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Abstract. We investigate the polyhedral structure of the Periodic Event Schedul-
ing Problem (PESP), which is commonly used in periodic railway timetable op-
timization. This is the first investigation of Chtal closures and of the Cétal

rank of PESP instances.

In most detail, we first provide a PESP instance on only two events, whose
Chvatal rank isvery large. Second, we identify an instance for which we prove
that it is feasible over the first Chtal closure, and also feasible for another
prominent class of known valid inequalities, which we reveal to live in much
larger Chatal closures. In contrast, this instance turns out to be infeasible al-
ready over the second Chtal closure. We obtain the latter result by introducing
new valid inequalities for the PESP, the multi-circuit cuts.

In the past, for other classes of valid inequalities for the PESP, it had been ob-
served that these do not have any effect in practical computations. In contrast,
the new multi-circuit cuts that we are introducing here indeed show some effect
in the computations that we perform on several real-world instances — a positive
effect, in most of the cases.

1 Introduction

It has been only recently that combinatorial optimization entered the practice of ser-
vice design in public transport. The 2005 timetable of Berlin Underground is the first
optimized timetable that was put into service [9]. It had been computed with integer
programming techniques, namely profiting from several different classes of valid in-
equalities. Today, also the Dutch railways are operating a timetable that was designed
with the help of techniques from combinatorial optimization and constraint program-
ming [7]. Both projects build upon the Periodic Event Scheduling Problem (PESP).

The PESP, in its pure formulation of a feasibility problem, had been introduced by
Serafini and Ukovich [18] and it generalizes the vertex coloring problem. In particular,
for the two most natural optimization problems that are investigated on top of the PESP,
MAXSNP-hardness has been established [8, 9]. In practice, this results in the follow-
ing typical behavior of MIP solvers on medium to large sized instances. Known valid
inequalities are able to clog®-90% of the initial gap between the integer optimum
value and the optimum value of the LP relaxation. Still, solving this tightened IP risks
to take several hours, if it is solvable at all.
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There are of course much larger transportation networks in practice, which are be-
yond the computational limits of the methods that were used so far. As a consequence,
at present there are several other research groups trying to tackle the periodic railway
timetabling problem, and they are sharing the PESP as their model of choice [2, 17,
19]. For instance, Villumsen put the polyhedral approach that was suggested by Lind-
ner [14] into practical computations for the commuter train network of Copenhagen.
Unfortunately, he had to make the observation that

“the chain cuts [14] have no effect on the solution” [19].

This is one motivation for us to have a closer look at the polyhedral structure of the
feasible region of PESP instances. We do so by following the methodology that has
been suggested recently by Fischetti and Lodi [6] for optimizing over the firsht@hv
closure. Notice that one of the first instances to which they applied their method was
the “hard MIPLIB instance i nt ab1”, which is in fact a PESP model [10].

As a motivation, we first generalize an infeasible PESP instance — which is due to
Lindner [14] — to a family of instances that are defined on wheel graphs. In Section 6
we will prove that these instances are feasible over the firsa@hglosure. Still worse,
even the change-cycle inequalities that have been introduced by Nachtigall [15], of
which in Section 4 we prove that, in general, they lie in much large@@ticlosures,
are not suited to certify infeasibility. Nevertheless, the techniques of Fischetti and Lodi
suggested that these particular instances might be infeasible already ogectma
Chvatal closure. Indeed, by exploiting problem-specific insight, in the secondt@hv
closure we identify general new valid inequalities for the PESP (Section 5) by which
we prove that these particular instances are infeasible. We call these new inequalities
themulti-circuit cuts

In Section 7 we add multi-circuit cuts to the IP formulations of several timetabling
instances that we took from practice. Although we have to admit that the results are
not fully striking, on many instances we observe a perceptible speed-up in the solution
time. In turn, on more complex instances, for which up to now no optimal solution has
been found, our new cuts from the second &l closure might indeed yield better
railway timetables.

2 AnIP for PESP

Initially, the Periodic Event Scheduling Problem (PESP, [18]) has been stated as a pure
feasibility problem. We are given a directed graph= (V, A), which may feature
(anti-) parallel arcs. For each afi¢c there are defined some lower boufydand some
upper boundy,. The PESP then asks whether for the given fixed period fimthe
instance admits gperiodically) feasible node potential € [0,7)", i.e.,

(mj —mi — L) mod T < ug — 4y, Ya= (i,5) € A 1)

In a railway timetabling context, the valteis the period time of the railway system,
e.g.,60 minutes. A node represents an arrival or departure of some specific directed
line in the network, and we must assign a time vatyeo this event. For instance,
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in the current timetable, the direct ICE trains from Berlin to Karlsruhe leave Berlin
main statiorB3 minutes past the hour. Finally, in the constraint paramétargiu one
may encode lower and upper bounds on time durations to ensure safety requirements,
transfer quality requirements, as well as many other features [11].
In a mixed-integer linear programming formulation, the modulo-operator in (1) is

resolved by introducing integer variablgs for the arcs, which we denofeeriodical
offsets Furthermore, we penalize any slack on the lower boupdis a linear objective
function,

min Za:(i,j)eA We(mj — 1 + Tpa)

St. mj —m+Tpy >4y, Ya=(i,j)eA

T — i+ Tps <ue, Ya=(i,j) €A 2
m; €0,T), VieV
Pa € Z, Ya € A.

