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Abstract. We present an extension of the well-known time-expanded approach
for timetable information. By remodeling unimportant stations, we are able to
obtain faster query times with less space consumption than the original model.
Moreover, we show that our extensions harmonize well with speed-up techniques
whose adaption to timetable networks is more challenging than one might expect.

1 Introduction

During the last years, many speed-up techniques for computing a shortest path between
a given source s and target t have been developed. The main motivation is that comput-
ing shortest paths in graphs is used in many real-world applications like route planning
in road networks or timetable information for railways. Although DIJKSTRA’s algo-
rithm [5] can solve this problem, it is far too slow to be used on huge datasets. Thus,
several speed-up techniques have been developed (see [4] for an overview) yielding
faster query times for typical instances. However, recent research focused on developing
speed-up techniques for road networks, while only few work has been done on adapt-
ing techniques to graphs deriving from timetable information systems. In general, two
approaches exist for modeling timetable information: The time-dependent and time-
expanded approach. While the former yields smaller inputs (and hence, smaller query
times), the latter allows a more flexible modeling of additional constraints. It turns out
that adaption of speed-up techniques to each of these models is more challenging than
one might expect.

In this work, we use a different approach for obtaining faster query times. Instead
of applying a routing algorithm, e.g., plain DIJKSTRA, on the original model, we im-
prove the time-expanded model itself in such a way that a routing algorithm does not
exploit parts of the graph not necessary for solving the earliest arrival problem (EAP).
Interestingly, it turns out that those optimizations are included in the time-dependent
approach implicitely. By introducing those techniques to the time-expanded approach,
query times for the time-expanded approach are comparable to the time-dependent ap-
proach.
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1.1 Related Work

The simple, i.e., without realistic transfers, time-expanded model has been introduced
in [21]. The model has been generalized in [18] in order to deal with realistic transfers.
Since then, this realistic model has been used for many experimental studies, e.g., [14,
19, 2]; most of them focusing on faster speed-up techniques or multi-criteria optimiza-
tion for timetable information. However, [21] enriched the simple time-expanded graph
by shortcuts and [19] introduced minor changes to the time-expanded model itself by
removing unnecessary nodes with outgoing degree 1.

1.2 Our Contributions

This paper is organized as follows. Section 2 includes formal definitions and a review of
the time-expanded model for timetable information. Our main contribution is Section 3.
We show how the main ingredient for high-performance speed-up techniques in road
networks, i.e., contraction, can be adapted to time-expanded graphs. Unfortunately, it
turned out that this contraction yields a tremendous growth in number of edges (unlike
in road networks). However, by changing the modeling of unimportant stations, a DI-
JKSTRA does not exploit unnecessary parts of the network. The key observation is the
following. Assume T is a station with only one line stopping. A passenger traveling via
T only leaves the train if T is her target station, otherwise it never pays off to leave
the train. Moreover, we are able to generalize this approach to stations with more lines
stopping at that station. In Section 4 we introduce a new speed-up technique tailored
to time-expanded graphs based on blocking certain connections. Furthermore, we show
how existing techniques have to be adapted to timetable graphs. It turns out that certain
pitfalls exist that one might not expect. However, those adapted techniques harmonize
well with our new approaches, which we confirm by an experimental evaluation in Sec-
tion 5. We conclude our work in Section 6 with a summary and future work.

2 Preliminaries

Throughout the whole work, we restrict ourselves to the earliest arrival problem (EAP),
i.e., find a connection in a timetable network with lowest travel time. In the follow-
ing we often call this single-criteria search in contrast to multi-criteria search that also
minimizes number of transfers and further criteria [14, 19].

Moreover, we restrict ourselves to simple, directed graphs G = (V,E, length) with
positive length function length : E → R

+. The reverse graph G = (V,E) is the graph
obtained from G by substituting each (u,v) ∈ E by (v,u). A partition of V is a family
P = {P0,P1, . . . ,Pk} of sets Pi ⊆ V such that each node v ∈ V is contained in exactly
one set Pi. An element of a partition is called a cell. The boundary nodes BP of a cell P
are all nodes u ∈ P for which at least one node v ∈ V \P exists such that (v,u) ∈ E or
(u,v) ∈ E.

The Condensed Model is the easiest approach for modeling timetable information.
Here, a node is introduced for each station and an edge is inserted iff a direct connection
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between two stations exists. The edge weight is set to be the minimum travel time over
all possible connections between these two stations. Unfortunately, several drawbacks
exist. First of all, this model does not incorporate the actual departure time from a
given station. Even worse, travel times highly depend on the time of the day and the
time needed for changing trains is also not covered by this approach. As a result, the
calculated travel time between two arbitrary stations in such a graph is only a lower
bound of the real travel time. However, in Section 4 we show that the condensed model
is helpful for certain speed-up techniques.

The (Realistic) Time-Expanded Model. Throughout this work, we use the realistic
time-expanded model allowing realistic queries. Therefore, three types of nodes are
used to represent certain events in the timetable. Departure and arrival nodes are used
to model elementary connections in the timetable. Thus, for each elementary connec-
tion c ∈ C one arrival and departure node is created and an edge is inserted between
them. To model transfers, transfer nodes are introduced. For each departure event one
transfer node is created which connects to the respective departure node having weight
0. To ensure a minimum transfer time TRANSFER(S) at a specific station S, an edge
from each arrival node u is inserted to the smallest (considering time) transfer node v
where ∆(TIME(u), TIME(v))≥ TRANSFER(S). Here ∆(·, ·) denotes the time difference
between two points in time and TIME : V → T maps each node to its timestamp with
respect to the timetable. Due to the periodic nature of our timetables ∆ is defined by

∆(t1, t2) :=
{

t2− t1 if t2 ≥ t1,
t2 +1440− t1 otherwise.

