is related to X through the segment 〈E,X〉, iff, for each state in E, there is a directed
path to some state in X that does not touch any other state in X .

The set of associated paths through a segment 〈E,X〉 is the set of all paths2 s0
l0→ s1

l1→ . . .
ln−1→ sn,

such that s0 ∈ E, sn ∈ X , and si 6∈ X , for any 0 < i < n and any n > 0.

Figure 1(c) indicates the partitioning of the ASMM from Figure 1(b) into four segments. For example,
segment G1 is the segment with E = {s0} and X = {s3, s6}. We can reach s3 from s0, e.g. via s1,
without touching s6, and we can reach s6 directly from s0. The paths associated through G1 are
s0 → s1 → s2 → s3, s0 → s1 → s3, and s0 → s6. Figure 1(d) provides a more abstract view of the

2We use labels to distinguish parallel edges. If there are no parallel edges, we can omit them.

4



segments and their interconnection. Note how the entry and exit states act as “connectors” between
segments.

The idea behind segments is to abstractly and implicitly specify the set of paths that can be taken
through a given region simply as an entry/exit interface. We then associate, with each segment, the
multi-set of execution times of all its associated paths.

A segment is an over-approximation of the underlying subgraph of the SMM, in the sense that it
summarizes all possible paths through that subgraph, and thus all possible path execution times.
Segments should thus be seen as the primitives of a program with which we can associate meaningful
timing information.

Segment abstraction can be performed by iteratively replacing subgraphs of the ASMM with matching
segments, until all transitions have been collected into segments.

For a given ASMM, the choice of segments is not unique. We do not, at this moment, provide a
concrete algorithm that incorporates all the requirements on segments that were discussed in this
section.

3. Probabilistic Modeling

3.1. Bayesian Network Essentials

In probability theory, we consider random experiments, i.e., experiments with an outcome that is
governed by some indeterministic mechanism. The possible outcomes of such an experiment are
called events. To express a certain degree of confidence that a certain event will occur, real numbers
from the interval [0 . . . 1] are used. Greater values indicate greater confidence; a value of 1 indicates
absolute confidence that an event will occur, 0 indicates absolute confidence that an event will fail to
occur, 0.5 indicates total indifference about the occurrence of an event. These real numbers are called
probabilities.

A random variable is a variable whose value depends on the outcome of a random experiment.
Through this dependency, random variables inherit probability values from the probabilities of their
underlying events. Consequently, constraints over random variables can themselves be viewed as
events.

When performing probabilistic reasoning, we always consider a specific probabilistic model that de-
scribes a set of random variables, as well as their qualitative and quantitative interconnections.

The conditional probability P (X=x |Y1=y1, . . . Yn=yn) designates the probability that variable X
obtain the value x, given the a-priori knowledge that Yi obtain the value yi, for 1 ≤ i ≤ n. Note that
the order of the conditions is irrelevant, but that generally P (X=x |Y=y, . . .) 6= P (Y=y |X=x, . . .).
The unconditional probability P (X=x) designates the probability that variable X obtain the value x,
given no further information about the outcomes of any other variables in the model.

Two variables X and Y are conditionally independent given a set of variables Y1, . . . , Yn, iff P (X=
x |Y =y, Y1=y1, . . . Yn=yn) = P (X=x |Y1=y1, . . . Yn=yn). Intuitively speaking, the outcome of Y
does not influence the outcome of X , under the given a priori knowledge. Conditional independence
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Effort Ideas

Success

Happiness

Success ¬Success
Happiness 0.6 0.3
¬ Happiness 0.4 0.7

Effort ¬Effort
Ideas ¬Ideas Ideas ¬Ideas

Success 0.7 0.4 0.3 0.2
¬ Success 0.3 0.6 0.7 0.8

Effort 0.5
¬ Effort 0.5

Ideas 0.5
¬ Ideas 0.5

Figure 2. Example of a bayesian network

is a symmetric relation.

Bayesian network (BN) are a representation mechanism that can express the important class of causal
probabilistic models. In a BN, the model’s variables are expressed as nodes of a graph. For each
variable X , the BN has a conditional probability table (CPT) that specifies the conditional probabil-
ities P (X=x |Y1=y1, . . . Yn=yn) over all possible combinations of outcomes of its parent variables
Y1, . . . Yn.

The connection between a BN and the represented probabilistic model is completed by the following
formal property: Any variable X is conditionally independent of all its non-descendants, given its
parents Y = {Y1, . . . Yn}, and no subset of Y satisfies this condition [10]. Intuitively speaking, each
direct causal dependency between variables of the model implies a corresponding directed arc in the
BN.

Figure 2 depicts a simplified Bayesian network model of success. The variables of this simplified
model—effort, ideas, success, and happiness—are all binary: either you are happy or not. The prob-
ability of success depends on both, effort and ideas. Effort indirectly affects happiness via success,
but there is no direct causal influence. Therefore, if you are definitely a successful person, making
a change in effort won’t affect your 60% probability of happiness: Happiness is conditionally inde-
pendent from effort, given success. If there was a direct connection between effort and happiness, we
would have to add an extra arc between them.

Note how the conditional probability tables specify, for each node, the probability of each outcome,
for all combinations of outcomes of their parent nodes. For effort and ideas, which have no parents in
our model, we need to specify the unconditional a priori probabilities. The uniform 50-50 distributions
are appropriate to express complete ignorance about the unconditional likelihood of effort or ideas.

3.2. Using Bayesian Networks for Simulation

The salient feature of a Bayesian network is its direct applicability for simulations. The network
constitutes a complete probabilistic model of the variables in its domain and can, amongst other
things, be used to solve “what-if?” scenarios. A simple simulation on a BN consists of the following
steps:

1. The user provides hypothetical evidence Y1 = c1, . . . , Yn = cn for some selected nodes of the
network3, i.e., he fixes the value of some variables to one of their possible outcomes.

3Note that this hypothetical evidence is provided as part of a query. The user is not required to provide such information
during the model construction. Also, it is possible to have queries without any hypothetical evidence (where n = 0).
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2. A belief update is performed on the network4. During this operation, the conditional proba-
bilities P (X = x|Y1 = c1, . . . , Yn = cn) are evaluated for all network variables X . Note that
c1, . . . , cn are constant values. The conditional probabilities P (X = x|Y1 = c1, . . . , Yn = cn)
thus represent the probability distribution of random variable X under the user-defined sce-
nario Y1 =c1, . . . , Yn =cn).

3. The user reads the probability distributions of his interest from the model.

For illustration, consider, once again, the Bayesian network from Figure 2. Assume that the user
wants to perform the diagnostic query “How likely is it that a happy person is putting in some effort?”
By setting the evidence of the happiness node to true and running a belief update over the network,
the user can obtain the numeric answer, which is “55%”, i.e., slightly higher than the corresponding
a priori likelihood of “50%”. A detailed explanation of the corresponding calculations is out of the
scope of this work, but for an intuive explanation, consider that fixing happiness to “true” leads to an
increase of the likelihood of success, via the direct link between those nodes. The increased likelihood
of success, in turn, yields an increase in the likelihood of both, effort and ideas.

We are convinced that such a mechanism for performing simulations of user-defined “what-if?” sce-
narios is a highly desirable and useful tool in the hands of an engineer who is performing a timing
analysis of a given system.

3.3. Probabilistic Interpretation of Abstraction

A segment (E,X) summarizes the timing behavior of all SMM paths from E to X by collecting the
execution times of these paths in a multi-set. Interpreting relative frequencies as probabilities, we
obtain, for each segment, a random variable on the possible execution times.

The random variables for different segments are generally not conditionally independent. Rather,
they show some degree of correlation; a result of the fact that the concrete SMM path taken through a
segment during an actual run of the software depends on the concrete SMM state through which the
segment is entered, and thus on the concrete SMM path that was taken through previous segments.

At our level of abstraction, the correlations between the execution times of basic blocks can be viewed
is being established via a “hidden” information channel. For example, an instruction cache can act as
a mediator between the timing variables of two basic blocks that share a common cache line, creating
a probabilistic dependency between them.

Once we have identified such information channels, we can create a Bayesian network model that
incorporates the corresponding probabilistic dependencies.

3.4. Deriving the Network Structure

Besides performing the segmentation of the ASMM, we also have to identify the relevant dependen-
cies between segments.

Let G be a segment. The context set cs(G) of G is the set of all segments on which G causally and
directly depends.

4Various different algorithms that perform this task have been proposed and implemented [9, 6, 3, 14].
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For our application, the restriction to causal dependencies means that cs(G) can only contain ancestor
segments (w.r.t. the flow of control) of G. The restriction to direct dependencies means that transitive
dependencies are not modeled explicitly.

Technically, the variables associated with the context set of cs(G) will later form the Markov bound-
ary of the variable associated with G.

The identification of context sets should generally be done in parallel to identifying segments, as both
choices depend on each other.

Given a segment G, how can we determine the context set cs(G) of G?

It is important to note that we cannot provide a feasible method for automatically identifying all
dependencies of G. Rather, we propose a best-effort approach that yields a good approximation of
cs(G) by considering candidate segments that are likely to exert a strong influence on G.

Our primary source for candidate segments is our abstract knowledge about the hardware architecture
and software semantics.

For example, if we have some knowledge about the instruction cache and memory layout of our target
architecture, then we might be able to identify segments that are in conflict through the sharing of a
common cache line.

Another example is the consideration of pipelining effects over segment borders: in a pipelined ar-
chitecture, a segments potentially depends on its immediate predecessors through the shared pipeline
state at the common segment boundary.

Our third example is the analysis of control flow dependencies. In the following we give a sketch of
how we can identify candidate segments for cs(G) through the use of use-definition chains.

Let x be a program variable that is used inside the condition of a control flow statement within segment
G. Since the value of x can influence the flow of control in G, it also has a potential influence on
the execution time of G. Next, consider the corresponding assignments of x (which can be easily
obtained by static program analysis). If such an assignment of x is contained in at least one branch
of a control flow statement St of segment G′, then G depends on G′ by way of the “hidden” common
dependencies of both segments on the condition of St.

3.5. Classifying Execution Times

In a Bayesian network, we need to specify, for each variable X , the conditional probabilities w.r.t. all
parent variables. If we have n possible outcomes (here: different execution times) for each segment,
then the CPT for a segment with a context set size of m requires nm+1 entries. It is thus clear that we
have to limit both, the size of the context set for each segment, and the number of outcomes for each
variable.

The size of the context set of a segment can be reduced by considering only the strongest dependen-
cies. The strength of a dependency can, for example, be judged by the measure of mutual informa-
tion [13] of corresponding variables.
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On the other hand, the number of outcomes for a variable can be reduced by classifying values. For
example, if the possible execution times for segment G are in the range of 100 to 750 microseconds,
then we might summarize the possible outcomes as intervals [100, 250), [250, 500), [500, 750], plus
a special outcome “null” that represents the situation where a segment is not executed. A reasonable
classification is crucial for obtaining a significant probabilistic model.

3.6. Parameterizing the Network with Measurements

Once we have identified segments and their associated context sets, we have to parameterize the
network with appropriate conditional probabilities of execution times. As mentioned in Section 3.3,
our probabilities are based on relative frequencies.

We obtain the relative frequencies of execution times by performing measurements on the real com-
puter system. The main advantage of our measurement-based approach is that we obtain our timing
data from the actual system, which incorporates all the numerous and possibly peculiar implementa-
tion details and quirks of the future production system.

To parameterize our network, we need to obtain, for each segment G, the conditional relative fre-
quencies f(T = c |T1 = c1, . . . , Tn = cn) of execution times, where T, T1, . . . , Tn are random
variables representing the execution times for the segment G, and its corresponding context segments
{G1, . . . Gn} ∈ cs(G), and where c, c1, . . . , cn are the corresponding classes of execution times. This
can be achieved as follows:

1. Generate test data vectors d1, . . . , dm, that force a flow of control through G. This can be done
by harnessing techniques like random test data generation and model checking [11].

2. For each test data vector di, 1 ≤ i ≤ m, measure the execution times ti,G, ti,G1 , . . . , ti,Gn

of G, G1, . . . , Gn. Available options for this step are the use of intrusive techniques like static
source code instrumentation, or non-intrusive techniques like timing trace generation with hard-
ware trace probes.

3. Obtain the joint absolute frequencies as

F (c, c1, . . . , cn) = | {i | ti,G∈c, ti,G1∈c1, . . . , ti,Gn∈cn, 1 ≤ i ≤ m} |,

and subsequently the conditional relative frequencies as

f(c | c1, . . . , cn) =
F (c, c1, . . . , cn)∑

x∈domain(T ) F (x, c1, . . . , cn)
.

To obtain representative frequency distributions for the segment, the test data vectors d1, . . . , dm

should throughly cover the timing behavior of G. Since a full coverage of all possible SMM paths
is usually infeasible, we confine ourselves to up to k random samples per ASMM path, i.e., we try
to achieve full path coverage of the abstract model within the segment and try to generate up to k
unbiased measurements per path. Full ASMM path coverage can be achieved by applying techniques
like random test data generation and model checking [11].

9



TS1 10ms 11ms null
TS2 20ms 21ms null 20ms 21ms null 20ms 21ms null

30ms 1 0 0 0 0 0 0 0 0
31ms 0 1 0 1 0 0 0 0 0

TS 32ms 0 0 0 0 1 0 0 0 0
null 0 0 0 0 0 0 0 0 1

inconsistent 0 0 1 0 0 1 1 1 0

Table 1. Example CPT that relates the execution time of two sequential segments S1 and S2 with the execution
time of their corresponding super-segment S

3.7. Multiple Layers of Abstraction

The modeling we have described so far produces Bayesian networks that capture the running times of
individual segments. However, the engineer will usually also be interested in the execution times of
larger program sections, in particular the execution times of the whole program (most specifically in
the overall WCET). To this end, we introduce multiple layers of abstraction to our model.

Above the basic segmentation layer, we introduce a coarser super-segmentation layer, such that the
basic segmentation layer can be seen as a refinement of the coarse layer. The network corresponding
to the super-segmentation layer is, however, not parameterized by measurements, but the values of
these nodes depend functionally on their corresponding basic segments.

Such functional dependencies can by modeled as “deterministic” conditional probability tables, i.e.,
CPTs that contain only zeros and ones. Table 1 shows an example CPT that relates the execution time
of two sequential segments G1 and G2 with the execution time of their corresponding super-segment
G. Note the outcome “inconsistent”, which is an artifact of our modeling approach. We must include
such hypothetical situations in our model to capture anomalous flows of control between segments
that violate structural flow constraints [8]. However, additional consistency nodes can easily reduce
the actual probability of these outcomes to zero.

The final BN model includes several layers of segment abstraction, where the top layer contains only a
single segment that represents the overall behavior of the system. The corresponding variable captures
the execution time of the complete system, including the empirical, probabilistic worst case outcome.

4. Related Work

Lemeire and Dirkx [7] present an approach for performance analysis of concurrent systems that is
based on Bayesian networks. Whereas the structure of our networks is based on the structural proper-
ties of the system under test, the approach of Lemeire and Dirkx is based on a functional description
of the system that requires system-specific knowledge. In contrast to this, our approach is generic.
Eventually it should be possible to perform all steps, i.e., construction of the ASMM, segmentation,
identification of candidate dependencies, and parameterization, automatically.

Bernat et al. [1, 2] present a probabilistic approach for WCET calculation where the execution time
frequency distributions of different code sections are combined by one out of three combination op-
erators. The choice of the operator depends on whether the distributions are correlated via a known
joint distribution, correlated via an unknown joint distribution, or uncorrelated. The operators are
used to calculate an overall frequency distribution for the whole program. Compared to this opera-
tional approach, which is targeted at the derivation of one particular static distribution, our approach
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is aimed at the derivation of an interactive timing model of the system under test, on which the user
can perform arbitrary simulations. Obtaining the overall execution time distribution over all possible
inputs (and thus obtaining a probabilistic estimate of the WCET) is only one particular use case of
such a timing model.

The concept of ASMM segments that we introduce in this paper is a generalization of the concept of
CFG segments introduced in [11, 12].

5. Future Work

In Section 2.4 we introduced the concept of segments and indicated their application. We have yet to
provide a concrete segmentation algorithm.

In Section 3.5 we argued that we have to limit the number of possible outcomes of random variables,
and proposed classification as a solution. We are currently working on a WCET-aware classification
method for execution times that tries to minimize the loss of information that is relevant for WCET
calculation.

In Section 3.7 we have presented a brief description of how we can include multiple layers of model
abstraction into a single Bayesian network model. Further work is needed on this concept.

The Bayesian network structure that we propose in this paper models variables for segment execution
times and their dependencies. We are currently developing a scheme for deriving much richer network
models that expose conditions on program variables and the flow of control. These models will feature
clearer and hopefully more intuitive dependency structures and richer choices for simulation.

We are planning to integrate the presented approach in the timing analysis suite that is currently being
developed within the FORTAS project5. Within the project, we are developing a fine-grained abstract
system machine model, where states will carry more information than merely a basic block number.
Augmenting and adapting the presented concepts to this model will be a challenge for future work.

Also, in acknowledgment that our ideas need to be tested within quantitative experiments, we are
planning to provide a working implementation of our approach within the FORTAS framework.

6. Summary and Conclusion

In this work, we have presented a probabilistic approach for modeling the execution time of software-
based embedded systems that is based on the framework of Bayesian networks. The structure of our
networks, which represents the conditional dependencies between execution times, is derived from
knowledge about the hardware architecture and software semantics, where is the parameterization is
obtain by performing measurements on the real physical system.

The salient benefit of having a Bayesian network model of the timing behavior of the system under
test is its ability to let the engineer perform simulations, like, e.g., “what-if” timing scenarios. We are
convinced that this ability provides a highly desirable and useful tool to the hands of an engineer who

5The FORTAS project is a cooperation between the Real Time Systems Group at the TU Wien and the Formal Methods
in Systems Engineering Group at the TU Darmstadt, with the goal of developing a software engineering oriented timing
analysis method that integrates measurement-based and formal methods. Please c.f. http://fortastic.net/.
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is performing a timing analysis of a given system.

In particular, the querying abilities of the BN model subsume unconditional queries for the total exe-
cution time of the underlying system. Such queries return a probability distribution of total execution
times. The upper bound of that distribution is a probabilistic estimate of the WCET of the system.
Thus, our approach is more general, and provides a broader setting for timing analysis then pure
WCET calculation.
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Abstract
Static Worst-Case Execution Time (WCET) analysis derives upper bounds for the execution times of
programs. Such bounds are crucial when designing and verifying real-time systems. A key component
in static WCET analysis is to derive flow information, such as loop bounds and infeasible paths.

We have previously introducedabstract execution(AE), a method capable of deriving very precise
flow information. This paper present different merging techniques that can be used by AE for trading
analysis time for flow information precision. It also presents a new technique,ordered merging,
which may radically shorten AE analysis times, especially when analyzing large programs with many
possible input variable values.

1. Introduction

Theworst-case execution time(WCET) is a key parameter for verifying real-time properties. Astatic
WCET analysisfinds an upper bound to the WCET of a program from mathematical models of the
hardware and software involved. If the models are correct, the analysis will derive a timing estimate
that issafe, i.e., greater than or equal to the WCET.

To statically derive a timing bound for a program, information on both thehardware timing character-
istics, such as bounds on the time different instructions may take to execute, as well as the program’s
possible execution flows, such as bounds on the number of times each instruction can be executed,
needs to be derived. The latter, so calledflow information, includes information about the maximum
number of times loops are iterated, which paths through the program that are feasible, dependencies
between code parts, etc.

The goal of aflow analysisis to calculate such flow information as automatically as possible. Flow
analysis research has mostly focused onloop boundanalysis, since upper bounds on the number of
loop iterations must be known in order to derive a WCET estimate. Flow analysis can also identify
infeasible paths, i.e., paths which are executable according to the control-flow graph structure, but not
feasible when considering the semantics of the program and possible input data values [9]. In contrast
to loop bounds, infeasible path information is not required to find a WCET estimate, but may tighten
the resulting WCET estimate. In general, a flow analysis which can take constraints on input data
values into consideration, a so calledinput sensitive analysis, should be able to derive more precise
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flow information than an analysis which cannot [2].

One promising flow analysis method isAbstract Execution(AE), which is able to find precise flow
information for many different types of programs [2, 9]. AE works by abstractly executing the paths
which the program may execute for all its different input values. To avoid a combinatorial explosion
of the number of paths to analyse, different types ofmerging techniquesare used by AE. This article
describes these techniques in more detail. The contributions of this article are:
• We present merging techniques used by AE for trading analysis time for flow information precision.
• We present a new technique,ordered merging, which may radically reduce AE analysis times for

large programs with many possible input variable values.
• We evaluate the effect of the different techniques w.r.t. analysis time and flow information precision

on some benchmark programs.

Even though our merging techniques are presented in the context of AE, we believe that they should
be applicable for many other WCET analysis techniques where many program paths are explicitly
explored.

The rest of the paper is organized as follows: Section 2 presents our WCET tool and AE. Section 3
presents the need for, and the drawbacks of, merging. Section 4 presents related work and other
methods which should benefit of our techniques. Section 5 describes our merge point placement
techniques and Section 6 presents our new technique for ordering of merge points. Section 7 presents
analysis results. In Section 8 we draw some conclusions and discuss future work.

2. SWEET and Abstract Execution

SWEET (SWEdish Execution time Tool) is a prototype WCET analysis tool developed at Mälardalen
University [14]. It consists of three main phases; aflow analysiswhere bounds on the number of times
different instructions or larger code parts can be executed is derived [9], alow-level analysis, where
timing cost bounds for different instructions or larger code parts are derived [5], and acalculation
where the most time-consuming path is found using the information derived in the first two phases [6].

Abstract Execution. AE is a form of symbolic execution based on an AI [4] framework. Rather
than using traditional fixed-point iteration, AE executes the program in the abstract domain, with
abstract values for the program variables and abstract versions of the operators in the language. For
instance, the abstract domain can be the domain of intervals: each numeric variable will then hold
an interval rather than a number, and each assignment will calculate a new interval from the current
intervals held by the variables. As usual in AI, the abstract value held by a variable, at some point,
represents a set containing the actual concrete values that the variable can hold at that point. An
abstract stateis a collection of abstract values for all variables at a point. AE isinput data sensitive,
allowing the user to explore how different input data value constraints affect the program flow [2, 7].

Illustrative example. As an illustration of AE, using intervals as abstract values, please consider
Figure 1. When entering the loop, the variablei can hold any integer value from 1 to 4. Each
execution of an abstract state by thewhile condition might give raise to at least one, and at most
two resulting states (thetrueandfalsebranch). During the first three executions of the loop condition,
there is no value ofi which terminates the loop. However, the fourth time the condition is executed,
i will have a value of[7..10], giving that the analysis produces two resulting states. Thus,i will have
a value of[7..9] at pointp, and[10..10] at pointr. Similarly, during the following execution of the



i=INPUT; // i=[1..4]
while (i < 10) {

... // p
i = i + 2;
... // q

}
// r

(a) Example

iter i at p
1 [1..4]

2 [3..6]

3 [5..8]

4 [7..9]

5 [9..9]

6 impossible

(b) Analysis

min. #iter: 3

max. #iter: 5

(c) Result

Figure 1. Example of abstract execution

loop condition both branches can be taken. At the sixth execution of the loop condition, the set of
values for the true branch of the loop condition is empty, i.e., only thefalsebranch is possible, and
AE of the loop terminates.