Other formulations for this problem had been stated in terms of so-called tension vari-
ablesy, = m; — m;, or everperiodic tension variables, = m; —m; + Tp,, See e.g. [4,

11]. Observe that we always ha¥g < xz,. In particular, the resulting MIPs, in which

we can make the node potential variablesedundant, already perform considerably
better [13]. Yet, their performance can even be enhanced—and it has to!—by adding
valid inequalities. In this spirit, in the remainder of the paper we illustrate the limits of
known valid inequalities, and introduce new classes of valid inequalities, which let us
go beyond.

In Section 4, when we provide a relatively large lower bound on theaGlhvank of
PESP polyhedra, we will also find it most convenient to make use of the periodic ten-
sion variablese,,. Throughout the other parts of this article, however, we stay with (2).
This is because we consider this formulation being more accessible, in particular for the
newcomer, and it is a straightforward computation to adapt the classes of valid inequal-
ities that we identify there to other equivalent mixed-integer programming formulations
of the PESP.

The following lemma reveals that we are in fact dealing with pure integer programs.

Lemmal ([16]).If ¢, w, andT are integers, then if2) w.l.0.g. we may replace; <
[0,T) withm; € {0,...,T —1}.

Proof. Consider an optimum solutiofr*, p*) of (2). Now, fix the vectop*. The re-
sulting problem is a linear optimization problem with twice the node-arc incidence
matrix of the constraint grapP as constraint matrix, which is thus totally unimodular.
Since the right-hand side is integer, the LP has some integer optimum sotatiand

(w°, p*) is feasible for (2) and not worse than the optimum solutioh p*). ad

Note that the periodical offset variables are either binary, or may in addition take
the value two, provided that, > [Z“%] T'. Nevertheless, w.l.0.g. we forget about any
explicit bound on any of the variables in (2), and just keep their integrality requirements.

3 Chvatal Closures

Let M be anm x n matrix and consider the general rational polyhedron
P={x| Mz <b}.
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The(first) Chvatal closureP’ of P is characterized by
P’ = {z|\"Mxz < |\"b|, forall A > 0 with AT M integet}.

Also, setP(®) := P and recursively defin@(+1) = (P()), In integer programming,
we are interested in thateger hull P; of P,

Pr:=conv{z € Z" | Mz < b}).
The following is a key theorem in integer programming.

Theorem 1 ([3]). For each rational polytope” there exists some integérsuch that
P® = pp.

Note that in the sequel, we will switch backito= |V| andm = |A|, of course.
Now, denote byB the node-arc incidence matrix of a PESP constraint giaph
Then, consider the matrix

-BY -T.I,

M'_{ BT T'Im:|7 ®)
wherel,, refers to then-dimensional unit matrix. Together with the right-hand side
vector

e | (4)
=1,

the convex hull of the feasible solutions of (2) is nothing Byt

Also for the PESP, several specific studies of its polyhedral structure have been
conducted [14-16]. In the sequel, we summarize some of their results and relate them
to the general concept of Catal closures. To this end, define amented circuitC =
CHUC™ as a subset of the arcs 6f such that reorienting the elements@f would
result in a directed circuit. The arcs @™ are called thdorward arcs and the arcs
in C'~ are thebackward arcslIn particular, we distinguish the two oriented circuits that
map onto the same circuit in the underlying undirected graph.

The following valid inequalities for PESP have been identified by Odijk [16].

Theorem 2 ([16]). Let D be the constraint graph of a PESP instance and consider
some oriented circui€ in D. Then thecycle inequality

Zpa—Zpa<{CQ;‘f—Zg‘fJ (5)
acC+t

aeCt acC— aceC—

is valid for (2). More precisely, the cycle inequalities show up as early as in the first
Chvatal closureP(!) of the LP-relaxationP of a PESP-polytopé;.

Proof. We combine these inequalities from the ones in (2). To this end, for each forward
arc inC, multiply the less-than inequality of its upper boumgdwith % Similarly, for

each backward arc id', multiply the greater-than inequality of its lower bou#g

with —%, which translates into a positive coefficient in the veclort is a simple
observation that the node variablesall cancel out in a telescope sum. Finally, we
round down the right-hand side and obtain (5). O
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Both the potential strength of the cycle inequalities and the key role of the periodical
offset variable® are reflected by the following theorem.

Theorem 3 ([16]).An instance of PESP is feasible if and only if there existsmtager
vectorp such thatp satisfiesall the cycle inequalities.

This is why we are seeking stronger valid inequalities in terms of the periodical
offset variableg. In the next theorem we show that doing so we need to investigate the
second Chatal closure. This will be the main topic from Section 5 on. There, we start
by highlighting that there exist some oriented circdits which the upper bound in (5)
can even be decreased, still being valid fr of course. In fact, Lindner [14] proved
that the coefficients odny valid inequality for the PESP that only features periodical
offset variable®, have to constitute a circulation in the constraint graph. Let us already
mention that in Section 4 we provide an explicit proof that the &@albrank of a PESP
instance may be at Iea%t

Denote byQ the polyhedron that is defined by taking all the inequalities fiorh
that do not feature any of the node variablesObserve that formally the support of
these inequalities may differ from circuits, as they are required in (5).

