
Solving Periodic Timetable Optimisation

Problems by Modulo Simplex Calculations

Karl Nachtigall and Jens Opitz

Technical University Dresden, Faculty of Traffic Sciences,
Institute for Logistics and Aviation
karl.nachtigall@tu-dresden.de

jens.opitz@tu-dresden.de

Abstract. In the last 15 years periodic timetable problems have found
much interest in the combinatorial optimization community. We will fo-
cus on the optimisation task to minimise a weighted sum of undesirable
slack times. This problem can be formulated as a mixed integer linear
problem, which for real world instances is hard to solve. This is mainly
caused by the integer variables, the so-called modulo parameter. At first
we will discuss some results on the polyhedral structure of the periodic
timetable problem. These ideas allow to define a modulo simplex basic
solution by calculating the basic variables from modulo equations. This
leads to a modulo network simplex method, which iteratively improves
the solution by changing the simplex basis.

Key words: periodic event scheduling problem, integer programming,
modulo network simplex

1 Introduction

In the last 15 years periodic timetable problems have found much interest in the
combinatorial optimization community. Most results presented in [6, 10, 3, 4, 7,
8, 2] are based on a periodic event scheduling model published by Serafini and
Ukovich 1989 ([11]).

The associated periodic event activity networks allow a flexible modelling of
fixed interval timetables in public transport. A lot of practical requirements, like
sequencing of trains, safety headway distances and limits for rolling stock can
be incorporated into this network theoretical model. In this paper we will focus
on the optimisation task to minimise a weighted sum of undesirable slack times,
e.g., waiting time for passengers.

Define a railway system as a system of lines L and stations S. Each line L ∈ L
is understood to be a transportation chain, where the trains of L are serving a
certain sequence of stations (see e.g. [12]). If line L serves stations S, then define
(L, arr, S) and (L, dep, S) to be the arrival (departure) event of L at S.

A schedule assigns event times πi ∈ IR to all events i = (L, dep, S) or i =
(L, arr, S). An activity a : i → j is a time consuming process, which then will
consume the amount xa := πj − πi. of time. A line can be understood as an
alternating sequence of

ATMOS 2008
8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems
http://drops.dagstuhl.de/opus/volltexte/2008/1588

2 Karl Nachtigall, Jens Opitz

– run activities : (L, dep, S) → (L, arr, S′) and
– stop activities : (L, arr, S) → (L, dep, S).

Run and stop activities are associated with time spans ∆a = [ℓa, ua], where
ℓa is the minimum running or stopping time and ua is an upper bound. 1 A
schedule π is said to be feasible, if xa = πj − πi ∈ ∆a for all a : i → j. Apart
from running and stopping activities, in real world problems there are many
other types of constraints arising from operational, safety- or marketing-related
restrictions. Almost all practical requirements can be formulated in terms of
span constraints ℓa ≤ πj − πi ≤ ua defined on a suitable arc a : i → j of the
event network. Some examples are:

– Headway constraints: Trains using the same parts of the infrastructure have
to keep a certain safety distance. This distance can be expressed as a time
difference between the arrival or departure times of the lines at the stations.

– Traveller connection constraints: In general, there are some stations where
travellers have to change from one train to another. In this case, these trav-
ellers would like to have a short waiting time at the station. Again, this con-
straint is a time difference constraint between arrival and departure times of
lines.

L1, dep, A

�

run arc

L1, arr, B

6
stop arc

L1, dep, B

-change arc

� change arc

I

run arc

L1, arr, C

q

headway arc

L2, dep, D
R

run arc

L2, dep, B
?

stop arc

L2, arr, B
	

run arc

L2, arr, E

Fig. 1. Event-activity network

1 If the running time is fixed, a running activity and the following stop activity can
be simply described by one combined constraint.

Periodic Timetable Optimisation Problems 3

Non-periodic timetable problems are very easy to solve by shortest path
calculations. For fixed interval timetables, where all departure and arrival events
will be repeated periodically, such a simple model is no more appropriate. The
reasons are manifold: A priori it is not clear between which trains passengers are
changing or in which sequence trains are leaving or entering stations. All this
can only be decided after the time ordering of all events is known. A periodic
schedule assigns periodic event times πi ∈ IR to all events, which will take place
at all time points πi + zT (z ∈ ZZ). The integer multiples z of the period are
called modulo parameter and code the periodic sequence of all events.