To ensure the possibility to stay in the same train when passing through a station, an
additional edge is created which connects the arrival node with the appropriate depar-
ture node belonging to this same train. Further to allow transfers to an arbitrary train,
transfer nodes are ordered non-decreasing. Two adjacent nodes (w.r.t. the order) are
connected by an edge from the smaller to the bigger node. Furthermore, to allow trans-
fers over midnight, an overnight-edge from the biggest to the smallest node is created.
For further details, see [19].

For each edge e = (u,v) in the expanded graph the weight w(e) is defined as the
time difference ∆(TIME(u), TIME(v)) of the nodes the edge connects. Hence, we call
the graph consistent in time, meaning for each path from u to v in the graph, the sum of
the edge weights along the paths is equal to the time difference ∆(TIME(u), TIME(v)).

For future considerations the following notation will be helpful. Let ≺ ⊆ V ×V
be a relation which compares two events in time. Since in the expanded model nodes
correspond to events with a certain timestamp, our relation is defined on the set of nodes
of the graph. We say for two nodes u,v ∈ V that u ≺ v if the event of u is happening
before the event of v. Please note that it cannot be determined for u and v if u≺ v just by
comparing TIME(u) and TIME(v) due to the periodic nature of the timetable and the fact
that times are always expressed in minutes after midnight. If for example TIME(u) =
400 and TIME(v) = 600 there are two possibilities. Either u ≺ v with ∆(u,v) = 200 or
v≺ u with ∆(v,u) = 1640. As a consequence, the ∆ function applied to a tuple (u,v) is
only valid if u≺ v.
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3 Engineering the Time-Expanded Model

In this section, we present approaches how to enhance the classical time-expanded
model. Our first attempt applies a technique deriving from road networks, i.e., con-
traction, to railway graphs. However, it turns out that this approach yields a too high
number of edges. Hence, we also introduce the Route-Model which changes the mod-
eling of “unimportant” stations.

3.1 Basic Contraction

All speed-up techniques developed during the last years have one thing in common.
During preprocessing they apply a contraction routine, i.e., a process that removes
unimportant nodes from the graph and adds shortcuts to the graph to keep the distances
between the remaining nodes correct. Interestingly, the fastest hierarchical technique
for routing in road networks, Contraction Hierarchies [6], relies only on such a routine.
The key observation is that in road networks, the average degree of remaining nodes
does not explode.

At a glance, one could be optimistic that contraction also works well in railway
networks. Like in road networks, some nodes in time-expanded graphs are more im-
portant than others. However, contraction does not exploit the special structure of time-
expanded timetable graphs. For example, departure nodes have an outgoing degree of
1. Thus, we can safely remove such nodes and add a shortcut between the correspond-
ing transfer and arrival node. More precisely, we propose a new contraction routine
consisting of three steps. In the following we explain each step separately.

Omitting Departure Nodes The first step of our contraction routing bypasses all de-
parture nodes. In [19], the authors state that departure nodes can be omitted in
time-expanded graphs which can be interpreted as bypassing those nodes.

Omitting Arrival Nodes In a second step, we bypass all arrival nodes within the net-
work. As a consequence, the degree of transfer nodes highly increases. By these
two steps we reduce the number of nodes by approximately a factor of 3. However,
the graph still contains all original transfer nodes of which some are more important
than others.

Bypass Transfer Nodes The final step of our contraction bypasses nodes according to
their degree. We bypass nodes with low degree first yielding changes in the degree
of its neighbors. Our contraction ends if all transfer nodes have a total degree at
least of δ , which is a tuning parameter. We suggest to use a min-heap to determine
the next node to be bypassed. The key of a node x shall be degin(x)+degout(x).

Note that we need not apply all three steps. While the first step reduces both number
of nodes and edges, the following two steps yield higher edge counts. In the following,
we call a time-expanded model with shortcut departure nodes, the phase 1 model. The
phase 2 model has neither arrival nor departure nodes. If we also remove (some) transfer
nodes, we call the resulting graph a phase 3 graph. For an experimental evaluation of
this contraction routine, see Section 5.
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3.2 Route-Model

In our experimental studies, it turned out that our contraction routine from the last
section suffers from a dramatic growth in number of edges. Already our phase 2 model
has up to 3.6 times more edges than the original graph (cf. Section 5). Hence, we here
introduce a different approach, called the route model. In contrast to contraction, we
exploit certain semantic properties of the time expanded graph regarding transferring
which eventually leads to a reduction of the number of shortest paths. The classic time-
expanded model allows transfers at a station from each arriving train to all subsequent
departing trains. However, when planning an itinerary by hand, we would probably do
the following intuitive pruning: During the way from the source to the target station
assume we find a route which leads to some station S on the way, arriving there at time
tS. Then, we would not need to examine paths toward station S with an arrival time
t ′S > tS, since computing these paths is redundant as we already arrived at S earlier, and
we could achieve the same result by taking the earlier computed path arriving at S at tS
and then waiting at S until t ′S. This observation is the basic idea behind the route model.

Remodeling of Stations. The modifications to the (original realistic) time-expanded
graph are done locally and independently for each station S, and involve the following
three steps:

1. Remove all outgoing edges from all arrival nodes. This includes edges to transfer
nodes as well as edges to the departure node of the same train.

2. Insert a minimal number of new transfer-edges directly from the arrival nodes to
departure nodes. This allows us to model transfers more specific without losing any
optimal shortest paths in comparison to the original time expanded model.

3. Keep the transfer nodes and their interconnecting edges as well as departure-edges
from transfer to departure nodes. Although, there are no more edges in the graph
to get from an arrival node to a transfer node, the transfer nodes are still used as
source nodes for the actual DIJKSTRA query.

