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2 Zuse Institute Berlin, 14195 Berlin, Germany,{borndoerfer,pfetsh}�zib.deAbstrat. Line planning is an important step in the strategi plan-ning proess of a publi transportation system. In this paper, we disussan optimization model for this problem in order to minimize operationosts while guaranteeing a ertain level of quality of servie, in terms ofavailable transport apaity. We analyze the problem for path and treenetwork topologies as well as several ategories of line operation thatare important for the Quito Trolebús system. It turns out that, from aomputational omplexity worst ase point of view, the problem is hardin all but the most simple variants. In pratie, however, instanes basedon real data from the Trolebús System in Quito an be solved quite well,and signi�ant optimization potentials an be demonstrated.1 IntrodutionThe major ities of South Ameria are faing an enormous and onstantly in-reasing demand for transportation and, unfortunately, also inrease vehiularongestion, with all its negative e�ets. In Quito, the elongated topography ofthe ity with 1.8 millions inhabitants (the urban area being 60 km long and 8 kmwide) aggravates vehiular ongestion even more, suh that tra� almost om-pletely breaks down during rush hours. As a onsequene, the loal governmentfaes the neessity of improving the publi mass transit system.A low-ost option that has produed satisfatory results in reent years hasbeen the implementation of major orridors of transportation. These orridorsonsist of street traks that are reserved exlusively for high-apaity bus units,whih, in this way, an operate independently of the rest of the tra�. Eventhough the topology of a orridor is extremely simple (just a path), bus oper-ation on it is non-trivial. In fat, it is usually organized in a omplex systemof several dozen lines, whih over, in an overlapping way, di�erent parts of theorridor, and whih an operate in di�erent ways, e.g., as �normal lines� or as�express lines� (stopping only at distinguished express stations), as �open lines�(unidiretional) or �losed lines� (bidiretional lines), and in any ombination ofthese ategories. The orridor lines are often omplemented by feeding lines thattransport passengers between speial transshipment terminals of the orridorand the nearby neighborhoods.
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Fig. 1: Trolebús system and feeder line system in Quito.In Quito, the most important of suh orridors is the so-alled Trolebús Sys-tem (TS), see Figure 1. TS is urrently the largest publi transportation systemin Quito, arrying around 250, 000 passengers daily. However, the dramati in-rease in transportation demand has had a negative impat on the quality ofservie, with overrowded buses and long waiting times being ommonly experi-ened by passengers. At the same time, operation osts have been ontinuouslyinreasing. With the aim of ontributing to the improvement of this situation,we have been working on optimization models that an be applied to improvethe operation of the TS and similar orridor transportation systems. The ques-tion that we investigate is whether the design of the orridor line system an beoptimized using mathematial methods in order to improve the quality of servieand/or lower operation osts by a better vehile utilization.Mathematial optimization approahes to line planning have reeived grow-ing attention in the operations researh and the mathematial programmingommunity in the last two deades, see Odoni, Rousseau, and Wilson [1℄ andBussiek, Winter, and Zimmermann [2℄ for an overview. In partiular, integerprogramming approahes to line planning have been onsidered sine the latenineties. Bussiek, Kreuzer, and Zimmermann [3℄ (see also Bussiek [4℄) andClaessens, van Dijk, and Zwaneveld [5℄ both propose ut-and-branh approahesto selet lines from a previously generated pool of potential lines. Both artilesare based on a �system-split� of the demand, i.e., an a priori distribution of thepassenger �ow on the ars of the transportation network; these �aggregated de-mands� are then overed by lines of su�ient apaity. Bussiek, Lindner, andLübbeke [6℄ extend this work by inorporating nonlinear omponents. Goossens,van Hoesel, and Kroon [7,8℄ improve the models and algorithms and show thatreal-world railway problems an be solved within reasonable time and quality.Approahes that integrate line planning and passenger routing have reently
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been proposed by Borndörfer, Grötshel, and Pfetsh [9,10℄, and by Shöbel andSholl [11,12℄. The latter authors onsider an expanded line-network that allowsto minimize the number of transfers or the transfer time.All of these artiles onsider general network topologies, but do not analyzeline operation ategories suh as express lines, or open lines, probably beausethe line planning problem on general graphs is already hard without them. Theorridor topology, however, opens up a hane to investigate omplex line oper-ation ategories in a pratially relevant setting. It also brings up the questionwhether perhaps some ases assoiated with di�erent line operation ategoriesan be solved in polynomial time. It will turn out in Setion 3 that this is in-deed the ase if only losed lines and a homogeneous vehile �eet are used; in allother ases, however, the problem is hard (there is one open ase left). From apratial point of view, however, TS instanes an be solved quite well. Indeed,our results show signi�ant optimization potentials with respet to the urrentlyoperated solution, see Setion 4.2 A Flow-Based Model for Line PlanningWe onsider a bus transportation network as a digraph D = (V, A), where eahbus station is represented by a node v ∈ V and ars represent diret links betweenstations, i.e., (i, j) ∈ A if and only if some bus may visit station j diretly afterstation i. The �eet of buses is often heterogeneous; for instane, in Quito itontains trolley-buses and several other types of buses used for the feeding lines.We all a spei� type of bus a transportation mode and de�ne M to be theset of all transportation modes in the system, where eah transportation mode
m ∈ M has a spei� apaity κm ∈ Z