For reasons of simplicity we assume one common period T for the complete
system. Different periods for the lines can be handled by using the least common
multiple (compare for [5]).

A solution of the periodic timetable problem is defined by a vector π ∈ IRn,

which defines for each event i one point of time πi, such that i will be periodically
repeated at all times πi + ziT (zi ∈ ZZ).

Define ℓa and ua to be the minimum and maximum allowed process times of
a constraint a : i → j. Then a periodic timetable π is feasible, if

∀a : i → j ∈ A : ∃za ∈ ZZ : ℓa ≤ πj − πi − zaT ≤ ua. (1)

Lower and upper slack time measures that amount of time for which the tension
πj − πi on this arc may be increased or decreased and is defined by

ylow
a := [xa − ℓa]T = xa − ℓa − zaT for a suitable za ∈ ZZ

yupp
a := [ua − xa]T = ua − xa + zaT for a suitable za ∈ ZZ.

The modulo operator is defined by [t]T := min { t + zT | t + zT ≥ 0} and fulfills
0 ≤ [t]T <T.

Since lower and upper slack times may be exchanged by inverting the direc-
tion of the arc a, the problem to minimize the slack time in a periodic timetable
can be defined in terms of lower slack time ylow

a . In summary, the periodic
timetable slack problem can be formulated as the mixed integer program

min

{

∑

a:i→j

ωa(πj − πi − ℓa − zaT)

∣

∣

∣

∣

∣

∀a ∈ A : ℓa ≤ πj − πi − zaT ≤ ua; za ∈ ZZ

}

(2)

The resulting planning problems are known to be NP-hard.

2 The Periodic Timetable Polyhedron

At first we will briefly summarize the basic concepts and notations of network
flow models.

4 Karl Nachtigall, Jens Opitz

The incidence matrix of a network is an n × m matrix Θ = (θia) which
contains one row for each arc a and one column i for each node:

θai =











1, if a : j → i

−1, if a : i → j

0, else

A potential π ∈ IRn associates with each node i = 1, .., n a real value πi ∈ IR.

Q := conv.hull

({(

π

z

) ∣

∣

∣

∣

ℓ ≤ Θtπ − Tz ≤ u; z ∈ ZZm;π ∈ IRn

})

is said to be the periodic timetable polyhedron.
The potential difference xa := πj−πi is said to be the tension on arc a : i → j

and can be expressed as Θtπ = x. Adding a co-tree arc a to the arcs of a spanning
tree T , defines a uniquely determined cycle c. Its incidence vector γc = (γca) is
defined by

γca :=











1 , if the cycle contains arc a in positive direction

−1 , if the cycle contains arc a in negative direction

0 , else.

The network matrix Γ = (γca) of a tree T contains for each co-tree arc the
incidence vector of the associated cycle as one row. x ∈ IRm is a tension (i.e.
there exists a potential π ∈ IRn with Θtπ = x), if and only if there holds
Γx = 0. A periodic tension x fulfils Γx ≡T 0.

A spanning tree structure T = T ℓ+T u is a spanning tree, whose tree arcs are
partitioned into those arcs T ℓ and T u, where the tension is restricted to be at its
lower or upper bound, respectively 2. Each spanning tree structure determines

a unique potential π(T), which fullfills π
(T)
j −π

(T)
i = ℓa for (a : i → j) ∈ T ℓ and

π
(T)
j − π

(T)
i = ua for (a : i → j) ∈ T u. The spanning tree structure is said to be

feasible, if the generated potential is feasible with respect to the span constraints
for all arcs (1).
By using b :≡T −Γℓ and δ := u − ℓ, the periodic slack space is defined by

Y := {y ∈ ZZm | Γy ≡T b;0 ≤ y ≤ δ}

and the optimisation task is to determine min {ω ty | y ∈ Y} .