Theorem 4. The cycle inequalitie) constitute the complete description®@fi.e.,
Q = {p| p satisfies all cycle inequalitig®)}.

Proof (idea).Basically, the proof makes use of the decomposition of an integer circu-
lation into oriented circuits. However, due to space limitations we have to omit further
details here. ad

Notice that we are aware of instances on whigldoesnot equal the projection
of P( onto the periodical offset variablgs In particular, there the-part of some
reversed-arc cut, which is defined in the next section, is necessary to certify the empti-
ness ofP(!), while Q # 0.

4 A Lower Bound on the Chvatal Rank of PESP

In this section we present the change-cycle inequalities, which were introduced by
Nachtigall [15]. We provide a PESP-instance on two vertices, on which the change-
cycle inequalities appear first in t@th Chvatal closure, wher&' denotes the period
time. To the best of our knowledge, this is the strongest explicit lower bound on the
Chvatal rank of PESP. Unfortunately, due to space limitations we have to omit details
of the proof here.

Before formulating the change-cycle inequalities, we introduce a few notation. Let
C be some oriented circuit in the constraint graph of a PESP-instance. We sum the
periodic tension values of the forward arcseih and the periodic tension values of the
backward arcs in—, i.e.,

zt = Z Zq and T = Z Tq.

acC+ aceC—
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Fig. 1. A feasible PESP instance on theircuit C> with T = 6

Analogously, we define

= Z l,, and ¢ := Z 0,

aeCt aceC—

Last, we define the slope and the ordinate intercept of the line that induces the
change-cycle inequality as
T

wherez := [ (¢t — (7)].
Theorem 5 ([15]).The followingchange-cycle inequalities

x> uxt v (7
are valid for feasible instances ¢®).

Notice that a similar inequality, which involves the upper boungsof the arcs, is
valid, too. Moreover, it had been observed in [12, Fig. 5.1] that change-cycle inequali-
ties (7) are in a sense complementary to cycle inequalities (5).

In the remainder of this section we provide a two vertices instance of PESP, of which
we prove that its Chatal rank is%. In particular, the change-cycle inequality (7) of this
instance does only appear in t%eth Chvatal closure. To this end, &t be a fixed
period time and consider the following PESP-instance on two vertices:;Lahd as
be two parallel arcs, wheilg, = T, u,, = (3T) — 1, £y, = 0, andu,, =T — 1. See
Figure 1 for the example that corresponds to the period fimeo6.

In particular, in terms of periodic tension variableswe are dealing with the fol-
lowing polytope

T 3

P= {(xal,xaz,z)T| 3 < Zg, < (§T> —1,0< 2, <T -1, 2, —xa, =Tz},
8

where the variable is in fact a shorthand foy,, — p,,. Observe thaP’; corresponds

to the convex hull of this PESP instance’s solutions.

Proposition 1. Consider the poin@; = (£ +i-1, i-1, 1). ThenQ; € P\ Pt~1),

forall i € {1,..., %}. Moreover, fori < % the points@; violate the change-cycle

inequality (7). In particular, the change-cycle inequalify) cannot be generated prior

to the Z-th Ch\atal closure.
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Az Projection of the polyhedrof:
3< xq,

1
z2 < FTay ﬁ
+1

initial PESP constraints

change-cycle inequality

Fig. 2. A visualization of a change-cycle inequality for PESP, and its relation t@thelosures,
hereT = 6

Proof (sketch)In this context, the situation can be inspected best by exploiting the
redundancy of the equatior,, — z,, = Tz to only consider the projection into the
x4, 2-plane. In this space, the relevant inequalitie®adre the initial inequality:,, >
L aswell asz < Fx,,, which is obtained by plugging < z,, into z,, — x4, = Tz.
Observe that the poir(tz,,, 2)" = (£,0)" makes the former inequality tight, while
(za,,2)" = (T,1)T makes the latter inequality tight. In Figure 2, the corresponding
half-spaces are drawn in red, while our ultimate goal, the change-cycle inequality (7),
is drawn in green.

Then, here we can only summarize that by going from oned@tielosureP*—b to
the subsequent orfe(?), both these inequalities are “rotated” around the pcﬂ@gsﬂ)T
and(T, 1)T, respectively, such that the poifdf become tight. O

Corollary 1. The Chiatal rank of PESP is at Ieag.

5 New Valid Inequalities for the PESP

The next section will reveal the need for new valid inequalities for the PESP: There, we
present an instance for which all cycle inequalitiesa&j change-cycle inequalities (7)
are valid, although the instance is infeasible. Also, in practical computations adding
these two types of valid inequalities we typically close no more $@&80% of the
initial gap between the IP optimum and its LP relaxation, and the resulting refined IPs
still risk to be hard to solve. This is why here, we identify two new types of valid
inequalities for the PESP polyhedron.

The first one is defined exclusively on the periodical offset variabld®y Theo-
rem 4 we know that these cannot stem from the first&dlvclosure of the feasible
region P of the LP relaxation of (2). In more detail, we specify situations in which we
may decrease the right-hand side of the cycle inequalities (5). And with these new in-
equalities, we can easily prove the infeasibility of the instance that we discuss in depth
in the next Section 6. In Section 7, we complement this analysis with promising empir-
ical computations.
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The second type of valid inequalities lives in the first @tal closure, and hence
may now contain both types of variablesandp. Unfortunately, due to space limita-
tions we cannot illustrate in-depth their respective contribution here.