+. For eah m ∈ M, ertain stationsreferred to as terminals are identi�ed, where buses of mode m may start or enda servie route. An open line for a mode m is a direted path whose �rst and lastnodes are di�erent terminals. Similarly, a losed line for m is a iruit ontainingat least one terminal. We onsider for eah m ∈ M a line pool Lm, i.e., a setof a priori seleted (open or losed) lines that an potentially be established.We denote by L := ∪m∈MLm the set of all possible lines and by Lm
a the set oflines of mode m using ar a. For a line ℓ ∈ L, cℓ ∈ R+ is the ost of a singletrip via ℓ. Transportation demand is usually expressed in terms of an origin-destination matrix (duv) ∈ Z

V ×V
+ , where eah entry duv indiates the number ofpassengers traveling from station u to station v within a ertain time horizon T .In the following we assume that eah passenger has been routed along somespei� direted (u, v)-path in a preproessing step, suh that an aggregatedtransportation demand ga on eah ar a of the network has been omputed.We will onsider three network topologies that are related to the TS stru-ture. On the main orridor, trolley-buses move on a single path and are usuallynot allowed to overtake. This suggests to de�ne a transportation network on-sisting of two direted paths (one for eah transportation diretion). Any linemoving from a station u to a station v must stop at all intermediate stations.We all suh a network topology a Quito-Graph (QG). However, transport au-
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thorities are onsidering the possibility of allowing trolley-buses to overtake atertain segments of the main orridor in the future. This would make it possibleto introdue express lines that stop only at ertain stations. The trips betweentwo express stations an be modeled using respetively longer ars. We all anetwork of this type a Quito-Hopping-Graph (QHG). Finally, when onsideringboth feeding lines and the main orridor together, we observe that the TS net-work an be modeled as a tree, sine feeding lines are simple paths that start attransshipment stations along the main orridor.The line planning problem is to hoose a set of lines L ⊆ L and frequeniesfor the lines in L in suh a way that there is enough transportation apaity toover the aggregated demand on eah ar of the network. It an be formulatedas an integer programming problem, that we denote by Demand Covering Modelwith Fixed Costs (DCM-FC):
min