If the modulo parameters za are fixed, optimisation problem (2) becomes

min

{

∑

a:i→j

ωa(πj − πi − ℓa − zaT)

∣

∣

∣

∣

∣

∀a ∈ A : ℓa ≤ πj − πi − zaT ≤ ua

}

2 This definition differs from that definition given in [1]. This is caused by the circum-
stances, that the dual timetable problem is a modified minimum cost flow problem
without capacity on the arc flow values.

Periodic Timetable Optimisation Problems 5

= min

{

∑

a:i→j

ωa(πj − πi − ℓ
′

a)

∣

∣

∣

∣

∣

∀a ∈ A : ℓ
′

a = ℓa + zaT ≤ πj − πi ≤ u
′

a = ua + zaT

}

= min
{

ω
t
(

Θ
t
π − ℓ

′
) ∣

∣ ℓ
′ ≤ Θ

t
π ≤ u

′
}

(3)

the dual of a minimum cost flow problem (see [1]). The extreme points of
the feasible region of this problem are associated with spanning tree structures.
The network simplex method described in [1] interprets the core concept of the
simplex method appropriately as network operations. In particular, each optimal
basis can be characterized by the underlying spanning tree structure.

If zT denotes the associated modulo parameter, then

(

π(T)

zT

)

is called a pe-

riodic basic solution with respect to the spanning tree structure T . The following
theorem is due to [6].

Theorem 21 (Extreme Points and Spanning Tree Structures)
(

π

z

)

∈ Q is an extremal point of Q, if and only, if it is a periodic basis solution

with respect to a spanning tree structure.

The orthogonal complement of the tension space is known to be the space
of all flows ([9]), i.e. it holds {x | Γx = 0}⊥ = {ϕ | Θϕ = 0} . The space of all
periodic tensions is defined by

X := {x ∈ ZZm | Γx ≡T 0}

In the periodic case, we obtain

{x ∈ ZZm | Γx ≡T 0}⊥T = {ϕ ∈ ZZm | Θϕ ≡T 0} (4)

The following structural characterization of valid inequalities is due to [4] and
are discussed in more detail in [3].
Lemma 2.1 Let Q 6= ∅. Then ϑtπ − f tz ≥ r can only be a valid inequality for
the polyhedron

Q := conv.hull

({(

π

z

) ∣

∣

∣

∣

ℓ ≤ Θtπ − Tz ≤ u; z ∈ ZZm;π ∈ IRn

})

with ϑtπ (0) − f tz (0) = r for at least one

(

π (0)

z (0)

)

∈ Q, if and only if f is a flow

with balance ϑ, i.e. it holds Tϑ = Θf and

Tr = min
{

f tx
∣

∣ x ∈ X
}

�

Theorem 22 There exists a matrix F, where each of its rows is a periodic ten-
sion (i. e. ΘF ≡T 0) and a right hand side r, such that

conv.hull ({x ∈ ZZm | ∃z ∈ ZZm : Γx − Tz = 0; ℓ ≤ x − Tz ≤ u})

6 Karl Nachtigall, Jens Opitz

= {x | Fx ≥ r} ,

or equivalently

conv.hull ({y ∈ ZZm | ∃z ∈ ZZm : Γy − Tz = b;0 ≤ y − Tz ≤ δ})
= {y | Fy ≥ r̃ := r − Fℓ}

�

An example for the construction of such inequalities is as follows. Con-
sider a system of parallel arcs connecting two nodes i and j. The unbounded
periodic timetable slack problem (without upper bounds on the arcs) deals with
timetables from the set

[ℓ1, ...]

[ℓm, ...]

...
➤

➤
i j

P
∗
(ℓ) :=





















































πi
πj
z1

.

.

.
zm



















∈ ZZ
m+2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∀a = 1, ...m : ℓa ≤ πj − πi − zaT



































Without loss of generality, a non degenerate3 lower bound vector ℓ can be
assumed to be normalized in the sense, that

0 ≤ ℓ1 = [ℓ1]T < ℓ2 = [ℓ2]T < ... < ℓm = [ℓm]T < T (5)

Lemma 2.2 For ℓ ∈ ZZm with

0 ≤ ℓ1 < ℓ2 < ... < ℓm < T (6)

define the vector f by

fa :=

{

ℓ1 − ℓm + T if a = 1

ℓa − ℓa−1 if a>1
(7)

Then there holds

1. ∀a = 1, ...,m : 0 ≤ fa < T

2.
∑m

a=1 fa = T

3. ∀a′ :
∑m

a=a′+1 fa = ℓm − ℓa′

3 ℓ is called non degenerate, if [ℓa]T 6= [ℓa′]T forall a 6= a′

Periodic Timetable Optimisation Problems 7

Especially, f is a periodic flow with node mass balance ϑA = −T and ϑB = T.