5.1 Multi-circuit Cuts
We start by presenting new PESP cuts from the secon@t@helosureP® of P.

Theorem 6. Let Cy, . .., C be oriented circuits with incidence vectoys Let \; €
(0,1) such thatyy = A\1y1 + - - - + Apy,. Finally, let 8; be the right-hand sides in the
cycle inequalitiegs) of C4, . .., C%. Then

%P < [MBr + - + A 9
is a valid inequality forP(2),

The proof follows immediately from Theorem 2 together with the definition of the
second Ché&tal closure. For some oriented circuits we may not be lucky at all, and (9)
is the same as (5). However, for other cycles, the right-hand side in (9) may be much
smaller than the one in (5), see Remark 1 on Page 14 for one such example. Since these
cuts are obtained by representing an oriented circuit as the fractional sum of multiple
other circuits, we refer to (9) amulti-circuit cuts

Despite the fact that these inequalities are somehow straightforward, they are in-
deed useful. We will illustrate this in a detailed example in the next section, where in
particular we find that

PO £p  but P® =y

5.2 Reversed-Arc Cuts

Here, we introduce one further new class of valid inequalities for the PESP, which stems
from the first Chwatal closure. These inequalities were inspired by the results that we
obtained by applying the methods of Fischetti and Lodi [6].

Theorem 7. Let C be an oriented circuit, and take some backward @jc= (i, j) €
C~. The following inequality is valid foP(")

T =T+ (T =pay+ D Pa— Y Pa

acC+ aceC~\ao
1
< |7 | (T = Duag + dua— Y dal- (10)
acCt aeC~\aop

Proof. We provide the vectok that combines (10) for some circuit out of the initial
matrix M. To this end, fok: € {0, ..., m} consider the ara;, = (v,w) € C. Then, the
rowsk andm + k of the matrixM correspond to the following two PESP inequalities

—Tw + Ty — Tpak < _gaka
T — Ty + Tpak S uak-
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Finally, choosing the components of the coefficient vegtas
%, k = m + ¢, wherea, = ay,

, k=c, wherea. € C~ \ {ap},

, k=m+c, wherea. € C*, and

, otherwise

Ju

A =

oIS

yields (10). ad

In fact, these inequalities emerge from cycle inequalities by reversing one of their back-
ward arcs. Hence, we refer to (10) eversed-arc cutsObserve that in some spe-
cial cases, these inequalities can coincide with what Lindner [14] ceflath cutting
planes However, for the latter Villumsen [19] had to observe in practical computations
that these have “no effect” on the solution of his PESP instances. In addition to Theo-
rem 3, this is another motivation for us to focus in our exposition on the multi-circuit
cuts.

6 PESP Instances on Wheel Graphs

We introduce a family of infeasible PESP instances, for which the firsa@helosure
is still nonempty. Since the pioneering work of Edmonds [5], we are not aware of too
many explicit such results. Here, even adding the change-cycle inequalities (7) does
not change this status. Only adding two appropriate multi-circuit cuts (9) provides a
certificate for the infeasibility of these instances. Let us annotate that these instances
were inspired by an infeasible PESP instance which was studied by Lindner [14] and
whose constraint graph is the wheel graph on four vertices.

We consider one fixed period tin¥é > 6 for any of the instances that are defined
below. Letn > 4 be some even number and consider the wheel gigphsee Figure 3
for an example withh = 6. We set the feasible intervals of the spoke arc®ia],
while we requirg]l, T — 1], for the remaining outer arcs.

We start investigating this class of instances by first giving a simple proof for the
infeasibility of these instances. Hereafter, we establishE&t £ (), but P(2) = §.

Lemma 2. LetT > 2 andn > 4 be an even number. The PESP instance that is defined
on the wheel graph,, with feasible interval$0, 1] on the spokes and, 7" — 1] on
the arcs of the outer circuit is infeasible.

Proof. We may assume w.l.0.g. that = 0, whereh is the hub vertex i/,,. The con-
straints on the spokes restrict thealues of the other vertices {0, 1}. The constraints

on the remaining arcs require these two values to be used alternatingly around the outer
circuit of ,,. Since we chose to be even, the outer circuit has an odd number of ver-
tices. But this is not compatible with thevalues of all the vertices on the outer circuit
taking the values zero and one alternatingly. O

The next lemma slightly simplifies the argumentation in the proof of the main theorem
of this section, namely that(™) is not empty.



10 Christian Liebchen and Elmar Swarat

Fig. 3. An infeasible PESP instance on the wheel gréighwith T' = 6

Lemma 3. Consider some coefficient vectdr> 0. Let A\, and \,-: correspond to
two components whose PESP inequalities refer to the very sameaard define: :=
min{\,, A,-1}. Derive A’ from A by subtractinge from the components of both,

anda™. Now, it 2 < | \Tb| thenATM < |ATh).