The only non-trivial modification is the second one, where for each arrival node we
need to find a minimal set of departure nodes which shall become reachable from the
particular arrival node. For that reason let S be the currently considered station and NS
all neighbors of S. A station T ∈ NS is called a neighbor of S if at least one elemen-
tary connection from S to T exists. Thus, we can speak of routes between S and each
neighbor from NS. We now use the following notation. u denotes an arbitrary but fixed
arrival node of S from which outgoing edges are inserted. v denotes the departure node
toward which the edges (u,v) are inserted. Furthermore, w denotes the arrival node cor-
responding to the elementary connection to which the departure node v belongs. The
basic idea is to insert (at least) one edge per route toward a departure node belonging to
the the particular route. So, let us consider some fixed station T ∈NS with T 6= R where
R is the station where we just came from through u. Of all departure nodes v belonging
to an elementary connection (v,w) from S to T we insert an edge (u,v) in S according
to the following criteria.

1. The node w is the smallest (regarding time) possible (meaning it is not in violation
with the second criterion) arrival node at T that is after u, i.e. w� u.
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2. The node v respects the transfer time criterion at S. For that reason it has to hold
that v � u + TRANSFER(S) if u and v belong to different trains, or v � u if they
share the same train.

Obviously, by this strategy we select the edge (u,v) according to the earliest possible
arrival event at the target station T . This yields a transfer to a train which arrives at T
by the earliest possible time. Note that if we instead would have chosen v according
to the earliest possible departure node at S, we could have missed a different train that
departs at S later, but arrives at T earlier. Such a scenario is called overtaking of trains.
Also note, that if the train belonging to u utilizes the route toward station T , it does not
necessarily have to be the case, that the inserted edge (u,v) corresponds to the departure
event of that specific train. It simply corresponds to the train arriving at T first, which
may well be a different train.

Transfer Times at Neighboring Stations. While we did respect the transfer time criterion
of S, we also have to respect the transfer time criterion at T . Figure 1 shows why this is
important.

v

w

Z1

Z2

wrong path

right path

u

S T

(a)

v

w

wrong path

right path

u

Z1

Z2

S T

(b)

Fig. 1: Two problems concerning the transfer time criterion at station T .

On the left side the train Z2 arriving at T just slightly after Z1 is the optimal path,
but it can not be transferred to, because at S we only chose Z1 and at T the transfer time
is too big to reach it from Z1. On the right picture the scenario is even worse. While
the train Z1 is the earliest train regarding the arrival time at T , the optimal route again
contains Z2 which departs at S earlier than Z2, but it is not reachable because it arrives at
T slightly after Z1. Again the transfer time at T is too big to enter Z2 at T . In both cases
we have to ensure that Z2 can be entered somewhere. Since our modifications should
remain local in the sense that modifications at S should not involve modifications at
some other stations, we ensure that Z2 can be reached at S.

By adding some more edges to the graph, we are able to allow those connections as
well. Let wearl denote the earliest arrival node at T as computed before. Then, we insert
edges (u,v) (belonging to connections (v,w)) satisfying the following properties.

1. Consider all trains arriving after wearl but no later than the transfer time at T , mean-
ing w� wearl and w≺ wearl + TRANSFER(T ).
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2. Still respect the transfer time criterion at S, i.e. v � u + TRANSFER(S) if u and v
belong to different trains and v� u otherwise.

This routine ensures that (a) it is possible to arrive at T as early as possible and (b) all
trains that go through T within the margin between the earliest arrival time and the
transfer time at T can be reached by entering them at S.

Uncommon Routes. Despite these modifications, we additionally have to deal with
another phenomenom in railway networks. In very few cases, it might pay off to use
an itinerary with a sequence of stations R → S → T → S → R′ instead of R → T → R′.
This odd situation may arise if T and S are close to each other, a train runs from R to
T , another from T to R′, and TRANSFER(S) < TRANSFER(T ) holds. Figure 2 gives an
example.

Station R Station S
Z1

Z1

Z2

Z2

transfer(R)
too big

transfer(S)
small enough

Fig. 2: Situation where it is necessary to go forth and back along the same route in order to
transfer to train Z2.

Our Route-Model does not allow such connections. However, we may overcome
this problem by introducing edges at arrival nodes u of S toward departure nodes leading
back to R if and only if the following inequation holds:

κR,S +κS,R + TRANSFER(S) < TRANSFER(R).

Here κR,S denotes the best lower bound regarding travel time from R to S. By this we
ensure that no shortest paths get lost while in most cases we still get the advantage of
prohibiting cycles along the same route. Please note, that we can not rule out cycles
such as · · · → R → S → T → R → ·· · , however cycles of this type occur less often in
general timetable networks.

Leaving Big Stations Untouched. It turns out that remodeling of stations with many
neighbors, e.g., major train hubs, lead to a disproportionately high increase in addi-
tional edges, since for each neighbor (route) at least one edge must be inserted for each
arriving train. In the original time expanded model, however, at most two edges existed
for each arrival node (arrival-transfer and arrival-departure). Since our modifications
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are only local we can choose for each station individually whether we want to convert it
to the Route-Model or not. For that reason we introduce a tuning parameter γ indicating
that stations with more neighbors than γ should be left untouched. Hence, changing γ

yields a trade-off between a speed-up regarding the number of touched nodes against
an increasing size of the edge set of the graph.

A problem that arises when mixing Route-Model stations with classic stations is that
the main advantage of the Route-Model—subsequent connections on the same route are
not visited during the DIJKSTRA search—may fade. Analyzing the example in Figure 3,
we observe a big station which has not been converted followed by a route containing a
few small stations. While at the small stations no connections exist between connections
of the same route, they are nevertheless visited, because they are all accessible through
the big station. Hence, we developed Node-Blocking which adopts the idea behind the
Route-Model as a speed-up technique, and blocks redundant connections of the same
route, so they are not visited. This technique is explained in Section 4.