The inequality

πB − πA − f tz = πB − πA −
m

∑

a=1

faza ≥ f0 := ℓm (8)

is a valid for P ∗(ℓ). �

Each of the considered arcs may be replaced by a chain of arcs, resulting in
a system of paths between i and j. Consider a spanning tree. Then each tree arc
a : i → j generates a cut and for each arc within this cut we find a path from i

to j. Hence, there is a natural i, j path system, which can be used to generate
cutting planes or equivalently rows of the matrix F.

3 The Modulo Simplex Method

For reasons of simplicity, in the following we only describe the case that the
tension is restricted to be at its lower bound. This is no loss of generality, since
upper bounds can be modelled as lower bounds on inverse directed arcs. Within
the simplex method this means that the corresponding non-basic variable is set
to the upper bound. Feasibility check and calculation of the modified cost of
basis exchanges can be done straightforward.

We consider the periodic timetable slack problem

min
{

ω,ty
∣

∣ y ∈ Y := {y ∈ ZZm | ∃z ∈ ZZm : Γy − Tz = b;0 ≤ y − Tz ≤ δ}
}

.

The integrality of the modulo parameter z makes the problem hard. For this
reason we will eliminate those variables and keep them implicitly in the model
by using modulo calculations. The modulo simplex method explores the extreme
points of the polyhedron conv.hull (Y) .

The tree and co-tree arcs of the underlying spanning tree split the network
matrix Γ = [NT , Eco

T] into its basic (= co-tree) and non-basic (= tree) compo-

nents. Therefore a periodic basic solution is given by

(

yT

yco
T

)

=

(

0
b

)

, which is

feasible if b ≤ δ. Any periodic tension x (with Γx ≡T 0) leads to a new solution
y′ := [y + x]T = y +x−z′T of Γy ′ ≡T b and stays feasible, if y ′ ≤ δ := u− ℓ.

In the following we will describe the problem by the use of a simplex tableau like
structure. Consider the network matrix Γ = [N,E] with respect to a spanning
tree. The tree arcs are denoted by a1, ..., ar−1 and the co-tree arcs are given by
ar,, am. Then the slack space is given by the modulo equations

The resulting objective is given by

ω =

m
∑

i=r

ωibi

8 Karl Nachtigall, Jens Opitz

γr1y1 + ... + γr r−1yr−1 + yr ≡T br

...
...

. . .
...

γi1y1 + ... + γi r−1yr−1 + yi ≡T bi

...
...

. . .
...

γm1y1 + ... + γm r−1yr−1 + ym ≡T bm

a1 aj ... ar ... ai ... am rhs

ar γr1 ... γrj ... 1 ... 0 ... 0 br

...
... ...

...
. . .

...
ai γi1 ... γij ... 0 ... 1 ... 0 bi

...
... ...

...
. . .

...
am γm1 ... γmj 0 ... 0 ... 1 bm

obj.
∑m

i=r ωibi

A basis exchange can be described by exchanging a leaving co-tree arc ai

with an entering tree arc aj , which belongs to the uniquely determined co-tree
cycle of the actual tree. The resulting cut η (ai,aj) is given by adjoining the
leaving tree component to the ai−associated column of N. Each α ∈ ZZ with
αη (ai,aj) ≤ δ = u − ℓ defines by y′ := y + αη (ai,aj) a new solution.

Exchanging co-tree arc i with tree arc j leads to the new solution

a1 ai ... ar ... aj ... an rhs

ar γrl −
γi1γrj

γij
... 0 ... 1 ... −γrj

γij
... 0

[

br −
γrj

γij
bi

]

T
...

... ...
...