Proof. First, observe that\ — \)TM = 0. Second(\ — \)Tb = ¢+ (—f, +u,) > 0.
Thus, rounding down cannot provide any negative value. Finally, becalisépfb| <
la + b] we may add A — \') to A" while keeping any valid inequality valid. O

As a consequence, for investigatif§") we may assume w.l.0.g. that in any (relevant)
valid inequality for P() none of the arcs shows up with both its inequalities for its
respective lower and upper bounds.

Theorem 8. P(1) = (. In particular, all the cycle inequalitie5) and reversed-arc
cuts(10) are valid for the same particular vector, in the case’Bf> 6.

Proof. Before starting, in the vectgrwe distinguish the components that correspond to
then — 1 spoke arcs from the components that correspond te thé arcs of the outer
circuit, pT = (p!,pl). Moreover, with1 we denote the all-one vector of appropriate
dimension. Our goal is to establish that

T T . T 1 T 1 .

Y1 = (ﬂ- apsvpc) = (OT 1

1" e PO, 11
' 5T 5 ) € (11)

To this end, let" Mz < |ATb] be an arbitrary valid inequality aP"), where M
andb are as defined in (3) and (4), respectively. We have to cheekainst this general
inequality.

For ease of notation we rewrite the coefficient vectas AT = (A, A\], AT D),
where)\; and\3 refer to the rows that correspond to the spokes, whiland A\, refer
to the rows that correspond to the outer circuit of the wheel gi&@phMoreover,\3
and )\, refer to the initial PESP-inequalities that define the upper boupdsut A\; and
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A refer to the initial PESP-inequalities that define the lower boudsafter having
multiplied these with minus one.
Using these definitions, we find that
1 T 1
)‘TMyl = ()‘-{a A;v/\-il’:a)‘l) . (_5 : 1T7 _E : 1Ta 5 .

1 T 1 T
= —§\|>\1||1 - 5||)\2||1 + §||)\3||1 + §|\>\4|\1

and
P\TbJ - [(ALA;,A;AD 0", -1-17,1-17, (T~ 1) - 1T)TJ
= [=[X2lls + [[As]ls + (T = D[ Aal|1] -
In particular, for the poing; the initial inequalityA™ My; < |ATb| is equivalent to

—[[A2lly +[[As[ly + (T = D[ Aal[s = [=l[ A2l + [[Aslls + (T = DI[Aall2] (12)

1 T 1 T
< glinll+ (5 =) hall+ glall+ (5 = 1)l 19)

1 T
=§MMM+MMﬂ+<5—QUMﬂHﬂMh)ﬂ®
In order to prove that (12-13) is valid, observe first that the left-hand side (12) has values
in the intervall0, 1). So, we first identify some coefficient vectorgor which (14) is at
least one. Hereafter, we investigate the remaining veators

From Lemma 3) > 0, \TM being integer, and the coefficients of the periodical
offsetsp having valugT'|, we conclude that for each componeénf A we have\; = %
with k =0,1,2,....

Now, recall that we chose the period tifie> 6, and in particular (14) is at least one,
establishing the theorem in this case.

Case ‘{|Az||14]|A4|[1 = 2”. We find immediately that (14) is at least as largé as?..

Case “{|A2||1 +|[A4]l1 = %" . In other words, the Clatal-Gomory coefficient vector

does only involve exactly one inequality of one are- (i, j) of the outer circuit ofV,,.

In this case we are not aiming at showing that (12-13) was indeed valid. Rather, we
enumerate all the eight relevant valid inequalitiesPét) that involve the are as the

only arc of the outer circuit.

For that the requirement off M being integer is fulfilled, in particular for the node
variablesr, some of the initial PESP constraints in whichor 7; appear must have
non-zero components in the coefficient vectoBecause off Az|[1 + || A4||1 = 7, these
must correspond to the spokgs i) and(h, j), whereh denotes the hub of the wheel
graphW¥,,, see Figure 4 for an illustration.

Depending on whether we use the lower bound or the upper bound inequalities of
the spokes, w.l.0.g. the CG-multipliers are eitdeor 2.

First, if we choose twice th%, we end with the two standard cycle inequalities (5)
for this triangle,

0 < pa =Py + Py < 1. (15)
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iO

Fig. 4. A triangle inW,, with 7" = 6

For the valueg, = % and p. = % that we chose in our particular vectgr, these
inequalities are of course valid, becalse % <1.
Second, if for the spokes we chose once the vajuand once the valué=*, we

obtain the following four reversed-arc cuts,

L<mj—7n+pa+ (T = 1)pmj)+pniy <1 (16)
0 <7 —7h —Pa+ D) + (T = )piy <0, 17)

which are valid for our choice af;, too.
Last, taking% as the coefficient for both spokes yields

0< 7 —m +pa+ (T—1Dpnj — (T —1)pnqy <1 (18)

Also these two inequalities are valid for the vecigras defined) < % <1.

To summarize, in the case gh\s||1 + ||M\4]]1 = % we considered all the eight
relevant valid inequalities aP(*) and verified that the vectdr™, pI, pT) = (07, 2% -
17,4 - 17)is valid for any of them.
Case “{|A2|[1 + ||[Ad|[1 = 2”. We distinguish between several subcases. First, we may
have two non-incident aras; anda, of the outer circuit being involved in the cut that
is defined by the coefficient vectar But then we are done, because we are in fact twice
in the case of|Az|[1 + ||\l = #.