∑

m∈M

∑

ℓ∈Lm

(cℓ fℓ + Kℓ yℓ) (1)subjet to
∑

m∈M

∑

ℓ∈Lm
a

κm fℓ ≥ ga, ∀ a ∈ A (2)
0 ≤ fℓ ≤ fmax

ℓ yℓ ∀ ℓ ∈ L (3)
fℓ ∈ Z+ ∀ ℓ ∈ L (4)
yℓ ∈ {0, 1} ∀ ℓ ∈ L. (5)Here, fℓ is an integer variable representing the frequeny assigned to line ℓ ∈ L,and yℓ is a 0/1-variable that indiates whether a line is hosen in the solution(yℓ = 1) or not (yℓ = 0). The ost of line ℓ ∈ L involves a �xed omponent Kℓas well as an operating ost cℓ fℓ that depends on the frequeny. The objetivefuntion (1) aims at minimizing the total operation osts. Constraints (2) ensurethat the aggregated transportation demand is overed. Constraints (3) ouplethe line seletion variables yℓ and the frequeny variables fℓ and they imposeupper bounds fmax

ℓ , for all ℓ ∈ L on line frequenies. Finally, (4) and (5) areintegrality onstraints for the frequenies.When �xed osts are zero (Kℓ = 0, ∀ℓ ∈ L), the model simpli�es to thefollowing form, that we denote by Demand Covering Model (DCM):
min

∑

m∈M

∑

ℓ∈Lm

cℓ fℓ (6)subjet to
∑

m∈M

∑

ℓ∈Lm
a

κm fℓ ≥ ga, ∀ a ∈ A (7)
0 ≤ fℓ ≤ fmax

ℓ ∀ ℓ ∈ L (8)
fℓ ∈ Z+ ∀ ℓ ∈ L. (9)DCM is a simpli�ed version of the models appearing in Claessens, van Dijk, andZwaneveld [5℄ and Bussiek, Kreuzer, and Zimmermann [3℄.
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3 Computational ComplexitySolving DCM is NP-hard for general graphs, as the problem inludes the SetCovering Problem as a speial ase (κ ≡ 1, g ≡ 1, fmax ≡ 1), see also Shöbeland Sholl [11℄. We now investigate how the network topology and several otherfators a�et the omputational omplexity of the model.3.1 Fixed Costs are HardWe �rst observe that �xed osts make the problem di�ult. A redution fromthe 0/1 Knapsak Problem an be used to prove:Proposition 1 DCM-FC is NP-hard, even if the underlying transportation net-work is a Quito graph onsisting of two nodes joined by an ar, only losed linesare allowed, and there is only one transportation mode.3.2 Multiple Modes are HardIt will turn out in Setion 3.5 that the homogenous �eet ase (|M| = 1) allows afurther simpli�ation of the model DCM that leads to speial omplexity results.We therefore �rst disuss the ase of multiple modes (|M| ≥ 2). Before doingthis, however, let us onsider an undireted version of the problem for Quitographs.Observe that if the line pool ontains only losed lines, then eah line usingan ar a = (u, v) must also use the ar a = (v, u), on whih the bus is travelingin the opposite diretion. Hene, both the ar set of the network and the ar setof eah line an be partitioned into pairs of antiparallel ars. Substituting thesepairs by undireted edges, any instane of DCM with losed lines an be reduedto an equivalent undireted instane on an undireted graph G = (V, E), wherenew aggregated demands on the edges are omputed as follows:
g′uv := max{g(u,v), g(v,u)}, for all (u, v) ∈ A.In this version of the problem, the lines orrespond to simple undireted pathsin G, having the same osts. The task is to assign frequenies to these pathsto over the edge demands at minimum ost. Figure 2 gives an example of thisproblem transformation.Using a redution from the 3-Dimensional Mathing Problem, one an prove:Proposition 2 If |M| ≥ 2, then DCM is NP-Hard even for undireted Quitographs and if �xed osts are zero.3.3 Trees are HardFeeding line systems transport passengers from the main orridor to the neigh-borhoods. Eah feeding line starts at a transshipment terminal, visits a set of
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v1 v2 v3 v4

g(v1v2)

g(v2v1)