Theorem 1. Applying DIJKSTRA on the Route-Model yields correct solutions to the
earliest arrival problem.

The proof of Theorem 1 can be found in the full paper.

4 Speedup Techniques

In principle, we could use DIJKSTRA’s algorithm for solving EAP. However, plain
DIJKSTRA visits unnecessary parts of the graph, even if we use our Route-Model.
Hence, we introduce two approaches for obtaining faster query times. We adapt ex-
isting techniques—developed for road networks—to timetable graphs and introduce a
new speed-up technique following the ideas from our Route-Model.

Big Station Small Station Small Station

Fig. 3: When a big station which is not converted is visited during a DIJKSTRA query, all sub-
sequent connections are visited as well, while only the red path should be relevant. Unimportant
nodes are omitted in the figure.
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4.1 Tailored Speed-Up Techniques

Node-Blocking is a speed-up technique tailored to time-expanded networks. It basi-
cally incorporates the ideas behind the Route-Model as described in Section 3.2: if we
can reach a station S at some time tS we try to prune paths reaching S at a later time
t ′S > tS. Recall that the Route-Model prunes the search by removing certain edges from
the graph. Node-Blocking, on the contrary, achieves a similar result by dynamically
blocking departure nodes during the DIJKSTRA query. The idea is as follows. If we
visit a departure node v belonging to an elementary connection targeting some station
T , we can prune all future departure nodes b targeting T .

Preprocessing. Formally, each departure node v of an elementary connection between
two stations S and T induces a set Bv of blocked nodes. A node b is contained in Bv if
and only if the following conditions hold.

1. b is a departure node at S belonging to an elementary connection targeting the same
station T as v.

2. b� v holds.
3. If w and c are the arrival nodes at T of the connections associated with v and b,

respectively, then w + TRANSFER(T ) ≺ c must hold, i.e., we respect the transfer
time criterion at T .

Although the “blocked state” of each node is dynamic in the sense that it depends
on the shortest path query, and therefore must be computed during the query, the set Bv
of inducing blocked nodes can be precomputed for each node v by iterating through all
departure nodes of the station and checking whether the above criteria apply to them.

Note that in contrast to the Route-Model, we do not have to deal with the transfer
time criterion at S, since we only block nodes, and hence never allow a path to be
taken which was forbidden by the transfer time criterion at S. In worst case, we block
departure nodes which cannot be reached anyway due to the transfer time criterion of
S. Moreover, all special cases are covered by our third condition.

Query. The modifications to standard DIJKSTRA algorithm are simple. We introduce an
additional flag blocked(v) to all nodes of the graph, which is initialized to false. Then,
whenever we try to insert a node v into the queue, we mark all nodes Bv as blocked. If
v is marked as blocked, we prune the search.

Combination with Route Model. Although our Route-Model and Node-Blocking follow
the same ideas, the advantage of the Route-Model is the lower computation-overhead
during the query. However, as discussed in Section 3.2, it does not pay off to remodel
major hubs. Hence, Node-Blocking harmonizes well with the Route-Model as we use
Node-Blocking for pruning paths at such hubs.

Combination with Phase 1+ Models. Since from the Phase 1 model onwards departure
nodes are removed, Node-Blocking has to be altered slightly to conform with these
models. Instead of departure nodes blocking future departure nodes, we simply let the
corresponding arrival nodes (belonging to the respective departure nodes) block each
other. In this case, the arrival nodes assume the role of the previous departure nodes
regarding blocking, which allows us to continue using the same query algorithm.
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Theorem 2. Applying Node-Blocking to DIJKSTRA’s algorithm yields correct solu-
tions to the earliest arrival problem.

The proof of Theorem 2 can be found in the full paper.

4.2 Adapting Speed-Up Techniques

Although the adaption of many techniques may be promising, we choose basic goal-
directed techniques for adaption. It turned out that adaption of more sophisticated tech-
niques, e.g., Highway Hierarchies [20], Contration Hierarchies [6], REAL [8], SHARC
[1], is much more challenging than expected. The main reason are either the need of a
bidirectional query algorithm or the bad performance of the contraction routine.

Arc-Flags. The classic Arc-Flag approach, introduced in [13, 12], first computes a par-
tition P of the graph and then attaches a label to each edge e. A label contains, for
each cell Pi ∈P , a flag AFPi(e) which is true if a shortest path to at least one node in Pi
starts with e. A modified DIJKSTRA—from now on called Arc-Flags DIJKSTRA—then
only considers those edges for which the flag of the target node’s cell is true. The big
advantage of this approach is its easy query algorithm. However, preprocessing is very
extensive. The original approach grows a full shortest path tree from each boundary
node yielding preprocessing times of several weeks for instances like the Western Eu-
ropean road network. Recently, a new centralized approach has been introduced [11].
However, it turns out that this centralized cannot be used in time-expanded transporta-
tion networks due to memory consumption. Hence, we use the original approach of
growing full shortest path trees from each node.

Adaption. The query algorithm can be adapted to time expanded railway graphs very
easily. We only have to consider that the exact target node is unknown (just the target
station is known). For that reason we simply abort the DIJKSTRA algorithm as soon
as a node belonging to the target station is settled. The preprocessing of Arc-Flags,
however, needs some extra attention. Since we do not know the exact target node in
advance, we have to ensure that all nodes belonging to the same station also get the
same cell-id of the partition assigned. For that reason, we simply compute the partition
on the condensed graph and map it to the expanded graph by assigning for each node
v ∈V the cell-id due to cell(v) := cell(STATION(v)).