Second, we may have just one arc of the outer circuit being involved. The two cycle
inequalities (5) that emerge from multiplying all its three initial constraints \&itbre
in fact nothing but just scaled versions of (15). Hence, here we need to consider valid
inequalities in which some of the initial constraints are multiplied v;%thNhiIe others

are multiplied with’=2. The counterparts of (16) and (17) read

1< mj =7+ 2pa + (T = 2)pen j) + 20y < 2
—1 < = Th = 2pa 4 2p(ng) + (T = 2)P(hsy < 0.

For the particular point, these terms evaluate t})and —%, respectively, and all the
four inequalities are thus feasible. The same holds for the counterpart of (18), yvhere
yields one, which is feasible in

0 <7 —mi+2pa + (T = 2)p(nj) — (T = 2)pn,iy < 2.
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Last, what we still have to investigate is the case in that two consecutiveiarcs
anda, of the outer circuit are activated by the coefficient vectoDue to their ori-
entation inl¥/,,, in the valid inequality that is induced by, both arcs contribute either
with their PESP inequalities that define their lower bounds, or both contribute with their
PESP inequalities that define their upper bounds. In particular treiable of their
common vertex has coefficient zero in the cut.

Hence, we are in a situation that is quite similar to the one that we already discussed
in the case of|Az||1 + [|A\4][1 = 7. The only difference is that for the outer arcs we
are now summindwicetheir lower or upper bounds in the inequalities. We summarize
the relevant computations by providing the eight resulting valid inequalities — using the
same notation as in the previous case — in which the reader will have no difficulty to
verify thaty, is indeed feasible,

1< Day + Day — D(h,j) + P(h,i) <1,
1< 7T = Th+Pay +Pay + (T = Doy +0hiy <2
-1< Ti = Th — Pay — Pas + P(h,j) + (T — 1)pns) <0, and
0<mj =7 +Pay +Pay + (T = 1)pnjy — (T = Dpnsy < 2.
This concludes the last case for the coefficient vestand thus establishes (11). O

Proposition 2. The change-cycle inequaliti€g) are valid for the infeasible PESP in-
stance that we consider on the wheel graphis.

Proof (sketch)We must omit the full proof due to space limitations. Nevertheless, let
us compute the relevant quantities of the particular fractional solution

1 1
T T, T T T T
= =0",—-1,--1"):
Y1 (7T 7p57pc) ( 52T 52 )
For a spoke ara, here, the periodic tension variablerig = % and for any other are,
its periodic tension variable is, = % In the most interesting case, namely the case
of a triangle, cf. Figure 4 for an illustration in the cas€lof= 6, the integer variable
of this triangle evaluates té. And with these values, the reader might not have any

difficulties to compute the slope = — - and ordinate interseat = -, and thus
verify that the corresponding change-cycle inequality (7) is tight. For longer circuits,
there is even some positive slack. ad

Theorem 9. P(?) = (). In particular, two multi-circuit cut(9) certify the emptiness
of P2,

Proof. We apply Theorem 6 to the outer circaitof the wheel grapfV’,,. We combine
it linearly by summing over all th&”| oriented4-circuits that contain two consecutive
edges ofC.

Let C; be one of thesé-circuits. Consider the cycle inequalities (5)@f and of its
opposite counterpact; ',

p1+p2+p3—pa < {%(1+<T—1)+(T—1)—0)J = |22 =1, (19

m-p-ptms | F0-1-140)] = (2= -1 @



14 Christian Liebchen and Elmar Swarat

wherep, andp, are the periodical offset variables that we introduced for the two spokes
of C;. In other wordsp, + p2 + p3 — pa = 1.

For that the oriented circuit§’; linearly combineC, we have to multiply each of
them with . Recall that we selectedto be even, thugC| = n — 1 being odd. Doing
so for their initial orientation, using (19) we find that

1 n—11| nodd
Zpa<{|0|~§-1J—{ . J -, (21)

acC

because the periodical offset variabjesf all the spokes cancel out. Similarly, sum-
ming (20) for all their opposite counterpatﬁ’@f1 yields

e | e @2)

acC

Finally, multiplying (22) with minus one and comparing itto (21) yie§is< 3 —1
and thus reveals that indedef?) = (). 0

Remark 1.1t is highly interesting to compare the resulting pair of inequalities (9) to
their initial counterparts (5) iP(1):

PO [n-1A] < Y pa < [(n-DI| s,
acC

JLON < X pasg—1
acC

Hence, in a sense on the wheel graph instances the multi-circuit cuts propagéate to
the rounding benefit that particular cycle inequalities achieved alreaB{*In O

This is our main motivation for the separation heuristic that we apply in the next section.

7 Computational Results

For the PESP, we investigate the change in the solution behavior of CPLEX 11, when
adding multi-circuit cuts (9) to its IP models. To this end, we need to separate these
cuts. In Remark (1) we observed that if we combine valid inequalities (5) of the first
Chvatal closure in which the rounding was strong, ibe5; |b] ~ 1 — ¢, then, in the
second Chéatal closure we can achieve much stronger multi-circuit cuts (9) than their
corresponding cycle inequalities (5) in the first @kl closure.

In most detail, we generate multi-circuit cuts (9) in the following way.