D

v1 v2 v3 v4

g′

v1v2

GFig. 2: Construting the undireted version of DCM on a Quito graph. The losedlines (v1, v2, v3, v2, v1) and (v2, v3, v4, v3, v2) in D are substituted by simple undiretedpaths in G.onseutive stations up to ertain turn-over station, and returns bak to thetransshipment terminal stopping at the same stations on the way. Sine onlylosed lines are admissible, there is again an undireted version of the DCMinvolving feeder lines. The underlying graph for this problem is a tree, with sev-eral terminals as initial nodes, and simple paths starting from it. Thus, eahline is represented by an undireted path linking one terminal with a ertainnode where the turn-over takes plae. The following result an be proved usinga redution from the 3-Dimensional Mathing Problem.Proposition 3 DCM on trees is NP-hard, even if only losed lines and a ho-mogeneous transportation �eet (|M| = 1) is used and �xed osts are zero.3.4 Hopping is HardIn this setion we onsider the Quito Hopping Graph topology. To this end let
D = (V, A) be de�ned by the set V = {v1, v2, . . . , vn} of nodes representing allbus stations in the sequene along the path, and let VX ⊆ V be a subset ofexpress stations. Similarly, there are express terminals, where express buses areallowed to start or end their routes.Express lines are allowed to stop only at nodes from VX , while normal (i.e.,non-express) lines visit any node. Two nodes are joined by an ar if the orre-sponding stations an be visited onseutively by some line. Hene, the set ofars is partitioned into three lasses: a subset AN ontaining ars that may onlybe used by normal lines, a set AX of ars that may only be used by express lines,and a set AS of �shared ars�. We assume that a transportation demand has beenpreviously assigned to eah ar of the network using some system split method.Using a redution from 3-Dimensional Mathing similar as for Proposition 2, onean prove:Proposition 4 DCM on Quito Hopping Graphs is NP-hard, even if only losedlines are onsidered and �xed osts are zero.3.5 Easy and Open CasesWe investigate now the Demand Covering Model on Quito graphs for a homo-geneous transportation �eet (|M| = 1) and �xed osts of zero. This model, that
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we denote by Demand Covering Model with Homogeneous Fleet (DCM-HF), anbe further simpli�ed and formulated in the following matrix form:
min cT f (10)subjet to

AHf ≥ g̃ (11)
f ≤ fmax (12)
f ∈ Z

|L|
+ . (13)Here, g̃a := ⌈ ga

κ
⌉ for all a ∈ A, are the transformed aggregated demands,

c ∈ R
|L| is the vetor of line (operating) osts, fmax ∈ Z

|L|
+ denotes the vetor ofupper bounds on the frequenies, and AH ∈ {0, 1}|A|×|L| is the ar-line inidenematrix.

v1 v2 v3 v4

c1

c2

B B g̃e < B

(∞, 0) (∞, 0) (∞, 0)
v1 v2 v3 v4

(fmax
ℓ1

, cℓ1
)

(fmax
ℓ2

, cℓ2
)

−B B

(B − g̃e, 0)

(u, c)

Fig. 3: Transforming undireted DCM-HF on Quito graphs to a minimum ost �owproblem.Closed Lines The undireted version of DCM-HF on Quito Graphs an beredued to a minimum ost �ow problem as follows. Let G = (V, E) be anundireted Quito Graph with n nodes v1, . . . , vn. We de�ne B := maxe∈E{g̃e}and de�ne D̂ = (V, Â) to be a direted network on the node set of G, whose arset is the disjoint union of three subsets: a set Â1 ontaining all �bakward ars�of the form (vi, vi−1), for all i ∈ {2, 3, . . . , n}; a set Â2 that ontains one �linear� (vi, vj), with i < j for every line having its ends points at vi and vj ; anda set Â3 ontaining one �slak ar� (vi, vi+1) for eah edge {vi, vi+1} in G with
B − g̃e > 0. Flow demands are de�ned as follows (negative demands meaningthat the node is a soure of �ow):

bvi
=











−B, if i = 1,

B, if i = n,

0, otherwise.Ar osts are equal to zero and apaities are set to in�nity on the ars belongingto Â1. For eah ar in Â2 representing a line ℓ ∈ L, the ost is equal to cℓand the apaity is set to fmax
ℓ . Finally, eah slak ar in Â3 assoiated to an