Computing the backwards-shortest path trees from each boundary node of each cell
can then be done as described in [13]. However, this approach yields a problem specific
on time expanded graphs. Since the length of any path in the graph always corresponds
to the time needed to travel between the beginning and ending event (node) of that
particular path, any two different paths between the same nodes always have the same
length. Therefore, the number of shortest paths (in fact, there are only shortest paths in
time expanded graphs) is tremendous. Unfortunately, if we set flags to true for every
path, we do not observe any speed-up (cf. Section 5). In order to achieve a speed-up
we have to prefer some paths over others. We examine the following four reasonable
strategies for prefering paths:
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Hop Minimization. For two paths of equal length, choose the one that has less hops
(nodes) on it. This approach is often used in road networks [1].

Transfer Minimization. Choose the path that has less transfers between trains. While
this is a good strategy for querying, it sets too many arc-flags to true, since for dif-
ferent boundary nodes too many different paths lead a transfer-minimal connection.

Distance Minimization. Choose the path that is shorter (geographically).
Direct Geographical Distance. Choose the path whose direct geographical distance is

closer to the source node of the shortest path tree, formally for some node v that is
reached from u we choose the new predecessor according to

pre(v)new := argmin
w∈{u,pre(v)}

{
√(

coordx(w)− coordx(s)
)2 +

(
coordy(w)− coordy(s)

)2},

where s is the source node of the shortest path tree. This optimization is very ag-
gressive, as it leads to the same result for different boundary nodes of the same cell
as often as possible.

Section 5 shows the huge difference in the query performance when the arc-flags are
computed with different strategies. Note that we can optimize query times by setting as
many flags as possible to false. However, we also loose the ability to choose the “best”
path during the query (e.g. due to a minimal number of transfers, costs, etc.). This yields
a trade-off between query time and the quality of the computed itineraries.

Arc-Flags and Node-Blocking. Unfortunately, Node-Blocking does not harmonize with
Arc-Flags. This is due to the fact of Node-Blocking being a very aggressive technique,
leaving only very few connection arcs per station and route accessible. The optimiza-
tion criterion hereby, namely arriving as early as possible at the next station does not
necessarily match with our path selection during Arc-Flags preprocessing. As a result,
both techniques prune different shortest paths. A possible solution would be to adapt
the path selection for Arc-Flags according to Node-Blocking. However, this turns out
to be complicated as we have to grow shortest path trees on the reverse graph. Hence,
this path selection strategy is not implemented yet.

ALT. Goal directed search, also called A∗ [10], pushes the search towards a tar-
get by adding a potential to the priority of each node. The ALT algorithm, intro-
duced in [7], uses a small number of nodes—so called landmarks—and the triangle
inequality to compute such feasible potentials. Given a set L ⊆ V of landmarks and
distances d(`,v),d(v, `) for all nodes v ∈V and landmarks ` ∈ L, the following triangle
inequations hold: d(u,v) + d(v, `) ≥ d(u, `) and d(`,u) + d(u,v) ≥ d(`,v). Therefore,
π(u, t) := max`∈L max{d(u, `)− d(t, `),d(`, t)− d(`,u)} provides a lower bound for
the distance d(u, t) and, thus, can be used as a potential for u.

Adaption. The query algorithm is, again, straight forward to adapt to time-expanded
railway graphs. Since the only difference to the standard DIJKSTRA algorithm is the key
which is inserted into the priority queue, we can still simply abort the search as soon
as a node of the target station gets settled. However, we cannot compute the landmarks
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on the expanded graph directly since then we would have to know the target node t
in advance. Hence, we compute the landmarks on the much smaller condensed graph
which still yields feasible potentials because the edge weights in the condensed graph
are defined as the lower bounds regarding travel time. The potential function π during
the query is then computed as follows:

π(v) = max
`∈L

max{dist(STATION(v), `)−dist(T, `),dist(`,T )−dist(`, STATION(v))},

where T is the target station of the query. We can think of this as using a “lower bound
of a lower bound” of the shortest path.

Former studies revealed that the selection of landmark nodes is crucial to the per-
formance of ALT. The quality of the lower bounds highly depends on the quality of the
selected landmarks. Thus, several selection strategies exist. To this point, no technique
is known how to pick landmarks yielding the smallest search space for random queries.
Thus, several heuristics exist. The best are avoid and maxCover. The first tries to iden-
tify regions that are not well covered by landmarks while the latter is basically the avoid
routine followed by a local optimization. For details, we refer to [9].

Due to the small size of the condensed networks, another strategy for obtaining po-
tentials seems promising. For each query, we use the target station T as landmark and
compute the distances of all stations to T on-the-fly. The advantage of this dynamic-
landmark-selection is a tighter lower bound. However, we have to run a complete DI-
JKSTRA in the condensed graph for each query which can take more time than using
worse lower bounds from landmarks during the query. Note that this approach for ob-
taining lower bounds for A∗ was already proposed in [14].

Combining Arc-Flags and ALT. In [16], we observed that Arc-Flags (with the di-
rect geographical distance strategy) and ALT optimize in two different ways. While
Arc-Flags prunes paths that lead to the wrong direction geographically, ALT optimizes
in time in the sense that fast trains are preferred over slow trains. Fast trains (having
less stops in between) tend to get near the target station faster, yielding a lower key
in the priority queue regarding the lower bound function. For that reason, it is sugges-
tive to examine the combination of the two speed-up techniques. The implementation
is straight-forward, since Arc-Flags does not interfere with ALT—Arc-Flags simply ig-
nores edges that do not have their appropriate flag set, and ALT just alters the key in the
priority queue.