1. Build an initial IP model of an optimization instance of PESP.
Actually, instead of immediately using (2) we are using a purely tension-based formulation
here, because in [13] it was reported that these performed best.

2. Generate valid inequalities for this IP.
These are cycle inequalities (5) and change-cycle inequalities (7). For the separation heuris-
tic we made the same experience as Nachtigall, namely that considering the fundamental
circuits subject to a minimum spanning tree with the periodic tension values of the current
LP relaxation as weights, empirically is the most efficient deterministic solution heuristic.
Denote the resulting LP by LP
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North Sea
Hamburg

Bremen
o

Hannover

Fig. 5. The subregions of Lower Saxony and Westfalia (north-western part of Germany) of which
we distill our three test instances

3. Store “strong” cycle inequalities in a pabl
While computing LR, we record for each cycle inequality (5) that we generate its rounding
benefitd := b — |b], no matter whether it is added to LBr not. If 3 is larger than some
threshold value — we use@ > 0.7 — then this cycle inequality is added to a pd®lof
“strong” cycle inequalities.

4. Add multi-circuit cuts (9) to LI
After Steps 2 and 3 have been accomplished, denot€ tiie optimum fractional solution
of the final LP relaxation LP. To cut this pointz™ off with some multi-circuit cut (9),
we formulate the Chatal-Gomory IP, that Fischetti and Lodi proposed in [6], for the cycle
inequalities (5) inP. Since the cycle inequalities already live in the first &tal closure,
this way we are exploring parts of the second &faVclosure. We iterate this CG-procedure
until for some subsequent linear program;(PP; plus some multi-circuit cuts) its optimal
solution can no more be separated by this procedure, or a time limit applies.

5. Solve the IP.
In LP, switch on the integrality requirements on the periodical offset varighkesd let
CPLEX 11 solve this (mixed) integer linear program.

Data. We investigate the performance of the multi-circuit cuts (9) on several real-world
data sets. Unfortunately, there is still not available any public library of real-world peri-
odic railway timetabling instances. Hence, we need to resort to instances that have been
available at our institute, e.g., some that had already been used in [8, 10]. In particular,
all are subnetworks of the German passenger railway network.

More precisely, we consider three regions within Lower Saxony and Westfalia:
Harz (H), Ostfriesland (O), and Ostwestfalen-Lippe (L), see Figure 5. All these net-
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Table 1. Size of our test instances. Herejs the cyclomatic numbefd| — |V] + 1, i.e., the
number of integer variables in the tension-based IP models that we apply [13].

Instance name service lines |V | A v tight arcs width
Harz 1 (H1) 17 54 309 256 26 10™°
Harz 2 (H2) 16 30 308 279 7 10'*
Harz 3 (H3) 12 43 226 184 23 10%
Harz 4 (H4) 22 58 432 375 26 10'®
Harz 5 (H5) 15 55 332 278 29 103
Ostfriesland 1 (O1) 10 77 281 205 58 1077
Ostfriesland 2 (02) 13 107 380 274 86 10'*
Ostwestfalen-Lippe 1 (L1) 12 60 295 236 45 10'%®
Ostwestfalen-Lippe 2 (L2) 12 65 289 225 48 102
Ostwestfalen-Lippe 3 (L3) 13 66 357 292 49 105

works are operated at a period time of two hours. Together thighstandard time
precision that is used by Deutsche Bahn AG, and whidhlisminutes, in our mod-

els this yieldsT' = 1200. It is a general observation that cycle inequalities (5) tend

to be stronger if the spans, — ¢, of the PESP constraints are smaller. Obviously,
multi-circuit cuts (9) inherit this property. Hence, if these new valid inequalities bear
any computational benefit, we hope to reveal it on instances where railway capacity is
rather scarce. This is done by modeling the complete passenger traffic in the respec-
tive regions (regional and long-distance trains), and by considering single tracks. The
sizes of the resulting PESP instances, after eliminating redundancies such as contract-
ing fixed arcs with zero span, are reported in Table 1. There, in the column “tight arcs”
we counted the number of araswith relatively small span, i.ey, — ¢, < %- In

the column “width”, we provide a (rough) upper bound on the size of the Branch-and-
Bound tree that had already been considered in [13], which is the product of the possible
number of values over all the integer variables

Results.We summarize our computational results in Table 2. There, we compare three
different policies for solving PESP instances. First, take the pure initial model as is, with
no problem-specific valid inequalities being added. Its LP relaxation admits a trivial
optimal solution: simply take = 0 andp,, := % When reporting on values of refined

LP relaxations, we scale the values such that this trivial solution has value zero, and the
optimum value is.00.! Second, we add the problem-specific cycle inequalities (5) plus
some change-cycle inequalities (7), as described above. Last, we also add multi-circuit
cuts (9).

We start by giving the optimum solutions of the respective (refined) LP relaxations
in the columns “LP bound”. Next to this, we put the solution time under standard set-
tings of CPLEX 11 on an Intel Core2 with 2.13 GHz and a 2GB RAM running Linux.

In the last but third column we report how many multi-circuit cuts (9) could be found
by the separation heuristic that we sketched above, and which was based on [6].