7



edge e from G has apaity equal to B − g̃e and ost equal to zero. Figure 3shows an example. Interpreting the values of a feasible �ow on the line ars astransportation apaities of the respetive lines is the key to proving:Proposition 5 DCM-HF an be solved in polynomial time on undireted QuitoGraphs.Open and Closed lines If both open and losed lines are present in the linepool, the symmetry of the problem is broken and the redution of the last setiondoes no longer work. We have not yet been able to determine the omplexity ofthis ase, but we show next that this problem is at least as di�ult as the ExatPerfet Mathing Problem, whose omplexity is open.The Exat Perfet Mathing Problem (EPMP, see e.g. [13℄) is a perfet math-ing problem de�ned on a bipartite graph with red and blue edges; there is also aninteger k given. The task is to determine whether there exists a perfet mathingontaining exatly k blue edges. The omplexity of this problem is unknown. Wehave proven the following proposition.Proposition 6 Every instane of EPMP an be transformed to an instane ofDCM-HF in polynomial time.4 Optimizing the Trolebús SystemWe have arried out a omputational study with various DCM models for thethree network topologies onsidered in the previous setion, based on data pro-vided by the Trolebús System operator. The models were solved using the IP-solver SCIP [14℄ in its standard on�guration, whih was su�ient to obtainoptimal solutions within a few seonds. All experiments were performed on a 3.0GHz Pentium 4 PC with 512 MB RAM running Suse Linux 10.0.The total �eet of the TS onsists of 113 trolley-buses for the orridor and 89normal buses for two di�erent types of the feeding lines. The transportationnetwork has 528 nodes, 52 of them loated along the main orridor.Table 1 reports some operational parameters for the line plan urrently im-plemented by the TS operator in the main orridor (QG) and in the feeder linesystem (FLS): ost, average number of transfers per passenger, average traveltimes, and the aumulated frequeny. We refer to this line plan as the refereneplan. The statistis are given for time slies of one hour during the day. For thetime interval 06:00�07:00, the referene plan does not provide enough apaityto over the transportation demand with the nominal maximum apaity of atrolley bus (κ = 180); in fat, the solution requires 210 passengers to be trans-ported by eah bus unit on average, i.e., the buses are overrowded. Passengertransfers were omputed using the method desribed in Bouma and Oltrogge [15℄(the frequeny variables were �xed to the values given by the referene plan).Traveling times between stations were taken from historial data for QG and
8



Table 1: The urrent operation of the Quito Trolebús System (main orridor and feeding lines).Quito Graph Feeding LinesT Cost # Tr. Travel Time P

ℓ∈L
fℓ Cost # Tr. Travel Time P

ℓ∈L
fℓ06:00-07:00∗ 5379 � � 57 3806.8 0.478 49.66 5907:00-08:00 7271 0 30.7 79 4144.6 0.457 46.32 6508:00-09:00 7246 0 28.1 83 3330.4 0.456 44.94 5309:00-10:00 5991 0 24.3 75 3251.0 0.506 44.74 5212:00-13:00 4858 0.0140 21.1 62 2873.6 0.452 41.16 4613:00-14:00 4941 0.0322 21.8 63 3323.6 0.504 45.18 5216:00-17:00 4945 0.0150 28.3 62 3473.6 0.500 46.77 5417:00-18:00 7188 0 30.9 81 3455.8 0.415 42.89 5318:00-19:00 7457 0 30.1 85 3050.0 0.394 43.29 4819:00-20:00 6044 0 28.3 79 3050.2 0.548 52.47 4920:00-21:00 5343 0 30.6 72 2597.6 0.661 56.09 41Table 2: Optimizing the Quito Trolebús System using model DCM-HF on QG.Closed Lines Closed+Open LinesT Cost # Tr. Travel Time P