5 Experiments

In this section, we present our experimental evaluation. Our implementation is written
in C++ using solely the STL. As priority queue we use a binary heap. Our tests were
executed on one core of an AMD Opteron 2218 running SUSE Linux 10.3. The machine
is clocked at 2.6 GHz, has 16 GB of RAM and 2 x 1 MB of L2 cache. The program was
compiled with GCC 4.2, using optimization level 4.
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Inputs. We use two inputs for our evaluation. The railway network of Central Eu-
rope and a local bus network of greater Berlin. Both networks have been provided by
HAFAS for scientific use; the former network consists of 30,517 stations and 1,775,552
elementary connections. The corresponding figures for the latter are 2,874 and 744,005,
respectively. While the network of Europe provides a good average structure for a rail-
way network mixed of long-distance trains supported by short-distance trains, the bus
network of Berlin consists of a very homogeneous structure, since there are almost no
“long-distance” buses. Because of this and the very dense operations of buses with their
short travel times between stations, it has already been shown [16] that this network
seems to be a very hard instance for timetable information queries.

It should be noted that, while our timetable data is realistic, the transfer times at
the stations were not available to us. Hence, we generated them at random and chose
between 5 and 10 minutes for the railway and between 3 and 5 minutes for the bus
network.

Default Settings. In the following, we report preprocessing times and the overhead of
the preprocessed data in terms of additional bytes per node. We evaluate query per-
formance by running 1000 random s–t queries with source and target station picked
uniformly at random. We fix the departure time to 7:00 am. We report the average num-
ber of settled nodes during the query as well as the average query time. The speed-up
refers to the query time and is computed in reference to the classic time expanded model
without any speed-up technique applied.

5.1 Models

Parameters. We start our experimental evaluation with parameter tests for our Route-
Model. Recall that in the Route-Model we may affect the conversion process by the
selection of γ which controls the maximum number of neighbors a station may have
in order to become a Route-Model station. In the following we use values between 2
and 10 for γ . Table 1 reports for both our inputs: the resulting size (in terms of number
of edges) and query performance. Note that we do not report number of nodes, as the
remodeling routine does not add or remove any nodes. We also enabled Node-Blocking
(see Section 4.1).

We observe that for both instances the Route-Model yields a speed-up. Increasing
γ up to 5 increases performance, while values > 5 do not pay off. This is mostly due to
the fact that for both graphs the majority of stations has less or equal than 5 neighbors
(91% for the Europe and even 99% for the Berlin network).

Concerning Europe with γ < 5, we observe that the resulting graph has less edges
than originally. Recall in the original graph the number of outgoing edges per arrival
node is at most 2 (one toward the nearest transfer node and one toward the departure
node of the same train). Hence, a decrease in number of the edges can only result
from merely one edge being inserted for many arrival nodes at stations of degree 2.
Interestingly, this observation of decreasing edges does not hold for our bus network
which is due to the high density of the network: Because the stations are very close to
each other, it often holds that the travel time to go forth and back between some stations
S1 and S2 is less than TRANSFER(S1), which results in back-edges being inserted for
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Table 1: The effect of γ on the performance of the Route-Model with Node-Blocking enabled.

europe bvb
SIZE QUERY SIZE QUERY

γ-value #edges #settled [ms] speed-up #edges #settled [ms] speed-up
reference 8,505,951 1,161,696 534.7 1.00 3,694,253 151,379 37.6 1.00
2 7,912,584 411,836 202.4 2.64 3,785,680 91,591 27.4 1.37
3 8,035,324 359,294 171.7 3.11 4,292,849 74,963 25.2 1.49
4 8,332,816 329,413 158.3 3.38 5,059,228 63,438 25.1 1.50
5 8,729,619 313,046 154.1 3.47 5,437,647 59,670 25.4 1.48
6 9,071,974 303,460 153.9 3.47 5,625,277 57,990 25.6 1.47
7 9,396,276 297,831 155.1 3.45 5,768,926 56,994 25.8 1.46
8 9,712,940 292,482 156.4 3.42 5,782,375 56,921 25.7 1.46
9 9,936,119 289,036 158.7 3.37 5,782,375 56,921 25.8 1.46
10 10,195,050 285,103 159.3 3.36 5,782,375 56,921 25.8 1.46

arrival nodes at S2 (coming from S1). Second, the operation frequency of the buses is
very high, such that it may occur that edges toward more than the first bus of the route
are inserted, when they arrive at the next station within the margin of its transfer time.

Summarizing, a value of γ = 5 yields the best results for railway input. The corre-
sponding figure for the bus networks is 4.

Comparison to the Classic Time-Expanded Model. Next, we compare different con-
traction steps (Section 3) and our route model with the classic time expanded model.
Table 2 shows the differences in graph size and query performance. While the overall
graph size decreases when switching from the classic expanded to the phase 1 model,
the number of edges significantely increases if applying our phase 2 model. Although
the number of nodes decreases about 50%, this increase in number of edges leads to
an worse query performance, since more edges are relaxed during the query. We hence
conclude that the phase 2 model—and therefore the phase 3 model as well—is not the
preferred choice for fast timetable queries.

Regarding the Route-Model, the increase in graph size is still reasonable while the
query time decreases. However, we see, that the query performance benefits from Node-
Blocking as the speed-up more than doubles in the Europe network with Node-Blocking
enabled. The reason for the weak performance without Node-Blocking is that paths
through the graph, that should be pruned by the Route-Model approach, are still re-
laxed when they are not blocked in non-converted big traffic hubs. In the bus network
the general performance gain is not as big as with the railway network. Even Node-
Blocking does not have such a great impact, which is mostly due to the dense structure
of this network.

Because the Route-Model can be combined well with the phase 1 model (departure
nodes are simply removed after the conversion to the Route-Model), this gives us a
gain in graph size while still keeping the advantages of the Route-Model. The query
performance behaves as expected and increases by approximately one third compared
to the Route-Model alone. If we then additionally apply Node-Blocking on the route
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Table 2: Comparison of the different models. The Route-Model is computed with γ = 5 for
europe and γ = 4 for bvb.