1 In the tension-based IP (see [13]) we add cycle inequalities (5) as bounds on the integer vari-
ables, which typically yields values slightly larger than zero, 885 %.
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Table 2. Computational Results of adding multi-circuit cuts (9) to PESP IP modelmldface
entry indicates that the shortest solution time is achieved by adding multi-circuit cuts (9) (LP
bounds indexed to “intopt100”, time in seconds)

pure IP model IP+(5)+(7) IP+(5) + (7) + (9)
Instance LP bound opttime LP bound opttime #cuts (9) LP bound opttime
H1 4.4 325 86.0 75 2 86.0 42
H2 35.6 850 83.0 263 15 83.0 349
H3 4.3 64 77.8 13 64 81.0 12
H4 40.8 3059 86.8 2255 1 86.8 2727
H5 4.1 2921 56.7 1221 17 58.9 1663
o1 12.3 216 84.8 197 18 85.3 79
02 16.7 338 84.4 365 25 85.0 187
L1 27.2 141 89.0 94 25 89.2 69
L2 11.2 203 94.7 71 22 94.7 56
L3 19.0 2652 90.3 1010 20 90.7 1226

To summarize, in contrast to what Villumsen [19] had to obsdor the chain-
cutting planes, which were due to Lindner [14], multi-circuit cuts (9) indeed have an
effect on the solution behavior of CPLEX 11 on PESP instances. First of all, on each
instance, CPLEX is (still, see below) better off when fed with the full machinery of
additional valid inequalities, compared to not adding any cuts at all. Unfortunately,
there are some instances, on which adding multi-circuit cuts (9) cause longer solution
times, compared to the (5)+(7) setting. Nevertheless, in the majority of the cases, multi-
circuit cuts (9) yield an improved solution behavior. In several cases, the solution time
drops by more than0%.

Additional CommentsLet us close by commenting on two interesting effects. First,

in Table 2, we voluntarily decided to consider the pure LP bounds instead of the dual
bound that CPLEX is able to achieve in its root node preprocessing. This is mainly
motivated by the fact that the LP bounds are conceptually better accessible, compared
to the result of a powerful “black box”. Yet, consider the instance O2. For this, Ta-
ble 2 contains entries df6.7% and85.0% for the LP bounds with and without cuts,
respectively. But after the root node preprocessing of CPLEX 11, the respective values
get together as close &8.0% andg85.4%. Now, compare these values to the root node
preprocessing of CPLEX 8.1, which is the version that had been used in an extensive
computational study on other railway timetabling instances [28]6% and 85.3%.
Similar observations can be made for the respective solution times.

This illustrates the improvements that more recent versions of CPLEX are able to
achieve in the preprocessing of PESP IP models. Could this be a consequence of the fact
that pure PESP IP models have been included in the MIPLIB [1, 10], in combination
with new general IP insight, e.g., the one reported in [6]? Here, it might be interesting to
recall that Fischetti and Lodi called the PESP IP models in the MIPLIB “very hard”. ..

Nevertheless, although the preprocessed dual bounds get closer to each other, prob-
lem-specific insight, e.g., in form of the new multi-circuit cuts (9) that we just intro-
duced here, may still cut the solution time by roughly one half.
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Second, and last but not least, we point out the high sensitivity that the models show
with respect to certain specific multi-circuit cuts (9). As an example, on the instance H2
we had to make the following observation. With just inequalities (5) and (7) being
added, a solution time of 263s can be observed, cf. Table 2. Then, adding just the first
two multi-circuit cuts (9) that our separation heuristic found, the solution time is cut
by more thar73% to less than 70s. But adding the next two such cuts, we end with a
solution time of even 392s. In other words, if we just added the first two cuts, instead of
all the 25 that we were able to separate, in Table 2 we could have replaced the value 349s
in the H2 row with only70s. ..

On the one hand, this underlines that multi-circuit cuts (9) indeed have some effect.
On the other hand, this asks for an understanding on which particular ones of these cuts
are the “right” ones.

8 Conclusions

We introduced multi-circuit cuts as new valid inequalities for the Periodic Event Sched-
uling Problem (PESP). These live in its second &tlal closure. For a particular fam-

ily of infeasible PESP instances, we managed to prove that its firsht@helosure is
nonempty. And even adding all change-cycle inequalities, of which we further proved
that in general they appear only in much larger closures, does not turn the status to
infeasible. Hence, it is a first theoretical merit of the multi-circuit cuts to certify infeasi-
bility of these particular instances. Complementary to this, in our computational study,
we observed that multi-circuit cuts are likely to reduce the solution time of CPLEX 11
on PESP IP models.

We admit that up to now, our separation has not really been tuned. More theoretical
insight is needed to distinguish between helpful multi-circuit cuts, and unproductive
ones. We are very much confident that with such an additional insight, adding just
the helpful multi-circuit cuts willalwaysimprove on the two other settings that we
considered in Table 2. In addition, practically efficient separation heuristics for multi-
circuit cuts are required, in particular if we want to use these cuts in a branch-and-
cut context, too. But also any further new classes of valid inequalities from whichever
Chvatal closure will be equally welcome — given that they have some (positive) effect
on the solution behavior of CPLEX 11.

To summarize, of course multi-circuit cuts are not the end of the story in the solution
of PESP instances. However, we feel that these are one step forward into a promising
direction.
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