Deriving flow constraints. The output of AE is a set offlow facts[6], i.e., constraints on the pro-
gram flow, which is given as input to the subsequent calculation phase. To derive these constraints,
AE extends abstract states withrecorders, used to collect flow information. Program parts to be ana-
lyzed are extended withcollectors, which are used to successively accumulate recorded information
from the states. For example, in Figure 1 each state may be given aloop bound recorderfor recording
the number of executions it makes in the loop. Similarly, aloop bound collectorcan be used to ac-
cumulate the loop body executions (3, 4 and 5 respectively) recorded by the states. The accumulated
recordings are used to generate the loop bound constraints in Figure 1(c). Flow constraint generation
supported by AE include lower and upper (nested) loop bounds, infeasible nodes and edges, upper
node and edge execution bounds, infeasible pairs of nodes, and longer infeasible paths [9].

3. Merging

When using abstract values, conditionals cannot always be decided, as illustrated by the above exam-
ple. In these cases, AE must then execute both branches separately in two different abstract states.
This means that AE may have to handle many abstract states, representing different possible execution
paths, concurrently. The number of possible abstract states may grow exponentially with the length
of these paths.

In order to curb the growing number of paths,mergingof abstract states for different paths can take
place at certain program points (merge points). If the states are merged using the least upper bound
operator “⊔” on the abstract domain of states, then the result is one abstract state safely representing
all possible concrete states. Thus, a single-path abstract execution, representing the execution of the
different paths, can continue from the merge point. Merge points can be selected at will, but typical
placements are after if-statements, and at entries/exits from functions and loops.

Problems with merging. Merging comes with a price, however, since it may yield abstract values
that represent concrete values in a less precise way: for instance, the merging of[6..6] and [10..11]
yields[6..11], which also contains the concrete values 7, 8, 9 not present in the original intervals. The
added values might, if we are unlucky, force AE to execute paths which are not feasible. Figure 2(a)
shows an example with an upper loop bound = 4. AE with no merging would find that bound, whereas
merging at pointp would lead to an overestimated loop bound (8). Merging at pointq (at the loop
header) instead would lead to a lower overestimation (7) of the loop bound, i.e., also placement of



int i, x; // i=[-5..5]
if (i > 0) x=2;
else x=4;
// p
while (x < 10) { // q

if (isOdd(x)) x++;
else x=x+2;

}

(a) Loop bound overestimation

int i; // i=[-5..5]
int x;
if (i > 0) x=2; // A
else x=1; // B
// r
if (i > 1) x=2*x; // C
else x=3*x; // D
// s

(b) Missed infeasible paths

Figure 2. Overestimations due to merging

merge points are important.

Moreover, after a merge we cannot relate the path we executed before the merge with the path we
executed after the merge, since several paths might be merged at the merge point. This means that
some types of infeasible path calculation cannot be made after merging. Figure 2(b) shows an example
where merging atr (join after if) leads to that the infeasible pathsA-C andB-D both are missed.
This is because the merged state atr has a path history wherebothnodesA andB are included. If we
instead postpone the merging tos both infeasible paths can be found.

We conclude that merging may lead to a faster AE, but that it also may result in less precise flow
information. In Section 5 we describe placement of merge points, as supported by SWEET, allowing
us to trade analysis time and flow information precision. In Section 6 we present a new method,
based on ordering of merge points, for minimizing the number of concurrent abstract states, and
thereby achieving a much faster analysis.

4. Related Work

As mentioned in Section 2, AE can be classified as a combination of AI and symbolic execution [8, 9].
The WCET analysis method by Lundqvist et al. [13], works in a similar fashion, and can potentially
also get many parallel states. Compared to Lundqvist’s work, AE uses a more detailed value domain,
is based on an AI framework, and derives only flow constraints.

In general, our merging techniques should be applicable for any other WCET analysis technique
where the paths through the program or parts of the program are explicitly explored. For example,
most path-based calculation methods use some type of merging [10, 13, 16, 17]. Similarly, path-
enumeration based flow analysis approaches, such as [1, 11], may require merging when the amount
of paths grow large.

On an even more general level, bothintra-proceduraland inter-proceduralprogram analyses make
use of different type of merging and merge points [15].

5. Placement of Merge Points

A crucial question is: where to place merge points? For example, to place them at all join points in
the program could mean that we unnecessarily overestimate values, which might lead to less precise
flow information, and a non-tight resulting WCET estimate.



int complex(int a, int b) { // BB0
while (a < 30) { // BB1

while (b < a) { // BB2
if (b > 5) // BB3

b = b * 3; // BB4
else

b = b + 2; // BB5
if (b >= 10 && b <= 12) // BB6 & BB7

a = a + 10; // BB8
else

a = a + 1; // BB9
} // BB10
a = a + 2; // BB11
b = b - 10;

}
return 1; // BB12

}

int main(void) { // BB13
/* a = [0..18] b = [0..18] */
int a = 1, b = 1, answer = 0;
answer = complex(a, b); // BB14
return answer;

}

Figure 3. Example program

To handle this problem, our method allows the user to control the placement of merge points, in
order to explore different tradeoffs between analysis speed and precision. Figure 3 shows an example
program (jcomplex from the Mälardalen benchmarks [14]), to illustrate the possible placement of
merge points. Figure 4 shows the corresponding program CFG where the function call tocomplex
has been inlined inmain, and nodes have been partitioned w.r.t. the functions and loops they belong
to. This type of graph (thescope-graph[6]) is used by the analysis in SWEET.

The user can currently specify AE to useno merging, or one or more of the following merge points:
at function entries(corresponding to nodesBB0 andBB13 in Figure 4), afterfunction exits(BB14),
after loop body termination, i.e., at the loop header (BB1, BB2), after loop exits(BB11, BB12), and
at joins after if-statements(BB6, BB9, BB10). Note that a node can be of more than one merge point
type.

6. Ordered and Unordered Merging

AE and its flow fact generating techniques has been presented in detail in [9]. The original underlying
algorithm for processing abstract states is outlined in Figure 5. It is a quite straightforward worklist
algorithm, which iterates over a set of abstract states, generating new abstract states from old ones.
Abstract states at merge points are moved to a special merge list, and final states are removed. When
the worklist is empty, all states in the merge list which are at the same merge point are merged, and
the resulting states are inserted in the worklist. The algorithm terminates when both the merge list
and the worklist are empty. The algorithm allows any combination of merge point placements (as
outlined in Section 5) to be used.



main

main_complex

main_complex_L1

main_complex_L1_L1

BB13

BB0

BB14

BB1

BB12

BB2

BB11

BB3 BB4

BB6
BB7

BB9

BB8

BB10BB5

Figure 4. Scope graph for the example program

This algorithm has been successfully used to analyse all the programs in the Mälardalen WCET
benchmarks suite [14] during the WCET Challenge 2006 [18]. However, during the industrial case
study described in [2], we discovered that for some large programs with many possible input vari-
able values, AE faced complexity problems, i.e., very long analysis times and large amounts of used
memory. As an illustration of the inherent problem of the original algorithm, consider the example in
Figure 1 again. Further assume that we have decided to use both loop body termination (i.e.,q) and
loop termination (i.e.,r) as merge points. As explained in Section 2, the fourth time the condition is
abstractly executed the analysis will spawn two abstract states, one taking thetrue branch (i=[7..9]),
and one taking thefalsebranch (i=[10..10]). Both states will eventually reach a merge point (q and
r respectively). However, since they are not in the same merge point they cannot be merged at that
time. Instead, both states are moved to the worklist, and will continue their executions in parallel.

We observe that all states resulting from abstractly executing the loop will sooner or later reachr.
However, there is no mechanism in the original algorithm to force a state inr to wait for the other
states to reachr. Thus, each state that reachesr will be continue executing the code followingr
in parallel with the states in the loop. This means that merging in itself is not guarantee to get few
parallel states. Moreover, the code afterr will be executed several times, with almost identical states,
which means a lot of unneccessary work.

Ordering of merge nodes. We have designed and implemented an algorithm to solve the problem
described above1. The basic idea behind the algorithm is to force a state towait for all other states
which sooner or later will reach the same merge node at which the state is located. This is achieved by
creating an order between all merge nodes and force the processing of states to follow this order. For
example, in Figure 1 we want to create an order so states atr should wait for all states still executing
in the loop. All states resulting from the loop processing can then be merged atr, giving that there
will be only one state that continues executing afterr, instead of several.

The algorithm works by first creating animmediate post-dominance (IPDom) treeof all nodes in

1In the current implementation, merging for recursive programs is not supported.



work list <- {init state};
merge list <- empty;
final list <- empty;
REPEAT

WHILE work list /= empty DO {
s <- select from(work list);
work list <- work list \ {s};
new states <- ae(s);
FOREACH s’ in new states DO
CASE merge point(s’): merge list <-

merge list U {s’}
final state(s’): final states <-

final states U {s’}
otherwise: work list <- work list U {s’};

}
WHILE merge list /= empty DO {

s <- select from(merge list);
merge list <- merge list \ {s};
FOREACH s’ in merge list DO
IF same merge point(s,s’) THEN

s <- merge(s,s’);
merge list <- merge list \ {s’};

work list <- work list U {s};
}

UNTIL work list = empty

Figure 5. Original algorithm for AE

the program CFG. Basically, a noden post-dominatesanother nodem iff all paths fromm to the
program exit node intersectn. Similarly, a noden immediately post-dominatesanother nodem iff n

post-dominatesm and there is no other post-dominator ofm betweenn andm in the CFG. In the tree,
n will be a direct parent ofm iff n immediately post-dominatesm. In our current implementation, we
use the algorithm outlined by Lengauer and Tarjan [12] to create the IPDom tree, with anO(e log v)
time complexity, wheree is the number of edges andv is the number of vertices in the CFG.

Secondly, we traverse the IPDom tree bottom-up. For each node traversed, we check if it is a merge
node. If so, it is inserted to the end of alist of merge nodes. As a result, the list will hold all merge
nodes, ordered so that if a noden post-dominatesm, thenm will be beforen in the list. We note that
there are often many merge-nodes which do not have any post-dominate relation to one another. Thus,
the same set of merge nodes could result in many different orderings, depending on which order the
different branches in the IPDom tree are processed. However, for all possible list orderings, it should
hold that for all pair of nodesn, m in the list: if n post-dominatesm, thenm should be beforen in
the list. The graph traversal has anO(v) complexity, wherev is the number of vertices in the CFG.

Thirdly, the list is used to create apriority queue, where inserted states are indexed on the position
of their corresponding merge node in the ordered list. This queue will replace the merge list in the
original algorithm for AE in Figure 5. We also only pop one state at the time from the priority queue
into the work list, instead of, as in the original algorithm, popping all states in the merge list to the
work list simultaneously. Thus, when extracting a state from the queue, the state with the merge node
closest to the beginning of the list will be popped. Moreover, if a state is to be inserted into the priority
queue, and there already is a state in the queue at that merge point, we merge the two states and insert
the resulting state into the queue (the merged states are deleted). Thus, the number of states stored in
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the priority queue will be less or equal to the number of merge nodes in the program.

We have implemented the priority queue as a binary heap, thereby getting anO(log v) time complex-
ity for both insertion and popping of states, wherev is the number of merge nodes in the CFG [3].

Figure 6 gives an illustration of the ordering of merge nodes. Figure 6(a) shows a CFG withB, F,
I, andJ set as merge nodes, i.e., all possible join points in this program. Figure 6(b) shows the
IPDom tree generated for the CFG. Figure 6(c) shows the ordered list of merge nodes resulting from
the bottom-up traversal of the tree. The list gives, for example, that a state located in merge pointB
should be processed after states located inF or I, but before states located inJ.

7. Evaluation

We have tested our merge strategies on two programs,jcomplex andinsertsort, from the
Mälardalen benchmarks using the ARM9 timing model of SWEET. This timing model has not been
validated against real hardware. However, we consider it to be a sufficiently realistic “abstract archi-
tecture” for the purpose of evaluating flow analysis methods.

For thejcomplex program in Figure 3, the input space (i.e., number of possible input combinations)
is 192 = 361 values. SWEET’s AE analysis time was 7.2 seconds when no merging was used, and
the resulting calculated WCET estimate was 918 cycles for the ARM9 target CPU. Table 1 shows
the results of the different analyses ofjcomplex. ATime is the analysis time in seconds for AE,
andWCET is the calculated WCET estimate for ARM9 in cycles. This information is shown for the



Merge type Merge node type
FE FT LBT LT LBI ALL

Unordered ATime 8.7 15.0 0.72 0.18 0.84 0.77
merge WCET 918 918 10532087 1053 1053

Ordered ATime 8.7 8.3 0.13 0.18 0.18 0.16
merge WCET 918 918 37112087 5395 5395

Table 1. Analysis results forjcomplex

Merge type Merge node type
FE FT LBT LT LBI ALL

Unordered ATime - - 1.6 0.08 1.9 1.7
merge WCET - - 332 332 332 332

Ordered ATime - - 0.09 0.08 0.09 0.09
merge WCET - - 332 332 332 332

Table 2. Analysis results forinsertsort

following five merge point selections:FE = at function entries,FT = after function exits,LBT = after
loop bodies,LT = after loop exits,LBI = after if-statements and loop bodies2, andALL = after all
merge point types.

In the table, we see that merging at function entries and exits (FE and FT) gives an exact result
compared to no merging, however to the cost of long analysis times (even exceeding the no merge
time). The other merge selections are efficient, but yield some overestimation. This is mainly due to
the conditional updates of the variablesa andb inside the loops, where merging yields overestimation
of these variables, which results in an overestimated outer loop bound. We can note that ordered merge
gives a larger overestimation than unordered merge. This is probably because the ordered merge gives
more merging, with fewer concurrent states, faster analysis but larger overestimation. Ordered merge
is the fastest method in all cases.

Table 2 shows the results forinsertsort, which is a sorting program using the insertion sort
method for an array of 10 elements where each element is a positive 32 bit integer (i.e., given a value
of [1..2147483647]). For this program, the input space is around1093 values. Thus, it is not possible
to run the program with all inputs. Nor is it possible to analyse it without merge. However, using the
knowledge of the worst case behaviour for insert sort (an inversely sorted array), we can analyse the
program using SWEET with the worst case input, and deduce a tight WCET estimate of332 cycles.

In the table, we see that only some types of merging actually gives a result within a short time (’-’
means that the analysis time exceeded 10 minutes). We can see that merging at either loop body
termination and loop termination points (LBT , LT , LBI , andALL ) gives results in a very short time.
This is not surprising, since the number of iterations in the nested loops in the programs is very high,
and efficient merge should lower the analysis times considerably. We also see that this efficiency does
not give any WCET overestimation penalty for this program. Ordered merge is fastest in all cases.

Table 3 shows the results foresab mod, a larger program provided by one of our industry partners.
The program consists of 3064 lines of C code, including 11 functions, 519 conditionals and one
loop. The outcome of many of the conditionals are input dependent, and abstract execution of these

2We combine these types to ensure that merging always takes place after if-statements in the same iteration.



Merge type Merge node type
FE FT LBT LT LBI ALL

Unordered ATime - - - - - -
merge WCET - - - - - -

Ordered ATime - - - - 163 161
merge WCET - - - - 165795165795

Table 3. Analysis results foresab mod

conditionals may therefore generate many new states. The loop is located in a function with loop
bound that is a dependent on the argument to the function. The function itself is called from 372
different call-sites. Since AE does its loop bound analysis fully context sensitive, i.e., we do a seperate
analysis for each individual path to the function in the call graph, we get a large number of different
calling contexts (8942) for the loop. In the example runs eight variables were given input value ranges,
giving an input space of around1.5 ∗ 1012 values. Due to this, it was not possible to run the program
with all inputs or to manually determine the input value combination that generated the WCET.

For none of the merge point options were we able to finish AE analysis when using unordered merge
(’-’ means that the analysis time exceeded 1 hour). For ordered merge we were able to finish the
analysis within 3 minutes for both theLBI andALL options with the same resulting WCET estimate.
The ordering of merge nodes took around 82 seconds, and has been included in the total running
time for AE. For single value inputs the analysis took around 8-10 seconds (depending on used input
values) excluding the time for ordering merge nodes.

All measurements were performed on a 3 GHz PC with 1 Gb RAM, running Linux Ubuntu.

8. Conclusions and Future Work

In this paper, we have described the merge techniques used during abstract execution, a flow analysis
method used in SWEET. We have described how to trade the precision of the results for faster analysis,
by the use of different placement of merge points and a new merging technique based on sorting merge
points. We have shown one example where we can use maximum merging to give a radically shorter
analysis time and still get a precise WCET estimate. For another example, however, merging lead to
less tight WCET estimates.

Moreover, we have shown that use of merge points is not alone a guarantee to obtain few concurrent
states. To handle this, we have presented a new method, based on ordering of merge points, to reduce
the number of concurrent states. We have shown that this method is able to significantly shorten the
analysis time of large programs with large input spaces.

For future work we plan to investigate the effect of our different merging techniques on different
industrial codes, such as the task codes presented in [2]. This will allow us to see, in more detail,
how our methods scales for large programs with large input spaces. We will also study the effect of
different merge point plecements on different program types and code constructs. This will allow us
define guidelines on how to select merging strategy for achieving an optimal combination of analysis
time and precision.
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ON COMPOSABLE SYSTEM TIMING, TASK
TIMING, AND WCET ANALYSIS1

Peter Puschner2 and Martin Schoeberl3

Abstract
The complexity of hardware and software architectures used in today’s embedded systems make a hi-
erarchical, composable timing analysis impossible. This paper describes the source of this complexity
in terms of mechanisms and side effects that determine variations in the timing of single tasks and en-
tire applications. Based on these observations, the paper proposes strategies to reduce the complexity.
It shows the positive effects of these strategies on the timing of tasks and on WCET analysis.

1. Introduction

Until the early 90s of the 20th century the computer architectures used in embedded hard real-time
systems were relatively simple. In the light of these simple architectures, hierarchical (composable)
timing models – models that separated the low-level task timing issues from the real-time scheduling
problem at the high level – had been conceived. Worst-case execution-time analysis (WCET analysis)
had started to become an independent field of investigation within real-time systems research.

Since then, researchers working on WCET analysis have developed methods to identify (in)feasible
paths through pieces of code and strategies to compute WCET estimates for code running on different
hardware architectures. Over the years, the results of WCET analysis allowed its researchers to
compute WCET estimates for code running on more and more complex computer architectures.

While new computer hardware had entered the stage and advances in WCET analysis were made to
deal with these changes (e.g., to model the effects of instruction pipelines and caches on task timing),
the overall timing models still remained unchanged. I.e., although the temporal (de)composability
of task execution times had been lost, real-time schedulers and schedulability analysis still use the
strategies that had been conceived at a time when task execution times were independent. The only
available measure to deal with the lack of composability in task timing is the addition of an extra anal-
ysis step. This analysis uses information including the periods, priorities, and the physical-memory
maps of tasks to make a pessimistic assessment of the worst-case effects of the timing interactions
between tasks, see, e.g., [14].

Tools that assess the worst-case side effects of task executions on overall system timing are valuable
at the moment. In the long run, however, we will have to get rid of the side effects of tasks on system
timing instead of analyzing these effects. Only the elimination of the side effects provides the basis
for a development and analysis process that is hierarchical and thus much less complex than what is
currently state of the art. It is therefore the purpose of this paper to identify the properties of current

1The research leading to these results has received funding from the European Community’s Seventh Framework Pro-
gramme [FP7/2007-2013] under grant agreement no. 214373 (ARTISTDesign).

2Vienna University of Technology, A1040 Vienna, Austria; email: peter@vmars.tuwien.ac.at
3Vienna University of Technology, A1040 Vienna, Austria; email: mschoebe@mail.tuwien.ac.at
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task-execution models that adversely affect the decomposability of tasks and make timing analysis
difficult. Based on these findings we introduce a restrictive hardware and software architecture that
allows us to return to a hierarchical timing analysis of manageable complexity. The discussion will
highlight the consequences of this proposal on task design, on task timing characteristics, and – as a
consequence – on WCET analysis.

2. Hierarchic Timing Analysis

Traditionally the timing analysis of hard real-time systems, comprising the CPU-time scheduling
or schedulability analysis and the worst-case execution-time analysis, is a hierarchical process. At
the lower level, tasks are analyzed for their worst-case execution time (WCET). The results of this
low-level analysis are used either for constructing a CPU schedule that meets the timing constraints
of the application or for the purpose of schedulability analysis – the latter ensures that a task set
characterized by its task parameters (including execution times) will indeed be scheduled correctly.

A hierarchic decomposition as sketched above reduces the complexity of the timing analysis and the
real-time systems engineering process. According to [13], such a decomposition requires that the
subsystems are nearly decomposable, i.e., the interactions among the subsystems are weak but not
negligible [13].

2.1. A Model of Simple Tasks

In this work, our main interest is to investigate phenomena related to the time consumption of tasks.
For this purpose we assume that all tasks are S-tasks [6], simple tasks that do not have any synchro-
nization points inside. As a precondition to the execution of each task instance we assume that all
inputs for the task are available. During task execution there is no I/O or other blocking. A simple
task produces outputs by writing to defined locations within its local memory – the availability of the
outputs is part of the postcondition of each task execution. Outputs are read and further processed
(copied or transmitted in a message) by the operating system after the completion of the task.

For the sake of simplicity we assume that tasks are stateless, i.e., they do not preserve any data values
between invocations. Note that tasks that need a state can be converted to stateless tasks by making
their state an input/output variable. Each instance of such a converted task reads this input/output
variable after its start and writes its contents back as an output before it terminates. So the next
instance can read in the “state” again, and so on.

The interface between a task and its environment (the other tasks and the physical world) is charac-
terized by its control properties, temporal constraints, the functional intent and its data properties [6].
Tasks communicate with the environment with the help of the operating system, that reads resp. writes
the interface (input/output) variables of the tasks. One can observe that the interactions between the
tasks of a computer system influence the execution times of the tasks. Some interactions (e.g., the
exchange of data) are due to phenomena that are observable parts of the task interface. Other interac-
tions (e.g., the modification of the contents of a shared cache which, in turn, influences the execution
time of other tasks) cannot be traced back to the task interface. The latter are called side effects.

During the execution of a task instance, the values of the interface variables of the task are not defined.
Therefore it is not safe to access these variables from outside the task while the task is in progress.
The termination of the task commits the outputs. The outputs can then be propagated and processed
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by the task environment.

2.2. Simple and Complex Computer Architectures

In simple computer architectures [6], the timing of each instruction can be determined locally, from
the knowledge of the instruction, the operands of the instruction, and a small execution context of the
instruction (often consisting only of the instruction itself). In these architectures, the execution of an
instruction can influence the execution time of another instruction in another task only via the explicit
change of values in a data memory that it shares with one or more other tasks. There are, however,
no implicit effects (side effects) of task behaviour on the execution times of other tasks. This way
we have clearly defined interactions between subsystems (tasks) that can be taken into account by
the scheduler, resp. schedulability analysis at the system level. Timing interactions between tasks are
limited to the effects of the data exchanged at the interfaces of the tasks.