ℓ∈L
fℓ |L| Cost # Tr Travel Time P

ℓ∈L
fℓ |L|06:00-07:00 6275 0 30.02 79 19 4560.3 0 29.30 79 2507:00-08:00 6911 0.00226 31.19 88 20 5232.7 0.00226 30.09 88 2808:00-09:00 4792 0.00023 25.68 65 18 3785.8 0.00023 25.99 65 2809:00-10:00 2992 0.00119 24.39 38 16 2522.2 0.00113 23.14 38 2012:00-13:00 2230 0 20.05 26 10 2195.7 0 20.51 26 1113:00-14:00 2342 0 21.54 28 11 2289.1 0 21.44 30 1416:00-17:00 3234 0 26.33 39 13 2942.8 0 26.24 39 1917:00-18:00 4847 0 29.02 58 16 4108.6 0 28.64 58 1818:00-19:00 4625 0 27.08 58 17 3922.7 0.0116 26.79 60 2019:00-20:00 3062 0 26.46 40 16 2667.2 0 26.50 41 1720:00-21:00 1843 0 25.70 23 9 1711.4 0 26.10 24 10
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FLS and estimated for express ars in QHG. The transfer time for a hangefrom line ℓ1 to line ℓ2 was estimated as T
2fℓ2

.As a �rst experiment, we arried out line planning for the main orridor basedon the DCM-HF model on QG. We onsidered eah one-hour time slie as anindependent instane and ran two tests on it. In the �rst the line pool L onsistsof 66 losed lines and in the seond one L ontains 66 losed lines and 132 openlines. Table 2 reports the results obtained for this setting. Signi�ant ost savingswere obtained even in the ase when only losed lines are allowed. The ost ofour solution is smaller than that of the referene plan, with an average dereaseof $ 2,119.31 per hour and a global derease of $ 40,267. The total number oftransfers inreased in the morning time intervals, but dereased dramatiallyduring midday and in the afternoon. The total number of transfers is 125, theaverage travel time is 25.56 minutes, ompared to 26.4 minutes in the refereneplan. If both open and losed lines are onsidered, solution osts are reduedeven more. This an be explained by an asymmetry in the demand data. In fat,most passengers move in the S-N diretion in the morning and return to theirhomes traveling in the N-S diretion in the afternoon. The number of transfers isabout the same as for the losed line senario, exept for time slies 15:00�16:00and 18:00-19:00, where substantial inreases are registered; the total number oftransfers is 453. Nevertheless, average travel time is only 25.38 minutes.Table 3 shows the results for the QHG instanes, i.e., if express lines areonsidered. To this purpose, we identi�ed 17 express stations along the mainorridor. We onsidered a line pool with 84 losed lines and 168 open lines, ofwhih 18 losed and 36 open lines were express lines.In both senarios (losed lines and losed+open lines) the ost inreased om-pared with the results obtained for QG. The global ost for the transportationplan with only losed lines was $ 60,825, whih still represents savings of 36%,when ompared to the urrent plan. The total number of transfers inreased inomparison to QG, mainly for time slies 11:00-12:00 (from 7 to 458 transfers)and 21:00-22:00 (from 0 to 288 transfers) in the senario with open+losed lines.The inreases in ost and number of transfers are, however, ompensated bybetter servie for passengers, in terms that average travel time was redued to
23.66 minutes if only losed lines are onsidered and 23.35 if losed and openlines are inluded in L.Our last experiment onsisted in omputing a line plan for the feeder linesystem. The TS has three independent systems of feeder lines that intersetthe main orridor at three di�erent transshipment terminals and ontain 12,17, and 13 turn-over stations, respetively. Currently, the vehile �eet used forserving the feeder lines is heterogeneous and ontains two types of buses withtransportation apaities κ1 = 90 and κ2 = 110. Two planning senarios wereonsidered, depending on the number of �branhes� that a feeder line is permittedto visit. In the �rst senario, feeder lines are required to visit only one branh,i.e., they are paths having the transshipment terminal as one end node. In theseond senario, up to two branhes may be visited by the same line, i.e., feederlines are paths that ontain the terminal in any position. In the �rst senario,
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Table 3: Optimizing the Quito Trolebús System using express lines.Closed Lines Closed+Open LinesT Cost # Tr. Travel T. P