. . .
...

aj
γi1

γij
... 1 ... 0 ... 1

γij
... 0

[

bi

γij

]

T
...

... ...
...

. . .
...

am γm1 −
γi1γmj

γij
... 0 0 ... −γmj

γij
... 1

[

bm − γmj

γij
bi

]

T

obj. ω̃ij = ω + ∆ωij

.

The modified solution has cost

ω̃ij :=
i−1
∑

k=1

ωk

[

bk −
γkj

γij

bi

]

T

+ ωj

[

bi

γij

]

T

+
r

∑

k=i+1

ωk

[

bk −
γkj

γij

bi

]

T

The cost difference can therefore be calculated by

∆ωij = ω̃ij − ω

Periodic Timetable Optimisation Problems 9

=
∑

k 6=i

ωk

(

bk −

[

bk −
γkj

γij

bi

]

T

)

+ ωibi − ωj

[

bi

γij

]

T

(9)

The following example illustrates these considerations.

3.1 Example

Consider a problem with period T = 20 and underlying event network shown in
Figure 2.

➤a4, [1,20],ω4 = 9

➤

a2, [7,26],ω2 = 3

➤

a1, [9,28],ω1 = 8

➤

a5, [5,24],ω5 = 1

➤

a3, [2,21],ω3 = 5

➤

a6, [3,22],ω6 = 4 B

A

C

D

Fig. 2. Event Network

The initial spanning tree T = T ℓ + T u with T ℓ = {a2, a3, a5} and the resulting
potential is given by Figure 3. This initial spanning tree structure induces the
following modulo simplex tableau with total cost ω = 129.
The following table contains for each possible basis exchange the resulting cost
difference. This can be calculated by formula (9). The best gain will be received

10 Karl Nachtigall, Jens Opitz

➤a4;[1,20];y4 = 1

➤

a2;[7,26];y2 = 0

➤

a1;[9,28];y1 = 15

➤

a5;[5,24];y5 = 0

➤

a3;[2,21];y3 = 0

➤

a6;[3,22];y6 = 0 B

πB = 0

A

πA = 4

C

πC = 7

D

πD = 2

Fig. 3. Spanning tree structure (= red arcs), associated potential and slack times
ya = [πj − πi − ℓa]T .

by exchanging tree arc a2 with co-tree arc a1. Table 3 shows the new modulo
simplex tableau after pivot step. The new objective is ω = 129 − 60 = 69.

Table 3. Modulo Simplex Tableau of Step 1.

a1 a3 a5 a4 a2 a6 b ω

a4 -1 1 0 1 0 0 6 9
a2 -1 1 -1 0 1 0 5 3
a6 0 1 -1 0 0 1 0 4

ω 69

Periodic Timetable Optimisation Problems 11

Table 1. Initial Modulo Simplex Tableau.

a2 a3 a5 a4 a1 a6 b ω

a4 -1 0 1 1 0 0 1 9
a1 -1 -1 1 0 1 0 15 8
a6 0 1 -1 0 0 1 0 4

ω 129

Table 2. Cost difference ∆ for all possible basis exchanges.

a2 a3 a5

a4 40 - -12

a1 −60 -35 0

a6 - 0 20

The algorithm performs such modulo simplex pivot steps as long as a basis
exchange will generate an improvement of the solution. Clearly, this only leads
to a local minimum. Each periodic tension η with Γη ≡T 0 and η ≤ δ defines
by y′ := y + η a new solution of the problem. It improves the old solution,
if the new objective value gets better. In case of an improvement the modulo
simplex pivoting will be applied again. This requires a basic solution, which can
be simply received by solving the non-periodic minimum cost flow with fixed
modulo parameter by the classical network simplex method.

In order to improve the local optimum after modulo simplex pivoting we
apply a special class of cuts: For each node i the set of all leaving or entering
arcs is a cut η(i). Modifying the potential value of node i by π′

i := πi + δ, equals
with the solution y + δη(i) after applying the δ−multiple of the cut. For the
class of those single node cuts it is obviously easy to check the improvement by
enumerating all possible values for δ.