In complex computer architectures the interactions between the different subsystems (tasks) are in
general not weak. This is because interactions are no longer restricted to a limited amount of explicit
timing dependencies that are caused by data sharing (including access to physically shared memory
as well as message communication) via the interfaces of the tasks. These architectures are char-
acterized by a number of additional timing effects due to the competition in the reservation of and
access to scarce, shared system resources. Depending on the particular computer system architecture
shared resources include pipelines for processing instructions and loading data, instruction and data
cache memories, and fast on-processor caches or registers for speculative branch and trace prediction.
Besides these mechanisms, the sharing of buses and memories for instructions and data among the
processors of chip-multiprocessing systems adds another source for temporal side effects between
tasks.

Because complex computer architectures are more and more used in embedded real-time systems, we
have to be aware of these implicit side effects that influence execution times. We have to identify
and analyze these interactions, and we have to investigate into appropriate ways of eliminating the
hidden side effects, thus avoiding that the reasoning about the temporal properties of real-time systems
becomes unmanageably complex.

3. Interactions of Task Timing

In the following we investigate the timing interactions between tasks in more detail. We describe both
the reasons for the interactions and the resulting phenomena that can be observed.

3.1. Task Interactions in Simple Architectures

In general the execution times of simple tasks vary. Such variations are due to effects of differences
in the inputs that are passed to the task via its interface.

Variable, data-dependent execution times of CPU instructions: A number of processors implement
(part of) the CPU instructions in micro code where more complex instructions execute repetitive steps
over a number of CPU clock cycles. In some cases the number of steps depends on the actual operands
which leads to execution-time variations (e.g., shift, multiply, and division).

Consequences for task timing analysis: If the operands of instructions with data-dependent timing
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are not exactly known at analysis time, static analysis has to use pessimistic abstractions instead. In
measurement-based analyses, variable instruction timing in general increases the number of different
execution-time combinations of instructions that have to be compared in search for the worst case.
Roughly, every instruction with k different execution times increases the number of different scenarios
by a factor k. To deal with this increase in complexity, one either needs to use knowledge about the
instruction behaviour when generating input data for measurements or, alternatively, increase the
number of test cases significantly to obtain results of sufficient quality.

Different execution paths: In numerous algorithms the conditions of conditional branches that de-
termine the actual instructions executed during an execution directly or indirectly depend on the task
inputs. Upon execution, differences in inputs result in different test results in conditionals which, in
turn, produce different execution traces or paths, and thus possibly different execution times.

Consequences for task timing analysis: As every conditional branch essentially doubles the number of
possible execution paths – an effect that multiply occurs in loops – the number of possible execution
paths of a task is usually too high to analyze the timing of all possible paths one by one. As a
consequence, static timing analysis uses pessimistic abstractions which, in turn, can lead to over-
estimations in the result of WCET analysis.

3.2. Task Interactions in Complex Architectures

In addition to the above-mentioned explicit timing interactions between tasks, the following mecha-
nisms of complex computer architectures give rise to temporal side effects.

Intra-task effects on hardware state: Let us at this point consider a single periodic task that is per-
fectly shielded from external side effects. Still, the different instances of this task, operating on dif-
ferent inputs, may execute on different paths. This leaves the hardware of the computer system (e.g.,
the instruction cache, branch prediction buffers, etc.) in different states when the task completes. As
the hardware state at termination equals the start state of the next instance of the tasks, each execution
of a task influences the timing of subsequent instances of the task. Depending on whether the hard-
ware state evolves monotonously and converges to a fixed point after a certain number of executions
or not (as in the case of conditional cache conflicts within single task instances), the state effects on
execution times may stabilize or not.

Effects on task timing: One observes variations in execution time due to different hardware states
at the task start. In particular the first instance of a task cannot benefit from state changes (e.g., the
loading of cache lines) of previous executions, thus usually consuming much more time than follow-
up instances. Depending on whether there are conflicting state effects within task instances, timing
effects between instances may disappear after the state has reached its fixed point or not. Even if
a such a fixed point exists, the number of executions needed to reach the fixed point is in general
unknown.

Consequences for task timing analysis: Which starting state should be assumed? What is the “worst-
case starting state”, i.e., the starting state from which an execution of maximum duration starts? Do
we really want to consider the worst-case starting state in the execution time analysis given that the
cost for building up the state in the first instance of a task is usually much higher than the state-
dependent cost of successive executions, or shall we discern between the first/first N – what N? –
and all other executions that follow?
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In static WCET analysis, the pessimistic approximation of possible start states leads to pessimism
in the computed WCET bounds. In measurement-based analyses, intra-task state effects increase the
space of parameters that are relevant for execution times, which has a negative effect on the percentage
of possible situations that can be assessed with a given set of resources.

External hardware state modifications between invocations (no preemption): So far we assumed
that the hardware state of a task is not modified between successive executions. In real-world scenar-
ios, however, other tasks and operating system activities alter the state left by the task, and thus the
starting state of further instances.

Effects on task timing: The effects on timing are not limited to the intra-task effects mentioned above.
Although state changes from prior executions of the task may still be effective, other tasks and oper-
ating system activities interfere with the task state, i.e., there are task-external influences on the task
execution times as well.

Consequences for timing analysis: As above, there is the question about which start states are rele-
vant for WCET analysis, resp. which abstractions should be used for the analysis. In contrast to the
previous discussion, timing effects are not local to the task, however. Therefore, besides the WCET
analysis one needs some extra, global analysis to account for task interferences between task exe-
cutions and their effects on the overall timing of the real-time computer system. A question in this
context is: What are useful abstractions for each of these analysis steps in order to achieve a clean
separation between WCET analysis and the timing analysis that accounts for the interferences?

External modification of state during execution (preemption): In systems with preemptive schedul-
ing, the situation gets even more complex as preemptions may have almost arbitrary effects on a the
state of a task during its execution.

Effects on task timing: The effects of preemptions on the state of a task depend on a number of factors,
e.g., the number of preemptions, the state of the task at preemption time, the state modifications
performed by the preempting code.

Consequences for timing analysis: As above, in addition possible interferences during task preemp-
tions have to be considered, which again adds complexity/pessimism to the analysis. A simple hier-
archical timing analysis that decomposes into a low level WCET analysis and a high-level scheduling
or schedulability analysis is beyond reach because of the strong interactions between the two levels.

Dynamic state-sensitive resource allocation and scheduling: Actual out-of-order processors perform
speculative execution even over predicted branches where the branch outcome is not yet known. As a
consequence around 100 instructions2 can be in the pipeline on the fly between instruction fetch and
instruction retirement.

Effects on task timing: The execution time of a single instruction depends on a very large execution
history. Assuming a flushed pipeline on a basic block start is not an option anymore.

Consequences for timing analysis: Modeling the state of about 100 instructions per clock cycle and
the speculative execution will result in a state space explosion. The situation can get worse in the

2On a Pentium 4 the minimum latency of an instruction between fetch and retire is 31 clock cycles and up to 3 instructions
can be fetched each cycle [1]. Register renaming restricts the number of micro operation in execution to 128.
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presence of so-called timing anomalies, i.e., when the dynamic scheduling of instructions can lead
to non-monotonic timing relationships between instruction sequences and the constituents (parts) of
these sequences. The latter poses a major obstacle to a safe compositional timing analysis.

3.3. Task Interactions in Chip-Multiprocessors

Due to the ever increasing transistor budget [8] for a chip several functions (or IP cores) can now be
integrated into a single chip. This integration is often referred to as System-on-a-Chip (SoC). SoC is
categorized into two types:

Heterogenous multiprocessors contain a number of different IP cores (e.g., general purpose proces-
sor, DSP co-processors, small memory units) on a single chip. The cores are connected either
by point-to-point links or by a network on chip (NoC). Those systems are called multi-processor
SoC (MPSoC).

Homogenous multiprocessors contain several identical processors with some on-chip memory. Those
systems are also referred as chip multiprocessors (CMP).

Both architectures are common in embedded systems. Due to the power wall [1] CMP systems are
now also state-of-the-art in desktop and server processors. In this paper we consider CMP systems
and the impact of the shared memory on the timing analysis. Three, quite different CMP architectures
are state-of-the-art: (1) multicore versions of super-scalar architectures (Intel/AMD), (2) multicore
chips with simple RISC processors (Sun Niagara), and (3) the CELL architecture.

Most cores for CMP allow fine-grain multithreading within a single core. Multithreading in a core can
hide latencies due to cache misses. With simultaneous multithreading (SMT) more than one thread
can execute in a single pipeline stage when enough functional units are available. Multithreading
increases throughput for server type workloads due to higher processing resource utilization; the
individual task execution time increases.

Complex processor CMP: Mainstream desktop processors from Intel and AMD include two or four
out-of-order executing processors. Those processors are just replications of the original, complex
cores that share a 2nd level cache and the memory bus. Cache coherence protocols on the chip keep
the level 1 caches coherent and consistent. Furthermore, those cores also support SMT, sometimes
also called hyper-threading.

RISC based CMP: Sun took a completely different approach with their Niagara T1 [5] by abandoning
the super-scalar architecture that tries to extract instruction level parallelism (ILP) from sequential
code. Eight simple cores implement fine-grain multithreading to support thread level parallelism often
found in server workloads. Each core consists of a simple six-stage, single-issue pipeline similar to
the original five-stage RISC pipeline. The additional pipeline stage adds fine-grained multithreading.
Four threads are supported on each core that are scheduled in round-robin fashion. With 8 cores the
Niagara can execute 32 independent threads of execution. When a thread stalls due to a cache miss or
a load-use dependency it is skipped in the schedule. The first version of the chip contains just a single
FPU that is shared by all 8 processors.

Local memory based CMP: The Cell multiprocessor [2, 3, 4] takes an approach similar to a distributed
memory multiprocessor. The Cell contains, beside a PowerPC microprocessor, 8 synergistic proces-
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sors (SP). The SPs contain 256 KB on-chip memory instead of a cache. The PowerPC, the 8 SP, and
the memory interface are connected via a 4 ring network. Communication between the cores in the
network has to be setup explicitly. All memory management, e.g. transfer between SPs or between
on-chip memory and main memory, is under program control, resulting in a new programming model.

Simultaneous multithreading: The tight coupling of the CMP cores introduces several timing in-
teractions that are hard to predict. The simplest form of multiprocessing within a single pipeline is
introduced by fine-grain or simultaneous multithreading. The hardware managed threads of execution
interact in a very fine grain manner: each stall in one thread influences the execution time of the other
threads. The best WCET estimates we can provide for hardware multithreading is the same time as
executing those threads serially on the same pipeline.

Keeping caches coherent and consistent: Cache coherence protocols (bus snooping or directory
based) enforce a coherent and consistent view of the main memory. These protocols exchange the
cache information between all cores on each memory access and introduce a high variability of the
cache access time even when the access is a cache hit.

Shared caches and memory: Probably the main source of timing interaction comes from the shared
2nd (and probably 3rd) level of cache and the shared main memory. The shared memory provides
an easy-to-use programming model at the cost of unpredictable access time to the data. With global
multiprocessor scheduling a task can migrate from one core to another – even within a single period
of execution. A migrated tasks completely looses its L1 cache state.

4. Avoiding Unwanted Interactions

We have seen that a number of factors contribute to variations in task execution times. Some of the
effects are malign as they are not local to a single task execution but invalidate the hardware state that
other tasks or other instances of the same task have built up. These interactions cause side effects that
obstruct a hierarchical timing analysis.

In this section we propose some ways to eliminate these interactions. The central idea is to protect the
time-relevant state of a task from dynamic changes that make it unpredictable. To this end, we aim at
the spatial separation of tasks and we replace dynamic run-time decisions by unalterable, pre-planned
control mechanisms where all decisions have been taken offline, at implementation time. In detail,
our solution builds on the following mechanisms:

• The use of single-path code in all tasks,

• The execution of a single task/thread per core,

• The use of simple in-order pipelines, and

• Statically scheduled access to shared memory in CMPs.

4.1. Use of Single-Path Code

When considering simple architectures, we think that data-dependent instruction execution times can
be eliminated easily. In fact there are a number of processors with constant instruction execution
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times around. Timing variations due to the execution of different execution paths and the intra-task
effects on the hardware state that occur in complex architectures can be eliminated by transforming
the code into so-called single-path code [11]. In the single-path transformation [9], all control depen-
dencies in the code are removed. Instead, the input-dependent conditionals are replaced by predicated
instructions that have invariable execution times.

Effects on task timing: As single-path code always executes the same trace, there are no execution-
time variations due to multiple paths in simple architectures. For single-path task implementations,
execution-time variations due to intra-task timing effects are restricted to the warm-up phase of the
task. As all executions of a task run the same trace the hardware state stabilizes after a limited number
of executions. After this fixed point has been reached, the timing of the task remains constant. To
avoid that the single-path conversion yields code with very poor performance, we suggest the use of
WCET-oriented programming strategies and algorithms [10].

Consequences for timing analysis: The timing analysis of single-path tasks is trivial. On simple
architectures it is sufficient to measure the execution of a single task instance, with any input data,
to obtain the (single) execution time of the task. For the complex architectures, the execution time
of isolated tasks can be measured after a limited number of executions, once the hardware state has
stabilized at its fixed point.

4.2. Execution of a Single Task per Core

Both types of external modifications (inter-task effects) of the hardware state of a task – those occur-
ring between invocations and those due to preemptions – can only be eliminated by protecting the
hardware state against influences from other tasks. One way to achieve this is saving and restoring
the state whenever a task completes or a task gets preempted. As the administrative overhead for this
state management seems to be pretty high, we propose a more rigorous shielding of tasks that benefits
from the current trends in hardware development – assigning each task/thread to a dedicated core of a
chip multiprocessor. As the used simple tasks do not access shared data during their execution, each
processor builds up its own private state and a spatial separation of the timing relevant state of the
tasks is achieved. The timing impact of accesses to shared data for the purpose of communication and
I/O (as performed by the operating system) does, of course, need special consideration. The latter
will be discussed below (see Section 4.4).

Effects on task timing and timing analysis: Assigning each task to a dedicated processor core elimi-
nates all of the mentioned inter-task timing effects. This way, task timing analysis only has to consider
task-internal effects on the state. This, in turn, can reduce the state space of the execution-time ana-
ysis significantly, thus yielding tighter (static analysis) or safer (measurement-based analysis) results
of WCET analysis. In addition to simplifying the task timing analysis, the elimination of task inter-
actions reduces the side effects on task timing, thus allowing for a better composibility in the overall
timing-analysis process.

4.3. Simple in-order CMP Pipelines

Extracting ILP from sequential code in one task with speculating out-of-order pipelines consume a
lot of resources and is hard to analyze. For time predictable systems the transistor budget for future
CMPs is better spent by replication of simple RISC pipelines. The additional available cores can
be utilized to shield individual tasks as proposed in the former section. We assume local data and
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instruction memory per core either program managed or organized as a cache.

Current trends in computer architecture actually simplify WCET analysis. Besides the Intel/AMD
approach, the CMP pipelines are simpler than the former mainstream complex processors. The archi-
tectures target at thread-level parallelism instead of ILP – an abstraction that can be better handled in
real-time systems.

The pipeline of Sun’s Niagara CMP is a simple in-order pipeline where timing anomalies [7] are not
an issue anymore. The CELL SP elements are dual-issue SIMD in-order pipelines. The SP contains
no cache and no virtual memory. In the CELL processor each data exchange between the cores has
to be setup under program control. Therefore, we can apply the time triggered approach of data
exchange on the CELL architecture.

Effects on task timing and timing analysis: Single issue, in-order execution pipelines are well under-
stood for WCET analysis. The speedup due to pipelining can be modeled for basic blocks and also
for larger constructs, such as loops.

4.4. Statically Scheduled Access to Shared Memory

In a CMP system the competition for shared resources shifts from the CPU to the memory bandwidth.
Imagine an extreme CMP system with more CPUs than tasks to execute. In that case there is no
competition for the CPU – we even can avoid scheduling at all. However, all CPUs access the single
global memory. A shared resource where the access has to be scheduled, e.g., through an arbiter.
Even when this example is not practical at the moment, it shows the trend towards integrating the
competition for the memory bus into the timing analysis.

We consider a static, preplanned scheduling of the memory access [12] for all cores. The arbitration
of the memory access is time sliced. Integrating the knowledge of the access time slices into the
WCET analysis provides safe estimates for load/store instructions and instruction cache fills. The
time slicing does not have to be regular. We can introduce a relative boost (longer slices) for some
cores at the cost of other cores that run tasks with enough slack time.

To avoid hard-to-predict task-migration (from one core to another) costs we pin each task to a ded-
icated core. If a CPU supports hardware multithreading, only one of the virtual CPUs can be used.
The other virtual CPUs need to be disabled.

Consequences for timing and schedulability analysis: The scheduling of the memory access has to
be integrated into the WCET analysis. With a static schedule of the memory arbitration the access
time property is well known and independent from the activity of the other cores. With few tasks – or
even a single task – executing on a core, the traditional scheduling for the CPU resource disappears.
Scheduling is performed at the memory access level. The low overhead of a task switch at the memory
arbitration allows fine grain access control: either time sliced down to a single memory access or a
percentage based bandwidth scheduling are feasible.

5. Summary and Conclusion

In this paper we investigated into the problems of nowadays timing analysis. We showed that, due to
the properties of the used hardware and software architectures, tasks cannot be considered indepen-
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dent in their execution. As a consequence, task timing is not an isolated property, which makes the
analysis of both task timing and system/application timing highly complex.

We analyzed the reasons for the complexity of timing analysis and identified ways to make a hier-
archical compositional timing analysis possible. Our solutions utilizes the architectural features of
chip multiprocessors that bring along performance and the parallelism we need to reduce the resource
competition between tasks.

• For each single task we make task timing easier to predict and stable, the latter meaning that
each execution of a task has the same execution time. Regarding software, we use the single-
path conversion to reduce the number of execution paths (or traces) to one, and WCET-oriented
programming to get reasonable performance. On the hardware side we use processors with
constant instruction execution times. Further, we rely on in-order pipelines to eliminate the
effects of dynamic instruction scheduling, a central source of timing anomalies.

• When considering the whole task set of an application, our main goal was to eliminate the inter-
task timing effects. By allocating each task to a dedicated CPU core we avoid those timing
interferences that are due to the competition for scarce CPU and memory resources. The pre-
runtime, offline planning of all accesses to shared memory removes all other interferences,
which are due to the – necessary and inevitable – data exchange between tasks.

To summarize, the introduced mechanisms simplify the structure of single tasks and shield different
concurrent tasks from one another, both in the spatial and in the temporal domain. The mechanisms
both simplify the overall timing analysis – in that they make a hierarchical timing analysis possible
– and in parallel simplify the execution characteristics of tasks, thus paving the way back to a simple
WCET analysis.
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TOWARDS A COMMON WCET ANNOTATION
LANGUAGE: ESSENTIAL INGREDIENTS1

Raimund Kirner, Albrecht Kadlec and Peter Puschner2

Adrian Prantl, Markus Schordan and Jens Knoop3

Abstract
Within the last years, ambitions towards the definition of common interfaces and the development
of open frameworks have increased the efficiency of research on WCET analysis. The Annotation
Language Challenge for WCET analysis has been proposed in line with these ambitions in order
to push the development of common interfaces also to the level of annotation languages, which are
crucial for the power of WCET analysis tools.

In this paper we present a list of essential ingredients for a common WCET annotation language.
The selected ingredients comprise a number of features available in different WCET analysis tools
and add several new concepts we consider important. The annotation concepts are described in an
abstract format that can be instantiated at different representation levels.

Keywords: Worst-case execution time (WCET) analysis, annotation languages, WCET annotation
language challenge.

1. Why a Common WCET Annotation Language?

The situation for WCET analysis is very heterogeneous. Within the real-time community it is a
well known fact that manual annotations are needed to assist non-perfect analyses. Various tools
exist providing different levels of sophistication [19]. However, as the WCET Tool Challenge [6] has
shown, few tools share the same target hardware, analysis method or annotation language.

While a multitude of targets is beneficial and a diversity in tools and methods is favorable, a common
annotation language is required for an accepted set of benchmarks in order to evaluate the various
tools and methods. Still, as a direct consequence of the first WCET Tool Challenge a set of accepted
benchmarks has already been collected, without such annotation support.

To enable common annotations within these benchmarks, the WCET Annotation Language Challenge
[12] has formulated the need for a common annotation language. This language is a means of specify-
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ing the problem-inherent information in a tool- and methodology-independent way, supporting, e.g.,
static analysis equally well as measurement-based methods, thus allowing the combination of their
results. It must also be expressive enough to master the difficult task of providing annotations at the
source level, which is the natural specification level, as well as supporting the annotation of binary
or object code, if the source code is not available, e.g., for closed sources like operating systems or
libraries.

Therefore, a common language may allow the tool developers to concentrate on their analysis meth-
ods, creating interchangeable building blocks within the timing analysis framework, as intended by
ARTIST2 [10]. By using this common annotation format as a common interface, tools can evalu-
ate the same set of sources for a fair comparison of performance and may exchange analysis results
to synergetically supplement each other. The steps of manual annotation, automatic annotation and
timing analysis can be repeated, thus iteratively refining the analysis results.

All this should foster common established practices and may, eventually, lead to standardization,
resulting in a broader dissemination of WCET analysis throughout research and industry.

2. Basic Concepts

2.1. Definitions

Flow Constraints: We define flow constraints to be any information about the control or data flow
of a program code. Data flow, however, is not only meant in the sense of def-use chains, but, for
example, variable-value ranges at program locations. Typical examples of flow constraints are loop
bounds or descriptions of (in)feasible paths.

Timing Constraints: We define timing constraints to be any information that is introduced in order
to describe the search space of the WCET analysis. Because control and data flow represent the basis
for the WCET analysis, the flow constraints of a program are always part of the timing constraints.
An example of a timing constraint not being a flow constraint is the specification of access times of
different memory areas.

Constraints versus Annotations: We distinguish between the timing constraints and the timing
annotation of program code. The timing constraints are the information per se and the timing
annotation is the linkage of the timing constraints with the program code.

There are different possibilities of how to annotate the program code with timing constraints. One
possibility to annotate the program is to write the timing constraints directly into the source code,
either as native statements of the programming language or as special comments. It is also possible
to place timing constraints in a separate file, if the source code may not be changed.

If a programmer has to annotate the program modules at different representation levels a common
syntax for the different representation levels would be especially beneficial and useful.

2.2. Layers

The WCET of a program cannot be determined precisely without knowing information about the
target-computer platform on which the program will be used. The computer platform of a program
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includes, for example, the development tools, the operating system, the hardware, and the application
environment. Naturally, the computer platform is sliced into layers to benefit from the independence
of different parts that constitute the computer platform. For example, the operating system is an
optional layer that may be placed on top of the hardware layer, and again, the layer of the development
tool chain may be on top of the operating system.

These layers are the key to the reuse of timing annotations in case a layer is changed. For example, if
we change the processor type (hardware layer) but still use exactly the same code binary, any timing
constraints describing the behavior of the build-and-run layer can still be reused, if it does not specify
explicit times.

A prerequisite for the smooth replacement of layers is that each annotation has a layer specified in its
definition. A layer is replaced by disabling the current instance of the layer and enabling another one
as input for the analysis.

Note that the layers are not fixed, but rather open for extensions. For example, if an operating system
delivered in binary form has different absolute times specified for different processor types, it does
make sense to specify them in a combined OS/HW layer besides the other OS and HW layers.