l∈L
fl |L| Cost # Tr. Travel T P

l∈L
fl |L|06:00-07:00 6284 0 27.42 79 24 4892.2 0.0028 25.09 80 3007:00-08:00 7092 0 27.66 87 21 5924.0 0 26.07 94 2708:00-09:00 5167 0.00176 22.91 65 18 4556.6 0 22.91 74 2509:00-10:00 3207 0.00251 21.82 39 19 2898.5 0.0102 21.58 42 2112:00-13:00 2431 0 18.75 29 12 2407.6 0 18.60 29 1313:00-14:00 2462 0.00365 20.10 28 12 2433.2 0 20.16 29 1516:00-17:00 3772 0 23.48 44 16 3297.9 0.0017 23.44 44 2317:00-18:00 5255 0.00214 25.75 61 16 4429.5 0.0067 25.70 61 2218:00-19:00 5125 0 24.25 62 20 4257.9 0.0187 24.18 62 2619:00-20:00 3446 0 24.22 43 18 2939.5 0.0092 24.49 44 2420:00-21:00 2083 0.00702 24.45 26 14 1899.7 0.0136 24.29 26 15Table 4: Optimizing the Quito Trolebús System inluding the feeder line systems.One Branh One+Two BranhesT Cost # Tr. P

l∈L
fl |L| T. Time CPU Cost # Tr. P

l∈L
fl |L| T. Time CPU Gap06:00-07:00 3142.4 0.501 59 44 53.08 0.01 2562.4 0.496 30 28 56.03 10000 6.9607:00-08:00 3434.0 0.454 65 43 49.23 0.04 2794.0 0.454 33 32 54.31 10000 7.0308:00-09:00 2740.8 0.481 53 42 48.60 0.02 2220.8 0.449 27 26 51.24 10000 6.2109:00-10:00 2698.8 0.501 52 39 49.04 0.01 2198.8 0.499 27 24 51.76 0.23 3.2512:00-13:00 2341.2 0.444 46 37 44.78 0.03 1881.2 0.425 23 22 47.80 0.66 4.6813:00-14:00 2707.6 0.496 52 35 46.81 0.01 2207.6 0.494 27 24 49.80 10000 8.2916:00-17:00 2804.6 0.496 53 37 48.88 0.01 2289.0 0.473 27 24 51.40 1.54 4.7517:00-18:00 2837.8 0.409 54 41 46.20 0.01 2309.0 0.405 28 28 49.29 10000 7.4218:00-19:00 2464.6 0.386 47 39 45.83 0.01 2002.4 0.383 24 24 48.37 1.38 4.3319:00-20:00 2579.4 0.531 49 38 55.79 0.02 2110.6 0.521 26 24 58.02 1.38 4.3320:00-21:00 2279.0 0.631 43 35 63.84 0.04 1872.2 0.622 22 22 68.34 0.23 3.01Average 2443.6 0.549 46.2 36.1 55.42 0.020 1997.5 0.532 23.8 22.8 58.43 3692.0 4.99
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a total of 84 lines were onsidered in the line pool (ontaining all three feedersystems), while in the seond senario 470 new lines were added. In our runs, weallowed an optimality gap of 5% and set a time limit of 10000 for eah instane.Table 4 reports the results (aggregated for all three feeder systems). As ex-peted, the average number of transfers is muh larger than in the previousexperiments, sine trips of the form �feeding line-main orridor-feeding line�,whih involve at least two transfers, are ommon in the solution. In both the�one branh� and �two branhes� senarios, the ost was redued in omparisonto the urrently implemented solution by about 18% (one branh) and 32% (twobranhes). On the other hand, these savings are related to larger travel times forthe passengers, whih are slightly inreased in all instanes.Closed Lines
Open+Closed Lines