SIZE QUERY

input Model #nodes #edges #settled [ms] spd-up
Classic expanded 5,207,980 8,505,951 1,161,696 534.7 1.00
Phase 1 3,472,022 6,769,991 768,181 426.5 1.25
Phase 2 1,736,064 15,571,190 431,274 631.1 0.85

europe Route 5,207,980 8,729,619 793,462 360.6 1.48
Route w/ blocking 5,207,980 8,729,619 313,046 154.1 3.47
Route + Phase 1 3,472,018 6,821,337 439,024 256.3 2.09
Route + Phase 1 w/ blocking 3,472,018 6,821,337 200,213 122.8 4.35
Classic expanded 2,232,016 3,694,253 151,379 37.6 1.00
Phase 1 1,488,011 2,950,248 99,253 29.1 1.29
Phase 2 744,006 13,229,482 60,218 56.8 0.66

bvb Route 2,232,016 5,059,228 97,978 32.6 1.15
Route w/ blocking 2,232,016 5,059,228 63,438 25.1 1.50
Route + Phase 1 1,488,011 3,918,788 51,210 22.7 1.66
Route + Phase 1 w/ blocking 1,488,011 3,918,788 34,032 18.6 2.02

+ phase1 model, we get the best query performance of all the models which yields a
speed-up of 4.35 in the railway network of Europe and 2.02 in the Berlin bus network.

5.2 Speedup Techniques

Up to now, we showed that by remodeling stations and using additional pruning tech-
niques, we already achieve a speed-up of 4.35 over plain DIJKSTRA. Here, we now
show that this approach harmonizes well with other speed-up techniques deriving from
road networks.

Path-Selection during Arc-Flags Preprocessing. We already mentioned in Section 4.2
that in expanded timetable networks the number of shortest paths between two nodes
is enormously high. It turns out that setting arc-flags for all paths yields a bad query
performance. Hence, we have to favor some paths over the others. We proposed four
different reasonable strategies: Minimize hops, minimize transfers, minimize accumu-
lated geographic distance along the path and finally minimize the direct geographic dis-
tance from the preceding node to the source of the shortest path tree (see Section 4.2).
Table 3 shows the impact of each strategy on the performance of Arc-Flags. Note that
due to the long preprocessing times of Arc-Flags, we use a subnetwork of our European
instance, namely the German railway network called de fern (6822 stations and 554996
connections).

While minimizing hops is useful in road networks [1] (which can be interpreted
there as preferring a route that has less road crossings) this results in a poor perfor-
mance in railway network. Almost all flags are opened during preprocessing, thus the
overhead of the Arc-Flags query algorithm outweighs the benefit from the few remain-
ing pruned arcs. Interestingly, using minimal transfer or minimal distance strategies as
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Table 3: Arc-Flags. Evaluation of different path-sepection strategies. For each strategy we apply
a partition with 64 cells.

PREPRO QUERY

Strategy [h:m] [B/n] #settled [ms] speed-up
reference — 0 152,998 58.1 1.00
hops 17:00 26.2 149,931 70.3 0.83
transfers 16:26 26.2 152,307 71.7 0.81
distance 20:53 26.2 134,462 61.8 0.94
geo. dist. to target 16:08 26.2 38,511 15.0 3.87

path selection yields a poor query performance as well. This is mostly due to too many
different paths of boundary nodes of the same cell being optimal, thus too many flags
are set to true. Recall that the partition is computed on the condensed graph, hence for
one station that is at the border of a cell, nodes belonging to all times of day are bound-
ary nodes which may lead to very different transfer or distance minimal routes in the
graph.

The minimal direct geographic distance strategy overcomes this issue by always
choosing the same preceding node for all times of the day. For that reason, as many
arc-flags as possible are kept f alse, which eventually yields a speed-up of 3.87 on
the German railway network. Since all other strategies actually worsen the query per-
formance, we choose the direct geographic distance strategy for further experiments
involving Arc-Flags on time expanded railway networks.

Speed-Up Techniques on our Models. In the next experiment we compare the per-
formance of the adapted speed-up techniques on the different models from Section 3.
Because of the bad performance of the phase 2 model, we only compare the classic
expanded model, the phase 1 model, the Route-Model and the combination of the route
and phase 1 models.

Furthermore, we tested the effect of dynamic-landmark-selection against a precom-
puted set of landmarks. Table 4 shows our results. We show the query performance as
well as preprocessing-costs by preprocessing time and additionally bytes per node re-
quired to store the preprocessed data. For each model we tested the following speed-up
techniques:

– BA: Node-Blocking with ALT.
– BdA: Node-Blocking with ALT and dynamic-landmark-selection.
– uFA: Unidirectional Arc-Flags with ALT.
– uFdA: Unidirectional Arc-Flags with ALT and dynamic-landmark-selection.

Regarding classic ALT we always used a set of 8 precomputed landmarks by the max-
Cover [9] method. Arc-Flags were computed using a partition of 128 cells obtained
from SCOTCH [17]. The strategy for path-selection was geographic distance to target.
Note that for Arc-Flags, we turn off Node-Blocking (cf. Section 4.2).

We observe, that for all speed-up technique our modifications to the classic ex-
panded model yield improvements regarding both query performance and preprocessing
time. While the transition from the classic to the phase 1 model is more beneficial for
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Arc-Flags than ALT with Node-Blocking, the latter performs better on the Route-Model
where Node-Blocking fits the model considerably better. The combination “Route +
Phase 1” unifies the advantages of each model yielding the best speed-ups.

In general, Arc-Flags has a higher impact on query time than ALT together with
Node-Blocking (about 5.5 times faster on both networks) which is being paid for with
very high preprocessing time and roughly 30 times more required space per node. Note,
that the dynamic ALT comes for free, as it does not require any preprocessing at all.
With our modified models we can, however, still achieve a speed-up of 10.13 in Europe
and 2.54 in Berlin with dynamic ALT and Node-Blocking, which is useful in a scenario
where preprocessing is limited or not allowed.