2.3. Validity of Timing Constraints (Timing Invariants versus Fictions)

The goal of WCET analysis is to calculate a precise WCET bound. However, the developer might
also be interested in experimenting with the timing constraints to analyze changes of the program
behavior, e.g., to tune the system. For example, the developer might specify a fictive loop bound to
determine the influence of the loop on the overall timing. As another example, the developer might
want to test an absolute time bound for a code section independently of the real execution time. In
both scenarios, timing constraints are not necessarily used to describe a superset of the real program
behavior.

In WCET analysis research, program annotations are typically assumed to describe a superset of the
possible system behavior, i.e., system invariants. We extend this annotation concept to information
that does not have to be a superset of the system behavior. We call all timing constraints that describe
a superset of the possible system behavior timing invariants. In contrast, we introduce timing fictions
as arbitrary timing constraints the user might want to use for experimenting with the timing behavior
of the system. We add a flag to each timing annotation to mark it either as a timing invariant or a
timing fiction.

The intention of introducing timing fictions is not to foster its use for WCET analysis, because timing
fictions may cause an underestimation of the WCET. But in case that a developer wants to experiment
with the sensitivity of the timing behavior, then it is an additional safety feature if the user is able
to explicitly mark such timing constraints as timing fictions and has to enable them explicitly to be
included in the analysis.

Definition 2.1 (Timing Invariant): A timing constraint C is a timing invariant at its associated
annotation layer L, iff for all possible systems that use annotation layer L, it holds that for all possible
initial system states the system execution fulfills the timing constraint C. If a timing constraint is
associated with more than one layer, then the condition has to hold for all possible systems that use
all of its associated layers.
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Definition 2.2 (Timing Fiction): If a timing constraint C is not a timing invariant at its associated
annotation layer, then it is a timing fiction.

In the case that timing invariants and timing fictions are in conflict, the semantics of timing fictions is
to override conflicting timing invariants. Whenever a timing invariant is overridden due to a timing
fiction, the WCET analysis tool should give a log entry to the user.

The following provides examples of timing invariants and timing fictions:

void f (int a, char[] b)
{
int i;
a = a % 20;
for (i=0; i<a; i++) //loop1
{

if (i%2 == 0)
b[i] = a; //m1

else
b[i] = 0; //m2

}
}

Timing Invariant:
Expressing as linear flow constraint that the then-path is executed at least as
often as the else-path: m1 ≥ m2 (see annotation C2.3)

Timing Fiction:
Specifying a lower and upper loop bound of 40: LB(loop1) = 40 . . . 40 (see
annotation C2.1)

In the timing fiction example with loop bound LB(loop1) = 40 . . . 40, an IPET-based WCET analysis
tool typically transforms the program structure into flow equations and the fictive loop bound is
transformed into a flow constraint. In this case, the timing fiction redefines the execution count of
control-flow edges in the final WCET calculation.

2.4. Checking of Invariants

Manual annotations are potentially error-prone and may yield incorrect WCET estimates. In the
case that timing constraints originate from the operation environment it is, however, possible to “lift”
operation environment information to the program layer, e.g., by inserting range checks and similar
assertions wherever appropriate.

int count = read_from_sensor();
while (count ≥ 0) {
count--;
...

If we assume that the environment dictates that the return value of
read from sensor() is in the interval [0,47], an upper loop bound of 48 would
be an invariant at the operation layer and a fiction at the program layer.

int count = read_from_sensor();
assert(count < 48);
while (count ≥ 0) {
count--;
...

However, if we specialize the program by inserting an assertion, the loop bound
of 48 becomes an invariant at the program layer.

As a result of lifting annotations to the program layer, the resulting program becomes a specialized
instance of the original program. Because the assertions allow the compiler to perform additional
optimizations, the specialized program can also have better performance than the original program.
These kinds of assertions can easily be generated by an automatic tool and could be valuable for
diagnosis and testing of annotations. An example of using runtime checks with special support by
the compiler is Modula/R: the Modula/R compiler optionally generates for each source-code location
that is referenced by a timing constraint a separate counter variable where an exception is raised at
runtime if their specified bound is exceeded [17].
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3. Ingredients of the WCET Annotation Language

In the following we describe essential ingredients for a WCET annotation language. The different
timing constraints are described at a conceptual level without focusing on the concrete syntax of an
annotation language. We use ANSI C code examples to illustrate the usefulness of the different timing
constraints. The definition of a concrete syntax is beyond the scope of this paper. We propose the
following categories of ingredients, which are detailed in the rest of this section:

C1 Annotation Categorization
C2 Program-Specific Annotations
C3 Addressable Units
C4 Control Flow Information
C5 Hardware-Specific Annotations

C1 Annotation Categorization
We define attributes for timing constraints to categorize and group them. These categorization
attributes help to organize, check, and maintain timing annotations. Supporting the maintenance
of timing annotations is a very important aspect to improve the correctness of timing constraints.
For example, if a user writes an annotation with speculative constraints just for testing the influence
on the timing behavior of the system, there is the potential danger that he/she forgets to remove
such an annotation from the program later on. Further, whenever code is reused or parts of the
computer platform are changed, it is necessary to identify those annotations that have to be checked
or adapted. The categorizations C1.1, C1.2, and C1.3 are orthogonal categorizations, but their joint
use is intended.

C1.1 Annotation Layer
Each timing constraint has associated an annotation layer to describe its validity. As described in
Section 2.2, the WCET of a program depends on its computer platform. The computer platform is
typically divided into several layers, allowing the customization of the system at each layer. As shown
in Figure 1 we propose to support the specification of at least the following three annotation layers:

Program Layer: If an annotation belongs solely to the program layer, the timing constraint is
assumed to be platform-independent. Here it is important to note that in programming languages
like C or C++ the functional behavior is not fully platform-independent, i.e., some timing constraints
about the control flow may already belong to the computer-platform layer.
Computer-Platform Layer: The computer platform of a program includes everything necessary to
execute the program. If a finer granularity is needed, the platform may be divided into different layers,
like, for example, the build and run environment, the operating system, any middleware, and also the
hardware (as shown in Figure 1.a).
For example, the cache geometry and the cache miss penalty may be specified at the hardware layer.
As another example, knowing the attached flash memory device, one may specify the time needed for
the completion of a write access.
Figure 1 also shows the difference between the orthogonal layers and the interface, a platform presents
to a stack of layers. In Figure 1.a we see the different annotation layers, including the computer-
platform layers, each of them clearly separated from the others. Please note the difference between a
computer-platform layer (a name of an annotation layer) and a platform (as described in the MDA [14]
of the OMG). In contrast to an annotation layer, a platform subsumes all the annotation layers below
it. The platform can also be seen as an interface that comprises the information belonging to all
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annotation layers below it. Thus, as shown in Figure 1.b, the system behavior influenced by each
interface contains the behavior of all annotation layers below it.
Operation Layer: The operation layer describes the usage of the computer system, i.e., how the
environment of the system is configured and how the environment behaves.
For example, timing constraints at the application layer may describe that the computer system is
connected to three sensors, implying that a loop in the software to poll these sensors will iterate
exactly three times.

The program-, computer-platform- and operation-layers are examples, only. Based on the specific
system architecture, the user may refine the layering to further annotation layers. It can also happen
that a timing constraint is associated to multiple annotation layers. However, whenever possible, it
is advised to split such constraints into multiple constraints where each constraint belongs only to a
single annotation layer. Note that the layer stack suggested by Figure 1.a is not mandatory; layers may
be also placed horizontally. But the important point is that the different layers should be orthogonal,
so that it is relatively easy in the system to exchange a layer and its specific timing annotations.
For timing constraints that refer to annotation layers other than the program layer, or timing con-
straints that represent fictions, more care has to be taken to ensure their intended use. For example,
a loop bound may be tighter using information from the operation layer, as opposed to using only
information from the program layer. Constraints refined with information from the operation layer
are associated naturally also to the operation layer.

C1.2 Annotation Class
The annotation class is an attribute to describe the validity of timing constraints. As described in
Section 2.3, besides the timing invariants we also introduce timing fictions as additional class of
timing constraints. Each timing constraint should therefore contain a flag that indicates its class.

Invariants: Invariants are used to explicitly annotate information which is assumed to be valid with
respect to the concrete semantics of the associated annotation layer.
Fictions: Timing fictions are used to provide fictive timing constraints to experiment with the sensi-
tivity of a system’s timing behavior.

The criterion of whether a timing constraint is an invariant (and not a fiction) is not only whether it
holds for each possible input data on the program code. This is because, as shown in Figure 1.b,
the system can be annotated at different layers (layers are described by the timing-constraint at-
tributes C1.1).
For example, if a timing constraint describes properties of the computer-platform layer, we have to
look at the concrete computer platform to decide whether this timing constraint is a timing invariant
or a timing fiction.

C1.3 Annotation Group
The grouping mechanism allows for different WCET evaluations. For each annotation group a
separate WCET calculation with its own set of timing constraints can be conducted.
There are several reasons why one might use different sets of timing constraints. For example, one
might want to use and annotate different scenarios at the operation layer, or different tool chains at
the computer-platform layer, etc. Timing fictions can be organized in groups as well to ensure their
selective and correct use.
The grouping mechanism allows us to give each timing constraint membership to multiple groups. A
group is a symbolic name together with a description field. There is no special semantics behind the
groups: their intended meaning has to be described in their description fields. With the grouping
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mechanism one can specify which timing constraints will be used together for WCET analysis.
Hierarchical definitions of groups are supported by specification of an optional list of nested groups.
Timing constraints that are invariants at the program layer are relatively easy to maintain. They can
be checked directly against the source code and they only have to be changed if the program code
changes. They remain valid if the computer platform changes.

C2 Program-Specific Annotations
We define program-specific annotations as timing constraints that directly describe the control and
data flow of a program.

C2.1 Loop Bounds
Loop bounds comprise the minimal timing constraints at the program layer that are necessary to
estimate the WCET of a program. For this reason, they were the first type of annotation that was
introduced in the short history of WCET annotation languages [12].
Although loop bounds can always be expressed through linear flow constraints, there are practical
reasons to allow loop bounds to be specified in a specialized and more compact notation. To maintain
a tight execution count estimate after certain loop optimizations, it is desirable to specify lower loop
bounds directly.
int i;
for (i = 0; i < n; ++i) {
process(g[n]);

}

Here, the loop bound depends on the value of variable n. Static interprocedural
program analysis over the whole program may find that the possible value of n
at the beginning of the loop is 3...10, resulting in a lower loop bound of 3 and
an upper loop bound of 10.

C2.2 Recursion Bounds
When a recursion is bounded, time and stack size requirements are also bounded using this recursion
depth. If such conditions cannot be established by analysis, user annotations can supply the required
data. In analogy to the earlier work on loop-bounds [1], Blieberger and Lieger established the
conditions necessary for establishing upper bounds for stack space and time requirements of directly
recursive functions. They also generalize the approach to indirectly recursive functions [2]. Recursion
depth annotations are also used by Ferdinand et al. [4].
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unsigned fac(unsigned n) {
if (n == 0) return 1;
else return n*fac(n-1);

}

The most precise recursion bound of procedure fac is the maximum value of
input variable n. If a static program analysis finds fac always to be called with
n ≤ 10, then 10 is the most precise recursion bound.

C2.3 Linear Flow Constraints
Linear flow constraints are the basis for IPET-based WCET calculation methods. In the course of
the calculation, all other program-specific constraints and control-flow constraints will eventually get
translated into linear flow constraints. While flow constraints have a very high expressiveness, they
are not necessarily as easy to write as, e.g., loop bounds, which is one of the reasons for allowing
multiple ways of annotating the same flow constraint.
Linear flow constraints are used to express a relationship between certain reference points in the
control flow graph (CFG) of a program. From the perspective of the source language this necessitates
the introduction of auxiliary annotations like markers (to obtain a reference point) and scopes (to
restrict the lexical validity of a constraint). The constraints themselves are usually called restrictions.

for (i = 0; i < n; ++i) {
for (j = i; j ≥ 0; --j) {
stmt1;

}
}

We assume that the execution count of the entry of the outer loop is labeled as
m0 and the execution count of the inner loop’s body is labeled as m1. Then,
the linear flow constraint “m1 ≤ n · (n − 1)/2 · m0” can be used to provide
refined information about the execution count of the loop nest.

C2.4 Variable-Value Restrictions
Variable-value restrictions describe data-flow and are thus not a direct control-flow restriction.
Variable-value restrictions can be transformed into an explicit control-flow restriction by a program
analysis tool.

if (i < 72) {
stmt1;
...

Directly before stmt1 the value of i is confined by imin ≤ i < 72, where imin

is the smallest possible value of the data type of i.

C2.5 Summaries of External Functions
Often, software libraries are distributed as binaries and without any source code. In these cases,
the library manufacturer could provide summaries of the library functions that contain the missing
information that is necessary to analyze programs that use the library. A summary of a function
may contain side effects (list of modified items) or value ranges of the returned values. A function
summary may still be useful, even when the source code is available, e.g., for hard-to-analyze facts.
int signum(int x); The subroutine signum is assumed to be pure and returns−1, 0 or +1. Thus we

can annotate that the set of objects modified by this subroutine is empty, and
the value returned by the subroutine is always from within [−1, 1].

C3 Addressable Units
Addressable units of an annotation language are those that can be associated with timing constraints.
The more language constructs and levels of abstraction can be addressed, the more fine-grained timing
constraints can be specified. Examples of how to address different units of the program layer are given
in [9]. In this section we list all language constructs that we consider relevant for being annotated with
timing constraints.

C3.1 Control-Flow Addressable Units
Conceptually, WCET annotations typically express relationships between nodes, edges and paths
of the CFG. If the paths between functions are included in the graph as well then we call this
graph an interprocedural control flow graph (ICFG) [16]. Although the ICFG is implicitly defined
by the program structure, it is not generally visible and will be generated ad hoc by the compiler.
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The annotation language therefore faces the problem to address entities inside a graph that have no
standardized explicit representation.
We thus propose the following addressable units of the ICFG based on the program source code:

C3.1a Basic Blocks
A basic block is a code sequence with single entry and single exit point. For timing analysis it is
relevant that execution passes a basic block’s entry point as often as its exit point. Thus, instead of
annotating the basic block, any location within the basic block can hold the block annotation.

C3.1b Edges
Edges in the CFG, however, do not necessarily have a direct counterpart in the program because they
are implicitly defined by the semantics of the respective language construct.
To circumvent this problem we introduce a set of reserved edge-names for each control flow construct
of the source language. For example, considering some constructs of the C language, such names
could include TrueEdgeif , FalseEdgeif and BackEdgewhile. Such names allow a user to associate
timing constraints with specific edges of the respective CFG for a given language construct.

C3.1c Subgraphs
Subgraphs of the ICFG can be addressed and thus annotated. For example, an annotation can be
associated with an entire function, or with a statement containing several function calls, or some
nested loops.

To handle control flow inside expressions, such as function calls and short-circuit evaluation, it
is necessary to normalize the program first. In this step short-circuit evaluation will be lowered
into nested if-statements and function calls are extracted from expressions. For the addressing of
subexpressions, a mapping between the normalized code and the original code must be maintained.

C3.2 Loop Contexts
For all kinds of loops it may be of interest to annotate specific iterations separately, or to exclude
specific iterations, i.e. annotate all but these specific iterations. The most prominent example is that
the first (few) iteration(s) may be very different from the following ones due to cache effects.

for (int i = 0; i < n; ++i)
for (int j = 0; j < d; ++j)
a[i][j] *= v[j];

Due to the “warming-up” of the cache, the first iteration could show a different
behavior than the subsequent iterations.

C3.3 Call Contexts
As different call sites are bound to present different preconditions for a function e.g. input values,
separate annotation of these different call contexts must be possible.

void g() { f(50); }

int f(int i) {
while (--i ≥ 0) {
...

}

The loop bound in function f depends on the value of input variable i. Thus, as
a context-dependent flow constraint we can write that the upper loop bound is
50 when f() is directly called by g().

C3.4 Values of Input Variables
If a function behaves significantly different depending on the possible values of an input parameter, it
can be useful to provide different sets of annotations for each case. This kind of annotation was first
introduced with SPARK Ada [15] and was called “modes”.
int f(struct data *x) {

if (x == NULL)
return NULL;

...
}

The function may behave completely different depending on whether the input
variable x is NULL or not: e.g. whenever x == NULL, the function returns
immediately.
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C3.5 Explicit Enumeration of (In)feasible Paths
In path-based approaches [3, 7, 15, 18], explicit knowledge of the feasibility of paths can be incorpo-
rated into the analysis process.

void worker() {
init();
while (cond) process();

}
void process() {

if (!initialized)
init();

...

In this example, function init() is never called from function process(), if
process() itself is called from function worker(). We can thus annotate that
there is no path worker→process→init.

C3.6 The Goto Statement
The goto statement allows to introduce edges of non-structured control flow. If the target of a goto
statement is statically known, it is not necessary to introduce any special annotations to specifically
address a goto statement in the CFG; the containing basic block can be used equivalently. If the
target address of a goto is not statically known, it makes sense to annotate possible jump targets
as described in paragraph C4.3. The break, continue and return statements are specialized
(better-behaved) instances of the goto statement in that their branch target is further restricted from
function scope to the current control scope. This can be exploited by better analysis, but from the
annotation standpoint there is not much difference to the goto except that there is less need for an
annotation, when the analysis is easier.

C4 Control-Flow Constraints
The CFG is a valuable abstraction level that can be refined in various ways to improve the precision
of the analysis. This is to aid the automatic CFG generation within the tools by additional information
that is not available within the program itself.

C4.1 Unreachable Code
This is a program-specific annotation, which has been used by Heckmann and Ferdinand [8]. Un-
reachable code could as well be specified by linear flow constraints. Having a specific mechanism
however makes the intention of the user explicit.

C4.2 Predicate Evaluation
Closely related to the above case, annotations of predicate evaluations were also introduced by
Heckmann and Ferdinand [8]. These kind of annotations describe for conditions/decisions whether
they will always evaluate to True or False.

C4.3 Control-Flow Reconstruction
Introduced by Ferdinand et al. [5], and further elaborated by Kirner and Puschner [13], the CFG
Reconstruction Annotations are used as guidelines for the analysis tool to construct the control flow
graph (CFG) of a program. Without these annotations it may not be possible to construct the CFG
from the binary or object code of a program.
On one hand, annotations are used for the construction of syntactical hierarchies within the CFG, i.e.,
to identify certain control-flow structures like loops or function calls. For example, a compiler might
emit ordinary branch instructions instead of specific instructions for function calls or returns. In such
cases it might be required to annotate a branch instruction whether it is a call or return instruction.
The high-level programming language features that can lead to code that is difficult to analyze
locally are: function-pointer calls, virtual-method calls, and returns as well as indirect conditional
control-flow transfer like computed goto or switch statements or transformation results obtained from
combining conditional control flow with ordinary or indirect calls or returns.
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void process((void)(int*) func,
int *data) {

(*func)(data);
}

In this code, it might be known that the target of function pointer func points
either to (void)reset(int*) or to (void)iterate(int*).

A work-around that sometimes helps avoiding code annotations is to match code patterns generated
by a specific version of a compiler. However, such a “hack” cannot cover all situations and may also
have the risk of incorrect classifications, for example, if a different version of the compiler is used.
On the other hand, annotations may be needed for the construction of the CFG itself. This may be
the case for branch instructions where the address of the branch target is calculated dynamically. Of
course, static program analysis may identify a precise set of potential branch targets for those cases
where the branch target is calculated locally. In contrast, if the static program analysis completely fails
to bind the branch target, it has to be assumed that the branch potentially branches to each instruction
in the code, which obviously is too pessimistic in order to compute a useful WCET bound. In such a
case, code annotations are required that describe the possible set of branch targets.

The following list summarizes examples of code annotations derived from aiT [5, 8]:

• instruction <addr> calls <target-list>;

• instruction <addr> branches to <target-list>;

• instruction <addr> is a return;

• snippet <addr> is never executed;

• instruction <addr> is entered with <state>;

Note that these annotations need not be linked to a specific instruction type, since an optimizing compiler may
transform

call F
jump L into:

push L ; prepare a return to a different address
jump F ; jump to function, return to target

This is also known as triangle call or triangle jumps. Now the jump instruction represents the logical call followed
by the jump and must bear both annotations.

C5 Hardware-Specific Annotations
For a realistic modeling of the execution behavior of a program, an annotation language also needs
mechanisms to describe the behavior of the underlying hardware. Many of these annotations are
supported by industrial timing analyzers like aiT [8].

Since some hardware-specific annotations are associated to the hardware layer only, they are inde-
pendent from the program layer and can thus be easily reused for multiple programs running on the
same embedded platform. It can thus make sense not to annotate this information to program code,
but rather gather it in a common location so that it can be combined with the annotations of more than
one program.

Examples of such basic hardware data to be kept separate from the program annotations are:

Instruction timing: The general timing information of instructions has to be maintained separate
from the program.

Clock rate: The analysis must be able to convert clock ticks to absolute times when computing the
WCET, and vice versa for absolute-time specification annotations.

Access times for ROM, internal and external RAM: It would be tedious and cumbersome to
specify these times at each of the various read and write operations.

Memory map: As the memory map binds memory access times to a multitude of memory access
operations, the information that is available to the linker can, when supplied to the timing analysis,
largely reduce the annotation effort for the program.
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Hardware implementation details that hold on the program as a whole, and cannot be tied to a
single specific program location, also need to be specified separately. Caches or jump prediction
details are examples.

It is not always obvious where to draw the borderline between hardware-specific annotations and
information that is better managed by the analysis tool. The following items are examples of timing
constraints that are reasonably expressed as timing annotations.

C5.1 Memory and Memory Accesses
The temporal behavior of memory accesses depends on the characteristics of the memory. Embedded
systems typically use different types of memory depending on the access frequency and access pattern.
It is thus necessary to specify the following characteristics:

• address range of read operations
• address range of write operations
• writeable memory area (e.g., RAM, Flash-ROM) and read-only memory area (ROM)
• data and code regions
• access time of specific memory regions (in cycles or ms)

C5.2 Absolute Time Bounds
Providing a means for absolute time bounds allows to specify the maximum and minimum execution
time of a fraction of code. Such a feature can be found in WCETC [11], for example.

char poll() {
volatile char io_port;
while (io_port 6= 0)
/* wait */ ;

}

It could be an invariant of the hardware platform that the execution time of the
subroutine poll() (busy waiting) is always between 30 and 100µs.

4. Conclusion

The lack of common interfaces and open analysis frameworks is an impediment for the research in
WCET analysis. Activities have been started within the ARTIST2 Network of Excellence to define
such a common WCET analysis platform. As part of this, The Annotation Language Challenge
for WCET analysis has been proposed [12]. This paper is aimed to be a first step towards a
common WCET annotation language. It describes essential ingredients such an annotation language
should include. The timing constraints are described conceptually to allow instantiation for different
representation levels and tools.

We analyzed existing timing-annotation constructs and described them in a conceptual way. We iden-
tified the potential need for further mechanisms and developed some new ingredients for annotation
languages. Among the new contributions are the categorization techniques of timing constraints by
the separation between timing invariants and timing fictions, the introduction of annotation layers,
annotation groups. Further, we gave a discussion of addressable units to be used for annotating the
program.