The modulo network simplex method can be summarized by

12 Karl Nachtigall, Jens Opitz

3.2 Modulo Network Simplex Algorithm

Initialisation: Determine an initial feasible tree structure T = T ℓ+T u

with feasible solution y

Single node improvement: WHILE (there exists an improving sin-
gle node cut η) DO
1. Apply this cut by transforming the solution y′ := y + η.

2. Fix the modulo parameter of this solution y′ and solve the non-
periodic minimum cost flow problem (see (3)) by the classical
network simplex method. Then, the optimal solution becomes a
tree solution.

3. Modulo-Simplex-Pivoting:
(a) For each basis exchange pair (i, j) with γij 6= 0 calculate the

cost difference ∆ωij .

(b) If ∆ωij < 0 and η (ai,aj) ≤ δ = u − ℓ, then improve the so-
lution by exchanging co-tree arc ai with tree arc aj and con-
tinue with step (a). Otherwise terminate Modulo-Simplex-
Pivoting.

The non-periodic simplex algorithm terminates, if the well known comple-
mentary slackness conditions are fullfilled. For the periodic case such a strong
optimality condition cannot be given. However, sometimes it is possible to trans-
form the periodic basic solution of a modulo simplex step into a primal feasible
basic solution of a relaxation

ỹ ∈
{

y | F̃y ≥ r
}

⊇ conv.hull ({y ∈ ZZm | ∃z ∈ ZZm : Γy − Tz = b;0 ≤ y − Tz ≤ δ})

If ỹ is already optimal, i. e. ωtỹ = min
{

ωty | F̃y ≥ r
}

, then we found the

optimal solution of the overall problem. Otherwise, the basis representation of ỹ

has negative reduced costs. A basis transformation of F̃ will exchange a tree
and a co-tree arc, which then, also done for the modulo simplex, will possibly
improve the solution.

.

4 Computational Results For a Real World Scenario

4.1 The Traffic Sample

We applied the described algorithm to a real world traffic sample, which was
derived from the south-west area of the German Railway Network (see Figure
4).

Periodic Timetable Optimisation Problems 13

Nordheim (Württ)

Kirchheim (Neckar)

Neuenburg (Baden) Grenze

Bad Krozingen

Freiburg (Breisgau) Gbf

Kollmarsreute

Kenzingen

Orschweier

Friesenheim (Baden)

Offenburg

Renchen

Ottersweier

Baden-Baden

Rastatt

Ettlingen West

Karlsruhe-Hagsfeld

Friedrichstal (Baden)

Philippsburg Molzau

Neulußheim

Oftersheim

Mannheim-Friedrichsfeld

Lützelsachsen

Worms Hbf

Singen (Hohentwiel)

Reichenau (Baden)

Hausach

Niederwasser

Illingen (Württ)

Basel Grenze Muttenz

Eimeldingen

Rheinweiler

Bad Saulgau

Sigmaringen

Engen

Straßberg-Winterlingen

Frommern

Bisingen

Bodelshausen

Dußlingen

Donaueschingen

Trossingen Bahnhof

Loßburg-Rodt

Stuttgart-Feuerbach

Günzburg

Neu Ulm

Lonsee

Geislingen (Steige)

SalachPlochingen

Grünholz

Bondorf (b Herrenberg)

Herrenberg

Böblingen Hulb

Lambrecht (Pfalz)

Hochspeyer
Hauptstuhl

Homburg (Saar) Hbf

Saarbrücken Saardamm

Erbach (Württ)

Laupheim West

Warthausen (Hp)

Mochenwangen

Ravensburg

Kehlen

Langenargen

Osterburken

Roigheim

Züttlingen

Neckarsulm

Kornwestheim Karlshöhe

Crailsheim

Wilhelmsglück

Fichtenberg

Böbingen(Rems)

Goldshöfe

Ellwangen

Albbruck

Erzingen (Baden)

Salem

Rinnthal

Grünstadt

Aha

Buchen Ost

Rippberg

Bachheim

Binau

Saarhölzbach

Merzig (Saar) Stadtmitte

Dillingen (Saar)

Fig. 4. The Traffic Sample contains 92 lines from the south-west area of the
German railway network.