Table 4: Comparing different models in conjunction with the classic speed-up techniques. The
parameter set used throughout: 128 cells, geographic distance to target path-selection-strategy
for Arc-Flags and 8 landmarks using maxCover for the classic ALT.

europe bvb
PREPRO QUERY PREPRO QUERY

Model/Algorithm [h:m] [B/n] #settled [ms] spd [h:m] [B/n] #settled [ms] spd
Reference — 0 1,161,696 534.7 1.00 — 0 151,379 37.6 1.00
Classic Exp. (BA) ≈ 4 s 4.0 261,151 162.7 3.29 ≈ 2 s 4.1 96,533 33.6 1.12
Classic Exp. (BdA) ≈ 1 s 4.0 233,280 130.8 4.09 ≈ 1 s 4.0 94,345 29.1 1.29
Classic Exp. (uFA) 106:11 106.5 71,937 32.7 16.35 45:30 108.0 49,921 17.0 2.21
Classic Exp. (uFdA) 106:11 106.5 65,143 33.9 15.77 45:30 107.9 49,014 15.2 2.47
Phase 1 (BA) ≈ 5 s 4.5 208,579 145.5 3.67 ≈ 2 s 4.1 67,019 26.1 1.44
Phase 1 (BdA) ≈ 1 s 4.0 185,996 116.4 4.59 ≈ 1 s 4.0 65,488 22.8 1.65
Phase 1 (uFA) 77:52 127.2 30,583 14.0 38.19 31:59 129.0 15,004 5.4 6.96
Phase 1 (uFdA) 77:52 126.7 27,310 18.5 29.06 31:59 128.9 14,713 5.1 7.37
Route (BA) < 4 s 4.4 140,826 73.2 7.30 ≈ 2 s 4.1 49,591 22.3 1.69
Route (BdA) ≈ 1 s 4.0 127,444 65.4 8.18 ≈ 1 s 4.0 48,390 19.8 1.90
Route (uFA) 85:49 109.7 50,050 22.1 24.19 50:58 147.1 25,289 10.2 3.69
Route (uFdA) 85:49 109.3 45,180 25.3 21.13 50:58 147.0 24,785 9.3 4.04
Route + Ph. 1 (BA) ≈ 4 s 4.5 89,524 58.7 9.11 < 2 s 4.1 26,653 16.0 2.35
Route + Ph. 1 (BdA) ≈ 1 s 4.0 80,665 52.8 10.13 ≈ 1 s 4.0 26,007 14.8 2.54
Route + Ph. 1 (uFA) 83:58 128.2 20,044 9.5 56.28 34:56 170.6 6,195 2.6 14.46
Route + Ph. 1 (uFdA) 83:58 127.7 17,805 15.2 35.18 34:56 170.5 6,053 2.8 13.43

Comparing the standard ALT against ALT with dynamic landmarks, we observe,
that regarding query time dynamic ALT only pays off as long as the general speed-
up (achieved through some other speed-up technique or model) does not exceed the
cost we pay for computing the distance table on-the-fly. Since the condensed graph of
Europe has about 11 times more stations than the Berlin graph, the cost for computing
the dynamic distance table carries much more weight there—A one-to-all DIJKSTRA
takes about 7 ms on the condensed graph of Europe. Hence, it never pays off using
dynamic landmarks together with Arc-Flags here. The same effect can be observed in
the Berlin network, however, only with the combination of the route and phase 1 models
due to the much smaller condensed graph.
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Summarizing, our modifications yield a speed-up of 3.5 if we apply ALT and Arc-
Flags to both time-expanded graphs. The corresponding figure for our bus network is
5.5. This yields an overall speed-up of 56.28 for Europe and 14.46 for Berlin when
compared to the classic model without any speed-up technique applied.

5.3 Comparison to the Time-Dependent Model

Table 5 compares the performance of DIJKSTRA’s algorithm and ALT applied to our
route+phase 1 time-expanded model and the time-dependent model. We observe that
by the introduction of our Route-Model (and Node-Blocking) query performance of
time-expanded queries are faster than for the time-dependent approach. Hence, we are
able to close the performance-gap between both models. Analyzing the time-dependent
approach, we notice that Node-Blocking is included implicitly: During a query we do
not relax an edge more than once although it represents several connections running
from one station to another. Hence, early connections block later ones. Our remodel-
ing and Node-Blocking technique introduces these optimizations to the time-expanded
approach. As a result the performance advantage of the time-dependent approach fades.

Table 5: Performance of DIJKSTRAand uni-directional ALT using a time-dependent variant of
our European input. For comparison, the corresponding figure for the time-expanded approach
(route-model with phase 1) are given as well.

time-dependent time-expanded
PREPRO QUERIES PREPRO QUERIES

time #settled speed time speed time #settled speed time speed
technique [h:m] nodes up [ms] up [h:m] nodes up [ms] up
Dijkstra 0:00 260 095 1.0 125.2 1.0 0:00 200 213 1.0 122.8 1.0
uni-ALT 0:02 127 103 2.0 75.3 1.7 0:01 89 524 2.2 58.7 2.1

6 Conclusion

In this work, we introduced a local remodeling routine for the time-expanded approach
based on the intuition that at many stations in a network, the number of reasonable
choices is little. It turns out that this approach leads to a closely related speed-up tech-
nique harmonizing well with our remodeling. Moreover, we adapted speed-up tech-
niques to the time-expanded model and show that they harmonize well with our new
approach. Altogether, our approach yields query times up to 56.28 times faster than
pure DIJKSTRA.

Regarding future work, we are optimistic that our approach would also work well
for multi-criteria optimization. Although our pruning techniques may not work as strict
as for single-criteria search, the number of reasonable choices is little in this scenario
as well. Another very important problem is dynamization. It seems as if updating a
time-expanded graph is rather expensive, though possible [3, 15].
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