We consider the proposed list of essential ingredients for a WCET annotation language as complete
for procedural languages. Therefore we want to encourage professionals and researchers to provide
their feedback as a basis for the refinements of this list.
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Abstract
Static WCET analysis obtains a safe estimation of the WCET of a program. The timing behaviour of
a program depends in many cases on input, and an analysis could take advantage of this information
to produce a formula in input variables as estimation of the WCET, rather than a constant. A method
to do this was suggested in [12]. We have implemented a working prototype of the method to evaluate
its feasibility in practice. We show how to reduce complexity of the method and how to simplify parts
of it to make it practical for implementation. The prototype implementation indicates that the method
presented in [12] successfully can be implemented for a simple imperative language, mostly by using
existing libraries.

1. Introduction

Most state-of-the-art static WCET analyses derive a constant time estimation of the WCET of a pro-
gram. In the general case, this estimation has to be pessimistic in order to be safe. However, many
tasks are re-configurable and/or reused in different applications and the worst case derived by the
analysis applies only to one configuration/input. The real WCET for a fixed configuration or input
data might be significantly tighter than the global worst case. One analysis could be made for each
configuration or input data, and new analyses can be made as needed. This, however, is tedious,
inflexible and requires that the analysis tools are available whenever the data or configuration of the
program is changed. In [12] a static analysis which provides a safe parametric estimation of the
WCET as a formula of input variables rather than as a constant value is presented. We have done a
prototype implementation of this analysis and we will present some of the technical issues that arise in
a practical implementation. The reason for the implementation is to test the feasibility of the analysis
framework in practice. The contributions of this paper are

• Showing that the analysis can be implemented for simple programs (see Section 2)

• Reducing complexity of the analysis by reducing the number of variables

• Simplifying the method in [15] for counting solutions of presburger formulae to count points
inside convex polyhedra

• Identifying the need for simplification of the resulting parametric WCET formula

1This work is supported by the Swedish Foundation for Strategic Research via the strategic research centre PROGRESS

ECRTS 2008 
8th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis 
http://drops.dagstuhl.de/opus/volltexte/2008/1659 1



Section 2 briefly summarises the method given in [12] and in Section 3 we show how we have im-
plemented it. Section 4, shows how to simplify symbolic counting of the number of solutions based
on [15]. Then, in section 5, we show how to reduce the complexity of the problem by eliminating
variables from the calculation phase. In Section 6, we discuss the problem with a big and complex
solution and suggestions on how to solve it. Finally we present related work in Section 7 and conclu-
sions and future work in Section 8.

2. Method

We first introduce some terminology and make a few assumptions. By program we shall mean a
small program, a task or a function which has a well defined set of input parameters. Furthermore,
we assume that the analysed program is terminating and deterministic, and that variables that affect
the program flow are integers or Booleans. We will refer to program points as the edges of the control
flow graph (CFG). The analysed program will be denoted P , and its set of program points QP . We
shall assume that any program uses a set of variables VP and that each program has a set of input
parameters IP ⊆ VP which has two properties: 1) They affect the program flow and 2) They are not
changed during execution of P . As long as these properties are fulfilled the set of input variables can
be chosen arbitrarily. Now we will for completeness summarise parts of the method described in [12].

The method assumes that there exists an analysis producing structural constraints2 of the program
and a low-level analysis that produces a WCET estimation for all atomic parts (program points) of the
program. The idea here is to have the execution count of each program point bounded from above by
a parameter and to perform an parametric IPET calculation. Other constraints, such as constraints on
paths can also be bounded by parameters. The result of the parametric IPET calculation is a function
expressed as a formula

PCP : N|QP | → N
where the domain is a vector where each component represents the maximum bound on the execu-
tion count for a program point. We call the parameters in this vector execution bound parameters.
Furthermore, we call the function PCP Parametric Calculation. The maximum execution count for
individual program points is often dependent on input parameters. The arguments of PCP will there-
fore be computed in terms of IP . Formally, the arguments will be computed by a function

MECP : Z|IP | → N|QP |

where the domain vector is an instantiation of the input parameters. We call this function the Maxi-
mum Execution Count function. When the parametric calculation and the maximum execution count
functions have been computed, we can obtain the WCET estimation as a parametric formula in the
input variables as the function

PWCETP : Z|IP | → N = PCP ◦MECP .

The analysis boils down to finding the functions PCP and MECP for a given program P . The function
PCP can be obtained by performing parametric IPET calculation using parametric ILP [9]. The
MECP function can be obtained by observing the fact that in a deterministic, terminating program,
each run-time state has to be unique3. Thus, the number of times a program point can be visited

2Constraints imposed by the graph structure of the CFG only
3If exactly the same state is encountered twice, the determinism of the program enforces the program to repeat the same
sequence of states infinitely.
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Figure 1. Work flow

is upper bounded by the number of distinct run-time states. Abstract Interpretation [6] can derive
a super set of the set of possible run-time states at each program point. A relational domain is an
abstract domain that preserves some of the relations among variables in the analysis. If the abstract
domain used in the abstract interpretation is relational, then some of the variables can be used to
parameterise the set of possible run-time states w.r.t. other variables. The maximum execution count
function can then be obtained by counting the number of states contained in the solutions of the
abstract interpretation with respect to the parameters. The work flow is shown in Figure 1.

3. Implementation

We have made a prototype implementation of the analysis presented in the last section. We represent
programs as CFGs where nodes are start, stop, assignment or conditionals. Furthermore, all variables
are assumed to be integers or Booleans. We do not consider function calls or pointers and the expres-
sions in assignments and conditionals have to be linear. The reason for this restriction is that most
relational abstract domains can only capture linear relations among variables. Since the computational
tasks required to realise this are quite modular, we have implemented different parts independently
of each other and mostly by reusing existing code and libraries. We present for each box in Figure 1
the corresponding implementation, except for structural analysis and low-level analysis which are as-
sumed to exist. In our prototype we simply assume that all atomic parts of the program have the same
constant WCET of ten clock cycles, but this could easily be replaced by the real results of a low-level
analysis. Since we represent our program as a CFG, we can easily derive the structural constraints for
each node by requiring that its in-flow should be equal to the out-flow.
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3.1. Abstract Interpretation

The main design decision of the abstract interpretation is the choice of abstract domain. The require-
ments of the abstract domain is that, in order to be parametric, it should be relational and that the
domain can derive bounds on the values (to be able to count states). We have implemented the ab-
stract interpretation with the polyhedral domain [7] using the new polka library [13]. Such an abstract
interpretation can derive linear constraints among variables, enclosing the possible values of the pro-
gram variables at a program point inside a convex polyhedron in n dimensions, where n is the number
of variables. A simple framework for abstract interpretation for our CFGs has been implemented in
C++. The implementation allows support for other abstract domains to be added with little effort. The
polyhedral domain has exponential complexity in the number of dimensions (in this case, variables)
but has a quite good precision. As an example, consider the CFG of a program we call L in Figure 2.
Performing polyhedral abstract interpretation will yield a vector ~a of abstract values for each program
point as follows:

a0 = > a3 = {i ≥ 0, i ≥ n + 1}
a1 = {i = 0} a4 = {0 ≤ i ≤ n}
a2 = {i ≥ 0} a5 = {1 ≤ i ≤ n + 1}

(1)

where > means ”no information”.

3.2. Counting States

To obtain the MECP function from the result of the abstract interpretation, we need to count the
number of integer solutions for each system, parameterized in the set of chosen input parameters
IP . We have implemented a simplification of the method in [15]. The method counts the number
of solutions to a given presburger formula, of which a system of linear inequalities is a subset. We
describe our modelling and simplification of the method in Section 4. The result from the symbolic
counting represent the function MECP . For completeness we now sketch parts of the method in [15],
it computes the result of generalised sums (ΣV : P : x) where V is a set of variables to sum over,
P is a presburger formula (the guard) and x is any formula. The result of such a sum is the sum for
all variables v ∈ V which satisfy P of x. As a simple example, (Σ{v} : l ≤ v ≤ u : v) is equal to∑u

v=l v. The general method to compute (ΣV : P : x) is to choose a variable v ∈ V and compute the
general sum

(ΣV \ {v} : P ′ : (Σ{v} : l ≤ v ≤ u : x))
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where P ′ is P where all information about v is removed. Since (Σ{v} : l ≤ v ≤ u : x) is equivalent
to

∑u
v=l x, known formulae of summations over the form of x can be used to simplify it. If V \ {v}

is non-empty another variable is chosen and the procedure is repeated until V = ∅, and the result is
a sum of generalised sums (Σ : G : x′) which should be read as ”x′ if G holds, else 0”. This result is
symbolic in the variables occurring free in x or P but not in V . The situation is however not always
this easy; variables can have several lower/upper bounds or be unbounded and bounds can be negative
and/or rational. All these cases are handled in [15].

Given a vector ~a = (a0 a1 ... am−1), with m = |QP | components, where each component is a convex
polyhedron obtained from the abstract interpretation, we define the image through MECP of the k-th
component as

MECP (~i)k = (Σ(VP \ IP ) : ak : 1)

for k = 0...m−1. The right hand side is a formula of the elements in IP which are instanced with the
elements of~i. Consider the CFG L in Figure 2 and the result ~a from the abstract interpretation in (1).
For L we have VL = {i, n} and IL = {n} so by symbolically counting the number of integer points
inside the polyhedra of will give the MECL function as follows (we will here write Σi for Σ{i}).

MECL(n)0 = (Σi : ∅ : 1) = ∞ (unbounded sum)
MECL(n)1 = (Σi : i = 0 : 1) = 1

MECL(n)2 = (Σi : i ≥ 0 : 1) = ∞
MECL(n)3 = (Σi : i ≥ 0, i ≥ n + 1 : 1) = ∞
MECL(n)4 = (Σi : 0 ≤ i ≤ n : 1) = (Σ : n ≥ 0 : n + 1)

MECL(n)5 = (Σi : 1 ≤ i ≤ n + 1 : 1) = (Σ : n ≥ 0 : n + 1)

(2)

Now MECL maps the value of n to the number of possible states (number of points inside polyhedra)
at each program point of the program.

3.3. Parametric IPET

Parametric Integer Programming [9] is essentially a parameterized version of the (dual) simplex algo-
rithm and may be used to solve parametric IPET problems. A tool called PipLib exists [14], it can be
used to solve a parametric IPET problem, where the answer is given in terms of the parameters. With
structural constraints A~x ≤ ~b and atomic WCETs from the low-level analysis ~c, we can use PipLib to
maximise

~cT~x subject to A~x ≤ ~b and ~x ≤ ~p

where ~p is a vector of parameters where each component pi corresponds to a symbolic upper bound
to the execution count of xi. PipLib gives as solution a so-called quast, which is a formula expressing
the unknown variables in terms of the parameters. The quast is a tree of nested if-statements where
the leaves correspond to solutions for the unknown variables. Both the conditionals and the solutions
are linear expressions of the parameters, see [14] for further information. The quast can be used to
obtain PCP .

If we assume that each program point of L in Figure 2 has a constant WCET of ten clock cycles then
we want to maximise y = 10

∑
xi subject to the structural constraints of L and xi ≤ pi. Using PipLib

to solve this IPET problem will give us PCL:

PCL = λ(p0, p1, p2, p3, p4, p5).ifp2 ≤ p4 + 1 then(ifp2 ≤ p5 + 1 then 30p2 + 10 else... (3)
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The full quast contains eight leaves and is too big to show here. The reason for the many leaves is
that the possible relations among the parameters are many.

3.4. Combination

Finally, we need to express the WCET estimation as a parametric formula in terms of the input
parameters in IP , formally computing the function PWCETP = PCP ◦ MECP . This is done by
parsing the solution quast given from PipLib (corresponding to PCP ) and substituting the parameters
~p with MECP (~i), resulting in a formula parameterized in IP .

The final result of the analysis for L will after combining (3) and (2) is,

PWCETL = λn.ifc2 ≤ c4 + 1 then(if c2 ≤ c5 + 1 then 30c2 + 10 else...

where ck = MECL(n)k. Since c5 = c4 and c1 = 1 we can see that simplification is needed, but not
yet implemented.

4. Symbolic Counting

The method in [15] gives a symbolic formula of the number of solutions to a given presburger formula.
Convex polyhedra (or equivalently, systems of linear inequalities) are a strict subset of presburger for-
mulae and we will show to restrict and simplify the method for this special case. We will assume two
restrictions of the generalised sums; first, rather than having the guard as a presburger formula, we
have it as a system of linear inequalities in the variables of VP (since this is exactly what the poly-
hedral abstract interpretation will give). The other restriction is that we model the formulae to sum
over as polynomials, simplifying both representation and computation. Polynomials can easily be
modelled as a sum of terms, where a term is a vector representing an integer coefficient and variable
powers. As an example we can model the polynomial 3a2b3 +5a4 (assuming VP = {a, b}) as the sum
of the terms (3 2 3) and (5 4 0). This also makes arithmetical operations on these vectors straightfor-
ward to implement. Furthermore, since the guards are polyhedra, the lower and upper bound of any
variable will be sets of linear expressions. Summing a linear expression over a polynomial is again a
polynomial, so this model is closed under summations. However, these restrictions sometimes require
the result to be slightly over-approximated. The constraint 3a − b ≤ 0 gives an upper bound for a
as a ≤ b b

3
c, since a and b are integers. As seen, the upper bound is not a polynomial and therefore

problematic in our model. Since b
3

is a safe upper bound for b b
3
c and on polynomial form we can use

it as approximation. We handle lower bounds accordingly.

5. Reducing the Number of Variables

As seen above, we need an unknown variable and an execution count parameter for each program
point in the program in the parametric IPET calculation. Parametric ILP has exponential complexity in
the number of variables in the worst-case, making scalability problematic. The structural constraints
of the program in general produce an under determined system. In an under determined system with
n variables, the solution space is the span of a set of n−r vectors (where r is the rank of the constraint
matrix). The variables can be expressed as linear combinations of these vectors and we can only solve
the problem in terms of these. Let A~x = ~b be a system of structural and possible other linear equations
obtained from flow analyses and y = ~cT~x be the cost function. The constraints together with the cost
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function is (
1 −~c
0 A

)(
y
~x

)
=

(
0
~b

)

If we perform Gauss-Jordan elimination on the above (including the right-hand side by augmenting
the constraint matrix by (0 ~b)T) and re-arrange the columns of A and the components of ~x such that
all pivot columns are to the left, and ~x is re-arranged accordingly, we get

(
1 0 −~c′

0 Ir A′

) 


y
~xBV

~xFV


 =

(
z
~b′

)

where Ir is the r × r identity matrix and r is the rank of A. Furthermore, z is the last column of
the solution of the augmented matrix after elimination. The vector ~x has now been partitioned into a
vector of r basic variables ~xBV which corresponds to the columns of Ir and the vector ~xFV of n − r
free variables (where n is the number of columns of A) which corresponds to the columns of A′. Note
that this transformation also removes any redundant constraints from the system. From this we can
derive two important equations. One is the objective function expressed in terms of the free variables

y = z + ~c′~xFV

and a way to express the basic variables in terms of the free ones

~xBV = −A′~xFV − ~b′

As we model the parametric upper bounds as the constraints ~x ≤ ~p, we can now simply model our
IPET problem as 


z + ~c′~xFV

−A′~xFV − ~b′

~xFV


 ≤




y
~pBV

~pFV




where we have partitioned and re-arranged ~p exactly as for ~x. Now it suffices to solve the IPET with
these constraints, thus reducing the number of unknowns by the rank of A. Note that we cannot reduce
the number of parameters in the same way, since they directly correspond to the output of MECP .
This method of eliminating variables is not restricted to the parametric case, but can be used to reduce
the dimensionality of any IPET problem. As an example, using this on (3) reduces the system from
eight to two unknown variables (the variable of the cost function included).

6. The Result of Parametric Integer Programming

The possible number of relations between parameters in the IPET calculation are large, and yields
large and complex quasts as result, even for small program examples (as seen in Section 3.3). Calcu-
lating WCETP as a composition of the quasts with the result of the symbolic counting will substitute
guarded generalised sums for all parameters in the quasts and the final result will be very complex and
large. This suggests that a simplification of PCP is needed as well as of the final formula PWCETP .
As presented in Section 5, we already simplified the problem by reducing the number of unknowns,
but there are more possibilities for simplifications. A way to reduce the number of possible rela-
tions among parameters would be to restrict the parameters in the IPET calculation with constraints.
Restrictions of parameters could potentially be found directly from MECP (e.g. some counts may
impose absolute upper and lower bounds on parameters) and in some cases from the CFG structure
(e.g. start and stop nodes restrict the parameters). Some parameters could also potentially be elim-
inated. The final PWCETP obtained after substitution can be simplified by finding equal sub trees
and eliminating tautologies and contradictions in the conditionals.
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7. Related Work

The analysis in [8] is as [12] based on calculating the number of run-time states to find the WCET
but without parameters. An approach to parametric WCET analysis was presented in two joint master
theses [1, 11] and also in [2]. The analysis of these theses uses PipLib as tool for a parametric IPET
calculation but uses parameters only for loop bounds. The loop bound parameters is then substituted
for parameterized intervals. The parameterized intervals are obtained by identifying loop counter
variables and loop invariants based on their relative values to input parameters of the program. Other
approaches to parametric WCET analysis can be found in [3, 5, 16].

Abstract interpretation [6] is a general theory for soundly abstracting program semantics and is com-
monly used in static analysis. The polyhedral domain [7] has been used in different contexts than this,
such as in verification of linear hybrid systems in [10]. Different methods for symbolic counting are
[15, 4]. Parametric integer linear programming was first presented in [9], see also [14].

8. Conclusions and Future Work

We have done a prototype implementation of the framework for parametric WCET analysis presented
in [12]. The framework was implemented for simple CFGs. The prototype is in the current state not
powerful enough to fully evaluate the method, but shows that the method successfully can be imple-
mented, mostly by using existing libraries. We have presented a simplified method for symbolically
counting integer points inside convex polyhedra based on the method in [15]. We have also presented
a general method to reduce the number of variables used in a IPET calculation where linear equations
are used as constraints. We conclude that an important challenge of making a successful implementa-
tion for real programs is to deal with complexity; both computational and representational. The final
WCET formula needs to be simplified in several steps. As future work, the prototype will be enhanced
to be able to deal with more realistic program (by adding arrays and pointers) in order to evaluate and
make comparative studies on concrete benchmarks and to compare the precision/complexity trade-off
by using different abstract domains and calculation methods.
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[2] Sebastian Altmeyer, Christian Hümbert, Björn Lisper, and Reinhard Wilhelm. Parametric timing analysis for com-
plex architectures. In RTCSA ’08: Proc. 14th IEEE International Conference on Embedded and Real-Time Com-
puting Systems and Applications., 2008.

[3] G. Bernat and A. Burns. An approach to symbolic worst-case execution time analysis. In Proc. 25th Workshop on
Real-Time Programming, Palma, Spain, May 2000.

[4] Philippe Clauss. Counting solutions to linear and nonlinear constraints through ehrhart polynomials: Applications to
analyze and transform scientific programs. In International Conference on Supercomputing, pages 278–285, 1996.

[5] Joel Coffman, Christopher Healy, Frank Mueller, and David Whalley. Generalizing parametric timing analysis. In
LCTES ’07: Proceedings of the 2007 ACM SIGPLAN/SIGBED conference on Languages, compilers, and tools,
pages 152–154, New York, NY, USA, 2007. ACM.

[6] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In Proc. 4th ACM Symposium on Principles of Programming Languages,
pages 238–252, Los Angeles, January 1977.

8



[7] Patrick Cousot and Nicholas Halbwachs. Automatic discovery of linear restraints among variables of a program. In
Proc. 5th ACM Symposium on Principles of Programming Languages, pages 84–97, 1978.

[8] Andreas Ermedahl, Christer Sandberg, Jan Gustafsson, Stefan Bygde, and Björn Lisper. Loop bound analysis based
on a combination of program slicing, abstract interpretation, and invariant analysis. In Proc. 7th International
Workshop on Worst-Case Execution Time Analysis, (WCET’2007), July 2007.

[9] P. Feautrier. Parametric integer programming. Operationnelle/Operations Research, 22(3):243–268, 1988.

[10] Nicholas Halbwachs, Yann-Eric Proy, and Pascal Raymond. Verification of linear hybrid systems by means of
convex approximations. In Baudouin Le Charlier, editor, Proc. International Symposium on Static Analysis, Vol.
864 of Lecture Notes in Comput. Sci., pages 223–237, Namur, September 1994. Springer-Verlag.

[11] C. Humbert. Parametric wcet analysis, parameter analysis and parametric loop analysis. Master’s thesis, Saarland
University, Department of Computer Science, Oct 2006.

[12] Björn Lisper. Fully automatic, parametric worst-case execution time analysis. In Jan Gustafsson, editor, Proc. 3rd

International Workshop on Worst-Case Execution Time Analysis, (WCET’2003), pages 77–80, Porto, July 2003.

[13] New polka webpage, 2008. http://pop-art.inrialpes.fr/people/bjeannet/
bjeannet-forge/newpolka/index.html.

[14] Piplib website, 2008. http://www.piplib.org/.

[15] William Pugh. Counting solutions to Presburger formulas: How and why. In SIGPLAN Conference on Programming
Language Design and Implementation, pages 121–134, 1994.

[16] E. Vivancos, C. Healy, F. Mueller, and D. Whalley. Parametric timing analysis. In Jay Fenwick and Cindy Norris,
editors, Proc. ACM SIGPLAN Workshop on Languages, Compilers and Tools for Embedded Systems (LCTES’01),
pages 88–93, Snowbird, Utah, June 2001.

9



TOWARDS PREDICATED WCET ANALYSIS

Amine Marref, Guillem Bernat1

Abstract
In this paper, we propose the use of constraint logic programming as a way of modeling context-
sensitive execution-times of program segments. The context-sensitive constraints are collected auto-
matically through static analysis or measurements. We achieve considerable tightness in comparison
to traditional calculation methods that exceeded 20% in some cases during evaluation. The use of
constraint-logic programming in our calculations proves to be the right choice when compared to the
exponential behaviour recorded by the use of integer linear-programming.

1. Introduction

WCET analysis have been explored for about two decades and can be divided into three categories:
end-to-end testing, static analysis (SA), and measurement-based analysis (MBA) [6]. SA and MBA
finds the WCET of a program as follows: (a) decomposing the program into segments, (b) finding
the execution times of these segments, and (c) combining these execution times using a calcula-
tion technique: tree-based [5], path-based [8], or implicit path-enumeration (IPET) [9, 14]. Path-
based methods suffer from exponential complexity and tree-based methods cannot model all types of
program-flow, leaving IPET as the preferred choice for calculation because of the ease of expressing
flow dependencies and the availability of efficient integer linear-programming (ILP) [1] solvers.

Current calculation techniques struggle to cope with variations in execution times of program seg-
ments caused by modern-hardware speed-up features because of the complexity resulting from mod-
eling all these timing variations. This motivates the use of a more powerful calculation technique
which copes with execution time variations and yields tighter, more context-sensitive WCET estima-
tions.

We proceed by identifying the necessary conditions leading to the observation of different execution
times of program segments. These conditions are expressed as implications which by definition are
disjunctions (if a and b are predicates than (a ⇒ b) ≡ (¬a ∨ b)). There can be many segments which
have multiple execution times, and each execution time of the segment is caused by one or more
segments that previously executed. This makes the total number of constraints to handle considerably
large.