The timetabling problem contains 92 different railway lines with periods of
20, 30, 60 and 120 minutes, which results in an overall period of

T = lcm(20, 30, 60, 120) = 120minutes.

The resulting periodic event scheduling problem contains 669 event nodes and
in total 3831 (with 3287 headway) constraints.

To solve the feasibility problem without any passenger connection constraints,
we used a constraint programming approach, which finds a feasible solution
within approximately one minute computation time. Next, for an origin desti-
nation matrix we applied a traffic assignment, by routing passengers on best
paths. In this way we obtained for each possible connection between different
lines a weight for the number of passengers using this change activity. The origin
destination matrix contains only values given in percent of the total (unknown)
traffic volume. For this reason, the change activity weight is primary that per-
centage of total volume which uses this connection. Due to the huge amount
of approximately 1200 change activities with positive passenger weight, we only
pick out the most important ones.

14 Karl Nachtigall, Jens Opitz

Table 4. Computational Results for the Modulo-Simplex-Algorithm

iteration objective description

620952.00 initial solution from constraint propagation

462111.00 min cost flow with fixed modulo parameter z

1 436881.00 modulo-network simplex
2 415182.00 modulo-network simplex
...
35 327113.00 modulo-network simplex
36 319874.00 single node cut improvement + min cost flow
37 312342.00 modulo-network simplex
...
56 294567.00 modulo-network simplex
57 286122.00 single node cut improvement + min cost flow
58 273789.00 modulo-network simplex
...
67 254988.00 modulo-network simplex
68 254711.00 single node cut improvement + min cost flow
69 254711.00 modulo-network simplex

68 254711.00 final solution

To do this and to get integer valued weights, the percentage was multiplied
by a factor 200, which results into 570 connection constrains with weights in the
range between 1 and 280. The results of the modulo network method are given
by table 4. In total, the method needs approximately 20 minutes computation
time.

5 Acknowledgement

This project was supported by the German Railway Company DB Netz AG.

References

1. R.K. Ahuja, T.L. Magnati, and J.B. Orlin. Network Flows. Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1993.

2. M. Kolonko, K. Nachtigall, and S. Voget. Exponat der Universität Hildesheim auf
der CeBit 96: Optimierung von integralen Taktfahrplänen mit genetischen Algo-
rithmen. Hildesheimer Informatik-Berichte, 8/96, 1996.

3. Christian Liebchen. Periodic Timetable Optimization in Public Transport. dis-
sertation.de - Verlag im Internet GmbH, Berlin, 2006. Dissertation, TU Berlin,
Institut für Mathematik.

4. Thomas Lindner. Train Schedule Optimization in Public Rail Transport. Disserta-
tion, TUBRSW, 2000.

Periodic Timetable Optimisation Problems 15

5. K. Nachtigall. Periodic Network Optimization with different Arc Frequencies. Dis-

crete Applied Mathematics, (69):1–17, 1996.
6. Karl Nachtigall. Periodic Network Optimization and Fixed Interval Timetables.

Habilitationsschrift, Universität Hildesheim, 1998. auch als Institutsbericht (IB)
112-99/02 des Deutschen Instituts für Luft- und Raumfahrt, Braunschweig 1999.

7. M. Odijk. Construction of Periodic Timetables - Part I: A Cutting Plane Algo-
rithm. Technical Report 94-61, Department of Mathematics and Computer Science.
Delft University of Technology. Delft, The Netherlands, 1994.

8. Leon W.P. Peeters. Cyclic Railway Timetable Optimization. PhD thesis, Erasmus
University Rotterdam, 2003.

9. A. Schrijver. Theory of Linear and Integer Programming. J. Wiley and Sons,
Chichester New York Brisbane Toronto Singapore, 1986.

10. A. Schrijver and A. Steenbeek. Dienstregelingontwikkeling voor Railned. Technical
report, Centrum voor Wiskunde en Informatica., 1994.

11. P. Serafini and W. Ukovich. A Mathematical Model for Periodic Scheduling Prob-
lems. SIAM J. Discrete Math., 2(4):550–581, 1989.

12. W. Weigand. The Man-Maschine Dialogue and Timetable Planning. Rail Inter-

national, 3:8–25, 1983.