Fig. 4: Tradeo� ost vs. maximum number of lines.The dramati ost derease in our solutions over the referene solution anbe explained by two fators. First, our DCM model does not impose a limit onthe number of lines in a solution. In pratie, however, it is not desirable to havetoo many lines, as the whole system beomes too ompliated for the user andthe operator. Adding new binary variables to DCM that indiate whether a lineis hosen in the solution or not, we arried out new experiments for the QGnetwork topology limiting the allowed numbers of lines to a maximum between�ve (the number of lines urrently used by the TS operator) and 30. Figure 4
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summarizes the results for the whole day. As expeted, the optimum solutionost inreases as the number of allowed lines derease, but the inrease is lessthan 10% from 30 to 5 lines. A seond reason an be found in the planningpoliies that the TS operator is urrently using. Up to now, line planning hasbeen arried out in a single step together with duty sheduling for the bus driversby pre-assigning bus drivers to buses. It might be that this sheme is just tooin�exible, sine hard laboral onstraints might disard some good solutions forthe line planning problem. It would ertainly be worthwhile to ompute a vehileand a duty shedule based on our line plans, in order to get a better assessmentof the operational onsequenes of suh an optimization.Referenes1. Odoni, A.R., Rousseau, J.M., Wilson, N.H.M.: Models in urban and air trans-portation. In S. M. Pollok et al., ed.: Handbooks in OR & MS 6. North Holland(1994) 107�1502. Bussiek, M.R., Winter, T., Zimmermann, U.T.: Disrete optimization in publirail transport. Math. Program. 79(1�3) (1997) 415�4443. Bussiek, M.R., Kreuzer, P., Zimmermann, U.T.: Optimal lines for railway systems.Eur. J. Oper. Res. 96(1) (1997) 54�634. Bussiek, M.R.: Optimal lines in publi rail transport. PhD thesis, TU Braun-shweig (1997)5. Claessens, M.T., van Dijk, N.M., Zwaneveld, P.J.: Cost optimal alloation of railpassanger lines. Eur. J. Oper. Res. 110(3) (1998) 474�4896. Bussiek, M.R., Lindner, T., Lübbeke, M.E.: A fast algorithm for near optimalline plans. Math. Methods Oper. Res. 59(2) (2004)7. Goossens, J.W.H.M., van Hoesel, S., Kroon, L.G.: On solving multi-type lineplanning problems. METEOR Researh Memorandum RM/02/009, University ofMaastriht (2002)8. Goossens, J.W.H.M., van Hoesel, S., Kroon, L.G.: A branh-and-ut approah forsolving railway line-planning problems. Transportation Si. 38(3) (2004) 379�3939. Borndörfer, R., Grötshel, M., Pfetsh, M.E.: A olumn-generation approah toline planning in publi transport. Transportation Si. 41(1) (2007) 123�13210. Borndörfer, R., Grötshel, M., Pfetsh, M.E.: Models for line planning in publitransport. In Hikman, M., Mirhandani, P., Voÿ, S., eds.: Computer-aided Systemsin Publi Transport. Volume 600 of Leture Notes in Eonomis and MathematialSystems., Springer-Verlag (2008) 363�37811. Shöbel, A., Sholl, S.: Line planning with minimal travelling time. TehnialReport 1-2005, University of Göttingen, Germany (2005)12. Sholl, S.: Customer-Oriented Line Planning. PhD thesis, University of Göttingen(2005)13. Papadimitriou, C.H., Yannakakis, M.: The omplexity of restrited spanning treeproblems. J. ACM 29(2) (1982) 285�30914. Ahterberg, T.: Constraint Integer Programming. PhD thesis, Tehnishe Univer-sität Berlin (2007)15. Bouma, A., Oltrogge, C.: Linienplanung und Simulation für ö�entlihe Verkehr-swege in Praxis und Theorie. Eisenbahntehnishe Rundshau 43(6) (1994) 369�378
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