In the current work, we use constraint-logic programming (CLP) [2] in order to express the con-
straints governing the execution flow and times of the segments in the program. All constraints
including implications/disjunctions can be encompassed in the same model using CLP and with no
model expansion. These two features make CLP solve an IPET model within seconds, which is
otherwise solved using ILP in hours because of model duplication (ILP handles disjunction through
model duplication). CLP also enables the integration of execution-time analysis of many hardware
components (Section 6), an issue that has never been properly resolved (Section 2).

1Department of Computer Science, University of York, Heslington, YO105DD, UK
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The rest of the paper is organized as follows. Section 2 describes related work. Section 3 establishes
the required terminology. Section 4 explains the deriving of constraints required for CLP calcula-
tion by either static analysis or through measurements. Section 5 explains how the constraints are
expressed in CLP and highlights the problems encountered when trying to express the constraints
in our work using ILP. Section 6 shows an example where constraints derived from many hardware
components analysis are integrated together. Section 7 shows the tightness in WCET estimations we
obtained during the evaluation of our context-sensitive calculation. Finally, Section 8 summarizes the
important results and sets aims for future work.

2. Related Work

WCET analysis using context-sensitive IPET is not novel, the idea has been around for a long time.
What is common in the literature is that execution-context could not be fully exploited because of the
exponential complexity that usually accompanies the process. In addition, the focus has always been
to achieve context sensitivity in the execution counts of segments rather than the execution times due
to the fact that ILP is used to compute the solution which is by definition linear (i.e. either execution
counts or execution times can vary but not both).

There has been much work on WCET calculation using IPET starting in [9, 14] where the execution
times are constant. In later work e.g. [10, 4], ILP was used to represent more execution history by
modeling caches, pipelines, branch predictors, and speculative execution. The objective function is
generally augmented by execution-time gains/penalties resulting from the use of the hardware com-
ponent being analysed. These objective functions have not been integrated together because of their
complexity. Each segment has two execution times at most.

In a very recent work [16], timing variability of basic blocks with respect to pipelines has been anal-
ysed where there can be multiple execution times of a basic block depending on the subpath previously
traversed, then ILP is used to calculate the overall WCET.

By and large, the work in [7] is the most related to ours. In [7] WCET calculation is performed us-
ing the notion of scopes to provide context-sensitivity mainly through constraining execution counts.
At the low-level, the execution-times of segments are expressed in a scenario-based fashion where
multiple execution times are allowed in theory. The integration in the ILP model requires bounds on
different execution times of a basic block to be known a priori which as we shall see (Section 5.2)
still generates pessimism and are very hard to derive. The work in [7] assumes that the constraints
are provided by a user, so although the calculation is context-sensitive, its practical value is limited to
when such constraints are available. The low-level constraints such as “block B1 has got execution
time 100 at most six times” are very unlikely to be provided by the user and must be derived automat-
ically which is hard. This leads to the fact that the evaluation incorporated only the pipeline effects of
a block over its immediate predecessor i.e. a block has at most two execution times.

Our work is different firstly in the sense that it allows all conditional execution-times to be expressed
easily so there is no need for akwardly written ILP objective functions. The constraints governing
the observation of execution times of a block are determined automatically without the need to put
bounds on the number of such observations which are then computed exactly using CLP. Secondly, all
constraints with respect to all hardware components are integratable together by simple conjunctions.
Thirdly, solving these constraints using CLP takes seconds while it can take hours using ILP. Finally,
the calculation is path-sensitive and introduces no pessimism as we shall demonstrate in Section 5.2.



3. Definitions

The core unit of the proposed calculation method is the basic block which is a contiguous sequence
of instructions where the first instruction is jumped to (or is the first instruction of the program) and
the last instruction is jumped from (or is the last instruction of the program) [11]. Each basic block
Bi (i ∈ [1..n]) is associated an execution count xi and an execution time ci. When Bi has θi execution
times, these will represented as cj

i where j ∈ [1..θi]. We also define wceti, bceti to be the WCET and
BCET of block Bi respectively.

The program under-analysis is represented by a control-flow graph (CFG) which is defined as a tuple
(V, E). V is the set of vertices, in this case the basic blocks in the program, |V | = n. E is the set of
edges, which in this case are the transitions between the basic blocks in the program.

In order to express conditional execution-time observation, we use the operator ’/’. For example
cj/i = α means that cj = α iff Bi is executed. A block Bi is the predecessor of a block Bj if there is
sequence of one or more edges from Bi to Bj not containing a back-edge [11].

4. Deriving the Constraints

We use predicated WCET analysis which we define as performing WCET analysis by considering all
different execution times of a program segment and expressing them as the outcomes of executing
some other segments in the past. There is therefore the need to (a) identify the different execution
times of a program segment and (b) identify the -previously executed- program segments that cause
these execution times. Without loss of generality, we use the basic blocks as our program segments.

4.1. Constraints Using SA

The number of different execution times of a basic block varies with the complexity of the architecture
where it runs. A complex architecture causes a basic block to exhibit a large number of different
execution times. So far, we can express execution dependency constraints with respect to instruction
caches (icaches), data caches (dcaches), static branch predictors, and pipelines. To maintain clarity,
we will only address the derivation of icache constraints.

The analysis of the icache deals with deriving execution time dependencies between blocks in the CFG
by exploiting basic-block layout in main memory2. We start by finding the WCET and BCET of all
basic blocks. If Bi shares a program line with Bj , then the effect is expressed using the constraint xi >
0 ⇒ cj = cj/i. We determine how many program lines belonging to Bj are loaded by the execution
of Bi, let this be α lines. Block Bj acquires a new execution time cj/i := wcetj−α× (im− ih) where
im is the icache miss latency, and ih is the icache hit latency. If Bi displaces a program line used by
Bj in a loop, then similarly cj/i := bcetj + β × (im − ih).

The analysis is easily automated. For each block Bi, we find the blocks that share program lines
with it, and the blocks that conflict with it in some icache blocks. The start and end addresses of the
basic blocks, together with knowledge about the icache architecture enable the block execution-time
dependency-analysis with respect to the icache.

2The CFG is constructed from the disassembled binary file of the program and hence basic block start and end addresses -
in main memory - are available.



Studying cache conflicts is not novel in this work as it has been used in SA in the past [12]. The
novelty here is in using SA to derive new execution times and link these execution times to past
execution. Müeller [12] performed a complete analysis on instruction caches where icache accesses
are identified as being hits, misses or unknowns. Since the analysis must be safe, unknowns are
considered as being misses. This can be a great potential of pessimism in the evaluated WCET. In
Figure 2(a) - ignoring the constraints - the returned WCET is 3200 assuming c3 = 70.

4.2. Constraints Using Traces

Execution-trace analysis can also be used to derive the constraints of the CLP problem. An execution
trace is a time-stamped execution of the program which can be obtained using a tracing method [13]. It
contains all instructions executed during a particular run of the program with timing information. The
execution trace can be exploited to derive constraints on the execution-counts of program segments
or constraints on their execution-times.

Conditional execution times can be learnt from traces where a particular execution time of a block
B1 is recorded whenever B2 is executed. The quality of the generated traces affects the correctness
of the derived constraints. If traces are generated using full-path coverage, it is guaranteed that the
timing constraints are learnt exactly. However, path coverage is impractical, so a less costly coverage
metric must be employed. Unfortunately, functional testing coverage metrics are not adequate for our
task as they do not consider the temporal properties of the program, and hence there is a need for new
coverage metrics. We are currently exploring ways of generating appropriate test vectors that help
obtain maximum variability in block execution times and executed paths using genetic algorithms.

5. Modeling the Constraints

In the last section we explain how conditional execution-times are expressed using implications. In
this section we explain how CLP is used to model these constraints. In order to see the benefits of
using CLP in our work, a comparison against ILP is made to illustrate the constraints that can be
expressed better using CLP. In literature [9, 14], the constraints used in ILP are flow constraints. We
use flow constraints and introduce time constraints.

5.1. Flow Constraints

These constraints express the rules governing the execution flow and dependencies in a program, these
are divided into structural and functional constraints. Structural constraints preserve the execution
flow of the program, and functional constraints describe aspects of program-execution behaviour. For
a formal description, see [9, 14]. For instance, for any two blocks Bi and Bj , if we want to express that
they are on the same path where Bj is inside a loop, the constraint (xi > 0∧xj > 0)∨(xi = 0∧xj = 0)
is used in the CLP model. When the two blocks are outside any loop, the constraint xi = xj is enough
to express same-path relation. Mutual exclusion is represented similarly.

In this paper, the only type of flow constraints that is included in the CLP model are structural con-
straints. We do not detect functional constraints such as infeasible paths, so the model does not
incorporate them. However, they can be added if available.



5.2. Time Constraints

These constraints describe the necessary conditions - expressed in terms of execution flow - that must
hold to give rise to a particular execution time of some basic block. Given a basic block Bi with
θi execution times c1

i , c
2
i , ..., c

θ
i , Bi is affected by a set Ψi of σi blocks B1, B2, ..., Bσi

. In general
i /∈ [1..σi], but in some special cases where the block size is larger than the icache size or when it
accesses a variable whose size is larger than the dcache i ∈ [1..σi]. Every block Bk, k ∈ [1..σi] can
either execute or not execute, so there is a total of 2σi different effects on block Bi. These effects are
best visualized by imagining a truth table of θi variables where a 0 means block not executing and 1
means block executing. The relation 2σi ≥ θi must hold because every execution time of a block Bi

must be related to previous execution history. When 2σi > θi, there will be some effects of the blocks
in Ψi that are either equivalent (map to the same execution time) or impossible (the corresponding
combination of blocks is not possible). Notice that in the architecture we consider, θi is usually small.
Blocks Bi with large size can have a considerable θi.

Impossible effects can be ruled-out before passing the time constraints to the solver, or they can
(eventually) be eliminated by the solver. Equivalent effects can be simplified using boolean algebra
techniques and then passed to the solver. Obviously, the degree of simplification will be different for
every equivalence class of time constraints.

Next we need to generate the conditional execution-time relations. Conditional execution times of Bi

are expressed using
(x1 ¯ 0 ∧ x2 ¯ 0 ∧ ... ∧ xσi

¯ 0 ⇒ ci = cj
i ) (1)

where each ¯ stands for greater than (>) xor equal (=) (the ¯ can have a different instantiation in
each occurrence in the same time constraint). The time cj

i is the execution time observed for a given
instantiation of the operators ¯ e.g. (x1 > 0 ∧ x2 > 0 ∧ ... ∧ xσi

> 0 ⇒ ci = 100).

Adding more constraints to the constraint model generally helps prune the search. The potential large
number of time constraints is expected to speed-up the constraint search. For example, assume two
blocks B1, B2 affecting the execution time of a third block B3 in the following way:

(x1 = 0 ∧ x2 = 0 ⇒ c3 = 1)
∧(x1 = 0 ∧ x2 > 0 ⇒ c3 = 2)
∧(x1 > 0 ∧ x2 = 0 ⇒ c3 = 3)
∧(x1 > 0 ∧ x2 > 0 ⇒ c3 = 4)

(2)

The search space is

(x1, x2, c3) ∈ {({0}, {0}, {1}), ({0},Z+∗, {2}), (Z+∗, {0}, {3}), (Z+∗,Z+∗, {4})} (3)

In the absence of these constraints, the search space is:

(x1, x2, c3) = (Z+,Z+, {1, 2, 3, 4}) (4)

The size of the search space in Formula 3 is (|Z+∗|2 + 2× |Z+∗|+ 1). The size of the search space in
Formula 4 is (4× |Z+|2). As can be seen, the time constraints partition the (non-linear) search space.

It is still possible to express conditional execution times in ILP at the cost of great complexity. This
can be achieved through model duplication (ILP1) or bounds on execution times (ILP2).
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Figure 1: Time constraints for ILP

ILP1. Consider Figure 1(a) where c6/3 = 7 and c6/4 = 10. The basic ILP formulation of the problem

when c6 is constant is to maximize the sum
7∑

i=1

ci × xi. When c6 is not constant, the term c6 × x6

needs to be expanded further. This is done by duplicating B6 as is shown in Figure 1(b) and adding
mutual-exclusive path information to the model.

In Figure 1(b), B6 with execution times {7, 10} is expanded to B6a with execution time c6a = 7 and
B6b with execution time c6b = 10. Since c6 = c6a = 7 is observed only when B3 is executed, we
can state that B6a is mutually exclusive with B4. The same argument is made for B6b and B3. The
updated ILP formulation becomes (c1x1 +c2x2 +c3x3 +c4x4 +c5x5 +c6ax6a +c6bx6b +c7x7) with the
additional constraints that express mutual exclusivity. The ILP problem needs to be solved for each
set of mutual exclusive paths, then the best solution is taken. The number of model copies to solve
grows exponentially with the number of nodes that have multiple execution times and the number of
different times they have (e.g. Figures 1(c), 1(d)).

ILP2. The other way to express conditional execution-times is to impose bounds on the number of
times each single execution time is observed. This allows all constraints to be solved by a single run
of the model and with expanding only the blocks in question. However, this only works provided the
bounds on the observation of different execution times are available which is very hard to determine
statically. In addition, the returned WCET will not be as accurate as the WCET returned by CLP or
ILP1. The reason for this is that there is no path information in ILP2 compared to CLP, ILP1.

6. Example of Integration

Figure 3 shows (a) a program written in pseudo-assembly, (d) its CFG, (b) its block memory layout,
and (c) the referenced variables placement in the dcache. We are interested in analysing the execution
time of B4 which has the value wcet4 in its worst case. This is equivalent to performing 3 icache
misses, 2 dcache misses, and starting execution from a flushed pipeline. Block B4 is reached from
three blocks: B1, B2, B3 where no block in these three blocks is a predecessor of another one. Assume
all blocks are outside any loop.

If B4 is executed after B1, it gains nothing in execution time with regards to icache because B1 loads
program lines PL1 and PL2 neither of which is used by B4. Block B4 however gains in dcache
execution by 1 × (dm − dh) because B1 loads data line DL1 which is used by B4. Finally, B4 gains
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Figure 2: The time constraints and the corresponding WCET using CLP (a), ILP1(b), and ILP2(c). In
(a) the nodes not duplicated, conditional execution times are added. In (b) and (c), the nodes with
variable execution times are duplicated. In (b), mutual exclusion constraints are added. In (c), bounds
on the execution counts of nodes with variable execution times are added.
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Figure 3: The disassembly code, memory layout, dcache content and a CFG window of a block B4

affected by blocks B1, B2, and B3

g1 cycles because of the pipelined execution of B1; B4 (no misprediction can occur as the jump is
unconditional).

If B4 is executed after B2, it gains 1× (im− ih) with regards to icache because B2 loads program line
PL3 which is used by B4. Block B4 gains in dcache execution by 1 × (dm − dh) because B2 loads
data line DL2 which is used by B4. Finally, B4 gains g2 cycles because of the pipeline execution of
B1; B4. Here assume g2 > g1.

If B4 is executed after B3, it gains nothing in execution time with regards to icache because B1 loads
no program line that is used by B4. Block B4 gains in dcache execution by 2× (dm− dh) because B3

loads data lines DL1, DL2 which are used by B4. Finally, B4 gains g3 cycles because of the pipeline
execution of B3; B4. Here assume g2 > g3 > g1.



The execution time of B4 is captured by the constraint:

(x1 > 0 ⇒ c4 = wcet4 − (dm − dh)− g1)∧
(x2 > 0 ⇒ c4 = wcet4 − (im − ih)− (dm − dh)− g2)∧
(x3 > 0 ⇒ c4 = wcet4 − 2× (dm − dh)− g3)

(5)

7. Evaluation and Results

We obtain the execution times using Simplescalar [3]. We use pollution techniques to force the
WCET, BCET of each basic block in the program and compute this WCET, BCET by means of
measurements. The hardware used comprises a CPU with a single-issue in-order pipeline, icache
L1, dcache L1, and a static branch predictor. First, we analyse dependencies between basic blocks
with respect to the icache as we discuss in Section 4.1 (the process is automatic). Then we derive
the corresponding time constraints, and solve the constraints using ECLiPSe, a constraint logic
programming engine [2].

The objective of the evaluation is to show (a) that PWA yields tighter WCET estimations in compari-
son with HMU, and (b) show that the solution time to solve the CLP model is affordable.

We compare the tightness of the WCET values obtained using our Predicated WCET Analysis (PWA)
with a method that uses Hit, Miss, first-hit, first-miss, Unknown analysis (HMU) [12]. An HMU
icache analysis method quantifies the number of icache hits and misses per basic block. When the
icache access is guaranteed to be a hit or a miss, it is classified accordingly. When the icache access
is not guaranteed to be a hit or a miss (i.e. unknown), it is classified as a miss to achieve safety. Our
analysis method puts more context-sensitivity in the icache analysis by stating the condition under
which the icache access (considered a miss by HMU) will hit or miss.

We have tested our tool on some WCET benchmarks available from [15]. Table 1 shows the execution
times obtained using PWA and HMU on a representative3 subset of the benchmarks. The icache has
a size of 1k bytes. As can be seen, considerable tightness has been achieved in WCET for the first
three programs (select, fdct, fir) which can be explained by the large number of constraints -relative
to the number of blocks- which allows less pessimism during the constraint search.

The fourth program (lms) -although having the largest relative number of constraints in the table- does
not have the best WCET tightness using PWA. This is due to the nature of the constraints involved in
calculation. In our implementation, as a temporary solution to manage the large number of constraints
that a particular block can have, we decide that each basic block can be constrained by at most five
blocks. When a block is constrained by more than five blocks, its WCET is used during calculation.
The program lms has got a big loop which consumes more than half the number of its blocks (73 ),
which leads to many icache conflicts given the used icache configuration.

The last three programs (cnt, bsort, and ns) scored very small tightness. When these programs are run
on an icache with smaller size, they generate more constraints and score greater tightness.

The CLP solving time during evaluation (including some other programs) did not exceed a few sec-
onds. The solving process in ILP is usually instantaneous for one run but then becomes exponential

3Representative in terms of tightness i.e. the tightness scored with other programs from the benchmarks has more or less
one of the values shown in Table 1.



Table 1: WCETs of benchmark programs using PWA and HMU
# program blocks implications wcet gainHMU PWA
1 select 40 27 558627 432803 22.6%
2 fdct 12 6 77759 66975 15%
3 fir 17 4 87822 81742 7%
4 lms 134 86 747776 724752 4.3%
5 cnt 36 2 94672 92912 1.9%
6 bsort 20 4 58179 57539 1.2%
7 ns 22 5 892708 888148 0.6%

when running all duplications. We use lp solve to solve each of the (linear) disjunctive ILP instances
(ILP1). Each instance is solved in few micro seconds. Using a more powerful ILP solver such as
CPLEX might cut down the time required to solve one instance of the disjunctive ILP. However, this
will only mean that (few) more time constraints can be tolerated. The exponential behaviour is still
present.

If for instance, the model has n time constraints and lp solve takes α units to solve each instance of
ILP1; the number n′ of time constraints that can be solved using CPLEX in the same amount of time
is n′ = n− ln(2)× ln(α/β) where β is the time taken by CPLEX to solve one instance. So if CPLEX
was a million times faster than lp solve (α = 106 × β), CPLEX can solve the same model with extra
10 time constraints in the same amount of time. The models in our case were solved in few micro
seconds, if the solver was a million times faster or more, they would be solved in few pico seconds or
less which is doable only by super computers.

8. Conclusions and Future Work

In this paper we have proposed the use of constraint-logic programming (CLP) to compute tight
values of WCET by using constraints derived through execution-time dependency-analysis. In this
work we have considered icache constraints only and we concluded that CLP is superior to integer
linear-programming (ILP) whenever there is a reasonable number of execution-time dependencies.
The choice of whether or not to use predicated WCET analysis (PWA) and CLP is dictated by the
nature of the program. If execution-time dependency-analysis reveals lots of constraints, it is worth
using PWA and CLP because considerable tightness may be achieved. In a future work, we will
show how constraints from other hardware components are derived. We are currently investigating
how to prove the safety of constraints derived using tracing. We are also working on improving the
calculation method so that constraints are solved more efficiently.
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TRACES AS A SOLUTION TO PESSIMISM AND
MODELING COSTS IN WCET ANALYSIS

Jack Whitham and Neil Audsley1

Abstract
WCET analysis models for superscalar out-of-order CPUs generally need to be pessimistic in order to
account for a wide range of possible dynamic behavior. CPU hardware modifications could be used
to constrain operations to known execution paths called traces, permitting exploitation of instruction
level parallelism with guaranteed timing. Previous implementations of traces have used microcode to
constrain operations, but other possibilities exist. A new implementation strategy (virtual traces) is
introduced here.

In this paper the benefits and costs of traces are discussed. Advantages of traces include a reduction
in pessimism in WCET analysis, with the need to accurately model CPU internals removed. Dis-
advantages of traces include a reduction of peak throughput of the CPU, a need for deterministic
memory and a potential increase in the complexity of WCET models.

1. Introduction

Worst-case execution time (WCET) analysis determines the maximum execution time for a program
on a particular CPU [17]. On some CPUs, the execution of each instruction within the program is
independent of execution history and data inputs, making the program easy to model for WCET anal-
ysis. Methods like the implicit path enumeration technique (IPET) [10] can find the exact WCET in
these simple cases because the execution time of each section of code can be considered indepen-
dently of all the others [18]. If the execution times are not constant, then it is still possible to use an
upper bound on the execution time of blocks of code, yielding a pessimistic (i.e. inexact but safe)
WCET estimate. In IPET, the program is modeled as a flow network, and integer linear programming
is used to determine the execution path with the maximal execution time.

Out-of-order CPUs are difficult to analyze due to their complexity, but accurate analysis is necessary
because a safe upper bound is required [8]. Advanced CPUs provide higher instruction throughput
by using very long pipelines, executing operations in parallel, and executing operations speculatively
(that is, before the branch that led to them): all of these features must be modeled. The rate of code
execution is dependent on history (via branch prediction [5], caches [13] and pipeline interaction
effects [11]) and dependent on data values (because of memory disambiguation [12] and variable
duration instructions). Consequently, the upper bound may be much greater than the typical case. In
some cases, a slower and simpler CPU might have a lower WCET as well as facilitating analysis.

Previous work suggested the use of microcoded traces as an abstraction of CPU behavior for WCET
analysis [23, 22]. Traces support speculative and parallel execution within an IPET-based WCET

1Real-Time Systems Group, Department of Computer Science, University of York, York, YO10 5DD, UK.
email: {jack/neil}@cs.york.ac.uk
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Figure 1. Trace formation in [23]: (a) basic blocks on the WCEP are selected for inclusion in a trace, then (b) their
instructions are rescheduled into blocks of microcode, reducing the execution time of the path.

analysis model, potentially without introducing pessimism. Each trace is a sequence of basic blocks:
a subpath of a program. Trace allocation algorithms try to match traces to subpaths of the worst-
case execution path (WCEP) which maximizes a program’s execution time. The WCEP might be
changed by each trace allocation, so it is (1) initially estimated by assuming fixed execution times for
code and performing WCET analysis, and then (2) refined by repeating WCET analysis after N trace
allocations. When a path has been selected for trace formation (Figure 1(a)), a scheduler converts the
basic blocks into functionally equivalent microcode (Figure 1(b)). The microcode is explicitly parallel
and uses speculation to execute the operations along the main path [BB1, BB3, BB6] as quickly as
possible. Hence, the local WCET of that path is reduced, and the WCET of the whole program may
also be reduced if the main path is chosen correctly. The cost of adding the trace is that other paths
may have increased execution time (e.g. [BB1, BB2]), so allocation algorithms must evaluate the
overall WCET reduction benefits of each choice.

This paper details the motivation for traces using previous work (section 2) then describes the tim-
ing model that they enable (section 3). Then a new implementation strategy is discussed, avoiding
microcode (section 4). Section 5 concludes.

2. Why use Traces?

Out-of-order CPUs exploit instruction level parallelism using a complex heuristic mechanism that
attempts to run operations as soon as possible. The incoming instructions specify code for a sequential
machine: an out-of-order CPU preserves in-order semantics while executing code in parallel where
possible. The execution rate is limited by the data dependences in the code, the accuracy of predictions
about future control flow, the resource limits of the CPU and the memory bandwidth. The first out-of-
order pipelines were implemented in the 1960s using two different mechanisms to track dependences:
a scoreboard (in the CDC 6600 [2]) and Tomasulo’s algorithm (in the System 360 CPU [20]). Since
then, the designs have been greatly refined [19].

As part of real-time systems design, it is necessary to compute the WCET of various programs running
on the CPU. If the CPU is an out-of-order CPU, then building an accurate model will be costly [8].
The costs can be reduced by improving CPU predictability, e.g. by using locked caches [6] or scratch-
pads [15] to replace unpredictable memory systems, and replacing dynamic branch predictions with
static predictions [4]. But dynamic behavior still exists in the operation scheduler which is affected
by history and data dependences. Accounting for all possible behaviors turns WCET computations
into pessimistic estimates, so the CPU resources are under-utilized, particularly if a suboptimal con-
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dition such as a domino effect [11] or timing anomaly [21] is possible. Such conditions are handled
by incorporating pessimism into the CPU model [9] or by adding pipeline synchronizing instructions
to the code to prevent the effect [11]: both approaches increase the WCET estimate.

To avoid CPU modeling, the probabilistic WCET approach has been proposed, where a statistical
model of the execution time of a program is built automatically using measurements [3], but this
approach is not suitable for all applications because the upper bound cannot be guaranteed. Alter-
natively, modeling costs can be reduced by constraining a complex CPU to intermediate deadlines
obtained using a simpler CPU model. In VISA [1], programs execute on an out-of-order CPU that
is downgraded to predictable in-order operation if an intermediate deadline is not reached. Unfortu-
nately, this limits the WCET to that of an in-order CPU. Finally, modeling costs can be eliminated
entirely by single path programming [16] where branches are replaced by predicated execution, since
single path programs have constant execution times. Here, the WCET is limited by predication ef-
fects, since instructions in both the if and else cases of a conditional statement pass through the CPU.

The trace approach is related to all of the above. As in [3], it is observed that superscalar out-of-
order CPUs are (1) difficult to model, and (2) models are pessimistic in any case, so it is best to
avoid making a model of the CPU. Measurements obtained for probabilistic WCET allow statistically
valid observations to be made regarding the WCET, but traces require a finite number of measure-
ments which always cover all possible behaviors while probabilistic WCET requires a potentially
unbounded number of measurements for a high degree of confidence in the WCET computation. As
in [16], it is observed that removing control flow permits direct measurement. Traces remove the
need to model internal control flow within the CPU (leaving program control flow) while single path
programming removes both types of control flow. Finally, as in [1], an out-of-order CPU is modi-
fied to provide guarantees about timing, but the trace model accommodates speculative out-of-order
execution instead of enforcing an upper timing bound.

3. What is a Trace?

In this paper, a trace is (1) executable code and (2) a timing model to represent the properties of that
code. As executable code, a trace replaces sequential machine code in one or more basic blocks,
forming part of a path through the program. It is functionally equivalent to that code, but executes in
less time, at least along its main path. This is the same definition that is widely used in previous work,
e.g. [7]. Traces have been previously implemented using microcode [23], but this is not necessary
(section 4). An entire program could be composed of traces (as in this paper), or traces might be
combined with predictable in-order execution (as in [23]). As a timing model, a trace is a subgraph
of a timing graph (T-graph), as proposed in [18] for WCET analysis using IPET. The model is:

1. A trace always begins execution with the internal parts of the CPU in a well-defined state. The
next instruction to be executed is the beginning of a basic block e, known as the entrance.

2. A trace has 1 ≤ n ≤ L + 1 exits: when these are reached, execution may move to another trace.
Figure 2(a) shows a trace with three exits.

3. A trace requires a precisely known number of clock cycles to reach each one of the n exits from
the entrance. The path to exit i from entrance e is denoted as Pe,i for WCET analysis purposes: Pe,i

is a sequence of basic blocks. The time taken is t(Pe,i).

3



20

10

30

5

10

5

30

5

10

5

10

5

e

a
30 clock cycles

35 clock cycles

45 clock cycles

c

x
Pe,0

Pe,1

Pe,2

exit

branches
conditional

main path

entrance

(a)

a

c

e

1

2

x

(b)

a

c

x

(c)

Figure 2. (a): Three paths through a trace beginning at basic block e. The paths lead to basic blocks a, x and c.
(b): T-graph containing a, x and c. (c): T-graph incorporating the trace. The execution cost of each basic block is
shown. The cost of the paths e→ a and e→ c increases slightly, but the cost of the main path e→ x is decreased.

4. A trace contains up to L conditional branches along the main path Pe,0 (e → x in Figure 2(a)).
Every other path Pe,j (j 6= 0) also follows this path until conditional branch j is reached. Then, Pe,j

leads to an exit while Pe,0 continues.

5. An exit is taken when a branch condition is evaluated as True or the main path’s end is reached.

6. After any exit, a transformation has been applied to the program state (i.e. general-purpose regis-
ters, program counter and RAM). The transformation is guaranteed to be identical to the transforma-
tion that would have been applied if the original machine code had been executed.

The purpose of the trace is to reduce the execution cost of the main path Pe,0 by permitting speculation
and out-of-order execution along this path. The cost of other paths may be reduced or increased.
Because each Pe,i is constant, it is possible to use exact IPET analysis (without pessimism): every
trace is composed of “basic blocks” in microcode, each with constant execution times, permitting
IPET to determine exact results [18]. The T-graph shown in Figure 2(b) is transformed to the T-graph
in Figure 2(c) by the trace shown in Figure 2(a). More complex transformations are required when a
trace represents an unrolled loop, because a basic block may be executed in multiple contexts [22].

4. Constraining CPU Behavior

The dynamic operation scheduler’s behavior can be predicted precisely if hardware exists to (1) reset
the scheduler to a known state, and (2) constrain all of the external inputs that could affect it. This
can be used to implement virtual traces, which share the trace timing model (section 3) but use the
dynamic operation scheduler in place of microcode. Figure 3 shows a diagram of a dynamic scheduler
with external inputs, showing every source of noise that could affect execution. To fit the timing model
in section 3, virtual traces must specify a main path through the program, and the execution time of
that path (and all exit paths) must be an exact number of clock cycles. To implement virtual traces,
dynamic scheduler inputs are restricted as follows:

• Cache stalls can be eliminated by cache locking [6] or by using scratchpad memory [15]. Like
caches, scratchpads are on-chip memories that can allow programs to avoid slow and energy-intensive
accesses to off-chip memory. But unlike caches, scratchpads are not automatically updated during
program execution: they must be explicitly loaded by a program [14]. This is not as convenient as a
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Figure 3. Sources of noise that could affect the operation of a dynamic operation scheduler.

cache but it is easy to predict the latency of a memory access. No cache modeling [13] is required, so
the complexity of analysis is reduced.

• Memory dependence mispredictions [12] can be eliminated by enforcing a safe ordering on memory
operations: load operations cannot be reordered across store operations, and store operations cannot
be reordered at all. Load/store forwarding is disabled as it is data dependent.

• Variable duration instructions can be eliminated by forcing a fixed (upper bound) duration.

• Exceptions are discarded; many programs do not use them. (They could be modeled as conditional
branches if necessary.)

Other inputs shown in Figure 3 are accommodated:

• Branch predictions fit into the trace model; the dynamic branch predictor is replaced by a rep-
resentation of the trace. It (1) generates predictions so that instruction fetching follows the main
path through the trace, and (2) considers the detection of a misprediction as an exit from the trace.
However, the hardware must ensure that branch operations are executed in program order, since that
prevents n > 1 misprediction events being active at the same time, leading to up to 2n − 1 possible
exit conditions instead of 1. This can be done through the instruction dependence mechanism.

• Instructions also fit into the trace model: they are fetched along the main path, and when the end
of the main path is reached, fetching is stalled. This prevents further instructions introducing noise.

The previous state of the scheduler may also have an effect on the schedule. This could be handled
by (1) adding a reset function or (2) stalling the incoming instructions until the pipeline is drained.

4.1. Benefits

The CPU modifications guarantee that the operation scheduler is not affected by execution history
(except within each trace) and that operation is not data dependent. This allows speculation and out-
of-order execution along the main path. The speculation that occurs is always predictable. Inputs
always arrive at known intervals, so the scheduler always does the same thing: following one of the
paths Pe,i through each trace.

The changes affect the load/store unit (removal of load/store forwarding) and the execution unit (re-
moval of variable duration instructions). There are new dependences for branches and memory op-
erations. Finally, a device is added to manage the execution of virtual traces (Figure 4). This is a
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simple state machine that enforces a strict order on trace execution, ensuring that each trace has fully
completed before the next one begins.

This arrangement allows each t(Pe,i) value to be measured using the CPU, which is treated as a black
box. Hence, CPU modeling costs are very low. Given these timing values, programs composed of
traces can be represented within an IPET model as in [23]. The only limit on the number of traces
is the storage space required: for virtual traces, the stored data comprises branch predictions and
the length, so space requirements are minimal. As in VISA [1], the CPU modifications could be
turned on and off dynamically, allowing real-time tasks to be mixed with non-real-time tasks on the
same platform without any interference between the two. The approach could also be combined
with single path programming [16] by using predication to remove conditional branches in frequently
executed code: this could be beneficial since fewer exits would exist in each trace, and consequently
opportunities for parallelism would be increased.

4.2. Costs

Previous work suggests three potential problems with traces, independent of the implementation:

• Reduction in Peak Throughput - this is almost certain to be lower than the peak throughput of a
similarly-configured CPU optimized for ACET reduction. For example, the pipeline is emptied at
every exit from a trace. Typical CPU designs would attempt to do useful work during this time, such
as executing the next piece of code, but that could interfere with subsequent timing. Enforcing an
order on memory operations will also reduce throughput [12].

• Deterministic Memory Assumption - every memory access must respond in a known time period.
Cache stalls disturb the operation of the pipeline, perhaps introducing timing anomalies [21]. In
an environment with multiple CPU cores, this could be particularly problematic as bus contention
would also be a factor. Scratchpads could be used as a replacement for caches, but this increases the
engineering difficulty of building the program [15, 14].

• Analytical Complexity - the IPET model becomes more complex when traces are introduced, be-
cause (1) there are more basic blocks, and (2) the new trace basic blocks are linked to the constraints
on the original basic blocks [23]. Although the total number of integer linear program constraints is
only increased by O(n) for a program with n basic blocks, the difficulty of solving the IPET problem
could still be vastly increased due to the NP-hard nature of integer linear programming problems.

6



5. Conclusion

This paper has explained the motivation for traces, outlined a WCET analysis model for them, and
described a way to implement virtual traces by modifying a superscalar out-of-order CPU. Likely
benefits and costs have been discussed.

Future work will use a simulated implementation of virtual traces to determine the exact costs of the
restrictions on throughput. It would be interesting to compare these to the pessimistic assumptions
that would otherwise need to be made in order to determine the WCET. Intuitively, the pessimism
inherent in traces is likely to be lower than the pessimism from analysis, and consequently traces
could provide higher guaranteed performance. Low CPU modeling costs are another benefit. Despite
this, the disadvantages of traces (section 4.2) may be prohibitive. Further research will provide more
information about the costs and benefits of the ideas.
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TUBOUND –A CONCEPTUALLY NEW TOOL FOR
WORST-CASE EXECUTION TIME ANALYSIS 1

Adrian Prantl,2 Markus Schordan2 and Jens Knoop2

Abstract
TUBOUND is a conceptually new tool for the worst-case execution time (WCET) analysis of programs.
A distinctive feature of TUBOUND is the seamless integration of a WCET analysis component and of
a compiler in a uniform tool. TUBOUND enables the programmer to provide hints improving the
precision of the WCET computation on the high-level program source code, while preserving the
advantages of using an optimizing compiler and the accuracy of a WCET analysis performed on
the low-level machine code. This way, TUBOUND ideally serves the needs of both the programmer
and the WCET analysis by providing them the interface on the very abstraction level that is most
appropriate and convenient to them.

In this paper we present the system architecture of TUBOUND, discuss the internal work-flow of the
tool, and report on first measurements using benchmarks from Mälardalen University. TUBOUND

took also part in the WCET Tool Challenge 2008.

1. Motivation

Static WCET analysis is typically implemented by the implicit path enumeration technique (IPET) [15,
19] which works by searching for the longest path in the interprocedural control flow graph (ICFG).
This search space is described by a set of flow constraints (also called flow facts), which include
e.g. upper bounds for loops and relative frequencies of branches. Flow constraints can generally be
determined by statically analyzing the program. However, there are many cases where a tool has to
rely on annotations that are provided by the programmer, because of the undecidability of certain
analysis problems or imprecision of the analyses. Current WCET analysis tools, as they are used by
the industry, therefore allow the user to annotate the machine code with flow constraints.

The goal of the TuBound approach is to lift the level of user annotations from machine code to source
code, while still performing WCET analysis on the machine code level. In addition to keeping the
precision of low-level WCET analysis, this has the following benefits:

• Convenience and Ease: For the user, annotating the source code is generally easier and less
demanding as annotating the assembler output of the compiler.

• Reuse and Portability: Source code annotations, which specify hardware-independent behaviour,
can directly be reused when the program is ported to another target hardware.

1This work has been partially supported by the Austrian Science Fund (Fonds zur Förderung der wissenschaftlichen
Forschung) under contract No P18925-N13, Compiler Support for Timing Analysis, http://costa.tuwien.ac.at/, the
ARTIST2 Network of Excellence, http://www.artist-embedded.org/, and the research project “Integrating European
Timing Analysis Technology” (ALL-TIMES) under contract No 215068 funded by the 7th EU R&D Framework
Programme.

2Institut für Computersprachen, Vienna University of Technology, Austria
email: {adrian,markus,knoop}@complang.tuwien.ac.at

ECRTS 2008 
8th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis 
http://drops.dagstuhl.de/opus/volltexte/2008/1661
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• Feedback and Tuning: Source code annotations can be used to present the results of static
analyses to the programmer for inspection and further manual refinement.

The major obstacle, which has to be overcome for realizing such an approach, is imposed by the fact
that compiler optimizations can modify the control-flow of a program and thus invalidate source code
annotations. In TUBOUND, this is taken care of by transforming flow constraints according to the
performed optimizations. Technically, this is achieved by a special component, called FLOWTRANS,
which is a core component of TUBOUND and described in Section 3.2. FLOWTRANS performs
source-to-source transformations. Therefore, our overall approach is retargetable to other WCET
tools; currently we are using CALCWCET167.

From the tool developer’s point of view, this source-based approach offers the advantage that anal-
yses can use high-level information that is present in the source code, but would be lost during the
lowering to an intermediate representation. A typical example for such information is the differentia-
tion between bounded array accesses and unbounded pointer dereference operations. Since the output
of a source-based analysis is again annotated source code, it is also possible to create a feedback
loop where the user can run the static analysis and fill in the annotations where the analysis failed to
produce satisfying results. Afterwards, the analysis could be rerun with the enriched annotations to
produce even tighter estimates.

TUBOUND is based on earlier work by Kirner [14] who formulates the correct flow constraint updates
for common compiler transformations. TUBOUND goes beyond this approach by extending it to
source-to-source transformations and by adding interprocedural analysis. Optimization traces for
flow constraint transformations are also used by Engblom et al. [8]. With FLOWTRANS, we are
taking this concept to a higher level, by performing control-flow altering transformations already at
the source code level. Another approach towards implementing flow constraint transformation was
recently described by Schulte [22]. In contrast to TUBOUND, this approach is based on the low-
level intermediate representation of the compiler. The integration of static flow analysis and low-level
WCET analysis is also implemented in the context of SWEET, which uses a technique called abstract
execution to analyse loop bounds [9, 10]. Again, our approach uses a higher level of abstraction by
performing static analyses directly at the source code level. The interaction of compiler optimizations
and the WCET of a program has been covered by Zhao et al. [24], where feedback from a WCET
analysis was used to optimize the worst-case paths of a program.

2. The architecture of TuBound

TUBOUND is created by integrating several components that were developed independently of each
other. The majority of the components is designed to operate on the source code. This decision was
motivated by gains in flexibility for both tool developer and users.

The architecture and work flow of TUBOUND is summarized in Figure 1. The connecting glue be-
tween the components is the Static Analysis Tool Integration Engine (SATIrE) [20, 6]. SATIrE enables
using data flow analyzers specified with the Program Analyzer Generator (PAG) [16, 3] together with
the C++ infrastructure of the ROSE compiler [21]. SATIrE internally transforms programs into its
own intermediate representation, which is based on an abstract syntax tree (AST). An external term
representation of the AST can be exported and read by SATIrE. This term representation is gener-
ated by a traversal of the AST and contains all information that is necessary to correctly unparse the
program. This information is very fine-grained and includes even line and column information of the
respective expressions. The terms are also annotated with the results of any preceding static analy-
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C source code Term representation

7 for (i = 0; i < 100; i++) {

for_statement(
for_init_statement( [ expr_statement( assign_op(

var_ref_exp(
var_ref_exp_annotation(type_int,"i",0,

null,analysis_result(null,null)),
file_info("triang.c",7,10)),

int_val(null,value_annotation(0,analysis_result(null,null)),
file_info("triang.c", 7, 12)),

... ], default_annotation(null, analysis_result(null,null)),
file_info("triang.c", 7, 3)),

expr_statement( less_than_op(
var_ref_exp(var_ref_exp_annotation(type_int,"i",0,null,

...

Figure 2. The external AST term representation of SATIrE

sis. The key feature, however, is the syntax of the term representation. It was designed to match the
syntax of Prolog terms. A Prolog program can thus access and manipulate these terms very easily. A
similar approach of using Prolog terms to represent the AST of a program is used in the JTransformer
framework for the Java language [2].

The ROSE compiler is a source-to-source transformation framework that includes the EDG C++ front
end, a loop optimizer and a C++ unparser [21, 5]. The loop optimizer was ported from the FORTRAN

D compiler. In TUBOUND we are using the front end and the high-level loop optimizer that is part
of ROSE. The Program Analyzer Generator (PAG) by AbsInt Angewandte Informatik GmbH allows
the specification of data flow analyses in a specialised functional language [16, 3]. Using PAG,
we implemented a variable interval analysis for TUBOUND. CALCWCET167is a tool that performs
WCET analysis for the Infineon C167 micro-controller [4]. CALCWCET167 expects annotated C167
assembler code as input. The tool is complemented by a customized version of the GNU C compiler
that translates annotated C sources into annotated assembler code for the C167 micro-controller.

3



3. The Work Flow of TuBound

Conceptually, the work flow of analysing a program with TUBOUND comprises three stages:

3.1. Start-up and Annotation

Parsing. In the first phase, the source code of the program is parsed by the EDG C++ front end
that is integrated into the ROSE compiler. ROSE then creates a C++ data structure of the AST and
performs consistency checks to verify its integrity. The ROSE loop optimizer performs analysis and
transformations based on the AST data structure.

Interval Analysis. The AST is traversed by SATIrE to generate the interprocedural control flow
graph (ICFG), an amalgam of call graph and intraprocedural CFG [23]. This data structure is the
interface for the PAG-based interval analysis that calculates the possible variable value ranges at all
program locations. The context-sensitive interval analysis operates on a normalized representation of
the source code that is generated during the creation of the ICFG. The interval analysis is formulated
as an interprocedural data-flow problem and is a pre-process of the loop bounding algorithm, which
is otherwise unable to analyze iteration counts that depend on variable values that stem from different
calling contexts. Once the interval analysis converges to a fixed point, the results are mapped back to
the AST.

Loop Bound Analysis. The next step is the loop bound analysis. This analysis operates on the ex-
ternal term representation of SATIrE. We exploit this fact with our term-based loop bounder (TEBO)
which was written entirely in Prolog. Our loop bounding algorithm exploits several features of Pro-
log: To calculate loop bounds, a symbolic equation is constructed, which is then solved by a set of
rules. It is thus possible for identical variables with unknown, but constant values to cancel each other
out. For example, in the code for (p = buf; p < buf+8; p++), the symbolic equation would be
lb = (buf + 8 − buf)/1. The right-hand side expression can then be reduced by TEBO’s term rewriting
rules. The loop bounding algorithm also ensures that the iteration variable is not modified inside the
loop body. This is implemented with a control flow-insensitive analysis [17] that ensures that the
iteration variable does not occur at the left-hand side of an expression inside the loop body and its
address is never referenced within its scope.

In the case of nested loops with non-quadratic iteration spaces, loop bounds alone would lead to
an unnecessary overestimation of the WCET. In TEBO, we are using constraint logic programming
to yield generalized flow constraints that describe the iteration space more accurately. An example
is shown in Figure 3. The nested loop in the example has a triangular iteration space, where the
innermost basic block is executed n ∗ n−1

2
times. Our analyzer finds the following equation system

for this loop nest:

m3 =
∑99

n=0 m3n({i := n}) (1)
m3n(env) = n = i (2)
m2 = m1 ∗ 100 (3)

The equations are constructed with the help of an environment that consists of the assignments of
variables at the current iteration. The variable m1 stands for the execution count of the main()

function, m2 for the count of the outer loop and m3 for the count of the innermost loop. Equation 1
describes the fact that the values of i as well as the iteration counts for the individual runs of the inner
loop are 0..99, respectively. Equation 2 describes the generic behaviour of the inner loop, stating that
its iteration count is equal to the value of n in the current environment. The last equation describes
the behaviour of the outer loop. The use of constraint logic programming allows for a lightweight
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Original program Annotations generated by TUBOUND

int main()
{
int i,j;
for (i = 0; i < 100; i++) {

for (j = 0; j < i; j++) {
// body

}
}

}

int main() {
#pragma wcet_marker(m1)
int i;
int j;
for (i = 0; i < 100; i++) {

#pragma wcet_constraint(m2=<m1*100)
#pragma wcet_marker(m2)
#pragma wcet_loopbound(100)

for (j = 0; j < i; j++) {
#pragma wcet_constraint(m3=<m_1*4950)
#pragma wcet_marker(m3)
#pragma wcet_loopbound(99)

// body
}

}
return 0;

}

Figure 3. Finding flow constraints with constraint logic programming

implementation that does not rely on additional tools. In earlier work, Healy et al. [11] are using
analysis data to feed an external symbolic algebra system that solves the equation systems for loop
bounds.

Eventually, the results of the loop bound analysis are inserted into the term representation as anno-
tations of the source code. We are using the #pragma directive to attach annotations to basic blocks.
The annotations consist of markers, scopes, loop bounds and generic constraints. Markers are used to
provide unique names for each basic block, which can then be referred to by constraints. Constraints
are inequalities that express relationships between the execution frequencies of basic blocks. Loop
bounds are declared within a loop body and denote an upper bound for the execution count of the
loop relative to the loop entry. Scopes are a mechanism to limit the area of validity of markers which
allows us to express relationships that are local to a sub-graph of the ICFG.

3.2. Program Optimization and WCET Annotation Transformation

The FLOWTRANS phase deals with program sources which are already annotated by flow constraints.
These can stem from either an earlier analysis pass or from a human. Flow constraints describe the
control flow of the program in order to reduce the search space for feasible paths. These constraints,
however, can be invalidated in the course of the compilation process by the application of optimiza-
tions that modify the control flow. This applies to optimizations such as loop unrolling, loop fusion
and inlining, whereas optimizations such as constant folding and strength reduction do not affect the
control flow. In order to ensure validity of the flow constraints throughout the compilation, a naive ap-
proach would be to disable control-flow modifying optimizations. This, however, would sacrifice the
performance of the compiled code. As a part of TuBound, we thus implemented the FLOWTRANS

component, a transformation framework for flow constraints which transforms the annotations ac-
cording to the optimizations applied.

A large number of CFG-altering optimizations are loop transformations. For this reason, we based
our implementation on the FORTRAN D loop optimizer that is part of ROSE. Keeping optimizations of
interest separate from the compiler, our transformation framework is very flexible and also portable
to other optimizers. The input of FLOWTRANS is an optimization trace (consisting of a list of all
transformations the optimizer applied to the program) and a set of rules that describe the correct
constraint update for each optimization. The concept of using an optimization trace can be applied to
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Original annotated program After loop unrolling by factor 2

int* f(int* a)
{

int i;
#pragma wcet_marker(m_func)

for (i = 0; i < 48; i += 1) {
#pragma wcet_loopbound(48)
#pragma wcet_marker(m_for)

if (test(a[i])) {
#pragma wcet_marker(m_if)

// Domain-specific knowledge
#pragma wcet_restriction(m_if =< m_for/4)

a[i]++;
}

}
return a;

}

int *f(int *a)
{
int i;
for (i = 0; i <= 47; i += 2) {

#pragma wcet_marker(m_f_1_1)
#pragma wcet_loopbound(24)

if ((test(a[i]))) {
#pragma wcet_marker(m_f_1_1_1)
#pragma wcet_restriction(
m_f_1_1_1+m_f_1_1_2=<m_f_1_1/2)

a[i]++;
}
if ((test(a[1 + i]))) {

#pragma wcet_marker(m_f_1_1_2)
#pragma wcet_restriction(
m_f_1_1_1+m_f_1_1_2=<m_f_1_1/2)

a[1 + i]++;
}

}
return a;

}

Figure 4. Prolog terms everywhere: WCET constraints before and after loop unrolling

any existing compiler. The rules need to be written only once per optimization. The rules, as well as
the transformation of the flow constraints are written in Prolog and operate on the term representation
of the AST. As a matter of fact, the syntax used to express the flow constraints is identical to that of
Prolog terms, too, thus rendering the manipulation of flow constraints very easy. Figure 4 gives an
example of such a transformation. We currently implemented rules for loop blocking, loop fusion and
loop unrolling. With all support predicates, the definitions of the rules range from 2 (loop fusion) to
25 (loop unrolling) lines of Prolog [18].

3.3. Compilation and WCET calculation

Compilation to Assembler Code. The annotated source code resulting from the previous stage
is now converted into the slightly different syntax of the WCETC-language that is expected by the
compiler [13]. This compiler is a customized version of GCC 2.7.2 which can parse WCETC and
guarantees the preservation of all flow constraints at the C167 machine language level. The output of
the GCC is annotated assembler code.

WCET Calculation. CALCWCET167 reads the annotated assembler code that is produced by the
GCC and generates the control flow graph of every function. CALCWCET167 implements the IPET
method and contains timing tables for the instruction set and memory of the supported hardware
configurations which are used to construct a system of inequalities describing the weighted control
flow graph of each function. The weights of the edges correspond to the execution time of each basic
block. This system of inequalities is then used as input for an integer linear programming (ILP) solver
that searches for the longest path through the weighted CFG. The resulting information can then be
mapped back to the assembler code and can also be associated with the original source code.

4. Measurements

To demonstrate the practicality of our approach, we use a selection of benchmarks that were collected
by the Real-Time Research Center at Mälardalen University [1]. For our experiments we selected
those benchmarks that can be analysed by TUBOUND without annotating the sources manually. Fig-
ure 5 shows the time spent in the different phases of TUBOUND and the estimated WCET for a subset

6



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

cnt
crc lcdnum

qurt
bsort100

cover
expint

fibcall

recursion

sqrt
st whet

fdct
jfdctint

matmult

ns

Seconds/Benchmark

TuBound: Time spent per phase

Rose
ICFG

PAG-Interval
TeBo
GCC

CalcWCET

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

cnt
crc lcdnum

qurt
bsort100

cover
expint

fibcall

recursion

sqrt
st whet

fdct
jfdctint

matmult

ns

Cycles/Benchmark

TuBound: Analyzed WCET

unoptimimized
loop-opt
gcc-opt

loop-opt + gcc-opt
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of benchmarks. It must be noted that a large part (about 45% for the ns benchmark) of the time
spent in TEBO is currently used to read and parse the term representation from one file and write it
to another. This bottleneck can be eliminated by directly generating the data structure via the foreign
function interface of the Prolog interpreter process and thus eliminating the expensive parsing and
disk I/O. On the right-hand side of Figure 5 the influence of compiler optimizations on the WCET of
the benchmarks can be seen, where the different bars per benchmark denote the analyzed WCET of
the unoptimized program vs. the program with high-level and/or low-level optimizations turned on.
Note that the y-axis uses a logarithmic scale. From the results, three different groups can be observed:

Group 1: cnt, crc, lcdnum, qurt
Group 2: bsort100, cover, expint, fibcall, recursion, sqrt, st, whet
Group 3: fdct, jfdctint, matmult, ns

In the first group, the calculated WCET is always lower for the loop-optimized code. In the second
group, the WCET is the same, regardless of loop optimizations. In the third group, the WCET of
the loop-optimized program is better than that of the unoptimized program, however, if both kinds
of optimizations are enabled, they interfere and less well performing code is generated, which is
reflected by the higher WCET. One reason for this is extra spill code that is generated due to higher
register pressure.

5. Conclusion

TUBOUND is a WCET analysis tool which is unique for combining the advantage of low level WCET
analysis with high level source code annotations and optimizing compilation. The flow constraint
transformation framework FLOWTRANS ensures that annotations are transformed according to the
optimization trace as provided by the high-level optimizer. This approach allows us to close the gap
between source code annotations and machine-specific WCET analysis. TUBOUND took also part in
the WCET Tool Challenge 2008 [7], the results of which are published in [12].

Acknowledgements. We would like to thank Raimund Kirner for his support in integrating his tool
CALCWCET167 and Albrecht Kadlec for many related discussions.
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WCET ANALYSIS FOR PREEMPTIVE
SCHEDULING1

Sebastian Altmeyer2, Gernot Gebhard3

Abstract
Hard real-time systems induce strict constraints on the timing of the task set. Validation of these timing
constraints is thus a major challenge during the design of such a system. Whereas the derivation of
timing guarantees must already be considered complex if tasks are running to completion, it gets even
more complex if tasks are scheduled preemptively – especially due to caches, deployed to improve the
average performance. In this paper we propose a new method to compute valid upper bounds on a
task’s worst case execution time (WCET). Our method approximates an optimal memory layout such
that the set of possibly evicted cache-entries during preemption is minimized. This set then delivers
information to bound the execution time of tasks under preemption in an adopted WCET analysis.

1. Introduction

Validation of hard real-time systems strongly relies on safe estimations of upper bounds on a task’s
worst case execution time (WCET). Computing such a WCET bound is already a complex problem
for non-preemptively scheduled tasks. It becomes even more problematic in a preemptive environ-
ment. This means that the flexibility of a preemptive schedule comes at the cost of complex interaction
between the tasks, such as preempting tasks evicting used data of preempted tasks out of the proces-
sor’s cache. Nevertheless, some task-sets are only schedulable preemptively and, in addition to that,
a non-preemptive schedule often exhibits a worse processor utilization. Thus, being able to compute
both safe and precise WCET bounds for preemptive task-sets is essential.

For modern hardware architectures, however, Liu and Layland’s assumption of negligible context
switch costs [5] no longer holds. Instead, these costs often contribute substantially to the overall
execution time, as Li et al. recently published in [4].

In this paper, we propose a new method which on the one hand decreases the context switch costs and
on the other enables a precise and safe WCET analysis for preemptively scheduled tasks. Our method
is an extension of the task mapping approach described in [1] which aims to increase the overall
performance of a preemptive system. In our approach, we compute an arrangement of the tasks and
its data in the memory such that the number of evicted cache entries of a task is minimized during
preemption. The memory layout also induces a classification of the cache-entries which is then used
to safely approximate WCETs under preemption. A major advantage of this approach is that both
code and data remain unmodified, only the position in memory and thus in cache is changed.

The paper is structured as follows. In Section 2, we give a short intuition of our approach and the role

1This work was supported by the European Community’s Sixth Framework Programme as part of ARTIST2 Network of
Excellence and by the Seventh Framework Programme as part of PREDATOR.

2Universität des Saarlandes, Im Stadtwald 15, 66041 Saarbrücken, Germany
3AbsInt Angewandte Informatik GmbH, Science Park 1, 66123 Saarbrücken, Germany
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of different memory layouts. The optimization and analysis is described in Section 3, and compared
to the related work in Section 4. Finally, Section 5 concludes this paper.

2. Memory Layout

The memory layout, i.e. the arrangement of data and instructions in the memory, determines the
cache-sets to which data and instructions are mapped. Therefore, it strongly influences the cache
interference and thus the context switch costs of preemptively scheduled periodic tasks.

Figure 1 depicts the correlation between the memory layout and the occupied cache-sets. A task-set
with three tasks of size n/2 is scheduled such that only task 1 can preempt the other two. The system
uses a direct mapped instruction cache of size n. In the first memory layout, if task 1 preempts task
3, the task might evict cache-entries of task 3 and thus induce context switch costs. In the second
memory layout, no matter which task is preempted by task 1, no cache conflicts occur. A cache-set is
called endangered, if it might be evicted during preemption and persistent otherwise. This notation,
however, only relates to persistence during a single instance of a task, not to different instances of
it. Hereby, tasks are seen as procedures periodically invoked by the scheduler. Note that finding a
memory layout such that all cache-sets are persistent during preemption is impossible in general.

Memory

Task 1

Task 2

Task 3

0

n/2− 1

n− 1

Cache

Task 1
Task 2

Task 3
0 n/2− 1 n− 1

Layout 1

Memory

Task 2

Task 1

Task 3

0

n/2− 1

n− 1

Cache

Task 2
Task 1

Task 3
0 n/2− 1 n− 1

Layout 2

Figure 1. Two different memory layouts with different performance

3. Optimization and Analysis

In the following, we propose a combination of optimization and analysis of a memory layout in order
to compute safe WCET bounds for preemptively scheduled tasks. First, we analyze the tasks to derive
a metric to compare different memory layouts. We then approximate an optimal layout with respect
to this metric and classify cache-entries as persistent or endangered. This classification is then used
to compute safe WCET bounds for all tasks. The structure of the approach is shown in Figure 2.

In the remainder of this paper, we will use the following notation:

A cache is determined by the number of cache-sets m and the minimal life span k. The set of all
cache-sets is denoted by S. The minimal life span determines the minimum number of (read or write)
accesses to a specific cache-set until the data of the first access may be evicted. This means that one
can guarantee that after k different accesses, data of the first one is still cached, but after k + 1, one
can not. A direct mapped cache has k = 1 since the second access (to the same set with different
data) removes the data of the first. A 4-way LRU cache has k = 4 since a cache-set can hold data
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Schedule

Structural Analysis

Optimization

WCET Analysis

Memory Layout

WCETpreempt

cost function
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Figure 2. Overall structure of the approach

of 4 different accesses, but one further access will lead to eviction of data of the first one [7]. The
analyzed hardware architecture may comprise either disjoint or unified instruction and/or data caches.
Our approach is able to cope with both.

A task-set with n tasks is denoted with T = {τ1, . . . , τn}. The symbol τi denotes the task itself as well
as the instructions of task τi. Each task has code size csi given in the number of cache-sets the code
occupies2. In addition to the codesize, each task τi refers to a set of data fragmentDi = {di,1, . . . , di,l}
where each such fragment has a size denoted with dsi,j . The set of all data fragment of all tasks is
denoted with D =

⋃
iDi. Data fragments refer to contiguous data blocks, arrays for instance, used

by the tasks. The placement of these data blocks can be modified such that only the cache behavior
(but not the semantics of program) is changed.

A task dependency relation ` ⊆ T × T determines the possible preemptions of the tasks. If τi ` τj
holds, task τi can preempt τj . Usually, the specification of communication channels or the assignment
of static priorities implies such a dependency relation. For instance, with static priorities Pr : T → N
the relation is defined as: ∀τi, τj, P r(τi) ≤ Pr(τj) : τi ` τj . The relation ` is reflexive to handle the
fact that data may be evicted by other data of the same task.

A memory layout L maps code and data to start addresses in the memory. It is formally defined as

L : T ∪D → S

The start addresses are also given in the unit of cache-sets, i.e. modulo line-size. Although the
function L allows empty fragments within the memory, i.e. parts which are not occupied by data or
instructions, we only consider contiguous memory layouts.

The function
occ : (T ∪D)× S→ N

determines how often a cache-set is occupied by a task or data fragment. For instance, if the cache has
128 sets and a task’s code with size 129 starts at the first set, the first set is occupied twice (assuming
usual modulo cache-mapping) and the others once. This function depends on a specific memory
layout L, which we omit for the sake of simplicity of the notation.

The cost of a memory layout is determined by the possibly evicted cache-entry of all tasks. A cache-
entry of a task τi may be evicted during preemption, if the same cache-set is occupied at least k + 1

2Note that we always refer to size as the size in number of cache-sets, i.e. dsize in bytes / size of a cache-linee.
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times by data of conflicting tasks (τj ` τi). Remember the definition of k. The cache can store data
of k different accesses, one more access will lead to eviction.

The function conf : (T ∪D)× S 7→ N defined as

conf(di,j, s) =

{ ∑
τl`τi

occ(τl, s) +
∑

τl`τ,d∈Dl

occ(d, s) if occ(di,j, s) > 0

0 otherwise

and

conf(τi, s) =

{ ∑
τl`τi

occ(τl, s) +
∑

τl`τ,d∈Dl

occ(d, s) if occ(τi, s) > 0

0 otherwise

returns the number of possible conflicts of task τi or data fragment di,j in cache-set s.

The costs of a memory layout are thus computed by the sum over all tasks and all data fragments
over all sets, where the number of conflicts exceeds k (which simply implies that these tasks or data
fragments are considered endangered):

C =
∑

x∈T∪D

W (x)

(
m∑
s=1

conf ′(x, s)

)

with

conf ′(x, s) =

{
1 if conf(x, s) > k
0 otherwise

and a weighting function W which reflects a certain metric (as described in the following section).

3.1. Structural Analysis and Metric

The context switch costs are determined by the number of cache-sets which are 1) evicted during
preemption and 2) reused by the preempted task. The memory layout shows only possibly evicted
cache-sets. Which cache-set will be reused, and thus reloaded after preemption, depends on the
structure of the task. If, for instance, each instruction of a task is executed at most once (during a
single instance of that task), the context switch costs due to the instruction cache will be minimal.
In contrast, loop structures may contribute significantly to the costs. Therefore, the pure number of
evictions is not an appropriate metric to decide on an optimal memory layout. A simple metric that
respects the task structure is to weight data depending on their maximal execution count.

Therefore, the structural analysis derives the following information needed for the cost function:

• size of tasks csi

• data fragments di,j and size of data fragments dsi,j

• weights

The size csi of a task τi can be read off the tasks directly. We employ a static analysis to derive the
size of the accessed data, as follows: for a single access, the size is given as the width of the access;
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for adjacent data, the accesses are combined to larger data fragments. Hereby, we assume that the
targets of the memory accesses can be precisely computed (or at least overapproximated) statically.

The metric used to rate memory layouts is strongly determined by the weight function W , which is
defined as follows:

W : T ∪D → N

The weight function has to be chosen such that the eviction of data with low weight has minor impact
to the context switch costs than the eviction of data with high weight.

To accomplish this, we weight each data fragments in the following way:

W (di,j) =

{
2n if di,j is accessed in a loop
1 otherwise

W (τi) = n

Depending on the program structure, i.e. if a data fragment is accessed in a loop or not, the weights
are assigned to the data fragments. The weight function assigns the value n to all instructions of all
tasks. The number 2n for the data fragments is chosen to ensure that the eviction of a loop fragment
weighs more than the eviction of non-recurring code or memory accesses and thus becomes much
more unlikely (as previously defined, n is number of tasks). Note that the current weight function is
only preliminary and still has to be evaluated. Further analyses of the structure of the tasks can be
used to increase the accuracy of the metric.

3.2. Optimization

The next step is to find an optimal memory layout, or, at least, a near-optimal layout. Remember that
we restrict the method to contiguous memory layouts, i.e. memory layouts without empty spaces.
This means that such a memory layout is described by a sequence of tasks and data fragments: element
xi starts at the end of the preceding element xi−1, i.e.

∀x ∈ (T ∪D) : L(xi) = L(xi−1) +

{
csi−1, if xi−1 ∈ T
dsi−1, if xi−1 ∈ D

Due to this restriction, all memory layouts are permutations of an initial layout. Such a permutation
is denoted with the symbol σ and Cσ denotes the costs of the memory layout described by the permu-
tation σ. A permutation σ′ is a neighbor of permutation σ, iff σ′ can be reached from σ by swapping
the position of two elements within σ. The set of all neighbors of permutation σ is denoted by Ne(σ).

To approximate an optimal memory layout we are using hill-climbing as shown in Figure 3: the
algorithm starts with a random permutation σstart. It then selects the neighbor of σstart with the
lowest costs and continues searching an optimal layout from this element on. In case no further
improvement is possible, the algorithm may select the second best result to explore a larger portion
of the state space. A predefined parameter p restricts the number of times the algorithm selects a
second best permutation. By this, the parameter P can be adjusted to treat precision against running
time of the algorithm. The set visited keeps track of all already seen permutations to ensure that each
element is visited at most once.
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hill climbing (permutation σstart, unsigned int p)
{
σcur = σstart
σbest = σstart
visited = {σstart}
while (p > 0) {
/∗ select next candidate ∗/
let σ′ ∈ Ne(σcur)
with Cσ′ = min({Cσ|σ ∈ Ne(σcur) \ visited})
visited = visited ∪ {σ′}
/∗ is it better than the current? ∗/
if (Cσcur > Cσ′) {
/∗ is it best permutation seen so far? ∗/
σcur = σ′

if (Cσbest
> Cσ′) { σbest = σ′ }

}
/∗ if not, continue with a worse result ∗/
else {
p = p− 1
σcur = σ′

}
} }

Figure 3. Hill climbing to compute an optimal memory layout

3.3. WCET Analysis using Cache Classification

The memory layout induces a classification on all memory accesses of all tasks: a cache-entry of a
task τi is either persistent (in case the number of conflicts is less than or equal to k) or it is endangered.

classify(x, s) =

{
endangered if conf(x, s) > k
persistent otherwise

This classification can be easily used to compute a safe WCET bound under preemption. If a low-level
analysis detects an access to an endangered cache-set, the analysis has to handle both cases: cache-
miss and cache-hit. In case of an access to a persistent cache-entry, the analysis behaves as usual. The
computed WCET bound is valid, even if the task is preempted; only the endangered cache-sets might
be invalidated. Cache-related timing anomalies are also treated correctly: the analysis assumes both
cases and thus computes a valid WCET bound even if a cache-hit might result in a higher execution
time than a cache-miss.

4. Related Work

Cache partitioning to prevent task interference during preemption has been proposed by Mueller [6]
and Wolfe [14]. The cache is divided into uniform segments such that each task operates on it own.
Hereby, tasks can not interfere on the cache and thus, the WCET analysis for non-preemptive systems
can be used. In contrast to our method, not only the memory layout and thus the memory-to-cache
mapping is adapted, but also the code itself underlies major modifications; in order to adapt to code
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and data to fit into its cache segment, new branches and computation for data accesses have to be
introduced. This, in addition to the highly decreased cache-size for each task, impairs the performance
of the system even more.

A WCET analysis for preemptive system has been proposed by Schneider [9]. In his approach, a pre-
emption is possible and thus assumed at every program point of the analyzed task. Thus, the analysis
considers each cache access to be unknown. Obviously, the analysis computes safe approximations
of the WCETs of preemptively scheduled tasks. The precision of the approach, however, suffers
from this highly pessimistic assumption. Compared to our approach, we can classify cache-sets as
persistent and can thus reduce this overapproximation.

The most eminent approach to timing analysis for preemptive systems computes the context switch
costs separately from the WCET bound of a task. Hereby, the notion of useful cache blocks (UCBs)
introduced by Lee et al. [3] plays a major role. A cache block is useful at a certain program point, if
it may be accessed again after this point. Thus, if the cache block is evicted during preemption, the
program may need to reload it and the time for this contributes to the context switch costs. Staschulat
et al. [11] and Tan et al. [13] extended this approach to increase the precision (mainly by computing
the set of possibly evicted cache-set in addition to the UCBs). Adapted schedulability analyses that
incorporate context switch costs have been proposed in [12] for static priorities and in [2] for dynamic
priorities. The main difference to our approach is on the one hand the optimization of the memory
layout – which also could reduce the number of useful cache blocks – and on the other hand the
handling of cache-related timing anomalies [8]. Only counting the time needed to reload cache-sets
does not obey the fact that a cache-hit may lead to a higher execution time than a cache-miss. In our
approach, the WCET analysis directly incorporates the cache-set classification and thus derives safe
upper bound (also in the presence of timing anomalies). In addition, the usual schedulability analyses
can be applied.

Other approaches, by Sebek [10] for instance, rely on measurement. However, even for a single
task, full coverage is hardly achievable. Preemptive scheduling introduces an even higher level of
complexity, rendering measurement-based approaches nearly infeasible – at least, no guarantee that
the measured execution times deliver safe upper bounds can be given.

5. Conclusion and Future Work

In this paper, we propose a new approach to optimize and analyze the WCET of preemptively sched-
uled tasks. Our approach uses the fact that different memory layouts can lead to vastly different con-
text switch costs. We first derive a metric to rate memory layouts and then approximate an optimal
one. Such a memory layout induces a classification of the cache-entries into endangered or persistent.
This information is then incorporated in a traditional WCET analysis allowing the analysis to derive
both safe and precise worst case execution time bounds of preemptively scheduled tasks.

In the future, we plan to implement the whole toolchain and to provide an evaluation of the presented
approach. To further improve the precision of the approach, a more fine-grained metric could provide
more accurate cache-entry classification, e.g., by taking a maximal execution count of instructions
into account. The current approach only copes with preemption occurring at arbitrary program points.
Thus, an analysis of the whole schedule could provide more details about the task-set (preemption
points), allowing our approach to compute a tighter set of endangered cache-entries.
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